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ABSTRACT

Score-based methods, such as diffusion models and Bayesian inverse problems,
are often interpreted as learning the data distribution in the low-noise limit
(¢ — 0). In this work, we propose an alternative perspective: their success
arises from implicitly learning the data manifold rather than the full distribu-
tion. Our claim is based on a novel analysis of scores in the small-o regime
that reveals a sharp separation of scales: information about the data manifold
is ©(0~2) stronger than information about the distribution. We argue that this
insight suggests a paradigm shift from the less practical goal of distributional
learning to the more attainable task of geometric learning, which provably toler-
ates O(o~2) larger errors in score approximation. We illustrate this perspective
through three consequences: i) in diffusion models, concentration on data support
can be achieved with a score error of o(o~2), whereas recovering the specific data
distribution requires a much stricter o(1) error; ii) more surprisingly, learning the
uniform distribution on the manifold—an especially structured and useful ob-
ject—is also O(o~?) easier; and iii) in Bayesian inverse problems, the maximum
entropy prior is O (o ~2) more robust to score errors than generic priors. Finally,
we validate our theoretical findings with preliminary experiments on large-scale
models, including Stable Diffusion.

1 INTRODUCTION

Score learning has emerged as a particularly powerful paradigm for modeling complex probabilistic
distributions, driving breakthroughs in generative modeling, Bayesian inverse problems, and sam-
pling (Laumont et al., [2022; Saremi et al., 2023} |[Ho et al., 2020; Song & Ermonl 2019; Song et al.}
2021). Let pigata be a data measure over R? and define a Gaussian-smoothed measure as

fio = law (X + 0Z) or iy := law (\/1 — 22X + oz) , where X ~ fiqata; Z ~ N(0,1). (1)

Let p, be its density function w.r.t. the Lebesgue measure over R?. A key step in the score learning
framework is to approximate the score function V log p, and to sample from the target distribution
Lo, possibly across a spectrum of different o values (Vincent, 2011; Hyvirinen & Dayanl 2005).

A central challenge in this framework is understanding the low-temperature limit, i.e., learning the
score of i, as ¢ — 0, which encodes the most detailed information about the data distribution. Em-
pirically, this regime is also the most valuable: low-temperature scores underpin many probabilistic
learning frameworks (Laumont et al., 2022} Saremi et al.| 2023} [Janati et al.| 2024} [Kadkhodaie
& Simoncelli, 2020), including the influential diffusion model framework (Ho et al., |2020; Song
et al.l 2020; |[Karras et al., 2022), whose noise schedules are specifically designed to emphasize low
temperatures and often require substantial post-training engineering to stabilize the learned scores.

Despite its importance, accurately estimating the score function in the low-¢ regime remains noto-
riously difficult (Song et al.| [2021; |Karras et al., [2022; |Arts et al., 2023} |Raja et al.| 2025} [Stanczuk
et al.,[2024). Motivated by this challenge, this paper establishes a new qualitative phenomenon under
the widely adopted manifold hypothesis, which posits that the data distribution fiqats iS supported
on a low-dimensional manifold M embedded in a high-dimensional ambient space.

Our key finding, formalized in Theorem [3.1] is that in the small-o regime of score learning there
is a sharp separation of scales: geometric information about the data manifold appears at order
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Figure 1: Toy examples illustrating recovered distributions under different regimes, with the mani-
fold represented as a one-dimensional circle embedded in R?.

O(0™2), whereas density information of jiqat. emerges only at order ©(1). As shown in Section
this implies that distribution learning of y, (e.g., in diffusion models) necessarily first recovers the
support of the data distribution before any information about the density can be learned. This per-
spective naturally separates score learning into two fundamental tasks: geometric learning, which
targets the manifold geometry, and density learning, which targets the specific data density on that
manifold, with the latter being order of magnitude more difficult. It also suggests that the practical
success of score-based models (e.g., diffusion models) stems from constraining generated samples
to the manifold, thereby producing realistic data even without fully recovering the underlying distri-
bution. According to our analysis, to achieve this, a score error even as large as 0(0‘2) is sufficient.

However, our analysis reveals a critical limitation: unless the score is learned to a stringent accuracy
that is beyond O(1), attempts to recover the data distribution may yield arbitrary densities supported
on the manifold. This amounts to only a partial recovery of geometry and can compromise the reli-
ability of downstream tasks and analyses. Such an observation motivates us to pursue full geometric
learning—that is, learning to sample uniformly with respect to the manifold’s intrinsic (Riemannian)
volume measure, as it is well-known that uniform samples can best support tasks that depend solely
on the underlying geometry (e.g., Laplace—Beltrami and heat-kernel approximation, geodesic and
diffusion distances) (Coifman & Lafon,[2006; Belkin & Niyogi, 2008; Jost, 2005). In addition, they
also facilitate principled manifold exploration, yielding diverse samples while mitigating potential
biases present in pgat, (De Santi et al. 2025).

In this light, a central contribution of this work is to show that a simple, one-line modification
to standard algorithms can provably generate the uniform distribution on the manifold—requiring
only o(o~2) score accuracy, in stark contrast to the o(1) accuracy needed for exact distributional
recovery. In summary, we advocate a paradigm shift: from the demanding goal of distributional
learning toward the more practical and robust objective of geometric learning.

We substantiate the aforementioned rate separation phenomenon by three key results (see also Fig-
ure [I)):

* Theorem [4.1] shows that, in existing frameworks, the score accuracy required to force concentra-
tion on the data manifold is 0(0’2) weaker than that needed to exactly recover fiqata. Neverthe-
less, the resulting distribution can still be arbitrary.

* Incontrast, Theorems[5.1]to[5.2]establish a new paradigm centered on extracting precise geometric
information of the data manifold by producing the uniform distribution. Notably, we show that a
simple one-line modification of a widely used sampling algorithm suffices to obtain samples from
the uniform distribution under the relaxed score error condition o(c~?2), substantially weaker than
the o(1) required for full recovery of pdata-

* In the context of Bayesian inverse problems (Venkatakrishnan et al., 2013), Theorem@] estab-
lishes a rate separation in posterior sampling depending on the choice of prior. When the prior is
uniform, posterior sampling requires only o(c~2) score accuracy. By contrast, when the prior is
taken to be the commonly used data distribution fi4,¢a, Substantially stronger accuracy guarantees
are needed to ensure provable success in existing works (Laumont et al.,2022; |Pesme et al., 2025)).

We validate these theoretical results with preliminary experiments on both synthetic and real-world
data, including an application of our algorithm to a large-scale image generation model (Stable Dif-
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fusion 1.5 (Rombach et al.,[2022))). Finally, although several existing works have studied distribution
learning under the manifold hypothesis, none uncover the rate separation phenomenon central to our
work. A detailed discussion of related literature is thus deferred to Appendix [A]

2 PRELIMINARIES AND NOTATION

In this work, we adopt the manifold assumption (Song & Ermon), [2019; |De Bortoli, 2022} |Loaiza-
Ganem et al., [2024) as follows:

Assumption 2.1 (The Manifold Hypothesis). We assume that the data distribution [iqats IS SUp-
ported on a compact, boundaryless C* embedded submanifold M C R%, with dim(M) = n.

Local coordinates and manifold geometry. Under the manifold hypothesis, the n-dimensional
manifold M can be described locally using coordinates from a flat, Euclidean space. This is done
via a set of smooth mappings, or charts, ® : U — M, where each chart maps an open set of
parameters U C R™ to a patch on the manifold. For notational simplicity, we will work with a single
chart, where u € U represents the local coordinates of a point ®(u) on M. The manifold’s intrinsic,
and generally non-Euclidean, geometry is captured by the Riemannian metric tensor, g(u). This
tensor provides the means to measure lengths and angles on the curved surface. The metric gives
rise to the Riemannian volume measure, d M (x), which is the natural way to integrate a function
[ : M — R over the manifold. In local coordinates, this integral is expressed as [ w f@)dM(z) =

Jiy F(®@(w))\/det(g(u)) du, wrt. the Lebesgue measure on U. Here, the term \/det(g(u)) is the

volume correction factor. While we use a single chart for clarity, integration over the entire compact
manifold is handled by stitching together multiple charts via a partition of unity. The set of points in
R that are sufficiently close to the manifold forms the tubular neighborhood: Ty (¢) := {x € R? :
dist(x, M) < €}. For any point  within this neighborhood, there exists a unique closest point on
the manifold, given by the Pu¢(x) : Tq(e) — M. This projection allows us to define the squared
distance function to the manifold, a quantity of central importance to our analysis:

1. 1 -
dp(x) = idlstQ(x,/\/l) = min §||x —z|% (2)

2.1 THE GAUSSIAN SMOOTHED MEASURE AND CONNECTION TO DIFFUSION MODELS

With Assumption @ we define the corresponding density pgata Of fidata With respect to the
Lebesgue measure on U: pgata(u) = W(u), where ®* 1gata(S) = pdata(P(S)) for
S C U, and assume the following regularity assumption:

Assumption 2.2 (Regularity and Converage of pgata). The probability density pgata : U — R
defined w.r.t. the Lebesgue measure on U is C*(U) and strictly positive.

Recall the two Gaussian—smoothed measures 4, introduced in Equation (T). We follow the naming
convention of |Song et al.|(2021) and denote by 1Y* the variance—exploding (VE) smoothing and by
uyP the variance—preserving (VP) smoothing. Their densities w.r.t. the Lebesgue measure on R is

where the densities are denoted pY ® for VE with (o) = 1 and pYF for VP with v(c) = /1 — o2.
We take pqata to be the true population density rather than a finite-sample empirical approximation.

These smoothed distributions correspond to the marginals of the forward noising processes used in
diffusion and score-based generative modeling. In SMLD or VE-SDE (Song et al., [2021)), Gaussian
noise with variance o%(t) : R, — R is added to the data at time ¢, a model is trained to progres-
sively denoise, and in the reverse process the objective is to sample from pX(F;), recovering Pdata as
t — 0 (equivalently, o(t) — 0). Similarly, DDPM or VP-SDE (Ho et al., [2020; [Song et al.| 2021)
corresponds to the VP density p}"(lzt’), again with the goal of recovering pgat, in the limit ¢ — 0.
Beyond the reverse process, one may also directly use the learned score to run a Langevin sampler
targeting py ¥ (Song & Ermon, [2019) or pY¥', or combine Langevin sampling with the reverse pro-
cess, as in the Predictor—Corrector algorithm (Song et al.l 2021)). Since our results apply to both VE
and VP settings, we adopt the unified notation p, whenever no ambiguity arises.
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2.2 BAYESIAN INVERSE PROBLEMS

Another important algorithmic implication of our results concerns Plug-and-Play (PnP) methods
for Bayesian inverse problems (Venkatakrishnan et al., 2013). Let 2 € R¢ be the latent signal and
y € Y C R™ the observationy = A(x)+&, where A : R? — R™ is the measurement map and & €
R™ is noise. Under standard assumptions on A and £ (e.g., A linear, £ ~ N(0, s21)), the likelihood
admits a density p(y | ) o« exp( — v(z;y)) (for the Gaussian case, v(z;y) = 75 [|A(z) — y||?).
In the Bayesian framework we endow x with a prior pprioy. Inference is cast as sampling from the
posterior p(x | y) = %

Plug-and-Play (PnP). PnP methods address the case where the prior is (i) known up to a normal-
izing constant, e.g. a Gibbs measure or (ii) only accessible via samples (common in ML). A unifying
sampling paradigm is posterior Langevin with a (possibly learned) prior score 5 ~ V 10g pprior;

dX, = —Vu(Xey)dt + §(X)dt + V2dW,. 4)

In case (ii), § is a score estimator obtained, e.g., by score matching on prior samples. A common
choice of py,ior Would be the density p, defined in eq. (EI) with small ¢. In this context, to ensure up-
date (@) yields samples matching the target posterior distribution, existing works require the learned
score § to be at least o(1) accurate (Laumont et al.,[2022)), or even exact (Pesme et al.,|[2025).

2.3 STATIONARY DISTRIBUTION FOR NON-REVERSIBLE DYNAMICS

In score learning, one typically learns a score function s(x, €) for a target density and then runs
Langevin dynamics (equivalently, the corrector step in the Predictor—Corrector algorithm for diffu-
sion models (Song et al.|[2021))) until near stationarity to sample from that density:

dXt = S(Xt,G) dt + \/§th

If s(x,€) = —V fc(x), the stationary distribution is proportional to exp(— fe(x)). In practice, how-
ever, the score is often produced by a parameterized model and need not be a gradient field (this is
also the case for our proposed algorithms). The resulting Langevin dynamics is then generally non-
reversible, and its stationary distribution need not admit a closed form—an open problem studied
in, e.g., (Graham & T¢I, |[1984; Maes et al., |2009; [Rey-Bellet & Spiliopoulos, 2015).

Several works have sought to characterize the stationary distribution of non-reversible SDEs. No-
tably, Matkowsky & Schuss| (1977)); Maier & Stein| (1997); |Graham & Téll (1984); Bouchet &
Reygner| (2016) employ the WKB ansatz (Wentzell |1926} | Kramers| |1926} Brillouin, [1926)), which
is commonly used in matched asymptotic expansions (Holmes, 2012). This approach posits that the
stationary density takes the form
k
exp (— V(f)) ce(z), with c(x) = Zcz(x) e, (3)
i=0

for some k € N. The functions V and {c;} are then identified by inserting (5) into the stationary
Fokker—Planck equation and balancing terms order by order in €. Importantly, prior analyses typi-
cally focus on low-dimensional special examples or on drifts with a single stable point. The difficulty
of removing such restrictions turn out to be central to our analysis; see Section 3] for details.

3 CENTRAL INSIGHT: GAUSSIAN SMOOTHING RECOVERS GEOMETRY
BEFORE DISTRIBUTION

This section presents the central insight of the paper: While the proofs of our later main results
are technically involved, they are all guided by a common intuition that is transparent and can be
understood through a simple Taylor expansion of log p, at 0 = 0:

Theorem 3.1 (Informal Theorem|C.2). Assume Assumptions[2.1|and[2.2|holds. For any x € T (e),
1
log po () = = —dm(x) + 108 pasia (@~ (Pm(2))) — 5% log(2m0”) + H(z) +o(1),  (©)

where H(x) contains the curvature information of the manifold and € is some sufficiently small
constant; both of them are independent of o. The small o(1) term is uniform for x € Tpq(e).
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From Equation (6)), it follows immediately that the scaled log-density recovers the distance function
to the manifold in the small o limit:

lim 0?logpy(r) = —da(x) uniformly for all 2 € Thhy(e). @)
o—r

The appearance of d o4 () under the manifold hypothesis should not come as a surprise; indeed, as
Do — Pdata When o — 0, and since pqata is supported entirely on M, any point & with dq(x) > 0
must be assigned zero probability, which explains the divergent scaling factor 0 ~2 in the coefficient.
What is more surprising is that only d 4 (x) appears at leading order, with no dependence on paata:
Information about pga¢. enters only at the higher-order terms of O(1).

This reveals a fundamental rate separation: for any distribution supported on M, one must first re-
cover da(z) exactly before learning anything about pgat., as any inaccuracy in d () gets blown
up by the diverging factor c~2. Moreover, coefficients encoding pqat. appear at order O(o~2)
higher, meaning that extracting information about pg,t, requires a level of accuracy orders of mag-
nitude stricter than that needed to recover the manifold geometry, i.e., the distance function d .

As demonstrated in Sections [4] to [3] this observation entails several significant consequences for
machine learning. Each of these can be understood as a manifestation of the fundamental rate
separation between geometric recovery vs. distributional learning established in Theorem 3.1

4 SCALE SEPARATION IN EXISTING GENERATIVE LEARNING: GEOMETRY
VERSUS DISTRIBUTION

In this section, we study the paradigm of existing generative learning where algorithms target to
learn the Gaussian-smoothed measure /i, such as the diffusion models discussed in Section [2.1]
We denote the corresponding perfect score function by s*(z, o) := Vlog p, ().

In practice, however, the generated samples may follow a different distribution due to imperfections
such as errors in training or discretization of the reverse differential equation. We therefore let
7, (x) : R? — R denote the density of the distribution actually produced by an empirical algorithm,
and define its associated score as s, (z) := Vlogn,(z). Our analysis focuses on 7, in terms of
discrepancies between s, () and the ideal score s*(z, ).

Before presenting our result, we impose the following assumption on the recovered distribution.

Assumption 4.1. We denote the log-density of the recovered distribution as — f, = log 7, (), and
assume that f, is C*(K). Furthermore, we impose the following conditions:

1. There exists a compact set K C RY with Tx(¢) C K such that the density concentrates on K as
o — 0, ie, lim,_ [5 7o () de = 1.

2. K is uniformly rectifiably path-connected, meaning that for any two points x,y € K, there exists
a path in K connecting x and y whose length is uniformly bounded for all x,y € K.

Remark 4.1. We believe our assumptions are already reflected in practice: Since 7, represents the
effective distribution of the generated samples, it can incorporate standard constraints such as data
clipping (e.g., to [—1,1]) used in many diffusion models (Ho et al. 2020; [Saharia et al.| [2022).
This ensures the generated density concentrates on a compact set K as required. Furthermore, such
regular sets are naturally uniformly rectifiably path-connected.

We are ready to state our main result in this section; see Appendix [C.3|for the proof.
Theorem 4.1. Suppose Assumptions[2.1}[2.2]andd-1| hold. Denote the score error as

Ey = ||sx, — s*(-,0)|| 1o (k)-
1. Concentration on Manifold. If we have that E, = o(o~2), then 7, concentrates on M, i.e.,

lim 7o(x)dr =0 forany 6 > 0.
o0 dist(z,M)>6

2. Arbitrary Distribution Recovery. For any distribution # supported on M with C density, one
can construct f such that E; = S2(1) as 0 — 0, and 7, converges weakly to 7.
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3. Recovering paata. If we have that E, = o(1) as 0 — 0, then 7, converges weakly 10 paata-

This result formalizes the intuitive fact that recovering pqats requires V log 7, to match the true
score to within o(1) accuracy as ¢ — 0. The reason is clear from the expansion (6)): the distribution
Ddata Only appears in the ©(1) term, and any larger error would overwhelm this information. In
practice, however, achieving such accuracy is extremely challenging, particularly in the small-o
regime. However, recovering the manifold is simple—only o(1/0?) accuracy is required such that
as 0 — 0, the density will concentrate on M—a shape separation from recovering pqata.-

Implications to Diffusion Models. As we mentioned before, the paradigmatic example to which
our results can be applied is diffusion models. Our Theorem[4.T|then reveals a sharp scale separation
in terms of the score error: well before the true distribution pqata is fully recovered, one can already
recover a distribution supported on the same data manifold. In practice, this often suffices, as what
truly matters is capturing the structural features of the manifold—realistic images, plausible protein
conformations, or meaningful material geometries. This insight provides a potential new explanation
for the remarkable success of diffusion models.

5 NEW PARADIGM OF GEOMETRIC LEARNING: RECOVER UNIFORM
DISTRIBUTIONS WITH o(0~?) SCORE ERROR

As shown in Theorem while concentration on the manifold is orders of magnitude simpler,
the recovered distribution can still be arbitrary unless the score is learned with o(1) accuracy. In
contrast, we show in this section the striking fact that even with score errors as large as o(c~2),
with a simple modification of the existing algorithm, one can recover the uniform distribution on the
manifold—a fundamental distribution that plays a key role in scientific discovery and encodes rich
geometric information about the manifold (De Santi et al., 2025} |Belkin & Niyogi, [2008]).

Unlike in Section [f] where we compared errors by evaluating a learned distribution 7, against the
ideal p,, through their score functions, in this section we assume direct access to an estimated score
oracle s(-, o), such as those learned via score matching in diffusion models. Given access to such
an oracle, our proposed algorithm consists of running the following SDE for some o > 0:

dX; = 0%s(X;,0)dt + V2 dW;, (8)

which we refer to as the Tempered Score (TS) Langevin dynamics. We claim that, under mild
error assumptions, the stationary distribution of this SDE, denoted 7., converges to the uniform
distribution on the manifold as ¢ — 0.

Our analysis proceeds in two steps. First, we establish the result in a simplified setting where the
score oracle s(-, o) is guaranteed to be a gradient field, with a proof analogous to Section Second,
we tackle the substantially more challenging case in which no a priori gradient structure is assumed.
Full proofs are provided in Appendix

Warm-up: Score Oracle is a Gradient Field. We use the same notation as in Section 4} namely
s(x,0) = =V fy(x). In this case, the stationary distribution of Equation (8) admits the explicit form

7o (x) x exp(—o® f,(z)).

We then obtain the following result, using a proof technique similar to that of Theorem [4.1]
Theorem 5.1. Assume Assumptions[2.1] 2.2and[d.1] hold, with 7, replaced by 7 ,. Suppose

ls(-;0) =" (o) |lLe (k) = 0(0'8) for some > —2. )

Then for any max{—3,0} < a < 2, as 0 — 0, T, converges weakly to the uniform distribu-
tion on the manifold M with respect to the intrinsic volume measure. More precisely, the limiting
distribution T with respect to the Lebesgue measure on U satisfies

7lu) o S ),

where (dM /du)(u) = \/det(g(u)) is the Riemannian volume element on M.
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General Non-Gradient Score Oracle. While theorem already illustrates the rate separation
phenomenon we wish to emphasize, it relies on the highly impractical assumption that the estimated
scores s(+, o) are exact gradient fields. To enhance the applicability of our framework, it is crucial
to relax this stringent assumption.

As discussed in Section existing approaches to non-gradient scores (and hence non-reversible
dynamics) typically assume the existence of a unique point z* such that lim,_,g c%*s(z*,0) = 0,
with the key consequence of collapsing the prefactor ¢y in () to a normalization constant co(z*).
Our framework, however, explicitly violates this assumption: we require that lim,_,o 0®s(-, o) sta-
bilizes to a manifold rather than a singleton. Under this setting, the limiting behavior of ¢y is far
from obvious, and the resolution of this issue turns out to be highly nontrivial.

To this end, a central part of our proof is devoted to showing that cy nevertheless remains constant,
albeit for an entirely different reason: we prove that the higher-order terms in the Fokker—Planck
expansion enforce cq to satisfy a parabolic PDE on the manifold, and by the strong maximum
principle (Gilbarg et al.,|1977), the only solutions on a compact manifold are constants.

With these techniques, we obtain the same conclusion as Theorem [5.1}

Theorem 5.2. Assume Assumptions and and eq. () hold, and further suppose paata €
C?(U). For any max{—3,0} < a < 2, assume that the SDE admits a unique stationary distri-
bution, denoted 7, which locally admits a WKB form (Assumptionwith 0 = 0>=). Then the
conclusion of Theorem holds.

Setting o = 0 in eq. (8) recovers the standard Langevin sampler or the “Corrector” step commonly
used in diffusion-based sampling (Song et al.,[2021). Our results in Theorems @] and@ therefore
imply that a simple, one-line modification of these standard schemes is enough to recover the uni-
form distribution on the data manifold from samples of p4ata, €ven when the score error is as large as
o(o~2)—a substantially weaker requirement than the o(1) accuracy needed to recover pgats itself.

Remark 5.1. In Appendix [E] we provide further discussion on the convergence (mixing time) of TS
Langevin compared to standard Langevin dynamics. While characterizing the general convergence
rate is a non-trivial problem left for future work, our analysis indicates that TS Langevin maintains
comparable algorithmic efficiency. In fact, by analyzing the Poincaré constant, we identify concrete
examples where TS Langevin converges provably exponentially faster than standard, untempered
Langevin dynamics.

6 UNIFORM PRIOR IS MORE ROBUST BAYESIAN INVERSE PROBLEMS

In Bayesian learning, one often sets the prior ppior to the Gaussian-smoothed data distribution
po defined in Equation (3) with some small smoothing parameter 0. To ensure asymptotically
correct posterior samples under this choice, the learned score typically must be exact (Pesme et al.}
2025), § = V log p,, or achieve vanishing error, ||§ — V1ogps ||z~ = o(1) (Laumont et al., {2022}
Proposition 3.3 and H2). In contrast, under our framework, if one adopts the manifold volume
measure (i.e., the uniform distribution on M) as the prior, then correct posterior sampling can be
attained under a substantially weaker requirement: it suffices that the score error scales as o(o~2).
The precise statement is given in the theorem below.

Theorem 6.1. Under the same assumptions as in Theorem and suppose v : R4 — R is bounded
on R4, and C on Tr((€). Then, as o — 0, the stationary distribution of the SDE

dx; = =V (xy) dt — oV f, () dt + V2 dW;, (10)

converges weakly to a distribution supported on M with density o exp(—v(®(u))) L4 (u).

Diffusion Models with Classifier-Free Guidance. The above result can also be applied to diffu-
sion models. The drift term in Equation (I0) represents the effective score of a diffusion model with
classifier-free guidance (Ho & Salimans| [2022). In this formulation, —V f,, denotes the uncondi-
tional score estimate, while the guidance term — Vv equals the guidance scale w times the difference
between the conditional and unconditional score estimates. Our tempered score can be applied di-
rectly to CFG diffusion models with a Predictor—Corrector sampler: in the corrector (Langevin) step,
replace the score by its tempered version according to Equation (i.e., scale the unconditional
score by ). We will demonstrate the effectiveness of this modification empirically in Section[7.2]
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Figure 2: Comparison of stationary sample distributions generated with standard Langevin dynamics
(L) versus our Tempered Score Langevin dynamics Equation (8) with v = 1 (TS-1). The circle and
ellipse correspond to manifolds with (a,b) = (1,1) and (a,b) = (1, 2), respectively.

Prompt Furniture Car Architecture

Method P-sim? I-sim| P-sim I-sim P-sim I-sim

DDPM 29.56 80.78 26.23 87.30 27.36 81.53
PC 29.40 81.24 26.30 87.20 27.13 81.03
TS (ours) 30.20 80.76 26.62 87.14 27.32 80.76

Table 1: Comparison of images generated by DDPM, PC, and TS. The prompts used are “Creative
furniture,” “An innovative car design,” and “A creative architecture.” For PC and TS, the number of
corrector steps and « (for TS) are tuned.

7 EXPERIMENTS

To empirically validate our theory, we present preliminary experiments on both simple synthetic
manifolds and a real-world image—generation setting with diffusion models. On synthetic manifolds,
we directly verify the claims of Section[5] demonstrating recovery of the uniform distribution on the
manifold. In the image domain, we show that our proposed algorithm yields samples that are both
more diverse and high-quality. Further experimental details are provided in Appendix

7.1 NUMERICAL SIMULATIONS ON ELLIPSE

In this subsection, we illustrate our theoretical results with numerical simulations. We consider
a simple manifold given by an ellipse embedded in the two-dimensional Euclidean space, M =
{(z,y) € R? | (z/a)*+ (y/b)> =1}, a,b> 0, and pata is chosen to be a von Mises distribution
supported on the angular parameterization of the ellipse. The score function is parameterized using
a transformer-based neural network, trained with the loss function introduced in (Song & Ermon|
2019). After training, we evaluate the learned score function with & = 10~2 and perform Langevin
dynamics until convergence. Training hyperparameters are tuned to minimize the test loss.

As shown in Figure 2] the stationary distribution produced by standard Langevin dynamics deviates
substantially from pqata, €ven in this simple elliptical setting, highlighting the difficulty of accurately
learning the score function at small ¢. In contrast, our TS Langevin dynamics reliably recovers the
uniform distribution on the manifold, in agreement with Theorem 5.2}

7.2 IMAGE GENERATION WITH DIFFUSION MODELS

To validate our theoretical findings in a practical, large-scale setting, we conducted experiments
on image generation. We demonstrate that a one-line modification to the widely-used Predictor-
Corrector (PC) sampling algorithm (Song et al.,|2021)) can enhance both the quality and diversity of
images generated by a pre-trained diffusion model. These experiments serve as a proof of concept,
applying our proposed Tempered Score (TS) method to off-the-shelf diffusion models. Our modi-
fication targets the corrector step of the PC algorithm, which uses Langevin dynamics to refine the
sample at each stage of the reverse process. In our TS method, we scale the unconditioned score
prediction by a factor of o, as motivated by our analysis and discussion in Section[6] The standard
classifier-free guidance term, i.e., Vv in Equation (I0), remains unchanged. Specifically, we com-
pare Stable Diffusion 1.5 (Rombach et al., 2022) with a DDPM sampler (Ho et al.| [2020), DDPM
with PC sampler, and DDPM with our TS sampler.
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Num. Corrector Steps 5 10 15 20 30
Prompt Method P-sim? I-sim] P-sim I-sim P-sim I-sim P-sim I-sim P-sim I-sim
Furniture PC 29.40 81.34 29.30 81.24 29.32 81.64 28.98 81.72 28.67 82.33
TS (ours)  29.54 81.11 29.58 80.95 29.68 81.34 29.52 81.15 29.43 81.87
Car PC 26.20 87.20 26.30 87.57 26.24 87.98 26.26 88.06 26.17 87.94
TS (ours) 2623 87.14 26.37 87.42 26.32 87.88 26.28 88.07 26.20 87.87
Architect. PC 27.13 81.83 27.13 81.81 26.92 81.64 26.87 81.60 26.60 81.03

TS (ours)  27.23 81.58 27.27 81.57 27.14 81.54 27.06 80.97 26.84 80.76

Table 2: Comparison of images generated by PC and TS across different numbers of corrector steps.
For TS, oo = 1 is used without further tuning. The prompts are the same as in Tablem

Figure 3: Top row: PC. Bottom row: TS (ours). Samples in the same column are generated using
the same prompt, the same number of corrector steps, and the same random seed. As shown, TS
produces samples that appear more authentic and contain richer details.

We evaluate the performance using two metrics derived from CLIP scores (Hessel et al. 202T),
which measure the cosine similarity between feature embeddings. Quality: We use the CLIP
Prompt Similarity (P-sim), defined as the average CLIP score between the generated images and
their corresponding text prompt. A higher P-sim value indicates better alignment with the prompt
and thus higher image quality. Diversity: We use the CLIP Inter-Image Similarity (I-sim), which is
the average pairwise CLIP score between all images generated with the same prompt. A lower I-sim
value means greater diversity among the samples.

The experimental results in Table [I] and Table [2] provide empirical validation of our theoretical
framework. Our proposed TS method consistently generates more diverse images than the DDPM
and standard PC baselines across three distinct prompts, while maintaining very high image quality.
In particular, Table [2] shows that, for all numbers of corrector steps considered, TS outperforms
standard PC in nearly every case. Crucially, these improvements are robust to the choice of o and
are not merely the result of a larger tuning budget; as demonstrated in Table[2] simply setting o = 1
without further tuning is sufficient to consistently enhance both quality and diversity compared to
the baseline. Examples of the generated images by PC and TS are shown in Figure 3]

8 CONCLUSION

This paper advocates for a paradigm shift in score-based learning, moving from the difficult goal of
full distributional recovery to a more robust, geometry-first approach. We demonstrate a fundamen-
tal rate separation in the low-noise limit, where information about the data manifold is encoded at
a significantly stronger scale (©(o~2)) than details about the on-manifold distribution (©(1)). This
finding explains why models often succeed at capturing the data support even with imperfect score
estimates. Building on this insight, we introduce Tempered Score (TS) Langevin dynamics, a simple
one-line modification that robustly targets the uniform volume measure on the manifold, tolerating
score errors up to o(o~2). This geometric approach not only provides a more stable foundation for
Bayesian inverse problems but also, as shown in our experiments with models like Stable Diffusion,
empirically improves the diversity and fidelity of generated samples.

Limitations and future work. Key limitations and future directions include: a) The implications
for diffusion models are presently limited: we do not track cumulative error along the sampling
trajectory; instead, we analyze a simplified setting that assumes access to the error of the final
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generated distribution. b) Our L score—error assumption could potentially be relaxed to an L?
bound, thereby aligning our theoretical framework with practical training objectives like denoising
score matching (Fisher divergence) that minimize L? error. c) It remains to generalize the rate
separation in score estimation into corresponding results on statistical sample complexity. d) Our
analyses on the uniform sampling are in continuous time; we do not quantify discretization error
arising in practical implementations. e) Our experiments are preliminary; we have not conducted a
large-scale study with state-of-the-art diffusion models.
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A  RELATED WORK

Diffusion models for distribution learning. Prior theory shows that diffusion/score-based sam-
plers converge to the target law when the learned score is accurate, with error bounds that scale
directly with the score mismatch (De Bortoli, [2022; |Chen et al., |2023} [Lee et al., [2023); related
works study other factors such as dimension dependence (Azangulov et al.l 2024} Tang & Yang,
2024). However, these results do not separate geometry from density in the score error but instead
consider them together, therefore they do not imply any scale separation.

Diffusion models detect data manifold. There is a growing body of work probing whether dif-
fusion models learn the full data distribution or primarily the underlying low-dimensional mani-
fold. A number of studies suggest that these models often capture the data support while missing
fine-grained distributional structure. However, these results are obtained under restricted settings:
Stanczuk et al.[(2024) focuses on estimating the intrinsic dimension of the data manifold; |Ventura
et al.[(2024)) analyzes only linear manifolds (linear subspaces); and [Pavlova & Welil (2025) provides
primarily empirical evidence. Pidstrigach|(2022) establishes sufficient regularity conditions under
which high-accuracy scores concentrate mass near the manifold, but does not address how approx-
imation errors scale with o and therefore does not reveal a separation of scales. By contrast, our
analysis quantifies how inaccuracies in the learned score propagate differently to geometry versus
distribution learning, exhibiting distinct error rates that lead to a sharp scale separation in the small-o
regime. Furthermore, prior work does not address full geometric recovery via uniform sampling.

Asymptotic behavior of the score. It is established that under the manifold hypothesis, the score
function develops a singularity in the small-noise regime, becoming orthogonal to the data manifold.
Recent works characterize this behavior mathematically, showing that the score effectively acts as
a geometric projection operator onto the manifold (Lu et al., 2023} [Lyu et al., 2025} [Liu et al.,
2025). This aligns with the leading-order term in our expansion (Equation (6)), which governs
geometric concentration. However, these analyses generally subsume the distributional information
into a generic bounded remainder term (e.g., O(1)). Crucially, they do not explicitly isolate the
higher-order terms involving pqat, and thus do not characterize the separation between geometry and
density. Our analysis reveals that these missing terms are not merely residuals but are essential for
establishing the rate separation between recovering the manifold support and learning the underlying
density.

Uniform sampling on manifolds. Classical approaches achieve uniform-on-manifold sampling
via graph-based normalizations that cancel the sampling density so that the limiting operator is
the Laplace—Beltrami operator (Coifman & Lafon, 2006} [Hein et al., 2007). While foundational,
these methods are designed to approximate geometric operators from neighborhood graphs and do
not readily scale to high-dimensional, large-scale generative modeling. Recently, [De Santi et al.
(2025)) proposed fine-tuning diffusion models to produce uniform samples. In contrast, our approach
operates entirely at inference time, achieving uniform sampling without the cost of fine-tuning.

B ADDITIONAL NOTATION AND PRELIMINARIES

In this section, we provide some notation and preliminaries complementary to Section [2]

We denote by W, a standard Brownian motion, with its dimension clear from context. The Gaussian
density with mean p and covariance %, evaluated at x, is written as N'(z | p,X). The symbol

13
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denotes the convolution operator. We use o to indicate proportionality, i.e., that the left-hand side
and right-hand side are equal up to a constant factor. For a set S, we write .S for its closure, 0.5 for
its boundary, and S° for its complement. Throughout the paper, by the term limiting distribution
or by convergence of a distribution/density function, we mean convergence of the corresponding
measures in the weak sense.

B.1 THE MANIFOLD HYPOTHESIS

We outline few notations and standard results from differential geometry. By the tubular neigh-
borhood theorem (Milnor & Stasheff] [1974; Weyl, [1939), there exists ¢ > 0 such that the normal
tube
Ta(e) == {z € RY : dist(z, M) < €}
admits local C* coordinate
®:U xR — Tym(e), where UCR™" R:={recR"™:|r|<e},

such that & is a diffeomorphism mapping from local coordinates to ambient Euclidean space. With
this result, we can then work with local coordinates to describe the manifold. For notational sim-
plicity, we work with a single chart and suppress indices: v € U denote tangential coordinates
and r € R denote normal coordinates. The slice » = 0 corresponds to points on M, and we
write ®(u) := ®(u,0). Let J(u,r) denote the Jacobian of ®(u,r) with respect to (u,r), i.e.,
J(u,r) = 0®(u,r)/d(u,r). Furthermore, let g(u) denote the Riemannian metric tensor of the
manifold M, defined as g(u) := J(u,0) T .J(u,0). Intuitively, the Riemannian metric tensor gives a
way to measure lengths and angles of the manifold geometry.

C PROOFS OF MAIN THEOREMS

In this section, we prove the main theorems of the paper. We begin by developing a general frame-
work for characterizing the limiting distribution when the density admits a specific form. This
framework will then be applied to establish the results in Section f] where such a density form was
assumed.

The results in Section[5|require a different approach, since no explicit form of the density is available.
In this case, we employ the WKB approximation to obtain an approximate stationary distribution,
which we then substitute into the general framework to derive the limiting distribution.

C.1 A GENERAL FRAMEWORK FOR THE CONVERGENCE OF THE LIMITING DISTRIBUTION

In this subsection, we will establish a general framework for the limiting distribution of density
proportional to

exp (= (fo(x)) /0), with fo(z) = fo(z) + 0f1(z) + f(z,0), (11)

where fy’s minimizer is on the manifold M and f(z, ) is a perturbation that is uniformly o(6) so
that it does not affect the limiting distribution. This general result is stated in Theorem[C.1} Our main
results fall into this framework by letting § = o2 for Theorem and § = 02~ for Theorem

In all cases the theorems we will prove later, the density will concentrate on the tubular neighbor-
hood of M, i.e., Ta(€). Therefore, we will discuss the lemmas and intermediate results in such
a neighborhood and use local coordinates (u,7). The notations used can be found in Section
When we use local coordinates, we assume the discussion is in the closure of Th(€). We define
the local coordinate versions of the functions: fg(u,r) = fo(®(u,r)), fo(u,r) = fo(®(u,r)),

fi(u,r) = f1(®(u, 7)), and f(u,r,0) = f(®(u,r),0).
Our assumptions are stated as follows.
Assumption C.1. We assume that

1. M C R? is a compact C* manifold without boundary with dimension n < d.

2. M = argmingcqp, (o) fo(x). In addition, we assume that there exists 0 < € < € such that
inf, o ONT@ Jo(w) — mingeq,, (o) fo(x) is bounded away from zero.
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3. The absolution value of f(u,r,0) is o(6) as & — 0 uniformly for all w € U and ||r|| < e.

4. fo > 0is C3, f1is CL, and fy is continuous on coordinates (u,r) for all u € U and ||r|| < ¢,
i.e., in the closure of T (€).
2
5. Further, we assume that the smallest eigenvalue of %TZU
zero for all v € U and ||r|| < e.

Remark C.1 (Compactness of the manifold implies boundedness of gradients.). Consider f &

C*¥(Ta(e)). Inlocal coordinates (u, ) induced by a tubular atlas, we write f(u,r) == f(®(u,r)).
Since M is compact, one can choose a finite atlas with precompact coordinate domains. Let the
cover be {U;}. By the Shrinking Lemma (Munkres| (2000, Theorem 32.3) combined with Willard
(2012, Theorem 15.10)), there exist open subsets {V;} with V; C Uj; such that {V;} still forms a
cover. We use these {V;} as the new atlas. The transition maps ® and their derivatives are then
bounded on these sets (since V; is compact), and by the chain rule the same holds for f(u,r) and its
derivatives up to order k. Thus, throughout our arguments we may freely assume uniform bounded-
ness of such derivatives without loss of generality. The same reasoning applies to pgata, W€ can use
the same constructed atlas such that pqya.t, is uniformly lower and upper bounded, and gradients of
Pdata are uniformly upper bounded.

(u, r) is uniformly bounded away from

During our proofs, we will frequently use Laplace’s method for integrals. We adapt the error estimate
from Lapinski| (2019) as follows.

Corollary C.1 (Theorem 2 of Fapiniski| (2019)). Let Q@ C R™ be an open set and let ' C Q) be a
closed ball. Let ¢; == Vol(Y'). Let F, g : Q — R with the following assumptions:

1. Flor € C3(Q) and F > 0 on Q. There is a unique minimizer x* € int(Q') of F on (). Define
= inf {F(z)—-F(z*)} >0 = inf Amin(V2F 0.
my xelg\g/{ (z) (z*)} >0, ma inf (VPF(z)) >
Let

co = sup HVZF(I)”, €3 = sup ||V‘3F(x)||
e zeQ

2. glor € CHY) and [, |g(x)| dx < cc. Let

¢y = sup |g(z)], es = sup ||[Vg(2)|, cg = /|g(m)\dm
e/ e’ Q

Then, for every 6 > 0,
] (2T
g(z)e PO/ dz = exp(—F(a")/0) ==
/Q |V2F (z*)]
where |h(0)| can be upper bounded by a function of (c1, . . ., cg, m1, my). Moreover, h(8) = O(+/0)

as § — 0. The O(+/8) is uniform over any class of pairs (F, g) for which c,, . .., cg are bounded
above and m1, mo are bounded below by strictly positive constants uniformly over the class.

(9(z") + h(8)),

Proof. The result follows directly from [Lapinskil (2019, Theorem 2). O

To show the convergence of the distribution to a distribution on the manifold, a key step is to integrate
out the normal direction so as to obtain a distribution on u, such as what Hwang| (1980) did. The
following lemma proves Laplace’s type of result for integrating out r.

Lemma C.1. Assume Assumption and let h(z) : R? — R be C' and uniformly bounded in
Tai(e). Define h(u,r) := h(®(u,r)). Then we have

/|7"|<e P (‘ fe(Z’ r>> h(u,r)dr

= exp ( fO(Z’ 0)> exp (—f1(u,0))

(27T9) (d*’n)/Q

V|52 w0

(h(u,0) + o(1)),

where the o(1) term is uniform for u.
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Proof. We have that

exp ( folu ) hu
\ I<e
eXD( fo(u )exp —f1(u,r)) h(u,r) <exp (_W)) dr
\ lI<e
exp< Jo(u )exp —f1(u, 7)) h(u, r)dr+
\ I<e
llrl<e 0 y
For the first term, we can directly apply Corollary with F(r) = fo(u,r), g(r) =

exp(— f1(u, r))h(u, ), and Q' being the ball {r | ||r|| < é}. Define

" g (d)/2
J = exp (—f‘)(e’o)) exp (i, 0)) T
92 fo (u, O)‘

or2

The first term can be approximated as J (h(w,0) + o(1)). The boundedness of the quantities in
Corollary will be discussed later. The second term can be upper bounded by

exp <_W> 1 /lr”«exp (— fO(Z”")) exp (— 1 (u, 7)) dr

=o(1)J(1+0(1)) = 0o(1)J,
where we used Corollary [C.1]for the integral. The lower bound can be obtained similarly. The result
follows.

sup|h(u, )| - sup
T T

Regarding the uniform boundedness of the quantities in Corollary {c}§ is uniformly bounded
by the compactness of the manifold. The constant cg is uniformly bounded by our assumption on h.
The uniform lower bounds of m; and m is guaranteed by Assumption [C.T] O

Next, we will prove that the support of the limiting distribution will concentrate on the minimizers
of the leading term. Previously, we considered fy consisting of fo + ©(0) + o(6). Next, we will
show that as long as fy is fo + o(1), the concentration on fy’s minimizers will happen.

Lemma C.2. Let fo(z) = folx) + f(x,0), such that exp(—fo(x)/0) is a normalized density
function on RY. Suppose M is a connected and compact C* manifold without boundary. Assume
that:

1. fo(x) is continuous with arg min, s fo(z) = M and min, 7o fo(z) =0.

2. f(x,0) is continuous and uniformly o(1) as 6 — 0 for all x € Ty (€).

3. The density concentrates in Taq(¢), Le.,

lim exp <— fg(l‘)) der =1.
0—0 Taq(e) 0

For any n > 0, define the set C, = {x | fo(z) > n}. Then,

/ exp(—fo(x)/0)dr — 0 as 6 — 0.
C,,UTM(G)"

If in addition, exp(—fg(x)/0) converges weakly to a distribution as 8 — 0, the support of the
limiting distribution is contained in M.
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Proof. Since we have that fTM(E) exp(—fo(x)/0)dx — 1, for the first result, it suffices to show

that fTM(e)ﬂC exp(—fo(x)/0)dxr — 0. According to the assumptions, we have that for any d, 36y,
n ~

such that V8 < 6y, | f(z,8)| < ¢. Therefore, we have

/ exp(—fo(z)/0)dr < / exp((=n +6)/0)dx < Vol(Ta(€)) exp((—n + 6)/0).
Tam(e)NC,

Tm (e)ﬂC )
We choose § = 1)/2, then the right-hand side goes to zero as § — 0.

Let the limiting measure be P, and Py be the probability measure corresponding to the density
exp(—fo(x)/6). Since C,, is an open set, we have that

P(C,) < lign_glf Py(C,) =0.
‘We also have that

———~ < . . 7 € < . . c _ .
P (TM(E) ) < llrenﬁlélf Py (TM (¢) ) < lllgljglf Py (Tr(e)¢) =0

Denote C' := M¢°. We have that C' = Ugy_, C /p, U TM(G)C. Then we have

i P(Cyym) + (W(e)) —0.

which concludes the proof. O

Theorem C.1. Assume Assumption|C.1] Define

() o< exp (—f i(f)) ,

Assume that 1 — f:z:eTM(e) mo(x)dx — 0 as 0 — 0. Then we have that as 0 — 0, mg converges
weakly to the following distribution:

24 (w —-1/2
exp(—f1(u,0)) | ZBGO dM(w) /du
- 2t w0y |~ 1/2 )

S exp(—fi(u,0)) M’ dM(u)/du

or?
where dM is the intrinsic measure on the manifold M, i.e., dM(u) = |g(u)|'/?du, and du is the
Lebesgue measure on the local parameterization domain U.

Proof. The proof follows the same as the proof in|Hwang| (1980, Theorem 3.1). The only difference
is that we replace the estimate of Hwang (1980, Equation (3.2)) with our Lemma [C.I] Note that
the Q in Hwang| (1980} Theorem 3.1) is assumed as a probability measure, thus f (in his notation)
integrates to one. However, the proof technique of Hwang| (1980, Theorem 3.1) remains valid even
if f is not a probability density, so applying to our case. O

C.2 PROOF FOR THEOREM [3.1]

The remaining of the proof is to expand the true log-density w.r.t. o, analyze the error of the learned
log-density, and then to plug in the result obtained from Appendix[C.1]

Theorem C.2. Assume Assumptionsand holds. Suppose x € Taq(€). Then we have that

log pY®(x) = —— 73117 = Pa(@)]* +10g paata(@ 7! (P () — L g (2mo?)—
log \/\ )),x)‘ +pVE(z, 0),
log pY” (2) = 5 517 ~ Paa(a)|” + 10 paaea(® (Paa(2) — 5" log(2mo?)~

17
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08 /| H@1Pat(e),2)] - SPaala) 2~ Paa(a) + 57 (2,0,

where pVE(x, o) and pV¥ (x, o) are functions that are o(1) uniformly for x € T (€). The matrix
H(u, z) is such that

s = (G- o0~ ) + (TG0 TG )

Proof. We can apply Corollary [C.T|as an error estimate for Laplace’s method, to the integral in p,.
The minimizer of F(u) is ® (P4 (z)) for both VE and VP.

We first consider the case of VE. By letting F'(u) = ||z — ®(u)|?/2, g(u) = pgata(u) and § = o2
we can obtain that

prte) = (-2 P (@)

202 ) \/
(12)

where |h(0?)| is O(c). Now we take logarithmic and use the fact that log(A + B) = log(A) +
log(1 + B/A), we obtain

(27’(’0’2) (n—d)/2

(Pdata(® (P (2))) + h(0?))

H(@(Pa(),2)

log po ()
_P 2 _ N —1/2
=— = 2;\;(35)“ + 5 d log(2ma?) + log‘H(é_l(PM(x)),x)‘ +

10g (Paata (™ (Pam(x))) + h(0?))

_ == 1;;;““)”2 + 1 D 10g(270) + 10 paea (B (P () -
log | (2 (P (x)) WW +log (1 - pdata@h(f(f?M <x>>>> '

Therefore, we have

) B h(c?)
p(a?,O') = log (1 + pdata(@l(PM(x)))>

The remaining is to show that h(02)/paata(® (P a(z))) is uniformly o(1) for all z € Ty (e).
Since the manifold is compact, pgata(u) is uniformly bounded away from zero (see Remark [C.1)).
The remaining is to find a suitable 2’ and upper and lower bound the constants in Corollary We
will discuss this later.

Now let us look at the case of VP. The only difference is in the exponential, we changed from
[l — @(w)||* to

o = V1= 20(w)|? = |lz — (u) + (1= V1= 0?) (u)|%
If we do a Taylor expansion of 1 — /1 — o2
1-V1-02= %02 +o(c?).
Using this expansion, we have that
o = @) + (1= VI=0?) ow)|?
= llz = W) + o*(@(u), & — D(w)) + o(0®) {z, ®(u)).

Then we can use the same argument as in the proof Lemma to show that the o(c?) does not
affect the approximation. Specifically, let

2 —Ppm()]?

20° ) \/f{(@—l(Pm(w))’l‘)"

18
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and

K= Y exp (@000 - 20} ) a0

1
(2mo?)i2 P (

(e VIR
 @no?yar P 207 Paoia)

We have

:/ Kdu+/ K (exp (o(1) (B(u), ) — 1) du
M M

g/ Kdu+/ Ko(1)du
M M

< 7 (paa@ Pasle))exp (= Paala)z = Pas(a) ) +ol0).

2
The rest of the proof follows similarly to the proof of the VE case.
Then we need to discuss the upper and lower bounds in Corollary For the upper bounds,
since the manifold is compact, there exists such uniform upper bounds for {c;}% (see Remark .
For the lower bounds we first consider A, (ﬁ (u, sr)) The part a‘ggf) T 8%2”)
inite and uniformly bounded away from zero for all u. The eigenvalues of other part, i.e.,

is positive def-

< ;ufgi)j , P(u) — :c>, may be negative. However, as long as its eigenvalues are small enough, by

Weyl’s inequality, we can still lower bound the smallest eigenvalue of H (u, x). The eigenvalues of

<88u%2)j ,D(u) — a:>, can then be bounded by ||V2®(u)|| ||®(u) — z||. Therefore, as long as the

tubular neighborhood and the set ' is small enough, we can lower bound Ay, (f[ (u, x)) For-

T
mally, let G > 0 be the lower bound of the smallest eigenvalue of Mé—i") M(;SL“). Let C5 be the

uniform upper bound of ||[V2®(u)||, and C; be that of ||V®(u)||. Those constants are uniform for
a fixed finite atlas since the manifold is compact. Let the radius of Q' be rq. We have that in ',

Amin (ﬁ(u,x)) > G — Co(||®(w) — Pas(2))]| + |[Pad(z) — z]|) > G — Co(Chro + €). There-

fore, we can choose 7y and e small enough (but away from zero) such that A,y (lfl (u, :v)) > G2,

e.g., € is the minimum of G/(4C5) and the original € in the tubular neighborhood definition, and
ro = G/(4C1Cy). This way, m; can be lower bounded by G73 /2. O

C.3 PROOFS FOR SECTION[4]

The results in Appendices [C.1]and[C.3|consider only points in T'x4(e). Therefore, to use the results,
we need first show that the density outside the tubular neighborhood becomes negligible as o — 0.
In the following two lemmas, we will show the concentration of the density for p, and exp(— f,).

Lemma C.3. Assume Assumptionsand holds. We have that lim,_,q fl eTai(e) Po (z)dz = 1.

Proof. We have that
/ po(z)dx
z€R /Trq(€)
1 [l — ®(u)|?
—_— - ata(w)dud
/ e / e exp< Y pasa ) duda

1 |z — @(U)HQ)
PdatalU / exXp (_ dzrdu
/uEM wa(t) 2eRe Trq(e) (2m02)d/2 202

1 |z — @(u)|?
< L exp (2T G,
- /ue./\/l Pasta (1) /|:1:q>(u)|>e (2ma2)d/2 P ( 202 e
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where the exchange of the integral is justified by Tonelli’s theorem with the non-negativity of the
integrand. The last inequality holds since any point in R? /Ty (¢) is at least ¢ away from any point
on the manifold. Now the inner integral is the integral of a Gaussian density with distance to the
origin at least e. It will decay exponentially fast as ¢ — 0. Let Z be a standard Gaussian random
variable of dimension d, and then the above integral is equivalent to

/uwpdatam)za (121> £)au=P (121 = £).

The RHS can be shown to decay exponentially fast by the Gaussian concentrations. O
Lemma C.4. Assume Assumptions2.1|and[2.2) holds. Further assume that

suEHVfa(x) + Viogp, ()| =0 (072)

€

We have that

lim exp(—fo(x))dz = 0.
720 Jee K\Trm(e)

Proof. For x ¢ Taq(e), the points are at least e away from the manifold. Therefore, we have that

1 € 1 €2
Po®) S | Grot)a P\ “agn | Pamalu)d = (o o {55 )

as Pdata 1S a density function. Therefore, we have that
2

(1) < e (— g o (07%)).

There exists oy, such that for all ¢ < ¢, the o(c~2) term is upper bounded by €2 /452, Then we
have that

1 €2
exp(—fo(x))dxr < Vol(K)——F—= exp (—>
/mEK\TM(e) ( (=) ( )(27W2)d/2 402

The RHS goes to zero as 0 — 0 as pqata is bounded. O]
Now we are ready to prove our main theorems.

Proof of Theorem[_1] First, since both f, and log p, are C* functions on K, we have the that L>
norm of their gradients is the same as the supremum. First we will show that for any n > —2,

sup ||V fo(z) + Viog ps(2)|| = 0o(c™) aso — 0,
rzeK

implies that

sup |fo(x) +logp, (z)| = o(c") aso — 0.
zeK

Given our assumption, for any two points x,y € K, there exists a finite length path, say -y, ,(-) :
[0,1] — K with and ||7'|| being upper bounded uniformly. Consider an arbitrary point zy € K,
then we have

Aa(x) = _fcr(x) - IngU(CL')
= —fo(w0) — log ps (o) +/O (=Vfo(y(t)) = Viogps (y(t))) - o/ (t)dt

= AU(‘Z'O) + g(m,a),

where sup, |g(z, o) is 0o(0™) uniformly for € K according to the assumption. Further, we have
that

/ ey (o) = | pala)exp(as (@)

reEK
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= /EK po(x) exp(Ay(x0) + g(z, 0))dz,

which then imply that

Ao(zp) > log / exp(— £, (2))dx — log / po(x)dz — suplg(z, o),
reK reK reK
and
Bofa) <o [ exp(~fo(@)do —log [ po(a)do + suplg(e, o).
reK reEK zeK

The first two terms on the right-hand side is o(1) as ¢ — 0 as our assumption about f, and
S po(x)dz > fTM(E) po(x)dz — 1 according to Lemma Thus, |A, (o) is o(c™). Therefore,

|Ag(x)] is o(c™) uniformly for € K. Further we can apply Lemma to conclude that the
density of exp(— f,) concentrates in T)rq(€) as ¢ — 0.

Then, we can prove the first conclusion that the support is on the manifold. By the expansion of
log p, in Theorem [C.2] we have that

fo@) = 55llz = Pu(@)|* + 0 (1/0%)
Then we can apply Lemma with fp(2) = 0% f,(x), = 0% and = 62 /2 to conclude the claim.

To prove that the limiting distribution is pqat, On the manifold, we have

1 -
fol@) = 5511z = Paa(@)]* = log paata(® ™ (Paa (@) +
d—n 9
log ‘ )),x)‘ + log(2m0®) 4+ o(1).
Then we can apply Theorem [C.I} Then the fy, becomes the distance function (changed to local

coordinates), and fi is — log pgata + log ’ﬁ(u),@(u,r)) , r =0,

,/‘H D(u,r) ‘ = dM(u)/du, and therefore, we recover pqata. The (d — n)log(2wo?) term

is simply a constant and does not affect the result after normalization. One can replace f, with
fo + d_T" log(27o?) and then apply Theorem and this does not change the distribution after
normalization.

What remains is to ensure Assumption @] holds, especially the second condition, i.e., to ensure

that the Hessian of ||®(u,r) — ®(u)||*/2 w.rt. r is uniformly bounded away from zero. We can
write ®(u, r) as ®(u) + N (u)r, where A (u) is the normal vector field on the manifold M at point
®(u) (Weyl, | 1939). We have that

0 [[o(u,r) — w)|*  00(u,r)”
or 2 - or

since the columns of A (u) are orthonormal. Therefore, the Hessian of ||®(u, r) — ®(u)||?/2 w.r.t.
r is simply the identity matrix, which satisfies the assumption.

(®(u,r) — ®(u)) = N(u)"N(u)r =r,

To construct a s(o, ) such that the limiting distribution is arbitrarily, say 7, we let s(o, x) being the
gradient of

1 N
~galle — Pl + log 7@ () — o | A (@A), )] + 001,
The difference between f, and log p, is then Q(1). O

C.4 MANIFOLD WKB ANALYSIS OF THE STATIONARY DISTRIBUTION

A key difference between our theorem in Section [5] and the results in Section [] is that, in the for-
mer, the density does not admit an explicit form. When s(x, o) is a gradient field, a closed-form
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expression for the density is readily available; however, this property is not guaranteed for most
parameterized models, such as neural networks. We therefore resort to the WKB approximation
to approximate the stationary distribution. Similarly to Appendix [C.I] we first present a general
framework and then apply it to our specific setting. We will show that SDE with the following form
admits a stationary distribution of the form Equation (TT). Interested readers may refer to Bouchet
& Reygner|(2016); Bonnemain & Ullmo| (2019) for more details on WKB applied on Fokker-Planck
equation.

We consider the following SDE:
dry = by(x)dt + V20dW,,  with  by(x) = —V fo(x) — OV f1(x) + b(x, 6),
or the following SDE with the same stationary distribution,

_ b@(ift)

dz, dt +V2dW;. (13)

We assume that b(z, 0) is uniformly o(6) in T (e) as § — 0. Also, we have arg min fo(z) = M.
This framework is general enough to cover the cases of Theorems [5.2] and [6.1] We will see later
that in these two cases, the function f is the distance function to the manifold, and 6 will be chosen
differently in different cases. We make the following assumptions about the SDE.

Let 7y () be the stationary distribution of the SDE Equation . First we assume the WKB ansatz:

Assumption C.2 (Local WKB ansatz). We assume that limg_,q fTM(E) mo(x)dx = 1, and that
mg(x) admits a local WKB form within compact set Try(€):

mo(x) x exp <V((9£)) co(z) with co(x) = co(x) + é(x, 0),

where co € C%(Ta(€)) is positive, and cy — co in C*(Taq(€)). We further assume that V €
C3(Trm(€)) admits a unique solution.

The normalization constant can be explicitly written as

/meTM(e) ot/ /meTM(e) P (_ V(Ox)) co(x)d,

since we have for x € Ty (€),

71'9(.%‘) = W@(.r) . lTM(E)(CL') = 7T9(:L‘ | T € TM(G))T{'Q(TM(G))

_ co(z) exp <—@) ro(Tar ().
) dx

meTM(e) co(z) exp (7@

Our goal would be to solve for V() and co(x) with the Fokker-Planck equation. Once solved, to
study the limit of 7y, we can use results in Appendix [C.1]as

V(z) — Blogco(x) + o(6)
mo(x) X exp (— 7 0 ) .

Theorem C.3. Consider the SDE described in Equation (13). Assume Assumption|C.2holds. Then
we have that

V() = fo(z), co(z) = Cexp(=fi(x)),

for some constant C.

Proof. By Fokker-Planck equation for the stationary distribution, we have that

0= div <—b9(x)7rg(x) n ea”a"f)) .
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By plugging in the WKB ansatz, we have that

. 809 10V 0 Co (909 ov
_dw(b")ce_<b"’8x_Haxc“’>+” {8 2} _2<8x78x>
2 (14)
—Tr 82l _A'_l 81 =0
8%2 Co 0l Cop — U.

Next by the method of WKB, we will equate different orders of  in the above equation to solve
for V(z) and co(z), starting from the lowest order 6~ 1. It is easier to show a function is constant,
therefore, for ¢y, we will define ¢q(z) = exp(f1(z))co(x), and try to show that it is constant.

Order 6! 1In this order, we have that

afo oV\ _ [V |?

oz’ 0x/ | Oz
This corresponds to the Hamilton-Jacobi equation typically appears in the WKB approximation. The
equation gives the solution for V' (z) as V(z) = fo(x). Plugging this solution into Equation (14)),

we can get
deg gOh ;104 92cy
<b9’a >+< O or T >+9“[axz

dcg Ofo
or’ Oz

We will work with this equation for equating the higher orders.

02 b
f Lo

-t ox?  Ox

—0

Order 6° In this order, we have that

afi 9fo o+ dcy Ofo

oz’ Ox Bz Ox
This is known as the transport equation (Bouchet & Reygner, [2016). It shows how ¢y changes along
the gradient of f,. Next, we express the equation in terms of ¢g:

dcy 0fo\ _
<6x’ax>0' (15)

This implies that along the gradient of f, ¢( is constant. Since the manifold M consists of the min-
imizers of fy, for any point = in K, the value of ¢y (z) is the same as the value at the corresponding
minimizer y on M following the gradient flow of fy. Formally, we have

Co(x) = Co(h* (400)),
where ¢ (t) follows dy®(t)/dt = —V fo(y*(t)) with ¢)*(0) = z given the initial condition
1*(0) = x. Therefore, we see that to solve for ¢y, we need to know the value of it on M. We
find that the next order equation will help us to solve for ¢y on M.

Order 0! In this order, if we directly find all terms in Equation that are of order 0!, we will
find that it includes higher order terms, e.g., ¢(x, §). However, since we only care about the solution
on M, we evaluate the equation on M and interestingly find that it does not include such higher
order terms, as crucially the factor 0 fo/0x becomes 0 at M. Specifically, for x € M, we have that

0% f 0f1 Oco D%co]
TI'|: :|CO+<31')8x>+TI‘|:a$2:|_O

Ox?
Replacing ¢ with & exp(— f1 ), we have that
Ty 8250 _ 800 8f1
ox? Oz’ Oz
Our goal here would be to solve for ¢y on M, and apparently it would be helpful to convert the
equation to the local coordinates and establish a PDE for the manifold chart coordinate .
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Local coordinates We convert the above order §' equation about ¢ to the local coordinates z =
(u, ) and get that for r = 0, i.e., points on M,

- La 198 /%% 10f
0—J|dlvz(|J|G 82) <8Z’G 3z>

8éo 8% 9y 1 0f1
- (e (167, 52 s e g 2] - (2,608,

where G = J7J and the divergence of a matrix is understood as the divergence of the column
vectors. Note that we cannot simply conclude from the above equation that ¢, is constant, by say, the
strong maximum principle, since the gradients of ¢y include not only the manifold chart coordinate
u but also the normal coordinate r. Therefore, we have to further derive a PDE about u and any
gradients of ¢y w.r.t. r should be replaced by known functions. Fortunately those gradients can be
solved by the equation we obtain at order #°.

(16)

First, let us derive from Equation (I6) a PDE about u:
Lemma C.5. From Equation (16), we have that for r = 0,

- 860 1 8f1 1 8|J| 800 860 8f1 8250 o
Ambo(w) < ou’? Bu > + \/?|< " or or’ Or I or? | 0, {7
where Az is the Laplace-Beltrami operator on M.

Proof. Let the index 4, j when showing at 0 be derivatives w.r.t. the ¢ or j-th coordinate of u, and
let p, ¢ be the derivatives w.r.t. 7 respectively. From Equation (I6), by carefully expanding the
divergence, the inner product term becomes

(div (|JIG™Y), Véo)|, _,
= V19195 [97],; 8id0 + [97'],;0V/1910i80 = V191 [97'], 1 Opllp il Dio + Dp|T10pé0-
For the trace term, we have
Te [|71G V%] |, _o = Vgl [97"], ; 8480 + V/1910p.pé0-

Now we look at Equation (I7). From the definition of Laplace-Beltrami operator, we have

AM&O(U) = \/1|?|8i (\/@ [gil}i,j aj50>

1
V9l
—1

Since G~ evaluated at r = 0 is |7 0 9] , the term — <%Cz° ,G71 af L > in Equation 1) matches

<%¢£, g1 % > _ <3(Téro7 %> in Equation Ib Now compare the terms of Equation and
Equation (I6), the only remaining term is

[97'] ik Opdy k|, _o OiCo,

9;v/g| [gfl]m- 0;Co + 0; [Qfl]i’j 0;Co + [971]“ ;5 Co-

which we will prove is 0. We will show that }_  9,d,, k’ =0.
r=0

Since the columns of A" are orthonormal, we have for any p, Y, (/\/;J,)2 = 1. Taking derivative for
both sides to u;, we have for any p, j, >, N; ,0;N; , = 0. We also have by definition that for any
p:J,

[/\/'TVJ\/’T]W. = N 0N imi.

Using the above two results, we have for any 7,

Z Opdy,; = Z Op (NipOiNium) = ZM,pajM,p =0
P P P
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From Equation (17)), we see that it contains gradients of ¢y w.r.t. , which we will solve by the order
69 equation.

Lemma C.6. From Equation (I3), we have that on the manifold M,
0¢o 82&0 ¢
S0 =0, and 1| T2 (0.0) = (b G20 ).

where h(u) does not contain the unknown function é.

Proof. Since we care about the evaluation of the equation on M, we start by changing the coordi-
nates to the local coordinates z = (u, ) from Equation (15]) to get that

0z’

0z

Glafo> =0.

Next, we compute the gradient w.r.t. z:

T
P (1 0fo | P fo 100 <3vec [Gl]> (afo

0z2 0z

dco\
® 82’) =0, (18)

where ® is the Kronecker product. When we evaluate this equation at » = 0, the factor dfq/0r

0z2 0z 0z 0z

—1 5
scomes0.61000) = [ 0] 00 580,00~ 3 g ] e e
02, oé
aTQO(u,O)a—:(u, 0) = 0.

2
Since 2 J;“
a

55 (u, 0) is full-rank, we have that %(u, 0)=0.

Next, we compute gradient again for Equation , and evaluate at r = 0. Ignoring 0 fy/0z which
is 0, we have the 7, j-th element of the matrix is

> 1 0%fo & fo 190G P fo

[822 ¢ 022 ]” * [822 ¢ 022 LJ 02;021,0%; [
P*fo 0Gi, 08 96 0Gr, 9*fo
0z;0z, 0z; 0z

—1350}
0z
g (19)

Oz 0z 02,0z,

where 0¢g/0r is 0. The first two terms have nice structure when evaluated at r = 0, as

9%, fy |0 Ll 0%fo 1 0% 0 0
G ! = Iyor gr? and —L2'G7! = |82f, 52z 2 25
022 0z* 0 8827-620 667”];0 022 0z* %TJ;O gr@?z %rj;o 887"20
0 0
We then multiply Equation (19) by matrix (32 o ) —1| from the left, and get
or2
0 0 0 0
2\ ! 0%a, 024 | T {3250 6250} + remaining terms = 0.
0 ( or? ) or?2 9or? ordu or?

Since 9¢y/Or is 0, the element of the remaining terms all have one and only one factor of 9¢/du;
for some ¢. Taking the trace of the above equation, and we have proved the second statement. O

Now we plug in Lemmal|C.6|to Lemma|C.5] and obtain a PDE about ¢ (-, 0) on u whose second order
derivatives are the Laplace-Beltrami operator, and the zero-th order term, i.e., the term that includes
the function value ¢y(+, 0), is 0. Therefore, we can conclude by strong maximum principle (Gilbarg
etal.,[1977, Theorem 3.5) that ¢y (-, 0) is a constant. According to the equation at order §°, we obtain
that ¢y off-manifold is the same constant. L]
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C.5 PROOF FOR SECTION[3]

We will first prove Theorem which follows similar proof technique as Theorem and then
turn to the harder case of Theorem[5.2]

Proof o Theorem The proof follows the same as Theorem 2- except that now we use Theo-
remwith 0 = o= In this case, fo(z) = ||z — Pm(2)]|%/2, f1 = 0 and all other terms are
asymptotically small compared to 02_“. According to the proof of Theorem 4.1} the determinant
of the Hessian of f in the normal direction is the same for all u, therefore, we recover the uniform
distribution on the manifold.

The only thing remains to verify is to ensure

lim %o (z)dz = lim Jrayryy o (0" fo(2))dz

=0.
o0 JRA\ T4 (e) 0=0  [paexp(—o® fo(x))dx

Since we have lim,_,q f KT (z)dx — 1, we only need to consider within K. For the numerator, we
can do similarly as Lemma [C.4]to obtain

o 1 o 2 s
/K\TM<e> (ot o) = VoK) ((2m72)d/2> P <_4a2—a +o (o™ )) ’

where 2 — a > 0 and a + 3 > 0. There exists o, such that for all ¢ < o, the 0(c®*5) term is
upper bounded by €2 /802~. Then we have the numerator upper bounded by

w0 () e ().

For the denominator, it is lower bounded by

1\ |z — ()2 -
/T (e/2) ((27”72)”2) op ( zoa o7 ) dr
‘M€

1 o €2
> - - a+pB de.
- /TM(6/2) <(27T02)d/2) P ( soza ¢ (@ )> !

There exists o1, such that for all o < o, the o(6**#) term is lower bounded by €2/1652~%. Then
the denominator is lower bounded by

Vol(Twi(e/2) (@le)d/z),, exp (_w;za> .

Therefore, the ratio is upper bounded by

Vol(K) €2
Vol (T (e/2)) P <_ 1602a> ’

which goes to zero as o — 0. O

Next, for Theorem[5.2] we use results in Appendix [C.4]to find an approximate stationary distribution
of the SDEs considered in Section[5] and then use results in Appendix[C.I]to prove the main theorem.

Proof of Theorem[5.2] The SDE we consider can be also written as

(Xtv )

dX, = dt 4+ /2dW,,

Therefore, we want to apply Theorem with = 027% and by = 0%s(Xy,0). We assert that
under our assumption of Theorem[5.2] we can write

Az —Pa(x)]?/2 —a
Ox +0(02 ) ’

be(it) = —
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meaning that fo = |2 — P(7)]|?/2 and f; = 0. We will discuss the proof of this later. If we have
the above, by Theorem C.3] the stationary distribution in T4 (e) is given by

7o (T) X exp <— ps

where the error in the prefactor is equivalent to the error in the exponent. The remaining proof
follows the same as Theorem [5.1]

It remains to prove the assertion about by. A sufficient condition is that

1 a||$—PM ) /2H

sup (20)

Vliogp,(z) + —
rE€Tm(e) o’

Because if Equation holds, we have uniformly for any = € Tr(e),

Ollz — Prm(@)]?/2
ox

5HT—PM )2 /2H

bg(l‘) +

= |lo?s(x,0) +

dl|lx — P 2
= ||o?s(x,0) — 0°V1og py(2) + 02V log py(x) + | M )|/ H

IN

||025(z,a) - 02V1ogpa(:c)|| + 02V1ogpa(:c) +

A= — PM )2/2 H

= 0(c?*P) + 0(0?)
= 0(0,2—01)7

where the last inequality holds because & > max{—/, 0}. In the theorem, we assumed L>° (Tr((¢€))
norm, which is the same as sup, ¢, (¢) since s(z, o) and V log p, () are continuous.

Therefore, it remains to prove Equation (20). We will prove for the case of VE, and the case of VP
holds with similar argument. The gradient of the distance function can be written as:

Ollz — Pa(@)I’/2 _ (I <W) ) (o= Paala) = 2 — Paa(a),

ox

where the last equality holds because © — P (z) is orthogonal to the manifold and the image of

9 Pg” () is in the tangent space of the manifold (Leobacher & Steinicke} 2021)). Then note that

Vpo(x)  [ag N (@30, 0%1)pdata(u) 252 du
Po () fM N (x50, 021)paaga (u)du
For the denominator, follow the same as in the proof of Theorem@]to obtain that
n—d)/2 _
lz — Paqg(x)]? (27r02)( )/ Pdata (P (Pad(7))
202 N .
|[B(@1(P (), 2)]

since Equation (I2) holds and pgasa. is uniformly bounded away from zero. We could do the same
for the numerator, however, the O(c) error is not enough here. Intuitively, the numerator would be

o= Par(@)l?\ (270°)" " paaia(@} (Paa(x) (Pu(e) =
xp | — (1/o) ) .
e p( 27 ) \/ym@—l(m(m)),x)\ ( o )

Apparently, the error term is not enough to prove Equation (20).

Vg ps(z) =

(1+0(9)),

Po(r) = exp (—

(n—d)/2

Therefore, we turn to stronger Laplace’s method result that has an error term of O (02), i.e., the h(0)
term in Corollary could be improved to O(6) instead of O(+v/#). However, such result should
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have the cost of requiring the function F' (as the notation use in Corollary|C.1) to be C* and g to be
C?, a stronger condition'| Formally, we have that

o?V1og py () + (x — Pp(2))
_ fM N (z;u, 02 1)pgata(u) (2(u) — Paqg(z)) du
SN (@5 u, 02 paata(u)du ’

and we want to prove its L™ (Tr¢(€)) norm is O(1). For any © € Tpq(e) and v € {v | ||v|| = 1},
we have that

0T (0°Vlog o (&) + (2 — Pra(a))
_ JuN (@, 02 pdata(u)o" (2(u) — P (@) du
fM N (x50, 021)paaga(u)du
_ SN (@ u, 0 Dpaaea(u) (07 (2(u) — Paq(x)) + 1) du
fM N (x50, 021 ) paaga(u)du
The last step where we add 1 is a simple trick because the Laplace’s method we will use does
not allow the prefactor to be O at the minimizer. Next, we multiply the numerator and de-
=P ad()|2\ VIH@ HPam().2)|
2 ) (27r02)(n—d)/2

0. For the numerator, we apply |[Majerskil (2015, Theorem 2.4) with their n = 1 /02, t = u,
fu) = |jo—®w)|?/2, o = 2 (f(u) is C* since ®(u) is C*), By can be selected the same
as in the proof of Theorem [C.2} g(u) = paata(u)(vT (®(u) — Paq(z)) + 1) (g(u) is C? since
Pdata(u) is C?), and the minimizer is @ (P (z)). The upper boundedness of the constants can
be easily verified by compactness and one can show that they are uniform for z and v. Crucially,

g(@" 1P a(2))) = paata(® 1 (Paq())) is uniformly lower bounded. The lower boundedness of
Amin can be reasoned in the same way as in the proof of Theorem Therefore, we have

-1

nominator by exp ( , so that their limit does not diminishing to

20

1 2
0" (0?Vlogps(z) + (z — Pa(z))) = 118222; —1=0(c?).
Since the bound is uniformly for « and ||v|| = 1, we have that

sup ||0*Vlogp,(z) + (z — P ()]
€T Mm ()

< sup sup v' (6°Vlogp,(z) + (z — Pa(z))) = O(0?),

z€Tm(e) [lvfl=1
which proves Equation (20).

C.6 PROOF FOR SECTION[(]
Proof of Theorem[6.1} The proof follows the same as Theorem|[5.2] except that now we have f; = v
when applying Theorem [C.3]and Theorem|C.1 O

D EXPERIMENTAL DETAILS AND FURTHER EXPERIMENTS

D.1 NUMERICAL SIMULATIONS ON ELLIPSE

Loss function. In our experiments, we train the score network to predict
5(z,0) = o?s(x,0),

instead of s(x, o) directly. This formulation is more stable across noise levels, since the leading
term in the score expansion is of order 1/02, making 3(z,o) an O(1) target. With this choice, the
training objective becomes

2}

1 z—®(u)
"Weaker condition such as C1'! is also possible, see|Majerski| (2015} Theorem 2.4).

5 E’U«diam]EINN(‘P(u),o'zI) |:0-2 Hs(m7 U) + s

28



Under review as a conference paper at ICLR 2026

1

N 2
= 5 E“’\‘p(lata]EINN(‘b(u)70'2I) % HS(LU) +x— (I)(u)” } .

The score function s is parameterized by a neural network consisting of four transformer blocks,
each with hidden dimension 128.

Data and noise. Training data is generated from a von Mises distribution with parameter x = 1.
The injected Gaussian noise variance o is sampled from a range o € [0.01, 50].

Optimization. We use AdamW with weight decay 1 x 10~* and global gradient clipping at norm
1.0. The initial learning rate is 3 x 1072, decayed cosine-schedule over 4 x 10~* steps down to
1% of its initial value, after which training continues with a constant learning rate of 4 x 10~*. The
batch size is set to 1024.

Sampling. For sampling, we run Langevin dynamics

dfl?t = §(1’t7 Jmin) dt + 2012111n th7
with o, = 0.01. This process has the same stationary distribution as

dz; = $(x4, Opmin) dt + V2 dW,.

For the TS Langevin dynamics, the diffusion coefficient is y/ 202 instead of y/202 .. We employ

min

the Euler-Maruyama scheme with a step size of 0.1, running 10,000 steps with 10,000 runs.

D.2 IMAGE GENERATION WITH DIFFUSION MODELS

Algorithm details. We use a pre-trained Stable Diffusion 1.5 model with a DDPM sampler in a
predictor—corrector (PC) scheme. The pre-trained network provides a denoiser ¢(x, ¢, y), and the
corresponding classifier-free guidance (CFG) score at time ¢ is

st(z,y) = Vylogp(z) +w (V$ logpi(x | y) — Va logpt(x))

unconditional score conditional increment

- _U%[e(x,t,@) + w(e(@,t,y) — ez, 1,0))],

where y is the conditioning input (prompt embedding), w is the guidance scale, oy = /1 — &, and
&y is as in|Ho et al.|(2020). Our tempered-score framework applies to this PC sampler by modifying
only the unconditional component while leaving the guided increment unchanged:

5u(z,y) = —Uit[a?eu,t,@) + w(e(a,ty) — ez t.0))]

which is consistent with Equation . Let {¢;} denote the discrete reverse-time schedule. After each
DDPM predictor update at level ¢;, we perform nco.r. corrector steps of Langevin dynamics with
the tempered score:

Thy1 = T + 08¢, (w,y) + V20 &gy & ~N(0,1),
where the step size d; follows|Song et al. (2021}, Algorithm 5). After the entire reverse process, we
apply an additional n..,,. deterministic projection steps using the unconditional score (no guidance,
no noise) to further project onto the data manifold:

dx; = Vlogps, (x,)dr.

We use the same number of projection steps for both the original PC baseline and our TS to ensure
a fair comparison.

Hyperparameter setting. We adopt the default configuration of Stable Diffusion 1.5 (https:
//huggingface.co/stable-diffusion-vl-5/stable-diffusion-v1-5). Un-
less otherwise noted, all results in Section [7.2]use guidance scale w = 7.5 and 30 inference steps.
For the best-results reported in Table |1} we perform a grid search over the number of corrector steps
in {5,10, 15,20, 30} and o € {0.1,0.5,1.0,1.5}. The original PC baseline is tuned over the same
set of numbers of corrector step for fairness. For CLIP evaluations, we generate 512 images per
setting and downscale each to 256 x 256 before computing the scores.
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Figure 4: Comparison of distributions generated with VE diffusion model versus our TS Langevin
dynamics Equation (8) with o = 1.

a=0 a=0.1 a=0.5 a=1.0 a=1.5
Prompt P-sim? I-sim] P-sim I-sim P-sim I-sim P-sim I-sim P-sim I-sim

Architecture 27.13 81.81 27.12 81.73 27.14 81.67 27.27 81.57 27.32 81.52
Furniture 29.30 81.24 29.32 81.37 29.33 81.06 29.58 80.95 30.16 80.76
Car 26.30 87.57 26.30 87.58 26.31 87.44 26.37 87.42 26.50 87.34

Table 3: Ablation of « for 10 corrector steps.

D.3 CONTROLLED EXPERIMENT WITH GROUND TRUTH SCORES

To empirically validate the rate separation results in Theorems[@.T|and[5.1] we designed a controlled
experiment using synthetic data where the manifold and ground truth scores are known analytically.

We consider the unit circle manifold M = {x € R? | ||z|| = 1} with a Von Mises distribution
Pdata(f) o exp(k cos(f — )), where we used k = 4 and 6y = m. This setup allows us to compute
the analytic ground truth score s*(xz, o). We then inject a deterministic error field e(x) into the true

Score:
1 4

We compare the performance of the standard reverse diffusion process against our proposed TS
Langevin dynamics using this corrupted score . As shown in Figure [d] the standard reverse diffu-
sion process using § produces samples that deviate significantly from the ground truth pgata, con-
firming that O(1) score errors are sufficient to corrupt distributional recovery, while the TS Langevin
dynamics with a = 1 robustly recovers the uniform distribution on the circle.

$(x,0) =s"(z,0) +e(z), with e(z)=-V <;

The magnitude of this error term e(z) is O(1) with respect to o.

D.4 SENSITIVITY ANALYSIS OF HYPERPARAMETER «

To evaluate the sensitivity of the hyperparameter o, we performed an ablation study using the
Stable Diffusion 1.5 model, under the same setting as in Section [7.2] of our paper. We tested
a € {0,0.1,0.5,1.0,1.5} across three prompt categories, with the number of corrector steps fixed
at 10 and 20. Note that o = 0 corresponds to the standard predictor-corrector baseline.

As shown in Tables [3]and [d] our method yields consistent improvements over the baseline (ov = 0)
once « is sufficiently large (o« > 0.5), demonstrating that the performance gains are robust and
not limited to a narrow hyperparameter setting. The performance is particularly stable for o €
[1.0,1.5], which aligns well with our theoretical framework (Theorems|[5.1]and [5.2)) that guarantees
convergence to the uniform distribution for any o < 2. While we utilized &« = 1 in Table 2] for
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a=0 a=0.1 a=20.5 a=1.0 a=1.5
Prompt P-sim? I-sim| P-sim I-sim P-sim I-sim P-sim I-sim P-sim I-sim

Architecture 26.87 81.60 26.85 81.56 26.97 81.49 27.06 80.97 27.10 81.13
Furniture 28.98 81.72 28.99 81.65 29.07 81.40 29.52 81.15 30.20 81.39
Car 26.26 88.06 26.26 88.09 26.25 87.95 26.28 88.07 26.62 87.70

Table 4: Ablation of a 20 corrector steps.

simplicity, these results suggest that slightly more aggressive tempering (o« = 1.5) can provide
further gains in diversity and quality.

E CONVERGENCE OF TS LANGEVIN

In this section, we deduce the mixing time analysis, i.e. the convergence analysis for a stochastic
process, of the TS Langevin to the estimation of the Poincaré constant. The goal is to show that
TS Langevin is not necessarily slower—and can in fact be significantly faster—than the standard
Langevin dynamics in terms of mixing time. To carry out such an analysis, we assume that the score
network is a gradient field, i.e. s(-,0) = V log py for some parameterized density function. WLOG,
we assume py is normalized as the normalizing factor does not affect the velocity field s.

E.1 CONVERGENCE ANALYSIS OF LANGEVIN DYNAMICS USING FUNCTIONAL INEQUALITY

To analyze the convergence of Langevin dynamics, it is customary to use a functional inequality
satisfied by the invariant measure p., of the Langevin dynamics (Here, p; denotes the density of
the process at time ¢, and p., is its stationary distribution. This notation differs from pg, and the
distinction should be clear from context). In this response, we focus on the Poincaré inequality (PI):
We say po satisfies PI(Cpy) if for all f € H'(poo) (Sobolev space weighted by pe),

[ [ i) dre < o [195 b

where we call Cpy > 0 is the Poincaré constant.

Consider the overdamped Langevin dynamics with potential U,, : R — R:
dX (t) = —=VU,(X(t))dt + V2dW (t),

and let p, = Law(X(¢)). Under mild assumptions, po, o exp(—U,) is the unique invariance
measure of the above dynamics. If po, o exp(—U,) satisfies PI(Cpy), then

X2 (Dt Do) < € P2 (po, Pos),

where x? denotes the x2-divergence. In particular, to ensure x2(p;, poo) < 7 for some target accu-
racy n > 0, it suffices to take t = O(C%,I log %) Thus, the larger the Poincaré constant, the faster

the convergence.

E.2 ANALYZING THE EFFECT OF DRIFT SCALING TO THE POINCARE CONSTANT.

Under the assumptions of our paper, the comparison between the mixing of standard Langevin and
TS Langevin therefore reduces to comparing their Poincaré constants. We illustrate how drift scaling
affects the Poincaré constant in the simple case where the data manifold is the unit circle:

M={zeR?:|z| =1}.
In this case, the squared distance function can be computed in a closed form:

1. 1 x 1
d(z) = Sdist?(w, M) = 3 lz = | = S(fell = 1)

]
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Following section 5 of our paper, we assume the score error is O(c?) for some —2 < 3 < 0. Recall
that we assume the learned score is a gradient field, i.e. s(-,0) = Vlogpy. Let us further suppose
that the problem dimension is d = 2, i.e. # € R?, and the density function py (corresponding to the
learned score s(-, o)) has the following form

—logpyg = %d(m) + 06¢(x)7where o(z) = (Jz1| — 1)27

where z; denotes the first coordinate of z. Clearly, this function satisfies all requirement in our
paper. Crucially, such a construction ensures that the score error is O ().

Standard Langevin dynamics. We restate the standard Langevin dynamics for the ease of refer-
ence:

dX (t) = Vlog pe(X (£))dt + V2dW (¢).

Without temperature scaling, the error function ¢(x) introduces two separated modes (—1,0) and
(41, 0). For such a multimodal measure, classical Eyring-Kramers law or the large deviation prin-
ciple results imply that the Poincaré constant can scale as

CLEP = O(exp(—aﬁ)).

Consequently, the mixing time of the original Langevin dynamics can become exponentially large
aso — 0.

TS Langevin. We restate the standard Langevin dynamics for the ease of reference:

dX (t) = 0V log pe(X (t))dt + V2dW (t) = Vlogpg (X (t))dt + V2dW (t).

Under mild conditions, the unique equilibrium measure is pga. We show that, under our standing
assumptions and o > —f3, that its Poincaré constant, denoted as Cgls , is uniformly bounded away
from zero, independent of o for sufficiently small o. Here we summarize the main steps:

* Recall the Holley—Stroock perturbation principle (Holley & Stroockl (1987): Let U and U
be two potential functions defined on R%. Suppose that the corresponding Gibbs measures

Poo x exp(—U) and po o exp(—U) satisfy Poincaré inequality with constants Cp; and Cpy
respectively. One has

Cp1 > exp(—osc(U,U))Cpr,
where the oscillation between U and U is defined as

0sc(U,U) := sup (U — U) — inf (U —U).
z€R4 zER?

Since 2 > o > —f3, a Holley—Stroock perturbation argument implies that the PI constant of pg °
is comparable (up to a fixed factor) to that of the measure 11q o exp(—d(z)/o?~*) for small o.
We denote the Poincaré constant of this ideal potential as C3ist.

A short proof for the above statement: Pick
U =1logpg andU = d(z)/o? .
One can bound osc(U ,U) using Theorem 3.1 of our submission. Apply the above principle to
yield
Cpp 2 exp(=0(0* 7)) CFF* 2> exp(~1)CEFt,
for a sufficiently small o.

» We note that the distance function d(z) is locally Polyak-}.ojasiewicz, and hence one can expect
the recent results (Gong et al.,[2024) on the temperature-independent Poincaré constant for locally
log-PL measure can be applied. The only requirement in (Gong et al., 2024)) that is not satisfied
by 4 is that it is not C? at x = 0.
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* We therefore introduce a smoothed potential
L R
Ve(w) = 50 + 5 = VIeP+ &,

and apply Holley—Stroock again to compare the PI constant of ug; with that of pu.
exp(—V,./0?~%). Choosing ¢ = 0>~®, we can verify that V, satisfies the assumptions of the
log-PL result (Gong et al., [2024), which implies that the corresponding Poincaré constant (de-
noted as CET°°") is independent of o.

A short proof to bound CS* with Cilooth: Pick
Ulz) = d(z) /o> and U(z) = V,(x)/o>~“.

To bound osc(U, U), notice that

2
C
|d(z) = V()| = [[lz]l = VI2? + ¢ = <c=o0"T"
]l + V/ll]]* + ¢

Apply the perturbation principle to yield
Cdlbt > eXp(—O(O'))Cf)TOOth > exp( )vamooth7
for a sufficiently small o.

* Combining these comparisons shows that the Poincaré constant of pga, i.e., CEIS, differs from
Cdist and Cgmeeth only by a constant factor.

* In this point, we discuss on proving C$2°°th is independent of o. First, we note that directly
apply the result in (Gong et al.||2024) on the potential V, already yields that the Poincaré constant
Cf}flo‘)th is of order §2(c): It is easy to verify the assumptions in (Gong et al., 2024), i.e. local PL,
non-saddle point, growth condition beyond a compact set, and the boundedness of |AV,|, i.e. the
absolution value of the Laplacian of V. within a compact set. We can hence directly use Theorem 2
in (Gong et al., 2024). However, the quantity |AV,| is of order % in this vanilla analysis and hence
we would yield that the Poincaré constant C§1°" is of order 2(c). It turns out that by exploiting
the particular structure of V,, we can further improve this result: We note that | AV, | does not need
to hold in the neighborhood of the local maximum set and their analysis still goes through. We
hence pick this neighborhood as a ball centered around the local maximum z = 0 with radius 0.1.
One can see that outside of this neighborhood but within a compact set, |AV,| is bounded by a
o-independent constant. Then C’SH‘OOth could be proved to be 2(1). We highlight that even the
vanilla (c) bound already establishes the exponential difference between C7 (lower bounded
by a polynomial in o) and C5P (upper bounded by exponential of —1/poly (o )) Of course, the
Q(1) one leads to even bigger separation.

Putting these estimates together, we see that, at least in this unit-circle example, 7S Langevin mixes
strictly faster than the original Langevin dynamics in the small-o regime. This illustrates that
temperature-scaled Langevin is not necessarily slower—and can in fact be significantly faster—than
the standard Langevin dynamics in terms of mixing time.

E.3 A REFINED ANALYSIS FOR Cgooth

Directly applying the result in (Gong et al., 2024), we have that C§1o°th = (1) for a sufficiently

o
small o. In this subsection, we show that this can be improved to C§1°°th = (1) with a small

modification to the analysis of the Lyapunov function in (Gong et al.| 2024)).
Proposition E.1. (Menz & Schlichting| [2014] Theorem 3.8) Consider the Langevin dynamics
dX(t) = —VV(X(t))dt + V2edW ().
Define the associated infinitesimal generator L as
L:=-VV -V+eA 21

A function W : R? — [1,00) is a Lyapunov function for L if there exists U C R%, b > 0, 0 > 0,
such that
Vo € RY, e 1LW(x) < —oW(x) + bly (). (22)
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Given the existence of such a Lyapunov function W, if one further has that the truncated Gibbs
measure [ y satisfies PI with constant Pl iy > 0, the Gibbs measure |1 satisfies PI with constant

ag
>—7 23
P_b+p€’UP,U (23)

In the context of this section, ¢ = 62~ *and V = V.. In (Gong et al.,|2024)), the Lyapunov function
is chosen to be W = exp(%) and eq. can be simplified to

LW AV |VV|?

—_— = — < - bly. 24

W T 2 42 - 0th 24)
To establish the above inequality, Gong et al.| (2024) partition the whole domain R into multiple
disjoint parts: (1) U, (2) a neighborhood of the global minimum but outside of U, (3) neighborhoods

of local maximum, (4) beyond a compact set that contains all critical points, and (5) the rest. We
discuss our treatment of each subdomain.

* On (1), we follow the choice of U in (Gong et al., 2024) so the local Poincaré inequality there
directly holds.

* On (2), i.e. in the neighborhood of the global minimum (note that under the assumptions of (Gong
et al., 2024), all local minima are global minima), but outside of the neighborhood U, we follow
the argument as (Gong et al., 2024)).

* On (4), Beyond a compact set that contains all the local minima and maximum, we can verify that
V. above fulfilles the requirements of V' in (Gong et al., 2024) and hence the argument directly
carries over.

* On (3), i.e. in a neighborhood of the local maximum, since the Laplacian is already negative, one
can directly obtain eq. (24). Note that we will pick this neighborhood to be the ball centered at
x = 0 with radius 0.1 for V_, denoted by B(0,0.1).

* On (5), i.e. within the said compact set, but outside of the neighborhoods of the global minimum
and local maximum, (Gong et al., [2024) requires the Laplacian to be bounded. We note that the
analysis in (Gong et al.,2024) is a bit loose and they require the boundedness to hold on the whole
compact set. However, there is no need to assume the boundedness of the Laplacian on B(0, 0.1)
as eq. is already established in (3).

Based on the above discussion, we notice that the global bound on the Laplacian of V. is only

required within a compact set, but outside of B(0, 0.1), which is hence a constant independent of e.
We hence obtain the 2(1) bound on the Poincaré constant.

34



	Introduction
	Preliminaries and Notation
	The Gaussian Smoothed Measure and Connection to Diffusion Models
	Bayesian Inverse Problems
	Stationary Distribution for Non-reversible Dynamics

	Central Insight: Gaussian Smoothing Recovers Geometry Before Distribution
	Scale Separation in Existing Generative Learning: Geometry versus Distribution
	New Paradigm of Geometric Learning: Recover Uniform Distributions with o(-2) Score Error
	Uniform Prior is More Robust Bayesian Inverse Problems
	Experiments
	Numerical Simulations on Ellipse
	Image Generation with Diffusion Models

	Conclusion
	Related Work
	Additional Notation and Preliminaries
	The Manifold Hypothesis

	Proofs of Main Theorems
	A General Framework for the Convergence of the Limiting Distribution
	Proof for thmmaininformal
	Proofs for sec:scale
	Manifold WKB Analysis of the Stationary Distribution
	Proof for sec:recoveruniform
	Proof for sec:bayesianinverse

	Experimental Details and Further Experiments
	Numerical Simulations on Ellipse
	Image Generation with Diffusion Models
	Controlled Experiment with Ground Truth Scores
	Sensitivity Analysis of Hyperparameter 

	Convergence of TS Langevin
	Convergence analysis of Langevin dynamics using functional inequality
	Analyzing the effect of drift scaling to the Poincaré constant.
	A Refined Analysis for CPIsmooth


