

WHEN SCORES LEARN GEOMETRY: RATE SEPARATIONS UNDER THE MANIFOLD HYPOTHESIS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Score-based methods, such as diffusion models and Bayesian inverse problems,
012 are often interpreted as learning the **data distribution** in the low-noise limit
013 ($\sigma \rightarrow 0$). In this work, we propose an alternative perspective: their success
014 arises from implicitly learning the **data manifold** rather than the full distribution.
015 Our claim is based on a novel analysis of scores in the small- σ regime
016 that reveals a sharp **separation of scales**: *information about the data manifold*
017 is $\Theta(\sigma^{-2})$ stronger than *information about the distribution*. We argue that this
018 insight suggests a paradigm shift from the less practical goal of distributional
019 learning to the more attainable task of **geometric learning**, which provably tolerates
020 $O(\sigma^{-2})$ larger errors in score approximation. We illustrate this perspective
021 through three consequences: i) in diffusion models, concentration on data support
022 can be achieved with a score error of $o(\sigma^{-2})$, whereas recovering the specific data
023 distribution requires a much stricter $o(1)$ error; ii) more surprisingly, learning the
024 **uniform distribution** on the manifold—an especially structured and useful object—is also
025 $O(\sigma^{-2})$ easier; and iii) in Bayesian inverse problems, the **maximum**
026 **entropy prior** is $O(\sigma^{-2})$ more robust to score errors than generic priors. Finally,
027 we validate our theoretical findings with preliminary experiments on large-scale
028 models, including Stable Diffusion.

1 INTRODUCTION

029 *Score learning* has emerged as a particularly powerful paradigm for modeling complex probabilistic
030 distributions, driving breakthroughs in generative modeling, Bayesian inverse problems, and sam-
031 pling (Laumont et al., 2022; Saremi et al., 2023; Ho et al., 2020; Song & Ermon, 2019; Song et al.,
032 2021). Let μ_{data} be a data measure over \mathbb{R}^d and define a Gaussian-smoothed measure as

$$033 \mu_\sigma := \text{law}(X + \sigma Z) \text{ or } \mu_\sigma := \text{law}\left(\sqrt{1 - \sigma^2} X + \sigma Z\right), \text{ where } X \sim \mu_{\text{data}}, Z \sim \mathcal{N}(0, I). \quad (1)$$

034 Let p_σ be its density function w.r.t. the Lebesgue measure over \mathbb{R}^d . A key step in the score learning
035 framework is to approximate the score function $\nabla \log p_\sigma$ and to sample from the target distribution
036 μ_σ , possibly across a spectrum of different σ values (Vincent, 2011; Hyvärinen & Dayan, 2005).

037 A central challenge in this framework is understanding the *low-temperature limit*, i.e., learning the
038 score of μ_σ as $\sigma \rightarrow 0$, which encodes the most detailed information about the data distribution. Em-
039 pirically, this regime is also the most valuable: low-temperature scores underpin many probabilistic
040 learning frameworks (Laumont et al., 2022; Saremi et al., 2023; Janati et al., 2024; Kadkhodaie
041 & Simoncelli, 2020), including the influential diffusion model framework (Ho et al., 2020; Song
042 et al., 2020; Karras et al., 2022), whose noise schedules are specifically designed to emphasize low
043 temperatures and often require substantial post-training engineering to stabilize the learned scores.

044 Despite its importance, accurately estimating the score function in the low- σ regime remains nota-
045 tionally difficult (Song et al., 2021; Karras et al., 2022; Arts et al., 2023; Raja et al., 2025; Stanczuk
046 et al., 2024). Motivated by this challenge, this paper establishes a new qualitative phenomenon under
047 the widely adopted *manifold hypothesis*, which posits that the data distribution μ_{data} is supported
048 on a low-dimensional manifold \mathcal{M} embedded in a high-dimensional ambient space.

049 Our key finding, formalized in Theorem 3.1, is that in the small- σ regime of score learning there
050 is a **sharp separation of scales**: *geometric information about the data manifold appears at order*

Figure 1: Toy examples illustrating recovered distributions under different regimes, with the manifold represented as a one-dimensional circle embedded in \mathbb{R}^2 .

$\Theta(\sigma^{-2})$, whereas density information of μ_{data} emerges only at order $\Theta(1)$. As shown in Section 3, this implies that distribution learning of μ_σ (e.g., in diffusion models) **necessarily** first recovers the support of the data distribution before any information about the density can be learned. This perspective naturally separates score learning into two fundamental tasks: *geometric learning*, which targets the manifold geometry, and *density learning*, which targets the specific data density on that manifold, with the latter being order of magnitude more difficult. It also suggests that the practical success of score-based models (e.g., diffusion models) stems from constraining generated samples to the manifold, thereby producing realistic data even without fully recovering the underlying distribution. According to our analysis, to achieve this, a score error even as large as $o(\sigma^{-2})$ is sufficient.

However, our analysis reveals a critical limitation: unless the score is learned to a stringent accuracy that is beyond $O(1)$, attempts to recover the data distribution may yield *arbitrary* densities supported on the manifold. This amounts to only a partial recovery of geometry and can compromise the reliability of downstream tasks and analyses. Such an observation motivates us to pursue *full geometric learning*—that is, learning to sample *uniformly* with respect to the manifold’s intrinsic (Riemannian) volume measure, as it is well-known that uniform samples can best support tasks that depend solely on the underlying geometry (e.g., Laplace–Beltrami and heat-kernel approximation, geodesic and diffusion distances) (Coifman & Lafon, 2006; Belkin & Niyogi, 2008; Jost, 2005). In addition, they also facilitate principled manifold exploration, yielding diverse samples while mitigating potential biases present in μ_{data} (De Santi et al., 2025).

In this light, a central contribution of this work is to show that a simple, one-line modification to standard algorithms can *provably* generate the *uniform distribution* on the manifold—requiring only $o(\sigma^{-2})$ score accuracy, in stark contrast to the $o(1)$ accuracy needed for exact distributional recovery. In summary, we advocate a paradigm shift: from the demanding goal of *distributional learning* toward the more practical and robust objective of *geometric learning*.

We substantiate the aforementioned rate separation phenomenon by three key results (see also Figure 1):

- Theorem 4.1 shows that, in existing frameworks, the score accuracy required to force concentration on the data manifold is $O(\sigma^{-2})$ weaker than that needed to exactly recover μ_{data} . Nevertheless, the resulting distribution can still be *arbitrary*.
- In contrast, Theorems 5.1 to 5.2 establish a new paradigm centered on extracting precise *geometric* information of the data manifold by producing the *uniform distribution*. Notably, we show that a simple one-line modification of a widely used sampling algorithm suffices to obtain samples from the uniform distribution under the relaxed score error condition $o(\sigma^{-2})$, substantially weaker than the $o(1)$ required for full recovery of μ_{data} .
- In the context of Bayesian inverse problems (Venkatakrishnan et al., 2013), Theorem 6.1 establishes a rate separation in posterior sampling depending on the choice of prior. When the prior is uniform, posterior sampling requires only $o(\sigma^{-2})$ score accuracy. By contrast, when the prior is taken to be the commonly used data distribution μ_{data} , substantially stronger accuracy guarantees are needed to ensure provable success in existing works (Laumont et al., 2022; Pesme et al., 2025).

We validate these theoretical results with preliminary experiments on both synthetic and real-world data, including an application of our algorithm to a large-scale image generation model (Stable Diff-

108 fusion 1.5 (Rombach et al., 2022)). Finally, although several existing works have studied distribution
 109 learning under the manifold hypothesis, none uncover the rate separation phenomenon central to our
 110 work. A detailed discussion of related literature is thus deferred to Appendix A.
 111

112 2 PRELIMINARIES AND NOTATION

114 In this work, we adopt the manifold assumption (Song & Ermon, 2019; De Bortoli, 2022; Loaiza-
 115 Ganem et al., 2024) as follows:
 116

117 **Assumption 2.1** (The Manifold Hypothesis). *We assume that the data distribution μ_{data} is sup-
 118 ported on a compact, boundaryless C^4 embedded submanifold $\mathcal{M} \subset \mathbb{R}^d$, with $\dim(\mathcal{M}) = n$.*

119 **Local coordinates and manifold geometry.** Under the manifold hypothesis, the n -dimensional
 120 manifold \mathcal{M} can be described locally using coordinates from a flat, Euclidean space. This is done
 121 via a set of smooth mappings, or charts, $\Phi : U \rightarrow \mathcal{M}$, where each chart maps an open set of
 122 parameters $U \subset \mathbb{R}^n$ to a patch on the manifold. For notational simplicity, we will work with a single
 123 chart, where $u \in U$ represents the local coordinates of a point $\Phi(u)$ on \mathcal{M} . The manifold's intrinsic,
 124 and generally non-Euclidean, geometry is captured by the Riemannian metric tensor, $g(u)$. This
 125 tensor provides the means to measure lengths and angles on the curved surface. The metric gives
 126 rise to the Riemannian volume measure, $d\mathcal{M}(x)$, which is the natural way to integrate a function
 127 $f : \mathcal{M} \rightarrow \mathbb{R}$ over the manifold. In local coordinates, this integral is expressed as $\int_{\mathcal{M}} f(x) d\mathcal{M}(x) =$
 128 $\int_U f(\Phi(u)) \sqrt{\det(g(u))} du$, w.r.t. the Lebesgue measure on U . Here, the term $\sqrt{\det(g(u))}$ is the
 129 volume correction factor. While we use a single chart for clarity, integration over the entire compact
 130 manifold is handled by stitching together multiple charts via a partition of unity. The set of points in
 131 \mathbb{R}^d that are sufficiently close to the manifold forms the tubular neighborhood: $T_{\mathcal{M}}(\epsilon) := \{x \in \mathbb{R}^d :$
 132 $\text{dist}(x, \mathcal{M}) < \epsilon\}$. For any point x within this neighborhood, there exists a unique closest point on
 133 the manifold, given by the $P_{\mathcal{M}}(x) : T_{\mathcal{M}}(\epsilon) \rightarrow \mathcal{M}$. This projection allows us to define the squared
 134 distance function to the manifold, a quantity of central importance to our analysis:
 135

$$d_{\mathcal{M}}(x) := \frac{1}{2} \text{dist}^2(x, \mathcal{M}) = \min_{\bar{x} \in \mathcal{M}} \frac{1}{2} \|x - \bar{x}\|^2. \quad (2)$$

137 2.1 THE GAUSSIAN SMOOTHED MEASURE AND CONNECTION TO DIFFUSION MODELS

139 With Assumption 2.1, we define the corresponding density p_{data} of μ_{data} with respect to the
 140 Lebesgue measure on U : $p_{\text{data}}(u) := \frac{d(\Phi^* \mu_{\text{data}})}{du}(u)$, where $\Phi^* \mu_{\text{data}}(S) := \mu_{\text{data}}(\Phi(S))$ for
 141 $S \subseteq U$, and assume the following regularity assumption:
 142

143 **Assumption 2.2** (Regularity and Coverage of p_{data}). *The probability density $p_{\text{data}} : U \rightarrow \mathbb{R}$
 144 defined w.r.t. the Lebesgue measure on U is $C^1(U)$ and strictly positive.*

145 Recall the two Gaussian–smoothed measures μ_{σ} introduced in Equation (1). We follow the naming
 146 convention of Song et al. (2021) and denote by μ_{σ}^{VE} the variance–exploding (VE) smoothing and by
 147 μ_{σ}^{VP} the variance–preserving (VP) smoothing. Their densities w.r.t. the Lebesgue measure on \mathbb{R}^d is

$$p_{\sigma}(x) := \int_{\mathcal{M}} \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|x - \gamma(\sigma)\Phi(u)\|^2}{2\sigma^2}\right) p_{\text{data}}(u) du, \quad (3)$$

148 where the densities are denoted p_{σ}^{VE} for VE with $\gamma(\sigma) = 1$ and p_{σ}^{VP} for VP with $\gamma(\sigma) = \sqrt{1 - \sigma^2}$.
 149 We take p_{data} to be the true population density rather than a finite-sample empirical approximation.
 150

151 These smoothed distributions correspond to the marginals of the forward noising processes used in
 152 diffusion and score-based generative modeling. In SMLD or VE-SDE (Song et al., 2021), Gaussian
 153 noise with variance $\sigma^2(t) : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is added to the data at time t , a model is trained to pro-
 154 gressively denoise, and in the reverse process the objective is to sample from $p_{\sigma(t)}^{\text{VE}}$, recovering p_{data} as
 155 $t \rightarrow 0$ (equivalently, $\sigma(t) \rightarrow 0$). Similarly, DDPM or VP-SDE (Ho et al., 2020; Song et al., 2021)
 156 corresponds to the VP density $p_{\sigma(t)}^{\text{VP}}$, again with the goal of recovering p_{data} in the limit $t \rightarrow 0$.
 157 Beyond the reverse process, one may also directly use the learned score to run a Langevin sampler
 158 targeting p_{σ}^{VE} (Song & Ermon, 2019) or p_{σ}^{VP} , or combine Langevin sampling with the reverse pro-
 159 cess, as in the Predictor–Corrector algorithm (Song et al., 2021). Since our results apply to both VE
 160 and VP settings, we adopt the unified notation p_{σ} whenever no ambiguity arises.
 161

162 2.2 BAYESIAN INVERSE PROBLEMS
163

164 Another important algorithmic implication of our results concerns Plug-and-Play (PnP) methods
165 for Bayesian inverse problems (Venkatakrishnan et al., 2013). Let $x \in \mathbb{R}^d$ be the latent signal and
166 $y \in \mathcal{Y} \subseteq \mathbb{R}^m$ the observation $y = A(x) + \xi$, where $A : \mathbb{R}^d \rightarrow \mathbb{R}^m$ is the measurement map and $\xi \in$
167 \mathbb{R}^m is noise. Under standard assumptions on A and ξ (e.g., A linear, $\xi \sim \mathcal{N}(0, s^2 I)$), the likelihood
168 admits a density $p(y | x) \propto \exp(-v(x; y))$ (for the Gaussian case, $v(x; y) = \frac{1}{2s^2} \|A(x) - y\|^2$).
169 In the Bayesian framework we endow x with a prior p_{prior} . Inference is cast as sampling from the
170 posterior $p(x | y) = \frac{p(y|x) p_{\text{prior}}(x)}{\int p(y|\bar{x}) p_{\text{prior}}(\bar{x}) d\bar{x}}$.
171

172 **Plug-and-Play (PnP).** PnP methods address the case where the prior is (i) known up to a normal-
173 izing constant, e.g. a Gibbs measure or (ii) only accessible via samples (common in ML). A unifying
174 sampling paradigm is posterior Langevin with a (possibly learned) prior score $\hat{s} \simeq \nabla \log p_{\text{prior}}$,

$$175 dX_t = -\nabla_x v(X_t; y) dt + \hat{s}(X_t) dt + \sqrt{2} dW_t. \quad (4)$$

176 In case (ii), \hat{s} is a score estimator obtained, e.g., by score matching on prior samples. A common
177 choice of p_{prior} would be the density p_σ defined in eq. (3) with small σ . In this context, to ensure up-
178 date (4) yields samples matching the target posterior distribution, existing works require the learned
179 score \hat{s} to be at least $o(1)$ accurate (Laumont et al., 2022), or even exact (Pesme et al., 2025).
180

181 2.3 STATIONARY DISTRIBUTION FOR NON-REVERSIBLE DYNAMICS
182

183 In score learning, one typically learns a score function $s(x, \epsilon)$ for a target density and then runs
184 Langevin dynamics (equivalently, the corrector step in the Predictor–Corrector algorithm for diffu-
185 sion models (Song et al., 2021)) until near stationarity to sample from that density:

$$186 dX_t = s(X_t, \epsilon) dt + \sqrt{2} dW_t.$$

187 If $s(x, \epsilon) = -\nabla f_\epsilon(x)$, the stationary distribution is proportional to $\exp(-f_\epsilon(x))$. In practice, how-
188 ever, the score is often produced by a parameterized model and need not be a gradient field (this is
189 also the case for our proposed algorithms). The resulting Langevin dynamics is then generally *non-*
190 *reversible*, and its stationary distribution need not admit a closed form—an open problem studied
191 in, e.g., (Graham & Tél, 1984; Maes et al., 2009; Rey-Bellet & Spiliopoulos, 2015).
192

193 Several works have sought to characterize the stationary distribution of non-reversible SDEs. Notably,
194 Matkowsky & Schuss (1977); Maier & Stein (1997); Graham & Tél (1984); Bouchet &
195 Reyner (2016) employ the WKB ansatz (Wentzel, 1926; Kramers, 1926; Brillouin, 1926), which
196 is commonly used in matched asymptotic expansions (Holmes, 2012). This approach posits that the
197 stationary density takes the form

$$198 \exp\left(-\frac{V(x)}{\epsilon}\right) c_\epsilon(x), \quad \text{with} \quad c_\epsilon(x) = \sum_{i=0}^k c_i(x) \epsilon^i, \quad (5)$$

200 for some $k \in \mathbb{N}$. The functions V and $\{c_i\}$ are then identified by inserting (5) into the stationary
201 Fokker–Planck equation and balancing terms order by order in ϵ . Importantly, prior analyses typi-
202 cally focus on low-dimensional special examples or on drifts with a *single* stable point. The difficulty
203 of removing such restrictions turn out to be central to our analysis; see Section 5 for details.
204

205 3 CENTRAL INSIGHT: GAUSSIAN SMOOTHING RECOVERS GEOMETRY
206 BEFORE DISTRIBUTION
207

208 This section presents the central insight of the paper: While the proofs of our later main results
209 are technically involved, they are all guided by a common intuition that is transparent and can be
210 understood through a simple Taylor expansion of $\log p_\sigma$ at $\sigma = 0$:

211 **Theorem 3.1** (Informal Theorem C.2). *Assume Assumptions 2.1 and 2.2 holds. For any $x \in T_{\mathcal{M}}(\epsilon)$,*

$$213 \log p_\sigma(x) = -\frac{1}{\sigma^2} d_{\mathcal{M}}(x) + \log p_{\text{data}}(\Phi^{-1}(P_{\mathcal{M}}(x))) - \frac{d-n}{2} \log(2\pi\sigma^2) + H(x) + o(1), \quad (6)$$

214 where $H(x)$ contains the curvature information of the manifold and ϵ is some sufficiently small
215 constant; both of them are independent of σ . The small $o(1)$ term is uniform for $x \in T_{\mathcal{M}}(\epsilon)$.
216

From Equation (6), it follows immediately that the scaled log-density recovers the distance function to the manifold in the small σ limit:

$$\lim_{\sigma \rightarrow 0} \sigma^2 \log p_\sigma(x) = -d_{\mathcal{M}}(x) \quad \text{uniformly for all } x \in T_{\mathcal{M}}(\epsilon). \quad (7)$$

The appearance of $d_{\mathcal{M}}(x)$ under the manifold hypothesis should not come as a surprise; indeed, as $p_\sigma \rightarrow p_{\text{data}}$ when $\sigma \rightarrow 0$, and since p_{data} is supported entirely on \mathcal{M} , any point x with $d_{\mathcal{M}}(x) > 0$ must be assigned zero probability, which explains the divergent scaling factor σ^{-2} in the coefficient. What is more surprising is that *only* $d_{\mathcal{M}}(x)$ appears at leading order, with *no dependence on* p_{data} : Information about p_{data} enters only at the higher-order terms of $\Theta(1)$.

This reveals a fundamental *rate separation*: for *any* distribution supported on \mathcal{M} , one must first recover $d_{\mathcal{M}}(x)$ *exactly* before learning anything about p_{data} , as any inaccuracy in $d_{\mathcal{M}}(x)$ gets blown up by the diverging factor σ^{-2} . Moreover, coefficients encoding p_{data} appear at order $O(\sigma^{-2})$ higher, meaning that extracting information about p_{data} requires a level of accuracy orders of magnitude stricter than that needed to recover the manifold geometry, i.e., the distance function $d_{\mathcal{M}}$.

As demonstrated in Sections 4 to 5, this observation entails several significant consequences for machine learning. Each of these can be understood as a manifestation of the fundamental rate separation between geometric recovery *vs.* distributional learning established in Theorem 3.1.

4 SCALE SEPARATION IN EXISTING GENERATIVE LEARNING: GEOMETRY VERSUS DISTRIBUTION

In this section, we study the paradigm of existing generative learning where algorithms target to learn the Gaussian-smoothed measure μ_σ , such as the diffusion models discussed in Section 2.1. We denote the corresponding perfect score function by $s^*(x, \sigma) := \nabla \log p_\sigma(x)$.

In practice, however, the generated samples may follow a different distribution due to imperfections such as errors in training or discretization of the reverse differential equation. We therefore let $\pi_\sigma(x) : \mathbb{R}^d \rightarrow \mathbb{R}$ denote the density of the distribution actually produced by an empirical algorithm, and define its associated score as $s_{\pi_\sigma}(x) := \nabla \log \pi_\sigma(x)$. Our analysis focuses on π_σ in terms of discrepancies between $s_{\pi_\sigma}(x)$ and the ideal score $s^*(x, \sigma)$.

Before presenting our result, we impose the following assumption on the recovered distribution.

Assumption 4.1. *We denote the log-density of the recovered distribution as $-f_\sigma := \log \pi_\sigma(x)$, and assume that f_σ is $C^1(K)$. Furthermore, we impose the following conditions:*

1. *There exists a compact set $K \subset \mathbb{R}^d$ with $T_{\mathcal{M}}(\epsilon) \subset K$ such that the density concentrates on K as $\sigma \rightarrow 0$, i.e., $\lim_{\sigma \rightarrow 0} \int_K \pi_\sigma(x) dx = 1$.*
2. *K is uniformly rectifiably path-connected, meaning that for any two points $x, y \in K$, there exists a path in K connecting x and y whose length is uniformly bounded for all $x, y \in K$.*

Remark 4.1. We believe our assumptions are already reflected in practice: Since π_σ represents the effective distribution of the generated samples, it can incorporate standard constraints such as data clipping (e.g., to $[-1, 1]$) used in many diffusion models (Ho et al., 2020; Saharia et al., 2022). This ensures the generated density concentrates on a compact set K as required. Furthermore, such regular sets are naturally uniformly rectifiably path-connected.

We are ready to state our main result in this section; see Appendix C.3 for the proof.

Theorem 4.1. *Suppose Assumptions 2.1, 2.2 and 4.1 hold. Denote the score error as*

$$E_\sigma := \|s_{\pi_\sigma} - s^*(\cdot, \sigma)\|_{L^\infty(K)}.$$

1. **Concentration on Manifold.** *If we have that $E_\sigma = o(\sigma^{-2})$, then π_σ concentrates on \mathcal{M} , i.e.,*

$$\lim_{\sigma \rightarrow 0} \int_{\text{dist}(x, \mathcal{M}) > \delta} \pi_\sigma(x) dx = 0 \quad \text{for any } \delta > 0.$$

2. **Arbitrary Distribution Recovery.** *For any distribution $\hat{\pi}$ supported on \mathcal{M} with C^1 density, one can construct f_σ such that $E_\sigma = \Omega(1)$ as $\sigma \rightarrow 0$, and π_σ converges weakly to $\hat{\pi}$.*

270 3. **Recovering p_{data} .** If we have that $E_\sigma = o(1)$ as $\sigma \rightarrow 0$, then π_σ converges weakly to p_{data} .
 271

272 This result formalizes the intuitive fact that recovering p_{data} requires $\nabla \log \pi_\sigma$ to match the true
 273 score to within $o(1)$ accuracy as $\sigma \rightarrow 0$. The reason is clear from the expansion (6): the distribution
 274 p_{data} only appears in the $\Theta(1)$ term, and any larger error would overwhelm this information. In
 275 practice, however, achieving such accuracy is extremely challenging, particularly in the small- σ
 276 regime. However, recovering the manifold is simple—only $o(1/\sigma^2)$ accuracy is required such that
 277 as $\sigma \rightarrow 0$, the density will concentrate on \mathcal{M} —a shape separation from recovering p_{data} .
 278

279 **Implications to Diffusion Models.** As we mentioned before, the paradigmatic example to which
 280 our results can be applied is diffusion models. Our Theorem 4.1 then reveals a sharp scale separation
 281 in terms of the score error: *well before the true distribution p_{data} is fully recovered, one can already*
 282 *recover a distribution supported on the same data manifold.* In practice, this often suffices, as what
 283 truly matters is capturing the *structural features* of the manifold—realistic images, plausible protein
 284 conformations, or meaningful material geometries. This insight provides a potential new explanation
 285 for the remarkable success of diffusion models.
 286

286 5 NEW PARADIGM OF GEOMETRIC LEARNING: RECOVER UNIFORM 287 DISTRIBUTIONS WITH $o(\sigma^{-2})$ SCORE ERROR 288

289 As shown in Theorem 4.1, while concentration on the manifold is orders of magnitude simpler,
 290 the recovered distribution can still be **arbitrary** unless the score is learned with $o(1)$ accuracy. In
 291 contrast, we show in this section the striking fact that even with score errors as large as $o(\sigma^{-2})$,
 292 with a simple modification of the existing algorithm, one can recover the *uniform distribution on the*
 293 *manifold*—a fundamental distribution that plays a key role in scientific discovery and encodes rich
 294 geometric information about the manifold (De Santi et al., 2025; Belkin & Niyogi, 2008).
 295

296 Unlike in Section 4, where we compared errors by evaluating a learned *distribution* π_σ against the
 297 ideal p_σ through their score functions, in this section we assume direct access to an estimated *score*
 298 *oracle* $s(\cdot, \sigma)$, such as those learned via score matching in diffusion models. Given access to such
 299 an oracle, our proposed algorithm consists of running the following SDE for some $\alpha > 0$:
 300

$$dX_t = \sigma^\alpha s(X_t, \sigma) dt + \sqrt{2} dW_t, \quad (8)$$

301 which we refer to as the *Tempered Score* (TS) Langevin dynamics. We claim that, under mild
 302 error assumptions, the stationary distribution of this SDE, denoted $\tilde{\pi}_\sigma$, converges to the uniform
 303 distribution on the manifold as $\sigma \rightarrow 0$.
 304

305 Our analysis proceeds in two steps. First, we establish the result in a simplified setting where the
 306 score oracle $s(\cdot, \sigma)$ is guaranteed to be a gradient field, with a proof analogous to Section 4. Second,
 307 we tackle the substantially more challenging case in which no *a priori* gradient structure is assumed.
 308 Full proofs are provided in Appendix C.5.

309 **Warm-up: Score Oracle is a Gradient Field.** We use the same notation as in Section 4, namely
 310 $s(x, \sigma) = -\nabla f_\sigma(x)$. In this case, the stationary distribution of Equation (8) admits the explicit form
 311

$$\tilde{\pi}_\sigma(x) \propto \exp(-\sigma^\alpha f_\sigma(x)).$$

313 We then obtain the following result, using a proof technique similar to that of Theorem 4.1.

314 **Theorem 5.1.** *Assume Assumptions 2.1, 2.2 and 4.1 hold, with π_σ replaced by $\tilde{\pi}_\sigma$. Suppose*
 315

$$316 \|s(\cdot, \sigma) - s^*(\cdot, \sigma)\|_{L^\infty(K)} = o(\sigma^\beta) \quad \text{for some } \beta > -2. \quad (9)$$

317 *Then for any $\max\{-\beta, 0\} < \alpha < 2$, as $\sigma \rightarrow 0$, $\tilde{\pi}_\sigma$ converges weakly to the **uniform distribution** on the manifold \mathcal{M} with respect to the intrinsic volume measure. More precisely, the limiting distribution $\tilde{\pi}$ with respect to the Lebesgue measure on U satisfies*
 318

$$321 \tilde{\pi}(u) \propto \frac{d\mathcal{M}}{du}(u),$$

322 where $(d\mathcal{M}/du)(u) = \sqrt{\det(g(u))}$ is the Riemannian volume element on \mathcal{M} .
 323

324 **General Non-Gradient Score Oracle.** While theorem 5.1 already illustrates the rate separation
 325 phenomenon we wish to emphasize, it relies on the highly impractical assumption that the estimated
 326 scores $s(\cdot, \sigma)$ are exact gradient fields. To enhance the applicability of our framework, it is crucial
 327 to relax this stringent assumption.

328 As discussed in Section 2.3, existing approaches to non-gradient scores (and hence non-reversible
 329 dynamics) typically assume the existence of a unique point x^* such that $\lim_{\sigma \rightarrow 0} \sigma^\alpha s(x^*, \sigma) = 0$,
 330 with the key consequence of collapsing the prefactor c_0 in (5) to a normalization constant $c_0(x^*)$.
 331 Our framework, however, explicitly violates this assumption: we require that $\lim_{\sigma \rightarrow 0} \sigma^\alpha s(\cdot, \sigma)$ sta-
 332 bilizes to a *manifold* rather than a singleton. Under this setting, the limiting behavior of c_0 is far
 333 from obvious, and the resolution of this issue turns out to be highly nontrivial.

334 To this end, a central part of our proof is devoted to showing that c_0 nevertheless remains constant,
 335 albeit for an entirely different reason: we prove that the higher-order terms in the Fokker–Planck
 336 expansion enforce c_0 to satisfy a *parabolic PDE* on the manifold, and by the strong maximum
 337 principle (Gilbarg et al., 1977), the only solutions on a compact manifold are constants.

338 With these techniques, we obtain the same conclusion as Theorem 5.1:

339 **Theorem 5.2.** *Assume Assumptions 2.1 and 2.2 and eq. (9) hold, and further suppose $p_{\text{data}} \in$
 340 $C^2(U)$. For any $\max\{-\beta, 0\} < \alpha < 2$, assume that the SDE admits a unique stationary distri-
 341 $\tilde{\pi}_\sigma$, which locally admits a WKB form (Assumption C.2 with $\theta = \sigma^{2-\alpha}$). Then the
 342 conclusion of Theorem 5.1 holds.*

343 Setting $\alpha = 0$ in eq. (8) recovers the standard Langevin sampler or the “Corrector” step commonly
 344 used in diffusion-based sampling (Song et al., 2021). Our results in Theorems 5.1 and 5.2 therefore
 345 imply that a simple, one-line modification of these standard schemes is enough to recover the uni-
 346 form distribution on the data manifold *from samples of p_{data}* , even when the score error is as large as
 347 $o(\sigma^{-2})$ —a substantially weaker requirement than the $o(1)$ accuracy needed to recover p_{data} itself.

348 *Remark 5.1.* In Appendix E, we provide further discussion on the convergence (mixing time) of TS
 349 Langevin compared to standard Langevin dynamics. While characterizing the general convergence
 350 rate is a non-trivial problem left for future work, our analysis indicates that TS Langevin maintains
 351 comparable algorithmic efficiency. In fact, by analyzing the Poincaré constant, we identify concrete
 352 examples where TS Langevin converges provably exponentially faster than standard, untempered
 353 Langevin dynamics.

356 6 UNIFORM PRIOR IS MORE ROBUST BAYESIAN INVERSE PROBLEMS

357 In Bayesian learning, one often sets the prior p_{prior} to the Gaussian-smoothed data distribution
 358 p_σ defined in Equation (3) with some small smoothing parameter σ . To ensure asymptotically
 359 correct posterior samples under this choice, the learned score typically must be exact (Pesme et al.,
 360 2025), $\hat{s} = \nabla \log p_\sigma$, or achieve vanishing error, $\|\hat{s} - \nabla \log p_\sigma\|_{\mathcal{L}^\infty} = o(1)$ (Laumont et al., 2022,
 361 Proposition 3.3 and H2). In contrast, under our framework, if one adopts the manifold volume
 362 measure (i.e., the uniform distribution on \mathcal{M}) as the prior, then correct posterior sampling can be
 363 attained under a substantially weaker requirement: it suffices that the score error scales as $o(\sigma^{-2})$.
 364 The precise statement is given in the theorem below.

365 **Theorem 6.1.** *Under the same assumptions as in Theorem 5.2, and suppose $v : \mathbb{R}^d \rightarrow \mathbb{R}$ is bounded
 366 on \mathbb{R}^d , and C^1 on $T_{\mathcal{M}}(\epsilon)$. Then, as $\sigma \rightarrow 0$, the stationary distribution of the SDE*

$$368 \quad dx_t = -\nabla v(x_t) dt - \sigma^\alpha \nabla f_\sigma(x_t) dt + \sqrt{2} dW_t, \quad (10)$$

369 converges weakly to a distribution supported on \mathcal{M} with density $\propto \exp(-v(\Phi(u))) \frac{d\mathcal{M}}{du}(u)$.

370 **Diffusion Models with Classifier-Free Guidance.** The above result can also be applied to diffu-
 371 sion models. The drift term in Equation (10) represents the effective score of a diffusion model with
 372 classifier-free guidance (Ho & Salimans, 2022). In this formulation, $-\nabla f_\sigma$ denotes the uncondi-
 373 tional score estimate, while the guidance term $-\nabla v$ equals the guidance scale w times the difference
 374 between the conditional and unconditional score estimates. Our tempered score can be applied di-
 375 rectly to CFG diffusion models with a Predictor–Corrector sampler: in the corrector (Langevin) step,
 376 replace the score by its tempered version according to Equation (10) (i.e., scale the unconditional
 377 score by σ^α). We will demonstrate the effectiveness of this modification empirically in Section 7.2.

Figure 2: Comparison of stationary sample distributions generated with standard Langevin dynamics (L) versus our Tempered Score Langevin dynamics Equation (8) with $\alpha = 1$ (TS-1). The circle and ellipse correspond to manifolds with $(a, b) = (1, 1)$ and $(a, b) = (1, 2)$, respectively.

Prompt		Furniture		Car		Architecture	
Method	P-sim↑	I-sim↓	P-sim	I-sim	P-sim	I-sim	
DDPM	29.56	80.78	26.23	87.30	27.36	81.53	
PC	29.40	81.24	26.30	87.20	27.13	81.03	
TS (ours)	30.20	80.76	26.62	87.14	27.32	80.76	

Table 1: Comparison of images generated by DDPM, PC, and TS. The prompts used are “Creative furniture,” “An innovative car design,” and “A creative architecture.” For PC and TS, the number of corrector steps and α (for TS) are tuned.

7 EXPERIMENTS

To empirically validate our theory, we present preliminary experiments on both simple synthetic manifolds and a real-world image-generation setting with diffusion models. On synthetic manifolds, we directly verify the claims of Section 5, demonstrating recovery of the uniform distribution on the manifold. In the image domain, we show that our proposed algorithm yields samples that are both more diverse and high-quality. Further experimental details are provided in Appendix D.

7.1 NUMERICAL SIMULATIONS ON ELLIPSE

In this subsection, we illustrate our theoretical results with numerical simulations. We consider a simple manifold given by an ellipse embedded in the two-dimensional Euclidean space, $\mathcal{M} = \{(x, y) \in \mathbb{R}^2 \mid (x/a)^2 + (y/b)^2 = 1\}$, $a, b > 0$, and p_{data} is chosen to be a von Mises distribution supported on the angular parameterization of the ellipse. The score function is parameterized using a transformer-based neural network, trained with the loss function introduced in (Song & Ermon, 2019). After training, we evaluate the learned score function with $\sigma = 10^{-2}$ and perform Langevin dynamics until convergence. Training hyperparameters are tuned to minimize the test loss.

As shown in Figure 2, the stationary distribution produced by standard Langevin dynamics deviates substantially from p_{data} , even in this simple elliptical setting, highlighting the difficulty of accurately learning the score function at small σ . In contrast, our TS Langevin dynamics reliably recovers the uniform distribution on the manifold, in agreement with Theorem 5.2.

7.2 IMAGE GENERATION WITH DIFFUSION MODELS

To validate our theoretical findings in a practical, large-scale setting, we conducted experiments on image generation. We demonstrate that a one-line modification to the widely-used Predictor-Corrector (PC) sampling algorithm (Song et al., 2021) can enhance both the quality and diversity of images generated by a pre-trained diffusion model. These experiments serve as a proof of concept, applying our proposed Tempered Score (TS) method to off-the-shelf diffusion models. Our modification targets the corrector step of the PC algorithm, which uses Langevin dynamics to refine the sample at each stage of the reverse process. In our TS method, we scale the unconditioned score prediction by a factor of σ^α , as motivated by our analysis and discussion in Section 6. The standard classifier-free guidance term, i.e., ∇v in Equation (10), remains unchanged. Specifically, we compare Stable Diffusion 1.5 (Rombach et al., 2022) with a DDPM sampler (Ho et al., 2020), DDPM with PC sampler, and DDPM with our TS sampler.

Num. Corrector Steps		5		10		15		20		30	
Prompt	Method	P-sim↑	I-sim↓	P-sim	I-sim	P-sim	I-sim	P-sim	I-sim	P-sim	I-sim
Furniture	PC	29.40	81.34	29.30	81.24	29.32	81.64	28.98	81.72	28.67	82.33
	<i>TS (ours)</i>	29.54	81.11	29.58	80.95	29.68	81.34	29.52	81.15	29.43	81.87
Car	PC	26.20	87.20	26.30	87.57	26.24	87.98	26.26	88.06	26.17	87.94
	<i>TS (ours)</i>	26.23	87.14	26.37	87.42	26.32	87.88	26.28	88.07	26.20	87.87
Architect.	PC	27.13	81.83	27.13	81.81	26.92	81.64	26.87	81.60	26.60	81.03
	<i>TS (ours)</i>	27.23	81.58	27.27	81.57	27.14	81.54	27.06	80.97	26.84	80.76

Table 2: Comparison of images generated by PC and TS across different numbers of corrector steps. For TS, $\alpha = 1$ is used without further tuning. The prompts are the same as in Table 1.

Figure 3: Top row: PC. Bottom row: *TS (ours)*. Samples in the same column are generated using the same prompt, the same number of corrector steps, and the same random seed. As shown, TS produces samples that appear more authentic and contain richer details.

We evaluate the performance using two metrics derived from CLIP scores (Hessel et al., 2021), which measure the cosine similarity between feature embeddings. **Quality**: We use the CLIP Prompt Similarity (P-sim), defined as the average CLIP score between the generated images and their corresponding text prompt. A higher P-sim value indicates better alignment with the prompt and thus higher image quality. **Diversity**: We use the CLIP Inter-Image Similarity (I-sim), which is the average pairwise CLIP score between all images generated with the same prompt. A lower I-sim value means greater diversity among the samples.

The experimental results in Table 1 and Table 2 provide empirical validation of our theoretical framework. Our proposed TS method consistently generates more diverse images than the DDPM and standard PC baselines across three distinct prompts, while maintaining very high image quality. In particular, Table 2 shows that, for all numbers of corrector steps considered, TS outperforms standard PC in nearly every case. Crucially, these improvements are robust to the choice of α and are not merely the result of a larger tuning budget; as demonstrated in Table 2, simply setting $\alpha = 1$ without further tuning is sufficient to consistently enhance both quality and diversity compared to the baseline. Examples of the generated images by PC and TS are shown in Figure 3.

8 CONCLUSION

This paper advocates for a paradigm shift in score-based learning, moving from the difficult goal of full distributional recovery to a more robust, geometry-first approach. We demonstrate a fundamental rate separation in the low-noise limit, where information about the data manifold is encoded at a significantly stronger scale ($\Theta(\sigma^{-2})$) than details about the on-manifold distribution ($\Theta(1)$). This finding explains why models often succeed at capturing the data support even with imperfect score estimates. Building on this insight, we introduce Tempered Score (TS) Langevin dynamics, a simple one-line modification that robustly targets the uniform volume measure on the manifold, tolerating score errors up to $o(\sigma^{-2})$. This geometric approach not only provides a more stable foundation for Bayesian inverse problems but also, as shown in our experiments with models like Stable Diffusion, empirically improves the diversity and fidelity of generated samples.

Limitations and future work. Key limitations and future directions include: a) The implications for diffusion models are presently limited: we do not track cumulative error along the sampling trajectory; instead, we analyze a simplified setting that assumes access to the error of the final

486 generated distribution. b) Our L^∞ score-error assumption could potentially be relaxed to an L^2
 487 bound, thereby aligning our theoretical framework with practical training objectives like denoising
 488 score matching (Fisher divergence) that minimize L^2 error. c) It remains to generalize the rate
 489 separation in score estimation into corresponding results on statistical sample complexity. d) Our
 490 analyses on the uniform sampling are in continuous time; we do not quantify discretization error
 491 arising in practical implementations. e) Our experiments are preliminary; we have not conducted a
 492 large-scale study with state-of-the-art diffusion models.

493

494 REFERENCES

495

- 496 Marloes Arts, Victor Garcia Satorras, Chin-Wei Huang, Daniel Zugner, Marco Federici, Cecilia
 497 Clementi, Frank Noé, Robert Pinsler, and Rianne van den Berg. Two for one: Diffusion mod-
 498 els and force fields for coarse-grained molecular dynamics. *Journal of Chemical Theory and*
 499 *Computation*, 19(18):6151–6159, 2023.
- 500 Iskander Azangulov, George Deligiannidis, and Judith Rousseau. Convergence of diffusion models
 501 under the manifold hypothesis in high-dimensions. *arXiv preprint arXiv:2409.18804*, 2024.
- 502 Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation for laplacian-based manifold
 503 methods. *Journal of Computer and System Sciences*, 74(8):1289–1308, 2008.
- 504 Thibault Bonnemain and Denis Ullmo. Mean field games in the weak noise limit: A wkb approach to
 505 the fokker–planck equation. *Physica A: Statistical Mechanics and its Applications*, 523:310–325,
 506 2019.
- 507 Freddy Bouchet and Julien Reygner. Generalisation of the eyring–kramers transition rate formula to
 508 irreversible diffusion processes. In *Annales Henri Poincaré*, volume 17, pp. 3499–3532. Springer,
 509 2016.
- 510 Léon Brillouin. La mécanique ondulatoire de schrödinger; une méthode générale de résolution par
 511 approximations successives. *CR Acad. Sci*, 183(11):24–26, 1926.
- 512 Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
 513 as learning the score: theory for diffusion models with minimal data assumptions. In *International*
 514 *Conference on Learning Representations*, 2023.
- 515 Ronald R Coifman and Stéphane Lafon. Diffusion maps. *Applied and computational harmonic*
 516 *analysis*, 21(1):5–30, 2006.
- 517 Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
 518 *Transactions on Machine Learning Research*, 2022.
- 519 Riccardo De Santi, Marin Vlastelica, Ya-Ping Hsieh, Zebang Shen, Niao He, and Andreas
 520 Krause. Provable maximum entropy manifold exploration via diffusion models. *arXiv preprint*
 521 *arXiv:2506.15385*, 2025.
- 522 David Gilbarg, Neil S Trudinger, David Gilbarg, and NS Trudinger. *Elliptic partial differential*
 523 *equations of second order*, volume 224. Springer, 1977.
- 524 Yun Gong, Niao He, and Zebang Shen. Poincare inequality for local log-polyak-\l ojasiewicz mea-
 525 sures: Non-asymptotic analysis in low-temperature regime. *arXiv preprint arXiv:2501.00429*,
 526 2024.
- 527 R Graham and T Tél. On the weak-noise limit of fokker-planck models. *Journal of statistical*
 528 *physics*, 35(5):729–748, 1984.
- 529 Matthias Hein, Jean-Yves Audibert, and Ulrike von Luxburg. Graph laplacians and their conver-
 530 gence on random neighborhood graphs. *Journal of Machine Learning Research*, 8(6), 2007.
- 531 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
 532 reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.
- 533 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
 534 *arXiv:2207.12598*, 2022.

- 540 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 541 *neural information processing systems*, 33:6840–6851, 2020.
- 542
- 543 Richard Holley and Daniel Stroock. Logarithmic sobolev inequalities and stochastic ising models.
 544 *Journal of Statistical Physics*, 46(5-6):1159–1194, 1987.
- 545
- 546 Mark H Holmes. *Introduction to perturbation methods*, volume 20. Springer Science & Business
 547 Media, 2012.
- 548
- 549 Chii-Ruey Hwang. Laplace’s method revisited: weak convergence of probability measures. *The*
 549 *Annals of Probability*, pp. 1177–1182, 1980.
- 550
- 551 Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
 551 ing. *Journal of Machine Learning Research*, 6(4), 2005.
- 552
- 553 Yazid Janati, Badr Moufad, Alain Durmus, Eric Moulines, and Jimmy Olsson. Divide-and-conquer
 554 posterior sampling for denoising diffusion priors. *Advances in Neural Information Processing*
 555 *Systems*, 37:97408–97444, 2024.
- 556
- 557 Jürgen Jost. *Riemannian geometry and geometric analysis*. Springer, 2005.
- 558
- 559 Zahra Kadkhodaie and Eero P Simoncelli. Solving linear inverse problems using the prior implicit
 559 in a denoiser. *arXiv preprint arXiv:2007.13640*, 2020.
- 560
- 561 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 561 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
 562 2022.
- 563
- 564 Hendrik Anthony Kramers. Wellenmechanik und halbzahlige quantisierung. *Zeitschrift für Physik*,
 564 39(10):828–840, 1926.
- 565
- 566 Tomasz M Łapiński. Multivariate laplace’s approximation with estimated error and application to
 567 limit theorems. *Journal of Approximation Theory*, 248:105305, 2019.
- 568
- 569 Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, and Marcelo
 570 Pereyra. Bayesian imaging using plug & play priors: when langevin meets tweedie. *SIAM Journal*
 571 *on Imaging Sciences*, 15(2):701–737, 2022.
- 572
- 573 Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for
 573 general data distributions. In *International Conference on Algorithmic Learning Theory*, pp.
 574 946–985. PMLR, 2023.
- 575
- 576 Gunther Leobacher and Alexander Steinicke. Existence, uniqueness and regularity of the projection
 576 onto differentiable manifolds. *Annals of global analysis and geometry*, 60(3):559–587, 2021.
- 577
- 578 Zichen Liu, Wei Zhang, and Tiejun Li. Improving the euclidean diffusion generation of manifold
 579 data by mitigating score function singularity. *arXiv preprint arXiv:2505.09922*, 2025.
- 580
- 581 Gabriel Loaiza-Ganem, Brendan Leigh Ross, Rasa Hosseinzadeh, Anthony L Caterini, and Jesse C
 582 Cresswell. Deep generative models through the lens of the manifold hypothesis: A survey and
 582 new connections. *Transactions on Machine Learning Research*, 2024.
- 583
- 584 Yubin Lu, Zhongjian Wang, and Guillaume Bal. Mathematical analysis of singularities in the diffu-
 584 sion model under the submanifold assumption. *arXiv preprint arXiv:2301.07882*, 2023.
- 585
- 586 Yang Lyu, Tan Minh Nguyen, Yuchun Qian, and Xin T Tong. Resolving memorization in empirical
 587 diffusion model for manifold data in high-dimensional spaces. *arXiv preprint arXiv:2505.02508*,
 588 2025.
- 589
- 590 Christian Maes, Karel Netočný, and Bidzina M Shergelashvili. Nonequilibrium relation between po-
 591 tential and stationary distribution for driven diffusion. *Physical Review E—Statistical, Nonlinear,*
 591 *and Soft Matter Physics*, 80(1):011121, 2009.
- 592
- 593 Robert S Maier and Daniel L Stein. Limiting exit location distributions in the stochastic exit prob-
 593 lem. *SIAM Journal on Applied Mathematics*, 57(3):752–790, 1997.

- 594 Piotr Majerski. Simple error bounds for the multivariate laplace approximation under weak local
 595 assumptions. *arXiv preprint arXiv:1511.00302*, 2015.
- 596
- 597 Bernard J Matkowsky and Zeev Schuss. The exit problem for randomly perturbed dynamical sys-
 598 tems. *SIAM Journal on Applied Mathematics*, 33(2):365–382, 1977.
- 599 Georg Menz and André Schlichting. Poincaré and logarithmic sobolev inequalities by decomposi-
 600 tion of the energy landscape. *The Annals of Probability*, 42(5):1809, 2014.
- 601
- 602 John Willard Milnor and James D Stasheff. *Characteristic classes*. Number 76. Princeton university
 603 press, 1974.
- 604 James Raymond Munkres. *Topology*. Prentice Hall, 2nd edition, 2000.
- 605
- 606 Elizabeth Pavlova and Xue-Xin Wei. Diffusion models under low-noise regime. *arXiv preprint*
 607 *arXiv:2506.07841*, 2025.
- 608 Scott Pesme, Giacomo Meanti, Michael Arbel, and Julien Mairal. Map estimation with denoisers:
 609 Convergence rates and guarantees. *arXiv preprint arXiv:2507.15397*, 2025.
- 610
- 611 Jakiw Pidstrigach. Score-based generative models detect manifolds. *Advances in Neural Information*
 612 *Processing Systems*, 35:35852–35865, 2022.
- 613 Sanjeev Raja, Martin Šípka, Michael Psenka, Tobias Kreiman, Michal Pavelka, and Aditi S Kr-
 614 ishnapiyan. Action-minimization meets generative modeling: Efficient transition path sampling
 615 with the onsager-machlup functional. *arXiv preprint arXiv:2504.18506*, 2025.
- 616
- 617 Luc Rey-Bellet and Konstantinos Spiliopoulos. Irreversible langevin samplers and variance reduc-
 618 tion: a large deviations approach. *Nonlinearity*, 28(7):2081, 2015.
- 619
- 620 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 621 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-
 622 ference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.
- 623
- 624 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 625 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 626 text-to-image diffusion models with deep language understanding. *Advances in neural informa-
 627 tion processing systems*, 35:36479–36494, 2022.
- 628
- 629 Saeed Saremi, Rupesh Kumar Srivastava, and Francis Bach. Universal smoothed score functions for
 630 generative modeling. *arXiv preprint arXiv:2303.11669*, 2023.
- 631
- 632 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 633 *preprint arXiv:2010.02502*, 2020.
- 634
- 635 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 636 *Advances in neural information processing systems*, 32, 2019.
- 637
- 638 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 639 Poole. Score-based generative modeling through stochastic differential equations. In *ICLR*, 2021.
- 640
- 641 Jan Paweł Stanczuk, Georgios Batzolis, Teo Deveney, and Carola-Bibiane Schönlieb. Diffusion
 642 models encode the intrinsic dimension of data manifolds. In *Forty-first International Conference*
 643 *on Machine Learning*, 2024.
- 644
- 645 Rong Tang and Yun Yang. Adaptivity of diffusion models to manifold structures. In *International*
 646 *Conference on Artificial Intelligence and Statistics*, pp. 1648–1656. PMLR, 2024.
- 647
- 648 Singanallur V Venkatakrishnan, Charles A Bouman, and Brendt Wohlberg. Plug-and-play priors for
 649 model based reconstruction. In *2013 IEEE global conference on signal and information process-
 650 ing*, pp. 945–948. IEEE, 2013.
- 651
- 652 Enrico Ventura, Beatrice Achilli, Gianluigi Silvestri, Carlo Lucibello, and Luca Ambrogioni. Man-
 653 ifolds, random matrices and spectral gaps: The geometric phases of generative diffusion. *arXiv*
 654 *preprint arXiv:2410.05898*, 2024.

- 648 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computation*, 23(7):1661–1674, 2011.
 649
 650
 651 Gregor Wentzel. Eine verallgemeinerung der quantenbedingungen für die zwecke der wellen-
 652 mechanik. *Zeitschrift für Physik*, 38(6):518–529, 1926.
 653
 654 Hermann Weyl. On the volume of tubes. *American Journal of Mathematics*, 61(2):461–472, 1939.
 655
 656 Stephen Willard. *General topology*. Courier Corporation, 2012.
 657
 658

A RELATED WORK

659
 660 **Diffusion models for distribution learning.** Prior theory shows that diffusion/score-based sam-
 661 plers converge to the target law when the learned score is accurate, with error bounds that scale
 662 directly with the score mismatch (De Bortoli, 2022; Chen et al., 2023; Lee et al., 2023); related
 663 works study other factors such as dimension dependence (Azangulov et al., 2024; Tang & Yang,
 664 2024). However, these results do not separate geometry from density in the score error but instead
 665 consider them together, therefore they do not imply any scale separation.
 666

667 **Diffusion models detect data manifold.** There is a growing body of work probing whether dif-
 668 fusion models learn the full data distribution or primarily the underlying low-dimensional mani-
 669 fold. A number of studies suggest that these models often capture the data support while missing
 670 fine-grained distributional structure. However, these results are obtained under restricted settings:
 671 Stanczuk et al. (2024) focuses on estimating the intrinsic dimension of the data manifold; Ventura
 672 et al. (2024) analyzes only linear manifolds (linear subspaces); and Pavlova & Wei (2025) provides
 673 primarily empirical evidence. Pidstrigach (2022) establishes sufficient regularity conditions under
 674 which high-accuracy scores concentrate mass near the manifold, but does not address how approx-
 675 imation errors scale with σ and therefore does not reveal a separation of scales. By contrast, our
 676 analysis quantifies how inaccuracies in the learned score propagate differently to geometry versus
 677 distribution learning, exhibiting distinct error rates that lead to a sharp scale separation in the small- σ
 678 regime. Furthermore, prior work does not address full geometric recovery via uniform sampling.
 679

680 **Asymptotic behavior of the score.** It is established that under the manifold hypothesis, the score
 681 function develops a singularity in the small-noise regime, becoming orthogonal to the data manifold.
 682 Recent works characterize this behavior mathematically, showing that the score effectively acts as
 683 a geometric projection operator onto the manifold (Lu et al., 2023; Lyu et al., 2025; Liu et al.,
 684 2025). This aligns with the leading-order term in our expansion (Equation (6)), which governs
 685 geometric concentration. However, these analyses generally subsume the distributional information
 686 into a generic bounded remainder term (e.g., $O(1)$). Crucially, they do not explicitly isolate the
 687 higher-order terms involving p_{data} and thus do not characterize the separation between geometry and
 688 density. Our analysis reveals that these missing terms are not merely residuals but are essential for
 689 establishing the rate separation between recovering the manifold support and learning the underlying
 690 density.
 691

692 **Uniform sampling on manifolds.** Classical approaches achieve uniform-on-manifold sampling
 693 via graph-based normalizations that cancel the sampling density so that the limiting operator is
 694 the Laplace–Beltrami operator (Coifman & Lafon, 2006; Hein et al., 2007). While foundational,
 695 these methods are designed to approximate geometric operators from neighborhood graphs and do
 696 not readily scale to high-dimensional, large-scale generative modeling. Recently, De Santi et al.
 697 (2025) proposed fine-tuning diffusion models to produce uniform samples. In contrast, our approach
 698 operates entirely at inference time, achieving uniform sampling without the cost of fine-tuning.
 699

B ADDITIONAL NOTATION AND PRELIMINARIES

700 In this section, we provide some notation and preliminaries complementary to Section 2.
 701

We denote by W_t a standard Brownian motion, with its dimension clear from context. The Gaussian
 702 density with mean μ and covariance Σ , evaluated at x , is written as $\mathcal{N}(x \mid \mu, \Sigma)$. The symbol $*$

denotes the convolution operator. We use \propto to indicate proportionality, i.e., that the left-hand side and right-hand side are equal up to a constant factor. For a set S , we write \bar{S} for its closure, ∂S for its boundary, and S^c for its complement. Throughout the paper, by the term *limiting distribution* or by convergence of a distribution/density function, we mean convergence of the corresponding measures in the weak sense.

B.1 THE MANIFOLD HYPOTHESIS

We outline few notations and standard results from differential geometry. By the tubular neighborhood theorem (Milnor & Stasheff, 1974; Weyl, 1939), there exists $\epsilon > 0$ such that the normal tube

$$T_{\mathcal{M}}(\epsilon) := \{x \in \mathbb{R}^d : \text{dist}(x, \mathcal{M}) < \epsilon\}.$$

admits local C^4 coordinate

$$\Phi : U \times R \rightarrow T_{\mathcal{M}}(\epsilon), \quad \text{where } U \subset \mathbb{R}^n, R := \{r \in \mathbb{R}^{d-n} : \|r\| < \epsilon\},$$

such that Φ is a diffeomorphism mapping from local coordinates to ambient Euclidean space. With this result, we can then work with local coordinates to describe the manifold. For notational simplicity, we work with a single chart and suppress indices: $u \in U$ denote tangential coordinates and $r \in R$ denote normal coordinates. The slice $r = 0$ corresponds to points on \mathcal{M} , and we write $\Phi(u) := \Phi(u, 0)$. Let $J(u, r)$ denote the Jacobian of $\Phi(u, r)$ with respect to (u, r) , i.e., $J(u, r) = \partial\Phi(u, r)/\partial(u, r)$. Furthermore, let $g(u)$ denote the Riemannian metric tensor of the manifold \mathcal{M} , defined as $g(u) := J(u, 0)^\top J(u, 0)$. Intuitively, the Riemannian metric tensor gives a way to measure lengths and angles of the manifold geometry.

C PROOFS OF MAIN THEOREMS

In this section, we prove the main theorems of the paper. We begin by developing a general framework for characterizing the limiting distribution when the density admits a specific form. This framework will then be applied to establish the results in Section 4, where such a density form was assumed.

The results in Section 5 require a different approach, since no explicit form of the density is available. In this case, we employ the WKB approximation to obtain an approximate stationary distribution, which we then substitute into the general framework to derive the limiting distribution.

C.1 A GENERAL FRAMEWORK FOR THE CONVERGENCE OF THE LIMITING DISTRIBUTION

In this subsection, we will establish a general framework for the limiting distribution of density proportional to

$$\exp(-(f_\theta(x))/\theta), \quad \text{with } f_\theta(x) = f_0(x) + \theta f_1(x) + \hat{f}(x, \theta), \quad (11)$$

where f_0 's minimizer is on the manifold \mathcal{M} and $\hat{f}(x, \theta)$ is a perturbation that is uniformly $o(\theta)$ so that it does not affect the limiting distribution. This general result is stated in Theorem C.1. Our main results fall into this framework by letting $\theta = \sigma^2$ for Theorem 4.1 and $\theta = \sigma^{2-\alpha}$ for Theorem 5.2.

In all cases the theorems we will prove later, the density will concentrate on the tubular neighborhood of M , i.e., $T_{\mathcal{M}}(\epsilon)$. Therefore, we will discuss the lemmas and intermediate results in such a neighborhood and use local coordinates (u, r) . The notations used can be found in Section 2. When we use local coordinates, we assume the discussion is in the closure of $T_{\mathcal{M}}(\epsilon)$. We define the local coordinate versions of the functions: $f_\theta(u, r) := f_\theta(\Phi(u, r))$, $f_0(u, r) := f_0(\Phi(u, r))$, $f_1(u, r) := f_1(\Phi(u, r))$, and $\hat{f}(u, r, \theta) := \hat{f}(\Phi(u, r), \theta)$.

Our assumptions are stated as follows.

Assumption C.1. *We assume that*

1. $\mathcal{M} \subset \mathbb{R}^d$ is a compact C^4 manifold without boundary with dimension $n < d$.
2. $\mathcal{M} = \arg \min_{x \in T_{\mathcal{M}}(\epsilon)} f_0(x)$. In addition, we assume that there exists $0 < \hat{\epsilon} < \epsilon$ such that $\inf_{x \in T_{\mathcal{M}}(\epsilon) \setminus \overline{T_{\mathcal{M}}(\hat{\epsilon})}} f_0(x) - \min_{x \in T_{\mathcal{M}}(\epsilon)} f_0(x)$ is bounded away from zero.

- 756 3. The absolute value of $\hat{f}(u, r, \theta)$ is $o(\theta)$ as $\theta \rightarrow 0$ uniformly for all $u \in U$ and $\|r\| < \epsilon$.
 757
- 758 4. $f_0 \geq 0$ is C^3 , f_1 is C^1 , and f_θ is continuous on coordinates (u, r) for all $u \in U$ and $\|r\| \leq \epsilon$,
 759 i.e., in the closure of $T_{\mathcal{M}}(\epsilon)$.
- 760 5. Further, we assume that the smallest eigenvalue of $\frac{\partial^2 f_0}{\partial r^2}(u, r)$ is uniformly bounded away from
 761 zero for all $u \in U$ and $\|r\| < \epsilon$.

762 **Remark C.1** (Compactness of the manifold implies boundedness of gradients.). Consider $f \in$
 763 $C^k(\overline{T_{\mathcal{M}}(\epsilon)})$. In local coordinates (u, r) induced by a tubular atlas, we write $f(u, r) := f(\Phi(u, r))$.
 764 Since \mathcal{M} is compact, one can choose a finite atlas with precompact coordinate domains. Let the
 765 cover be $\{U_i\}$. By the Shrinking Lemma (Munkres (2000, Theorem 32.3) combined with Willard
 766 (2012, Theorem 15.10)), there exist open subsets $\{V_i\}$ with $\overline{V_i} \subset U_i$ such that $\{V_i\}$ still forms a
 767 cover. We use these $\{V_i\}$ as the new atlas. The transition maps Φ and their derivatives are then
 768 bounded on these sets (since $\overline{V_i}$ is compact), and by the chain rule the same holds for $f(u, r)$ and its
 769 derivatives up to order k . Thus, throughout our arguments we may freely assume uniform bounded-
 770 ness of such derivatives without loss of generality. The same reasoning applies to p_{data} , we can use
 771 the same constructed atlas such that p_{data} is uniformly lower and upper bounded, and gradients of
 772 p_{data} are uniformly upper bounded.

773 During our proofs, we will frequently use Laplace's method for integrals. We adapt the error estimate
 774 from Łapiński (2019) as follows.

775 **Corollary C.1** (Theorem 2 of Łapiński (2019)). *Let $\Omega \subset \mathbb{R}^m$ be an open set and let $\Omega' \subset \Omega$ be a
 776 closed ball. Let $c_1 := \text{Vol}(\Omega')$. Let $F, g : \Omega \rightarrow \mathbb{R}$ with the following assumptions:*

- 777 1. $F|_{\Omega'} \in C^3(\Omega')$ and $F \geq 0$ on Ω . There is a unique minimizer $x^* \in \text{int}(\Omega')$ of F on Ω . Define

$$778 \quad m_1 := \inf_{x \in \Omega \setminus \Omega'} \{F(x) - F(x^*)\} > 0, \quad m_2 := \inf_{x \in \Omega'} \lambda_{\min}(\nabla^2 F(x)) > 0.$$

779 Let

$$780 \quad c_2 := \sup_{x \in \Omega'} \|\nabla^2 F(x)\|, \quad c_3 := \sup_{x \in \Omega'} \|\nabla^3 F(x)\|.$$

- 781 2. $g|_{\Omega'} \in C^1(\Omega')$ and $\int_{\Omega'} |g(x)| dx < \infty$. Let

$$782 \quad c_4 := \sup_{x \in \Omega'} |g(x)|, \quad c_5 := \sup_{x \in \Omega'} \|\nabla g(x)\|, \quad c_6 := \int_{\Omega'} |g(x)| dx.$$

783 Then, for every $\theta > 0$,

$$784 \quad \int_{\Omega} g(x) e^{-F(x)/\theta} dx = \exp(-F(x^*)/\theta) \frac{(2\pi\theta)^{m/2}}{\sqrt{|\nabla^2 F(x^*)|}} (g(x^*) + h(\theta)),$$

785 where $|h(\theta)|$ can be upper bounded by a function of $(c_1, \dots, c_6, m_1, m_2)$. Moreover, $h(\theta) = O(\sqrt{\theta})$
 786 as $\theta \rightarrow 0$. The $O(\sqrt{\theta})$ is uniform over any class of pairs (F, g) for which c_1, \dots, c_6 are bounded
 787 above and m_1, m_2 are bounded below by strictly positive constants uniformly over the class.

788 *Proof.* The result follows directly from Łapiński (2019, Theorem 2). □

789 To show the convergence of the distribution to a distribution on the manifold, a key step is to integrate
 790 out the normal direction so as to obtain a distribution on u , such as what Hwang (1980) did. The
 791 following lemma proves Laplace's type of result for integrating out r .

792 **Lemma C.1.** *Assume Assumption C.1, and let $h(x) : \mathbb{R}^d \rightarrow \mathbb{R}$ be C^1 and uniformly bounded in
 793 $T_{\mathcal{M}}(\epsilon)$. Define $h(u, r) := h(\Phi(u, r))$. Then we have*

$$794 \quad \int_{\|r\| < \epsilon} \exp\left(-\frac{f_\theta(u, r)}{\theta}\right) h(u, r) dr$$

$$795 \quad = \exp\left(-\frac{f_0(u, 0)}{\theta}\right) \exp(-f_1(u, 0)) \frac{(2\pi\theta)^{(d-n)/2}}{\sqrt{\left|\frac{\partial^2 f_0}{\partial r^2}(u, 0)\right|}} (h(u, 0) + o(1)),$$

800 where the $o(1)$ term is uniform for u .

810 *Proof.* We have that
 811

$$\begin{aligned}
 812 & \int_{\|r\|<\epsilon} \exp\left(-\frac{f_\theta(u, r)}{\theta}\right) h(u, r) dr \\
 813 & = \int_{\|r\|<\epsilon} \exp\left(-\frac{f_0(u, r)}{\theta}\right) \exp(-f_1(u, r)) h(u, r) \left(\exp\left(-\frac{\hat{f}(u, r, \theta)}{\theta}\right)\right) dr \\
 814 & = \int_{\|r\|<\epsilon} \exp\left(-\frac{f_0(u, r)}{\theta}\right) \exp(-f_1(u, r)) h(u, r) dr + \\
 815 & \quad \int_{\|r\|<\epsilon} \exp\left(-\frac{f_0(u, r)}{\theta}\right) \exp(-f_1(u, r)) h(u, r) \left(\exp\left(-\frac{\hat{f}(u, r, \theta)}{\theta}\right) - 1\right) dr.
 \end{aligned}$$

823 For the first term, we can directly apply Corollary C.1 with $F(r) = f_0(u, r)$, $g(r) =$
 824 $\exp(-f_1(u, r))h(u, r)$, and Ω' being the ball $\{r \mid \|r\| \leq \hat{\epsilon}\}$. Define

$$J = \exp\left(-\frac{f_0(u, 0)}{\theta}\right) \exp(-f_1(u, 0)) \frac{(2\pi\theta)^{(d-n)/2}}{\sqrt{\left|\frac{\partial^2 f_0}{\partial r^2}(u, 0)\right|}}.$$

825 The first term can be approximated as $J(h(u, 0) + o(1))$. The boundedness of the quantities in
 826 Corollary C.1 will be discussed later. The second term can be upper bounded by
 827

$$\begin{aligned}
 828 & \sup_r |h(u, r)| \cdot \sup_r \left| \exp\left(-\frac{\hat{f}(u, r, \theta)}{\theta}\right) - 1 \right| \int_{\|r\|<\epsilon} \exp\left(-\frac{f_0(u, r)}{\theta}\right) \exp(-f_1(u, r)) dr \\
 829 & = o(1)J(1 + o(1)) = o(1)J,
 \end{aligned}$$

830 where we used Corollary C.1 for the integral. The lower bound can be obtained similarly. The result
 831 follows.
 832

833 Regarding the uniform boundedness of the quantities in Corollary C.1, $\{c\}_1^5$ is uniformly bounded
 834 by the compactness of the manifold. The constant c_6 is uniformly bounded by our assumption on h .
 835 The uniform lower bounds of m_1 and m_2 is guaranteed by Assumption C.1. \square

836 Next, we will prove that the support of the limiting distribution will concentrate on the minimizers
 837 of the leading term. Previously, we considered f_θ consisting of $f_0 + \Theta(\theta) + o(\theta)$. Next, we will
 838 show that as long as f_θ is $f_0 + o(1)$, the concentration on f_0 's minimizers will happen.

839 **Lemma C.2.** *Let $f_\theta(x) = f_0(x) + \tilde{f}(x, \theta)$, such that $\exp(-f_\theta(x)/\theta)$ is a normalized density
 840 function on \mathbb{R}^d . Suppose \mathcal{M} is a connected and compact C^4 manifold without boundary. Assume
 841 that:*

- 842 1. $f_0(x)$ is continuous with $\arg \min_{x \in \overline{T_{\mathcal{M}}(\epsilon)}} f_0(x) = \mathcal{M}$ and $\min_{x \in \overline{T_{\mathcal{M}}(\epsilon)}} f_0(x) = 0$.
- 843 2. $\tilde{f}(x, \theta)$ is continuous and uniformly $o(1)$ as $\theta \rightarrow 0$ for all $x \in \overline{T_{\mathcal{M}}(\epsilon)}$.
- 844 3. The density concentrates in $T_{\mathcal{M}}(\epsilon)$, i.e.,

$$\lim_{\theta \rightarrow 0} \int_{T_{\mathcal{M}}(\epsilon)} \exp\left(-\frac{f_\theta(x)}{\theta}\right) dx = 1.$$

855 For any $\eta > 0$, define the set $C_\eta = \{x \mid f_0(x) > \eta\}$. Then,
 856

$$\int_{C_\eta \cup T_{\mathcal{M}}(\epsilon)^c} \exp(-f_\theta(x)/\theta) dx \rightarrow 0 \quad \text{as } \theta \rightarrow 0.$$

857 If in addition, $\exp(-f_\theta(x)/\theta)$ converges weakly to a distribution as $\theta \rightarrow 0$, the support of the
 858 limiting distribution is contained in \mathcal{M} .
 859

864 *Proof.* Since we have that $\int_{T_{\mathcal{M}}(\epsilon)} \exp(-f_{\theta}(x)/\theta) dx \rightarrow 1$, for the first result, it suffices to show
 865 that $\int_{T_{\mathcal{M}}(\epsilon) \cap C_{\eta}} \exp(-f_{\theta}(x)/\theta) dx \rightarrow 0$. According to the assumptions, we have that for any $\delta, \exists \theta_0$,
 866 such that $\forall \theta < \theta_0, |\tilde{f}(x, \theta)| < \delta$. Therefore, we have
 867

$$868 \int_{T_{\mathcal{M}}(\epsilon) \cap C_{\eta}} \exp(-f_{\theta}(x)/\theta) dx \leq \int_{T_{\mathcal{M}}(\epsilon) \cap C_{\eta}} \exp((- \eta + \delta)/\theta) dx \leq \text{Vol}(T_{\mathcal{M}}(\epsilon)) \exp((- \eta + \delta)/\theta).$$

869

870 We choose $\delta = \eta/2$, then the right-hand side goes to zero as $\theta \rightarrow 0$.

871 Let the limiting measure be P , and P_{θ} be the probability measure corresponding to the density
 872 $\exp(-f_{\theta}(x)/\theta)$. Since C_{η} is an open set, we have that
 873

$$874 P(C_{\eta}) \leq \liminf_{\theta \rightarrow 0} P_{\theta}(C_{\eta}) = 0.$$

875

876 We also have that

$$877 P\left(\overline{T_{\mathcal{M}}(\epsilon)}^c\right) \leq \liminf_{\theta \rightarrow 0} P_{\theta}\left(\overline{T_{\mathcal{M}}(\epsilon)}^c\right) \leq \liminf_{\theta \rightarrow 0} P_{\theta}(T_{\mathcal{M}}(\epsilon)^c) = 0.$$

878

879 Denote $C := \mathcal{M}^c$. We have that $C = \cup_{m=1}^{\infty} C_{1/m} \cup \overline{T_{\mathcal{M}}(\epsilon)}^c$. Then we have
 880

$$881 P(C) \leq \sum_{m=1}^{\infty} P(C_{1/m}) + P\left(\overline{T_{\mathcal{M}}(\epsilon)}^c\right) = 0.$$

882

883 which concludes the proof. □
 884

885 **Theorem C.1.** *Assume Assumption C.1. Define*

$$886 \pi_{\theta}(x) \propto \exp\left(-\frac{f_{\theta}(x)}{\theta}\right),$$

887

888 Assume that $1 - \int_{x \in T_{\mathcal{M}}(\epsilon)} \pi_{\theta}(x) dx \rightarrow 0$ as $\theta \rightarrow 0$. Then we have that as $\theta \rightarrow 0$, π_{θ} converges
 889 weakly to the following distribution:
 890

$$891 \pi(u) = \frac{\exp(-f_1(u, 0)) \left| \frac{\partial^2 f_0(u, 0)}{\partial r^2} \right|^{-1/2} d\mathcal{M}(u)/du}{\int_{\mathcal{M}} \exp(-f_1(u, 0)) \left| \frac{\partial^2 f_0(u, 0)}{\partial r^2} \right|^{-1/2} d\mathcal{M}(u)/du},$$

892

893 where $d\mathcal{M}$ is the intrinsic measure on the manifold \mathcal{M} , i.e., $d\mathcal{M}(u) = |g(u)|^{1/2} du$, and du is the
 894 Lebesgue measure on the local parameterization domain U .
 895

896 *Proof.* The proof follows the same as the proof in Hwang (1980, Theorem 3.1). The only difference
 897 is that we replace the estimate of Hwang (1980, Equation (3.2)) with our Lemma C.1. Note that
 898 the Q in Hwang (1980, Theorem 3.1) is assumed as a probability measure, thus f (in his notation)
 899 integrates to one. However, the proof technique of Hwang (1980, Theorem 3.1) remains valid even
 900 if f is not a probability density, so applying to our case. □
 901

902 C.2 PROOF FOR THEOREM 3.1

903 The remaining of the proof is to expand the true log-density w.r.t. σ , analyze the error of the learned
 904 log-density, and then to plug in the result obtained from Appendix C.1.
 905

906 **Theorem C.2.** *Assume Assumptions 2.1 and 2.2 holds. Suppose $x \in T_{\mathcal{M}}(\epsilon)$. Then we have that*

$$907 \log p_{\sigma}^{\text{VE}}(x) = -\frac{1}{2\sigma^2} \|x - P_{\mathcal{M}}(x)\|^2 + \log p_{\text{data}}(\Phi^{-1}(P_{\mathcal{M}}(x))) - \frac{d-n}{2} \log(2\pi\sigma^2) -$$

908

$$909 \log \sqrt{\left| \hat{H}(\Phi^{-1}(P_{\mathcal{M}}(x)), x) \right|} + \hat{p}^{\text{VE}}(x, \sigma),$$

910

$$911 \log p_{\sigma}^{\text{VP}}(x) = -\frac{1}{2\sigma^2} \|x - P_{\mathcal{M}}(x)\|^2 + \log p_{\text{data}}(\Phi^{-1}(P_{\mathcal{M}}(x))) - \frac{d-n}{2} \log(2\pi\sigma^2) -$$

912

$$\log \sqrt{|\hat{H}(\Phi^{-1}(P_M(x)), x)|} - \frac{1}{2} \langle P_M(x), x - P_M(x) \rangle + \hat{p}^{VP}(x, \sigma),$$

where $\hat{p}^{VE}(x, \sigma)$ and $\hat{p}^{VP}(x, \sigma)$ are functions that are $o(1)$ uniformly for $x \in T_M(\epsilon)$. The matrix $\hat{H}(u, x)$ is such that

$$\hat{H}(u, x)_{i,j} = \left\langle \frac{\partial^2 \Phi(u)}{\partial u_i \partial u_j}, \Phi(u) - x \right\rangle + \left\langle \frac{\partial \Phi(u)}{\partial u_i}, \frac{\partial \Phi(u)}{\partial u_j} \right\rangle.$$

Proof. We can apply Corollary C.1 as an error estimate for Laplace's method, to the integral in p_σ . The minimizer of $F(u)$ is $\Phi^{-1}(P_M(x))$ for both VE and VP.

We first consider the case of VE. By letting $F(u) = \|x - \Phi(u)\|^2/2$, $g(u) = p_{\text{data}}(u)$ and $\theta = \sigma^2$ we can obtain that

$$p_\sigma(x) = \exp\left(-\frac{\|x - P_M(x)\|^2}{2\sigma^2}\right) \frac{(2\pi\sigma^2)^{(n-d)/2}}{\sqrt{|\hat{H}(\Phi^{-1}(P_M(x)), x)|}} (p_{\text{data}}(\Phi^{-1}(P_M(x))) + h(\sigma^2)) \quad (12)$$

where $|h(\sigma^2)|$ is $O(\sigma)$. Now we take logarithmic and use the fact that $\log(A + B) = \log(A) + \log(1 + B/A)$, we obtain

$$\begin{aligned} & \log p_\sigma(x) \\ &= -\frac{\|x - P_M(x)\|^2}{2\sigma^2} + \frac{n-d}{2} \log(2\pi\sigma^2) + \log |\hat{H}(\Phi^{-1}(P_M(x)), x)|^{-1/2} + \\ & \quad \log (p_{\text{data}}(\Phi^{-1}(P_M(x))) + h(\sigma^2)) \\ &= -\frac{\|x - P_M(x)\|^2}{2\sigma^2} + \frac{n-d}{2} \log(2\pi\sigma^2) + \log p_{\text{data}}(\Phi^{-1}(P_M(x))) + \\ & \quad \log |\hat{H}(\Phi^{-1}(P_M(x)), x)|^{-1/2} + \log \left(1 + \frac{h(\sigma^2)}{p_{\text{data}}(\Phi^{-1}(P_M(x)))}\right). \end{aligned}$$

Therefore, we have

$$\hat{p}(x, \sigma) = \log \left(1 + \frac{h(\sigma^2)}{p_{\text{data}}(\Phi^{-1}(P_M(x)))}\right)$$

The remaining is to show that $h(\sigma^2)/p_{\text{data}}(\Phi^{-1}(P_M(x)))$ is uniformly $o(1)$ for all $x \in T_M(\epsilon)$. Since the manifold is compact, $p_{\text{data}}(u)$ is uniformly bounded away from zero (see Remark C.1). The remaining is to find a suitable Ω' and upper and lower bound the constants in Corollary C.1. We will discuss this later.

Now let us look at the case of VP. The only difference is in the exponential, we changed from $\|x - \Phi(u)\|^2$ to

$$\|x - \sqrt{1 - \sigma^2} \Phi(u)\|^2 = \|x - \Phi(u) + (1 - \sqrt{1 - \sigma^2}) \Phi(u)\|^2.$$

If we do a Taylor expansion of $1 - \sqrt{1 - \sigma^2}$:

$$1 - \sqrt{1 - \sigma^2} = \frac{1}{2} \sigma^2 + o(\sigma^2).$$

Using this expansion, we have that

$$\begin{aligned} & \|x - \Phi(u) + (1 - \sqrt{1 - \sigma^2}) \Phi(u)\|^2 \\ &= \|x - \Phi(u)\|^2 + \sigma^2 \langle \Phi(u), x - \Phi(u) \rangle + o(\sigma^2) \langle x, \Phi(u) \rangle. \end{aligned}$$

Then we can use the same argument as in the proof Lemma C.1 to show that the $o(\sigma^2)$ does not affect the approximation. Specifically, let

$$J := \exp\left(-\frac{\|x - P_M(x)\|^2}{2\sigma^2}\right) \frac{(2\pi\sigma^2)^{(n-d)/2}}{\sqrt{|\hat{H}(\Phi^{-1}(P_M(x)), x)|}},$$

972

and

973

$$974 \quad K := \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|x - \Phi(u)\|^2}{2\sigma^2}\right) \exp\left(-\frac{1}{2}\langle\Phi(u), x - \Phi(u)\rangle\right) p_{\text{data}}(u).$$

975

We have

976

$$\begin{aligned} 977 \quad & \int_{\mathcal{M}} \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|x - \sqrt{1 - \sigma^2}\Phi(u)\|^2}{2\sigma^2}\right) p_{\text{data}}(u) du \\ 978 \quad & = \int_{\mathcal{M}} K du + \int_{\mathcal{M}} K (\exp(o(1)\langle\Phi(u), x\rangle) - 1) du \\ 979 \quad & \leq \int_{\mathcal{M}} K du + \int_{\mathcal{M}} K o(1) du \\ 980 \quad & \leq J \left(p_{\text{data}}(\Phi^{-1}(\text{P}_{\mathcal{M}}(x))) \exp\left(-\frac{1}{2}\langle\text{P}_{\mathcal{M}}(x), x - \text{P}_{\mathcal{M}}(x)\rangle\right) + o(1) \right). \end{aligned}$$

981

The rest of the proof follows similarly to the proof of the VE case.

982

Then we need to discuss the upper and lower bounds in Corollary C.1. For the upper bounds, since the manifold is compact, there exists such uniform upper bounds for $\{c_i\}_1^6$ (see Remark C.1).

983

For the lower bounds we first consider $\lambda_{\min}(\hat{H}(u, x))$. The part $\frac{\partial\Phi(u)}{\partial u}^T \frac{\partial\Phi(u)}{\partial u}$ is positive definite and uniformly bounded away from zero for all u . The eigenvalues of other part, i.e., $\left\langle \frac{\partial\Phi(u)}{\partial u_i \partial u_j}, \Phi(u) - x \right\rangle$, may be negative. However, as long as its eigenvalues are small enough, by Weyl's inequality, we can still lower bound the smallest eigenvalue of $\hat{H}(u, x)$. The eigenvalues of $\left\langle \frac{\partial\Phi(u)}{\partial u_i \partial u_j}, \Phi(u) - x \right\rangle$, can then be bounded by $\|\nabla^2\Phi(u)\| \|\Phi(u) - x\|$. Therefore, as long as the tubular neighborhood and the set Ω' is small enough, we can lower bound $\lambda_{\min}(\hat{H}(u, x))$.

984

For formally, let $G > 0$ be the lower bound of the smallest eigenvalue of $\frac{\partial\Phi(u)}{\partial u}^T \frac{\partial\Phi(u)}{\partial u}$. Let C_2 be the uniform upper bound of $\|\nabla^2\Phi(u)\|$, and C_1 be that of $\|\nabla\Phi(u)\|$. Those constants are uniform for a fixed finite atlas since the manifold is compact. Let the radius of Ω' be r_0 . We have that in Ω' , $\lambda_{\min}(\hat{H}(u, x)) \geq G - C_2(\|\Phi(u) - \text{P}_{\mathcal{M}}(x)\| + \|\text{P}_{\mathcal{M}}(x) - x\|) \geq G - C_2(C_1 r_0 + \epsilon)$. Therefore, we can choose r_0 and ϵ small enough (but away from zero) such that $\lambda_{\min}(\hat{H}(u, x)) \geq G/2$, e.g., ϵ is the minimum of $G/(4C_2)$ and the original ϵ in the tubular neighborhood definition, and $r_0 = G/(4C_1 C_2)$. This way, m_1 can be lower bounded by $Gr_0^2/2$. \square

985

C.3 PROOFS FOR SECTION 4

986

987

The results in Appendices C.1 and C.3 consider only points in $T_{\mathcal{M}}(\epsilon)$. Therefore, to use the results, we need first show that the density outside the tubular neighborhood becomes negligible as $\sigma \rightarrow 0$. In the following two lemmas, we will show the concentration of the density for p_{σ} and $\exp(-f_{\sigma})$.

988

Lemma C.3. *Assume Assumptions 2.1 and 2.2 holds. We have that $\lim_{\sigma \rightarrow 0} \int_{x \in T_{\mathcal{M}}(\epsilon)} p_{\sigma}(x) dx = 1$.*

989

990

Proof. We have that

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

$$\begin{aligned} & \int_{x \in \mathbb{R}^d / T_{\mathcal{M}}(\epsilon)} p_{\sigma}(x) dx \\ & = \int_{x \in \mathbb{R}^d / T_{\mathcal{M}}(\epsilon)} \int_{u \in \mathcal{M}} \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|x - \Phi(u)\|^2}{2\sigma^2}\right) p_{\text{data}}(u) du dx \\ & = \int_{u \in \mathcal{M}} p_{\text{data}}(u) \int_{x \in \mathbb{R}^d / T_{\mathcal{M}}(\epsilon)} \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|x - \Phi(u)\|^2}{2\sigma^2}\right) dx du \\ & \leq \int_{u \in \mathcal{M}} p_{\text{data}}(u) \int_{\|x - \Phi(u)\| \geq \epsilon} \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|x - \Phi(u)\|^2}{2\sigma^2}\right) dx du, \end{aligned}$$

where the exchange of the integral is justified by Tonelli's theorem with the non-negativity of the integrand. The last inequality holds since any point in $\mathbb{R}^d/T_{\mathcal{M}}(\epsilon)$ is at least ϵ away from any point on the manifold. Now the inner integral is the integral of a Gaussian density with distance to the origin at least ϵ . It will decay exponentially fast as $\sigma \rightarrow 0$. Let Z be a standard Gaussian random variable of dimension d , and then the above integral is equivalent to

$$\int_{u \in \mathcal{M}} p_{\text{data}}(u) P\left(\|Z\| \geq \frac{\epsilon}{\sigma}\right) du = P\left(\|Z\| \geq \frac{\epsilon}{\sigma}\right).$$

The RHS can be shown to decay exponentially fast by the Gaussian concentrations. \square

Lemma C.4. *Assume Assumptions 2.1 and 2.2 holds. Further assume that*

$$\sup_{x \in K} \|\nabla f_{\sigma}(x) + \nabla \log p_{\sigma}(x)\| = o(\sigma^{-2})$$

We have that

$$\lim_{\sigma \rightarrow 0} \int_{x \in K \setminus T_{\mathcal{M}}(\epsilon)} \exp(-f_{\sigma}(x)) dx = 0.$$

Proof. For $x \notin T_{\mathcal{M}}(\epsilon)$, the points are at least ϵ away from the manifold. Therefore, we have that

$$p_{\sigma}(x) \leq \int_{u \in \mathcal{M}} \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right) p_{\text{data}}(u) du = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right),$$

as p_{data} is a density function. Therefore, we have that

$$\exp(-f_{\sigma}(x)) \leq \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\epsilon^2}{2\sigma^2} + o(\sigma^{-2})\right),$$

There exists σ_0 , such that for all $\sigma < \sigma_0$, the $o(\sigma^{-2})$ term is upper bounded by $\epsilon^2/4\sigma^2$. Then we have that

$$\int_{x \in K \setminus T_{\mathcal{M}}(\epsilon)} \exp(-f_{\sigma}(x)) dx \leq \text{Vol}(K) \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\epsilon^2}{4\sigma^2}\right).$$

The RHS goes to zero as $\sigma \rightarrow 0$ as p_{data} is bounded. \square

Now we are ready to prove our main theorems.

Proof of Theorem 4.1. First, since both f_{σ} and $\log p_{\sigma}$ are C^1 functions on K , we have the that L^{∞} norm of their gradients is the same as the supremum. First we will show that for any $\eta \geq -2$,

$$\sup_{x \in K} \|\nabla f_{\sigma}(x) + \nabla \log p_{\sigma}(x)\| = o(\sigma^{\eta}) \quad \text{as } \sigma \rightarrow 0,$$

implies that

$$\sup_{x \in K} |f_{\sigma}(x) + \log p_{\sigma}(x)| = o(\sigma^{\eta}) \quad \text{as } \sigma \rightarrow 0.$$

Given our assumption, for any two points $x, y \in K$, there exists a finite length path, say $\gamma_{x,y}(\cdot) : [0, 1] \rightarrow K$ with and $\|\gamma'\|$ being upper bounded uniformly. Consider an arbitrary point $x_0 \in K$, then we have

$$\begin{aligned} \Delta_{\sigma}(x) &:= -f_{\sigma}(x) - \log p_{\sigma}(x) \\ &= -f_{\sigma}(x_0) - \log p_{\sigma}(x_0) + \int_0^1 (-\nabla f_{\sigma}(\gamma(t)) - \nabla \log p_{\sigma}(\gamma(t))) \cdot \gamma'(t) dt \\ &= \Delta_{\sigma}(x_0) + g(x, \sigma), \end{aligned}$$

where $\sup_x |g(x, \sigma)|$ is $o(\sigma^{\eta})$ uniformly for $x \in K$ according to the assumption. Further, we have that

$$\int_{x \in K} \exp(-f_{\sigma}(x)) dx = \int_{x \in K} p_{\sigma}(x) \exp(\Delta_{\sigma}(x)) dx$$

$$= \int_{x \in K} p_\sigma(x) \exp(\Delta_\sigma(x_0) + g(x, \sigma)) dx,$$

which then imply that

$$\Delta_\sigma(x_0) \geq \log \int_{x \in K} \exp(-f_\sigma(x)) dx - \log \int_{x \in K} p_\sigma(x) dx - \sup_{x \in K} |g(x, \sigma)|,$$

and

$$\Delta_\sigma(x_0) \leq \log \int_{x \in K} \exp(-f_\sigma(x)) dx - \log \int_{x \in K} p_\sigma(x) dx + \sup_{x \in K} |g(x, \sigma)|.$$

The first two terms on the right-hand side is $o(1)$ as $\sigma \rightarrow 0$ as our assumption about f_σ and $\int_K p_\sigma(x) dx \geq \int_{T_{\mathcal{M}}(\epsilon)} p_\sigma(x) dx \rightarrow 1$ according to Lemma C.3. Thus, $|\Delta_\sigma(x_0)|$ is $o(\sigma^\eta)$. Therefore, $|\Delta_\sigma(x)|$ is $o(\sigma^\eta)$ uniformly for $x \in K$. Further we can apply Lemma C.4 to conclude that the density of $\exp(-f_\sigma)$ concentrates in $T_{\mathcal{M}}(\epsilon)$ as $\sigma \rightarrow 0$.

Then, we can prove the first conclusion that the support is on the manifold. By the expansion of $\log p_\sigma$ in Theorem C.2, we have that

$$f_\sigma(x) = \frac{1}{2\sigma^2} \|x - P_{\mathcal{M}}(x)\|^2 + o(1/\sigma^2).$$

Then we can apply Lemma C.2 with $f_\theta(x) = \sigma^2 f_\sigma(x)$, $\theta = \sigma^2$ and $\eta = \delta^2/2$ to conclude the claim.

To prove that the limiting distribution is p_{data} on the manifold, we have

$$f_\sigma(x) = \frac{1}{2\sigma^2} \|x - P_{\mathcal{M}}(x)\|^2 - \log p_{\text{data}}(\Phi^{-1}(P_{\mathcal{M}}(x))) + \log \sqrt{|\hat{H}(\Phi^{-1}(P_{\mathcal{M}}(x)), x)|} + \frac{d-n}{2} \log(2\pi\sigma^2) + o(1).$$

Then we can apply Theorem C.1. Then the f_0 becomes the distance function (changed to local coordinates), and f_1 is $-\log p_{\text{data}} + \log \sqrt{|\hat{H}(u, \Phi(u, r))|}$, In addition, we note that for $r = 0$, $\sqrt{|\hat{H}(u, \Phi(u, r))|} = d\mathcal{M}(u)/du$, and therefore, we recover p_{data} . The $(d-n) \log(2\pi\sigma^2)$ term is simply a constant and does not affect the result after normalization. One can replace f_σ with $f_\sigma + \frac{d-n}{2} \log(2\pi\sigma^2)$ and then apply Theorem C.1, and this does not change the distribution after normalization.

What remains is to ensure Assumption C.1 holds, especially the second condition, i.e., to ensure that the Hessian of $\|\Phi(u, r) - \Phi(u)\|^2/2$ w.r.t. r is uniformly bounded away from zero. We can write $\Phi(u, r)$ as $\Phi(u) + \mathcal{N}(u)r$, where $\mathcal{N}(u)$ is the normal vector field on the manifold \mathcal{M} at point $\Phi(u)$ (Weyl, 1939). We have that

$$\frac{\partial}{\partial r} \frac{\|\Phi(u, r) - \Phi(u)\|^2}{2} = \frac{\partial \Phi(u, r)}{\partial r}^\top (\Phi(u, r) - \Phi(u)) = \mathcal{N}(u)^\top \mathcal{N}(u)r = r,$$

since the columns of $\mathcal{N}(u)$ are orthonormal. Therefore, the Hessian of $\|\Phi(u, r) - \Phi(u)\|^2/2$ w.r.t. r is simply the identity matrix, which satisfies the assumption.

To construct a $s(\sigma, x)$ such that the limiting distribution is arbitrarily, say $\hat{\pi}$, we let $s(\sigma, x)$ being the gradient of

$$-\frac{1}{2\sigma^2} \|x - P_{\mathcal{M}}(x)\|^2 + \log \hat{\pi}(\Phi^{-1}(P_{\mathcal{M}}(x))) - \log \sqrt{|\hat{H}(\Phi^{-1}(P_{\mathcal{M}}(x)), x)|} + o(1).$$

The difference between f_σ and $\log p_\sigma$ is then $\Omega(1)$. \square

C.4 MANIFOLD WKB ANALYSIS OF THE STATIONARY DISTRIBUTION

A key difference between our theorem in Section 5 and the results in Section 4 is that, in the former, the density does not admit an explicit form. When $s(x, \sigma)$ is a gradient field, a closed-form

1134 expression for the density is readily available; however, this property is not guaranteed for most
 1135 parameterized models, such as neural networks. We therefore resort to the WKB approximation
 1136 to approximate the stationary distribution. Similarly to Appendix C.1, we first present a general
 1137 framework and then apply it to our specific setting. We will show that SDE with the following form
 1138 admits a stationary distribution of the form Equation (11). Interested readers may refer to Bouchet
 1139 & Reygner (2016); Bonnemain & Ullmo (2019) for more details on WKB applied on Fokker-Planck
 1140 equation.

1141 We consider the following SDE:
 1142

$$1143 \quad dx_t = b_\theta(x_t)dt + \sqrt{2\theta}dW_t, \quad \text{with } b_\theta(x) = -\nabla f_0(x) - \theta\nabla f_1(x) + \hat{b}(x, \theta),$$

1144 or the following SDE with the same stationary distribution,
 1145

$$1146 \quad dx_t = \frac{b_\theta(x_t)}{\theta}dt + \sqrt{2}dW_t. \quad (13)$$

1148 We assume that $\hat{b}(x, \theta)$ is uniformly $o(\theta)$ in $T_{\mathcal{M}}(\epsilon)$ as $\theta \rightarrow 0$. Also, we have $\arg \min f_0(x) = \mathcal{M}$.
 1149 This framework is general enough to cover the cases of Theorems 5.2 and 6.1. We will see later
 1150 that in these two cases, the function f_0 is the distance function to the manifold, and θ will be chosen
 1151 differently in different cases. We make the following assumptions about the SDE.
 1152

1153 Let $\pi_\theta(x)$ be the stationary distribution of the SDE Equation (13). First we assume the WKB ansatz:
 1154 **Assumption C.2** (Local WKB ansatz). *We assume that $\lim_{\theta \rightarrow 0} \int_{T_{\mathcal{M}}(\epsilon)} \pi_\theta(x)dx = 1$, and that
 1155 $\pi_\theta(x)$ admits a local WKB form within compact set $T_{\mathcal{M}}(\epsilon)$:*

$$1157 \quad \pi_\theta(x) \propto \exp\left(-\frac{V(x)}{\theta}\right) c_\theta(x) \quad \text{with } c_\theta(x) = c_0(x) + \hat{c}(x, \theta),$$

1159 where $c_0 \in C^2(T_{\mathcal{M}}(\epsilon))$ is positive, and $c_\theta \rightarrow c_0$ in $C^2(T_{\mathcal{M}}(\epsilon))$. We further assume that $V \in$
 1160 $C^3(T_{\mathcal{M}}(\epsilon))$ admits a unique solution.
 1161

1162 The normalization constant can be explicitly written as
 1163

$$1164 \quad \int_{x \in T_{\mathcal{M}}(\epsilon)} \pi_\theta(x)dx / \int_{x \in T_{\mathcal{M}}(\epsilon)} \exp\left(-\frac{V(x)}{\theta}\right) c_\theta(x)dx,$$

1166 since we have for $x \in T_{\mathcal{M}}(\epsilon)$,
 1167

$$1168 \quad \pi_\theta(x) = \pi_\theta(x) \cdot \mathbf{1}_{T_{\mathcal{M}}(\epsilon)}(x) = \pi_\theta(x \mid x \in T_{\mathcal{M}}(\epsilon))\pi_\theta(T_{\mathcal{M}}(\epsilon))$$

$$1169 \quad = \frac{c_\theta(x) \exp\left(-\frac{V(x)}{\theta}\right)}{\int_{x \in T_{\mathcal{M}}(\epsilon)} c_\theta(x) \exp\left(-\frac{V(x)}{\theta}\right) dx} \pi_\theta(T_{\mathcal{M}}(\epsilon)).$$

1173 Our goal would be to solve for $V(x)$ and $c_0(x)$ with the Fokker-Planck equation. Once solved, to
 1174 study the limit of π_θ , we can use results in Appendix C.1 as
 1175

$$1176 \quad \pi_\theta(x) \propto \exp\left(-\frac{V(x) - \theta \log c_0(x) + o(\theta)}{\theta}\right).$$

1179 **Theorem C.3.** *Consider the SDE described in Equation (13). Assume Assumption C.2 holds. Then
 1180 we have that*

$$1181 \quad V(x) = f_0(x), \quad c_0(x) = C \exp(-f_1(x)),$$

1183 for some constant C .
 1184

1185 *Proof.* By Fokker-Planck equation for the stationary distribution, we have that
 1186

$$1187 \quad 0 = \text{div}\left(-b_\theta(x)\pi_\theta(x) + \theta \frac{\partial \pi_\theta(x)}{\partial x}\right).$$

1188 By plugging in the WKB ansatz, we have that
 1189

$$\begin{aligned} 1190 \quad & -\operatorname{div}(b_\theta)c_\theta - \left\langle b_\theta, \frac{\partial c_\theta}{\partial x} - \frac{1}{\theta} \frac{\partial V}{\partial x} c_\theta \right\rangle + \theta \operatorname{Tr} \left[\frac{\partial^2 c_\theta}{\partial x^2} \right] - 2 \left\langle \frac{\partial c_\theta}{\partial x}, \frac{\partial V}{\partial x} \right\rangle \\ 1191 \quad & - \operatorname{Tr} \left[\frac{\partial^2 V}{\partial x^2} \right] c_\theta + \frac{1}{\theta} \left\| \frac{\partial V}{\partial x} \right\|^2 c_\theta = 0. \\ 1192 \quad & \\ 1193 \quad & \end{aligned} \tag{14}$$

1195 Next by the method of WKB, we will equate different orders of θ in the above equation to solve
 1196 for $V(x)$ and $c_0(x)$, starting from the lowest order θ^{-1} . It is easier to show a function is constant,
 1197 therefore, for c_0 , we will define $\tilde{c}_0(x) = \exp(f_1(x))c_0(x)$, and try to show that it is constant.
 1198

1199 **Order θ^{-1}** In this order, we have that
 1200

$$\left\langle \frac{\partial f_0}{\partial x}, \frac{\partial V}{\partial x} \right\rangle = \left\| \frac{\partial V}{\partial x} \right\|^2.$$

1201 This corresponds to the Hamilton-Jacobi equation typically appears in the WKB approximation. The
 1202 equation gives the solution for $V(x)$ as $V(x) = f_0(x)$. Plugging this solution into Equation (14),
 1203 we can get
 1204

$$\begin{aligned} 1205 \quad & -\operatorname{Tr} \left[-\theta \frac{\partial^2 f_1}{\partial x^2} + \frac{\partial \hat{b}}{\partial x} \right] c_\theta - \left\langle b_\theta, \frac{\partial c_\theta}{\partial x} \right\rangle + \left\langle -\theta \frac{\partial f_1}{\partial x} + \hat{b}, \frac{1}{\theta} \frac{\partial f_0}{\partial x} c_\theta \right\rangle + \theta \operatorname{Tr} \left[\frac{\partial^2 c_\theta}{\partial x^2} \right] \\ 1206 \quad & -2 \left\langle \frac{\partial c_\theta}{\partial x}, \frac{\partial f_0}{\partial x} \right\rangle = 0. \\ 1207 \quad & \\ 1208 \quad & \end{aligned}$$

1209 We will work with this equation for equating the higher orders.
 1210

1211 **Order θ^0** In this order, we have that
 1212

$$\left\langle \frac{\partial f_1}{\partial x}, \frac{\partial f_0}{\partial x} \right\rangle c_0 + \left\langle \frac{\partial c_0}{\partial x}, \frac{\partial f_0}{\partial x} \right\rangle = 0.$$

1213 This is known as the transport equation (Bouchet & Reyner, 2016). It shows how c_0 changes along
 1214 the gradient of f_0 . Next, we express the equation in terms of \tilde{c}_0 :
 1215

$$\left\langle \frac{\partial \tilde{c}_0}{\partial x}, \frac{\partial f_0}{\partial x} \right\rangle = 0. \tag{15}$$

1216 This implies that along the gradient of f_0 , \tilde{c}_0 is constant. Since the manifold \mathcal{M} consists of the min-
 1217 imizers of f_0 , for any point x in K , the value of $\tilde{c}_0(x)$ is the same as the value at the corresponding
 1218 minimizer y on \mathcal{M} following the gradient flow of f_0 . Formally, we have
 1219

$$\tilde{c}_0(x) = \tilde{c}_0(\psi^x(+\infty)),$$

1220 where $\psi^x(t)$ follows $d\psi^x(t)/dt = -\nabla f_0(\psi^x(t))$ with $\psi^x(0) = x$ given the initial condition
 1221 $\psi^x(0) = x$. Therefore, we see that to solve for \tilde{c}_0 , we need to know the value of it on \mathcal{M} . We
 1222 find that the next order equation will help us to solve for \tilde{c}_0 on \mathcal{M} .
 1223

1224 **Order θ^1** In this order, if we directly find all terms in Equation (14) that are of order θ^1 , we will
 1225 find that it includes higher order terms, e.g., $\hat{c}(x, \theta)$. However, since we only care about the solution
 1226 on \mathcal{M} , we evaluate the equation on \mathcal{M} and interestingly find that it does not include such higher
 1227 order terms, as crucially the factor $\partial f_0/\partial x$ becomes 0 at \mathcal{M} . Specifically, for $x \in \mathcal{M}$, we have that
 1228

$$\operatorname{Tr} \left[\frac{\partial^2 f_1}{\partial x^2} \right] c_0 + \left\langle \frac{\partial f_1}{\partial x}, \frac{\partial c_0}{\partial x} \right\rangle + \operatorname{Tr} \left[\frac{\partial^2 c_0}{\partial x^2} \right] = 0.$$

1229 Replacing c_0 with $\tilde{c}_0 \exp(-f_1)$, we have that
 1230

$$\operatorname{Tr} \left[\frac{\partial^2 \tilde{c}_0}{\partial x^2} \right] - \left\langle \frac{\partial \tilde{c}_0}{\partial x}, \frac{\partial f_1}{\partial x} \right\rangle = 0.$$

1231 Our goal here would be to solve for \tilde{c}_0 on \mathcal{M} , and apparently it would be helpful to convert the
 1232 equation to the local coordinates and establish a PDE for the manifold chart coordinate u .
 1233

1242 **Local coordinates** We convert the above order θ^1 equation about \tilde{c}_0 to the local coordinates $z =$
1243 (u, r) and get that for $r = 0$, i.e., points on \mathcal{M} ,

$$\begin{aligned} 1245 \quad 0 &= \frac{1}{|J|} \operatorname{div}_z \left(|J| G^{-1} \frac{\partial \tilde{c}_0}{\partial z} \right) - \left\langle \frac{\partial \tilde{c}_0}{\partial z}, G^{-1} \frac{\partial f_1}{\partial z} \right\rangle \\ 1246 \quad &= \frac{1}{|J|} \left(\left\langle \operatorname{div}_z (|J| G^{-1}), \frac{\partial \tilde{c}_0}{\partial z} \right\rangle + \operatorname{Tr} \left[|J| G^{-1} \frac{\partial^2 \tilde{c}_0}{\partial z^2} \right] \right) - \left\langle \frac{\partial \tilde{c}_0}{\partial z}, G^{-1} \frac{\partial f_1}{\partial z} \right\rangle, \end{aligned} \quad (16)$$

1247 where $G = J^\top J$ and the divergence of a matrix is understood as the divergence of the column
1248 vectors. Note that we cannot simply conclude from the above equation that \tilde{c}_0 is constant, by say, the
1249 strong maximum principle, since the gradients of \tilde{c}_0 include not only the manifold chart coordinate
1250 u but also the normal coordinate r . Therefore, we have to further derive a PDE about u and any
1251 gradients of \tilde{c}_0 w.r.t. r should be replaced by known functions. Fortunately those gradients can be
1252 solved by the equation we obtain at order θ^0 .

1253 First, let us derive from Equation (16) a PDE about u :

1254 **Lemma C.5.** *From Equation (16), we have that for $r = 0$,*

$$1255 \quad \Delta_{\mathcal{M}} \tilde{c}_0(u) - \left\langle \frac{\partial \tilde{c}_0}{\partial u}, g^{-1} \frac{\partial f_1}{\partial u} \right\rangle + \frac{1}{\sqrt{|g|}} \left\langle \frac{\partial |J|}{\partial r}, \frac{\partial \tilde{c}_0}{\partial r} \right\rangle - \left\langle \frac{\partial \tilde{c}_0}{\partial r}, \frac{\partial f_1}{\partial r} \right\rangle + \operatorname{Tr} \left[\frac{\partial^2 \tilde{c}_0}{\partial r^2} \right] = 0, \quad (17)$$

1256 where $\Delta_{\mathcal{M}}$ is the Laplace-Beltrami operator on \mathcal{M} .

1257 *Proof.* Let the index i, j when showing at ∂ be derivatives w.r.t. the i or j -th coordinate of u , and
1258 let p, q be the derivatives w.r.t. r respectively. From Equation (16), by carefully expanding the
1259 divergence, the inner product term becomes

$$\begin{aligned} 1260 \quad &\left\langle \operatorname{div} (|J| G^{-1}), \nabla \tilde{c}_0 \right\rangle \Big|_{r=0} \\ 1261 \quad &= \sqrt{|g|} \partial_j [g^{-1}]_{i,j} \partial_i \tilde{c}_0 + [g^{-1}]_{i,j} \partial_j \sqrt{|g|} \partial_i \tilde{c}_0 - \sqrt{|g|} [g^{-1}]_{i,k} \partial_p d_{p,k} \Big|_{r=0} \partial_i \tilde{c}_0 + \partial_p |J| \partial_p \tilde{c}_0. \end{aligned}$$

1262 For the trace term, we have

$$1263 \quad \operatorname{Tr} [|J| G^{-1} \nabla^2 \tilde{c}_0] \Big|_{r=0} = \sqrt{|g|} [g^{-1}]_{i,j} \partial_{j,i} \tilde{c}_0 + \sqrt{|g|} \partial_{p,p} \tilde{c}_0.$$

1264 Now we look at Equation (17). From the definition of Laplace-Beltrami operator, we have

$$\begin{aligned} 1265 \quad \Delta_{\mathcal{M}} \tilde{c}_0(u) &= \frac{1}{\sqrt{|g|}} \partial_i \left(\sqrt{|g|} [g^{-1}]_{i,j} \partial_j \tilde{c}_0 \right) \\ 1266 \quad &= \frac{1}{\sqrt{|g|}} \partial_i \sqrt{|g|} [g^{-1}]_{i,j} \partial_j \tilde{c}_0 + \partial_i [g^{-1}]_{i,j} \partial_j \tilde{c}_0 + [g^{-1}]_{i,j} \partial_{i,j} \tilde{c}_0. \end{aligned}$$

1267 Since G^{-1} evaluated at $r = 0$ is $\begin{bmatrix} g^{-1} & 0 \\ 0 & I \end{bmatrix}$, the term $-\left\langle \frac{\partial \tilde{c}_0}{\partial z}, G^{-1} \frac{\partial f_1}{\partial z} \right\rangle$ in Equation (16) matches
1268 $-\left\langle \frac{\partial \tilde{c}_0}{\partial u}, g^{-1} \frac{\partial f_1}{\partial u} \right\rangle - \left\langle \frac{\partial \tilde{c}_0}{\partial r}, \frac{\partial f_1}{\partial r} \right\rangle$ in Equation (17). Now compare the terms of Equation (17) and
1269 Equation (16), the only remaining term is

$$1270 \quad [g^{-1}]_{i,k} \partial_p d_{p,k} \Big|_{r=0} \partial_i \tilde{c}_0,$$

1271 which we will prove is 0. We will show that $\sum_p \partial_p d_{p,k} \Big|_{r=0} = 0$.

1272 Since the columns of \mathcal{N} are orthonormal, we have for any p , $\sum_i (\mathcal{N}_{i,p})^2 = 1$. Taking derivative for
1273 both sides to u_j , we have for any p, j , $\sum_i \mathcal{N}_{i,p} \partial_j \mathcal{N}_{i,p} = 0$. We also have by definition that for any
1274 p, j ,

$$1275 \quad [\mathcal{N}^\top \nabla \mathcal{N} r]_{p,j} = \mathcal{N}_{i,p} \partial_j \mathcal{N}_{i,l} r_l.$$

1276 Using the above two results, we have for any j ,

$$1277 \quad \sum_p \partial_p d_{p,j} = \sum_p \partial_p (\mathcal{N}_{i,p} \partial_j \mathcal{N}_{i,l} r_l) = \sum_p \mathcal{N}_{i,p} \partial_j \mathcal{N}_{i,p} = 0.$$

1278 \square

1296 From Equation (17), we see that it contains gradients of \tilde{c}_0 w.r.t. r , which we will solve by the order
 1297 θ^0 equation.
 1298

1299 **Lemma C.6.** *From Equation (15), we have that on the manifold \mathcal{M} ,*

1300
 1301
$$\frac{\partial \tilde{c}_0}{\partial r}(u, 0) = 0, \quad \text{and} \quad \text{Tr} \left[\frac{\partial^2 \tilde{c}_0}{\partial r^2} \right] (u, 0) = \left\langle h(u), \frac{\partial \tilde{c}_0}{\partial u}(u, 0) \right\rangle,$$

 1302

1303 where $h(u)$ does not contain the unknown function \tilde{c}_0 .
 1304

1305 *Proof.* Since we care about the evaluation of the equation on \mathcal{M} , we start by changing the coordinates to the local coordinates $z = (u, r)$ from Equation (15) to get that
 1306
 1307

1308
 1309
$$\left\langle \frac{\partial \tilde{c}_0}{\partial z}, G^{-1} \frac{\partial f_0}{\partial z} \right\rangle = 0.$$

 1310

1311 Next, we compute the gradient w.r.t. z :

1312
 1313
$$\frac{\partial^2 \tilde{c}_0}{\partial z^2} G^{-1} \frac{\partial f_0}{\partial z} + \frac{\partial^2 f_0}{\partial z^2} G^{-1} \frac{\partial \tilde{c}_0}{\partial z} + \left(\frac{\partial \text{vec} [G^{-1}]}{\partial z} \right)^T \left(\frac{\partial f_0}{\partial z} \otimes \frac{\partial \tilde{c}_0}{\partial z} \right) = 0, \quad (18)$$

 1314

1315 where \otimes is the Kronecker product. When we evaluate this equation at $r = 0$, the factor $\partial f_0 / \partial r$
 1316 becomes 0, $G^{-1}(u, 0) = \begin{bmatrix} g^{-1} & 0 \\ 0 & I \end{bmatrix}$ and $\frac{\partial^2 f_0}{\partial z^2}(u, 0) = \begin{bmatrix} 0 & 0 \\ 0 & \partial^2 f_0 / \partial r^2(u, 0) \end{bmatrix}$. Then we have
 1317
 1318

1319
 1320
$$\frac{\partial^2 f_0}{\partial r^2}(u, 0) \frac{\partial \tilde{c}_0}{\partial r}(u, 0) = 0.$$

 1321

1322 Since $\frac{\partial^2 f_0}{\partial r^2}(u, 0)$ is full-rank, we have that $\frac{\partial \tilde{c}_0}{\partial r}(u, 0) = 0$.
 1323

1324 Next, we compute gradient again for Equation (18), and evaluate at $r = 0$. Ignoring $\partial f_0 / \partial z$ which
 1325 is 0, we have the i, j -th element of the matrix is

1326
 1327
$$\left[\frac{\partial^2 \tilde{c}_0}{\partial z^2} G^{-1} \frac{\partial^2 f_0}{\partial z^2} \right]_{i,j} + \left[\frac{\partial^2 f_0}{\partial z^2} G^{-1} \frac{\partial^2 \tilde{c}_0}{\partial z^2} \right]_{i,j} + \frac{\partial^3 f_0}{\partial z_i \partial z_k \partial z_j} \left[G^{-1} \frac{\partial \tilde{c}_0}{\partial z} \right]_k$$

 1328
 1329
$$+ \frac{\partial^2 f_0}{\partial z_i \partial z_k} \frac{\partial G_{k,p}^{-1}}{\partial z_j} \frac{\partial \tilde{c}_0}{\partial z_p} + \frac{\partial \tilde{c}_0}{\partial z_k} \frac{\partial G_{k,p}^{-1}}{\partial z_i} \frac{\partial^2 f_0}{\partial z_p \partial z_j} = 0,$$

 1330

1331 where $\partial \tilde{c}_0 / \partial r$ is 0. The first two terms have nice structure when evaluated at $r = 0$, as
 1332

1333
 1334
$$\frac{\partial^2 \tilde{c}_0}{\partial z^2} G^{-1} \frac{\partial^2 f_0}{\partial z^2} = \begin{bmatrix} 0 & \frac{\partial^2 \tilde{c}_0}{\partial u \partial r} \frac{\partial^2 f_0}{\partial r^2} \\ 0 & \frac{\partial^2 \tilde{c}_0}{\partial r^2} \frac{\partial^2 f_0}{\partial r^2} \end{bmatrix} \quad \text{and} \quad \frac{\partial^2 f_0}{\partial z^2} G^{-1} \frac{\partial^2 \tilde{c}_0}{\partial z^2} = \begin{bmatrix} 0 & 0 \\ \frac{\partial^2 f_0}{\partial r^2} \frac{\partial^2 \tilde{c}_0}{\partial r \partial u} & \frac{\partial^2 f_0}{\partial r^2} \frac{\partial^2 \tilde{c}_0}{\partial r^2} \end{bmatrix}.$$

 1335

1336
 1337 We then multiply Equation (19) by matrix $\begin{bmatrix} 0 & 0 \\ 0 & \left(\frac{\partial^2 f_0}{\partial r^2} \right)^{-1} \end{bmatrix}$ from the left, and get
 1338

1339
 1340
$$\begin{bmatrix} 0 & 0 \\ 0 & \left(\frac{\partial^2 f_0}{\partial r^2} \right)^{-1} \frac{\partial^2 \tilde{c}_0}{\partial r^2} \frac{\partial^2 f_0}{\partial r^2} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \frac{\partial^2 \tilde{c}_0}{\partial r \partial u} & \frac{\partial^2 \tilde{c}_0}{\partial r^2} \end{bmatrix} + \text{remaining terms} = 0.$$

 1341

1342 Since $\partial \tilde{c}_0 / \partial r$ is 0, the element of the remaining terms all have one and only one factor of $\partial \tilde{c}_0 / \partial u_i$
 1343 for some i . Taking the trace of the above equation, and we have proved the second statement. \square
 1344

1345 Now we plug in Lemma C.6 to Lemma C.5, and obtain a PDE about $\tilde{c}_0(\cdot, 0)$ on u whose second order
 1346 derivatives are the Laplace-Beltrami operator, and the zero-th order term, i.e., the term that includes
 1347 the function value $\tilde{c}_0(\cdot, 0)$, is 0. Therefore, we can conclude by strong maximum principle (Gilbarg
 1348 et al., 1977, Theorem 3.5) that $\tilde{c}_0(\cdot, 0)$ is a constant. According to the equation at order θ^0 , we obtain
 1349 that \tilde{c}_0 off-manifold is the same constant. \square

1350 C.5 PROOF FOR SECTION 5
13511352 We will first prove Theorem 5.1, which follows similar proof technique as Theorem 4.1, and then
1353 turn to the harder case of Theorem 5.2.
13541355 *Proof of Theorem 5.1.* The proof follows the same as Theorem 4.1, except that now we use Theorem
1356 C.1 with $\theta = \sigma^{2-\alpha}$. In this case, $f_0(x) = \|x - P_{\mathcal{M}}(x)\|^2/2$, $f_1 \equiv 0$ and all other terms are
1357 asymptotically small compared to $\sigma^{2-\alpha}$. According to the proof of Theorem 4.1, the determinant
1358 of the Hessian of f_0 in the normal direction is the same for all u , therefore, we recover the uniform
1359 distribution on the manifold.
1360The only thing remains to verify is to ensure
1361

1362
$$\lim_{\sigma \rightarrow 0} \int_{\mathbb{R}^d \setminus T_{\mathcal{M}}(\epsilon)} \tilde{\pi}_\sigma(x) dx = \lim_{\sigma \rightarrow 0} \frac{\int_{\mathbb{R}^d \setminus T_{\mathcal{M}}(\epsilon)} \exp(-\sigma^\alpha f_\sigma(x)) dx}{\int_{\mathbb{R}^d} \exp(-\sigma^\alpha f_\sigma(x)) dx} = 0.$$

1363

1364 Since we have $\lim_{\sigma \rightarrow 0} \int_K \tilde{\pi}(x) dx \rightarrow 1$, we only need to consider within K . For the numerator, we
1365 can do similarly as Lemma C.4 to obtain
1366

1367
$$\int_{K \setminus T_{\mathcal{M}}(\epsilon)} \exp(-\sigma^\alpha f_\sigma(x)) dx \leq \text{Vol}(K) \left(\frac{1}{(2\pi\sigma^2)^{d/2}} \right)^{\sigma^\alpha} \exp \left(-\frac{\epsilon^2}{4\sigma^{2-\alpha}} + o(\sigma^{\alpha+\beta}) \right),$$

1368

1369 where $2 - \alpha > 0$ and $\alpha + \beta > 0$. There exists σ_0 , such that for all $\sigma < \sigma_0$, the $o(\sigma^{\alpha+\beta})$ term is
1370 upper bounded by $\epsilon^2/8\sigma^{2-\alpha}$. Then we have the numerator upper bounded by
1371

1372
$$\text{Vol}(K) \left(\frac{1}{(2\pi\sigma^2)^{d/2}} \right)^{\sigma^\alpha} \exp \left(-\frac{\epsilon^2}{8\sigma^{2-\alpha}} \right).$$

1373

1374 For the denominator, it is lower bounded by
1375

1376
$$\int_{T_{\mathcal{M}}(\epsilon/2)} \left(\frac{1}{(2\pi\sigma^2)^{d/2}} \right)^{\sigma^\alpha} \exp \left(-\frac{\|x - \Phi(x)\|^2}{2\sigma^{2-\alpha}} + o(\sigma^{\alpha+\beta}) \right) dx$$

1377
1378
$$\geq \int_{T_{\mathcal{M}}(\epsilon/2)} \left(\frac{1}{(2\pi\sigma^2)^{d/2}} \right)^{\sigma^\alpha} \exp \left(-\frac{\epsilon^2}{8\sigma^{2-\alpha}} + o(\sigma^{\alpha+\beta}) \right) dx.$$

1379

1380 There exists σ_1 , such that for all $\sigma < \sigma_1$, the $o(\sigma^{\alpha+\beta})$ term is lower bounded by $\epsilon^2/16\sigma^{2-\alpha}$. Then
1381 the denominator is lower bounded by
1382

1383
$$\text{Vol}(T_{\mathcal{M}}(\epsilon/2)) \left(\frac{1}{(2\pi\sigma^2)^{d/2}} \right)^{\sigma^\alpha} \exp \left(-\frac{\epsilon^2}{16\sigma^{2-\alpha}} \right).$$

1384

1385 Therefore, the ratio is upper bounded by
1386

1387
$$\frac{\text{Vol}(K)}{\text{Vol}(T_{\mathcal{M}}(\epsilon/2))} \exp \left(-\frac{\epsilon^2}{16\sigma^{2-\alpha}} \right),$$

1388

1389 which goes to zero as $\sigma \rightarrow 0$. □
13901391 Next, for Theorem 5.2, we use results in Appendix C.4 to find an approximate stationary distribution
1392 of the SDEs considered in Section 5, and then use results in Appendix C.1 to prove the main theorem.
13931394 *Proof of Theorem 5.2.* The SDE we consider can be also written as
1395

1396
$$dX_t = \frac{\sigma^2 s(X_t, \sigma)}{\sigma^{2-\alpha}} dt + \sqrt{2} dW_t,$$

1397

1398 Therefore, we want to apply Theorem C.3 with $\theta = \sigma^{2-\alpha}$ and $b_\theta = \sigma^2 s(X_t, \sigma)$. We assert that
1399 under our assumption of Theorem 5.2, we can write
1400

1401
$$b_\theta(x) = -\frac{\partial \|x - P_{\mathcal{M}}(x)\|^2/2}{\partial x} + o(\sigma^{2-\alpha}),$$

1402

1403

meaning that $f_0 = \|x - P_{\mathcal{M}}(x)\|^2/2$ and $f_1 \equiv 0$. We will discuss the proof of this later. If we have the above, by Theorem C.3, the stationary distribution in $T_{\mathcal{M}}(\epsilon)$ is given by

$$\pi_{\sigma}(x) \propto \exp\left(-\frac{\|x - P_{\mathcal{M}}(x)\|^2/2}{\sigma^{2-\alpha}} + o(1)\right),$$

where the error in the prefactor is equivalent to the error in the exponent. The remaining proof follows the same as Theorem 5.1.

It remains to prove the assertion about b_{θ} . A sufficient condition is that

$$\sup_{x \in T_{\mathcal{M}}(\epsilon)} \left\| \nabla \log p_{\sigma}(x) + \frac{1}{\sigma^2} \frac{\partial \|x - P_{\mathcal{M}}(x)\|^2/2}{\partial x} \right\| = O(1). \quad (20)$$

Because if Equation (20) holds, we have uniformly for any $x \in T_{\mathcal{M}}(\epsilon)$,

$$\begin{aligned} & \left\| b_{\theta}(x) + \frac{\partial \|x - P_{\mathcal{M}}(x)\|^2/2}{\partial x} \right\| \\ &= \left\| \sigma^2 s(x, \sigma) + \frac{\partial \|x - P_{\mathcal{M}}(x)\|^2/2}{\partial x} \right\| \\ &= \left\| \sigma^2 s(x, \sigma) - \sigma^2 \nabla \log p_{\sigma}(x) + \sigma^2 \nabla \log p_{\sigma}(x) + \frac{\partial \|x - P_{\mathcal{M}}(x)\|^2/2}{\partial x} \right\| \\ &\leq \left\| \sigma^2 s(x, \sigma) - \sigma^2 \nabla \log p_{\sigma}(x) \right\| + \left\| \sigma^2 \nabla \log p_{\sigma}(x) + \frac{\partial \|x - P_{\mathcal{M}}(x)\|^2/2}{\partial x} \right\| \\ &= o(\sigma^{2+\beta}) + O(\sigma^2) \\ &= o(\sigma^{2-\alpha}), \end{aligned}$$

where the last inequality holds because $\alpha > \max\{-\beta, 0\}$. In the theorem, we assumed $L^{\infty}(T_{\mathcal{M}}(\epsilon))$ norm, which is the same as $\sup_{x \in T_{\mathcal{M}}(\epsilon)}$ since $s(x, \sigma)$ and $\nabla \log p_{\sigma}(x)$ are continuous.

Therefore, it remains to prove Equation (20). We will prove for the case of VE, and the case of VP holds with similar argument. The gradient of the distance function can be written as:

$$\frac{\partial \|x - P_{\mathcal{M}}(x)\|^2/2}{\partial x} = \left(I - \left(\frac{\partial P_{\mathcal{M}}(x)}{\partial x} \right)^T \right) (x - P_{\mathcal{M}}(x)) = x - P_{\mathcal{M}}(x),$$

where the last equality holds because $x - P_{\mathcal{M}}(x)$ is orthogonal to the manifold and the image of $\frac{\partial P_{\mathcal{M}}(x)}{\partial x}$ is in the tangent space of the manifold (Leobacher & Steinicke, 2021). Then note that

$$\nabla \log p_{\sigma}(x) = \frac{\nabla p_{\sigma}(x)}{p_{\sigma}(x)} = \frac{\int_{\mathcal{M}} \mathcal{N}(x; u, \sigma^2 I) p_{\text{data}}(u) \frac{\Phi(u) - x}{\sigma^2} du}{\int_{\mathcal{M}} \mathcal{N}(x; u, \sigma^2 I) p_{\text{data}}(u) du}.$$

For the denominator, follow the same as in the proof of Theorem C.2 to obtain that

$$p_{\sigma}(x) = \exp\left(-\frac{\|x - P_{\mathcal{M}}(x)\|^2}{2\sigma^2}\right) \frac{(2\pi\sigma^2)^{(n-d)/2} p_{\text{data}}(\Phi^{-1}(P_{\mathcal{M}}(x)))}{\sqrt{|\hat{H}(\Phi^{-1}(P_{\mathcal{M}}(x)), x)|}} (1 + O(\sigma)),$$

since Equation (12) holds and p_{data} is uniformly bounded away from zero. We could do the same for the numerator, however, the $O(\sigma)$ error is not enough here. Intuitively, the numerator would be

$$\exp\left(-\frac{\|x - P_{\mathcal{M}}(x)\|^2}{2\sigma^2}\right) \frac{(2\pi\sigma^2)^{(n-d)/2} p_{\text{data}}(\Phi^{-1}(P_{\mathcal{M}}(x)))}{\sqrt{|\hat{H}(\Phi^{-1}(P_{\mathcal{M}}(x)), x)|}} \left(\frac{P_{\mathcal{M}}(x) - x}{\sigma^2} + O(1/\sigma) \right).$$

Apparently, the error term is not enough to prove Equation (20).

Therefore, we turn to stronger Laplace's method result that has an error term of $O(\sigma^2)$, i.e., the $h(\theta)$ term in Corollary C.1 could be improved to $O(\theta)$ instead of $O(\sqrt{\theta})$. However, such result should

have the cost of requiring the function F (as the notation use in Corollary C.1) to be C^4 and g to be C^2 , a stronger condition¹. Formally, we have that

$$\begin{aligned} & \sigma^2 \nabla \log p_\sigma(x) + (x - P_M(x)) \\ &= \frac{\int_M \mathcal{N}(x; u, \sigma^2 I) p_{\text{data}}(u) (\Phi(u) - P_M(x)) du}{\int_M \mathcal{N}(x; u, \sigma^2 I) p_{\text{data}}(u) du}, \end{aligned}$$

and we want to prove its $L^\infty(T_M(\epsilon))$ norm is $O(1)$. For any $x \in T_M(\epsilon)$ and $v \in \{v \mid \|v\| = 1\}$, we have that

$$\begin{aligned} & v^\top (\sigma^2 \nabla \log p_\sigma(x) + (x - P_M(x))) \\ &= \frac{\int_M \mathcal{N}(x; u, \sigma^2 I) p_{\text{data}}(u) v^\top (\Phi(u) - P_M(x)) du}{\int_M \mathcal{N}(x; u, \sigma^2 I) p_{\text{data}}(u) du} \\ &= \frac{\int_M \mathcal{N}(x; u, \sigma^2 I) p_{\text{data}}(u) (v^\top (\Phi(u) - P_M(x)) + 1) du}{\int_M \mathcal{N}(x; u, \sigma^2 I) p_{\text{data}}(u) du} - 1. \end{aligned}$$

The last step where we add 1 is a simple trick because the Laplace's method we will use does not allow the prefactor to be 0 at the minimizer. Next, we multiply the numerator and denominator by $\exp\left(\frac{\|x - P_M(x)\|^2}{2\sigma^2}\right) \frac{\sqrt{|\hat{H}(\Phi^{-1}(P_M(x)), x)|}}{(2\pi\sigma^2)^{(n-d)/2}}$, so that their limit does not diminishing to 0. For the numerator, we apply Majerski (2015, Theorem 2.4) with their $n = 1/\sigma^2$, $t = u$, $f(u) = \|x - \Phi(u)\|^2/2$, $\alpha = 2$ ($f(u)$ is C^4 since $\Phi(u)$ is C^4), B_δ can be selected the same as in the proof of Theorem C.2, $g(u) = p_{\text{data}}(u)(v^\top (\Phi(u) - P_M(x)) + 1)$ ($g(u)$ is C^2 since $p_{\text{data}}(u)$ is C^2), and the minimizer is $\Phi^{-1}(P_M(x))$. The upper boundedness of the constants can be easily verified by compactness and one can show that they are uniform for x and v . Crucially, $g(\Phi^{-1}(P_M(x))) = p_{\text{data}}(\Phi^{-1}(P_M(x)))$ is uniformly lower bounded. The lower boundedness of λ_{\min} can be reasoned in the same way as in the proof of Theorem C.2. Therefore, we have

$$v^\top (\sigma^2 \nabla \log p_\sigma(x) + (x - P_M(x))) = \frac{1 + O(\sigma^2)}{1 + O(\sigma^2)} - 1 = O(\sigma^2).$$

Since the bound is uniformly for x and $\|v\| = 1$, we have that

$$\begin{aligned} & \sup_{x \in T_M(\epsilon)} \|\sigma^2 \nabla \log p_\sigma(x) + (x - P_M(x))\| \\ & \leq \sup_{x \in T_M(\epsilon)} \sup_{\|v\|=1} v^\top (\sigma^2 \nabla \log p_\sigma(x) + (x - P_M(x))) = O(\sigma^2), \end{aligned}$$

which proves Equation (20). □

C.6 PROOF FOR SECTION 6

Proof of Theorem 6.1. The proof follows the same as Theorem 5.2, except that now we have $f_1 = v$ when applying Theorem C.3 and Theorem C.1. □

D EXPERIMENTAL DETAILS AND FURTHER EXPERIMENTS

D.1 NUMERICAL SIMULATIONS ON ELLIPSE

Loss function. In our experiments, we train the score network to predict

$$\hat{s}(x, \sigma) := \sigma^2 s(x, \sigma),$$

instead of $s(x, \sigma)$ directly. This formulation is more stable across noise levels, since the leading term in the score expansion is of order $1/\sigma^2$, making $\hat{s}(x, \sigma)$ an $O(1)$ target. With this choice, the training objective becomes

$$\frac{1}{2} \mathbb{E}_{u \sim p_{\text{data}}} \mathbb{E}_{x \sim \mathcal{N}(\Phi(u), \sigma^2 I)} \left[\sigma^2 \left\| s(x, \sigma) + \frac{x - \Phi(u)}{\sigma^2} \right\|^2 \right]$$

¹Weaker condition such as $C^{1,1}$ is also possible, see Majerski (2015, Theorem 2.4).

$$= \frac{1}{2} \mathbb{E}_{u \sim p_{\text{data}}} \mathbb{E}_{x \sim \mathcal{N}(\Phi(u), \sigma^2 I)} \left[\frac{1}{\sigma^2} \|\hat{s}(x, \sigma) + x - \Phi(u)\|^2 \right].$$

The score function s is parameterized by a neural network consisting of four transformer blocks, each with hidden dimension 128.

Data and noise. Training data is generated from a von Mises distribution with parameter $\kappa = 1$. The injected Gaussian noise variance σ^2 is sampled from a range $\sigma \in [0.01, 50]$.

Optimization. We use AdamW with weight decay 1×10^{-4} and global gradient clipping at norm 1.0. The initial learning rate is 3×10^{-3} , decayed cosine-schedule over 4×10^{-4} steps down to 1% of its initial value, after which training continues with a constant learning rate of 4×10^{-4} . The batch size is set to 1024.

Sampling. For sampling, we run Langevin dynamics

$$dx_t = \hat{s}(x_t, \sigma_{\min}) dt + \sqrt{2\sigma_{\min}^2} dW_t,$$

with $\sigma_{\min} = 0.01$. This process has the same stationary distribution as

$$dx_t = s(x_t, \sigma_{\min}) dt + \sqrt{2} dW_t.$$

For the TS Langevin dynamics, the diffusion coefficient is $\sqrt{2\sigma_{\min}^{2-\alpha}}$ instead of $\sqrt{2\sigma_{\min}^2}$. We employ the Euler–Maruyama scheme with a step size of 0.1, running 10,000 steps with 10,000 runs.

D.2 IMAGE GENERATION WITH DIFFUSION MODELS

Algorithm details. We use a pre-trained Stable Diffusion 1.5 model with a DDPM sampler in a predictor–corrector (PC) scheme. The pre-trained network provides a denoiser $\epsilon(x, t, y)$, and the corresponding classifier-free guidance (CFG) score at time t is

$$\begin{aligned} s_t(x, y) &= \underbrace{\nabla_x \log p_t(x)}_{\text{unconditional score}} + w \underbrace{(\nabla_x \log p_t(x | y) - \nabla_x \log p_t(x))}_{\text{conditional increment}} \\ &= -\frac{1}{\sigma_t} [\epsilon(x, t, \emptyset) + w(\epsilon(x, t, y) - \epsilon(x, t, \emptyset))], \end{aligned}$$

where y is the conditioning input (prompt embedding), w is the guidance scale, $\sigma_t = \sqrt{1 - \bar{\alpha}_t}$, and $\bar{\alpha}_t$ is as in Ho et al. (2020). Our tempered-score framework applies to this PC sampler by modifying only the unconditional component while leaving the guided increment unchanged:

$$\tilde{s}_t(x, y) = -\frac{1}{\sigma_t} [\sigma_t^\alpha \epsilon(x, t, \emptyset) + w(\epsilon(x, t, y) - \epsilon(x, t, \emptyset))],$$

which is consistent with Equation (8). Let $\{t_i\}$ denote the discrete reverse-time schedule. After each DDPM predictor update at level t_i , we perform n_{corr} *corrector* steps of Langevin dynamics with the tempered score:

$$x_{k+1} = x_k + \delta_i \tilde{s}_{t_i}(x_k, y) + \sqrt{2\delta_i} \xi_k, \quad \xi_k \sim \mathcal{N}(0, I),$$

where the step size δ_i follows Song et al. (2021, Algorithm 5). After the entire reverse process, we apply an additional n_{corr} deterministic projection steps using the unconditional score (no guidance, no noise) to further project onto the data manifold:

$$dx_\tau = \nabla \log p_{t_0}(x_\tau) d\tau.$$

We use the same number of projection steps for both the original PC baseline and our TS to ensure a fair comparison.

Hyperparameter setting. We adopt the default configuration of Stable Diffusion 1.5 (<https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5>). Unless otherwise noted, all results in Section 7.2 use guidance scale $w = 7.5$ and 30 inference steps. For the best-results reported in Table 1, we perform a grid search over the number of corrector steps in $\{5, 10, 15, 20, 30\}$ and $\alpha \in \{0.1, 0.5, 1.0, 1.5\}$. The original PC baseline is tuned over the same set of numbers of corrector step for fairness. For CLIP evaluations, we generate 512 images per setting and downscale each to 256×256 before computing the scores.

Figure 4: Comparison of distributions generated with VE diffusion model versus our TS Langevin dynamics Equation (8) with $\alpha = 1$.

	$\alpha = 0$	$\alpha = 0.1$	$\alpha = 0.5$	$\alpha = 1.0$	$\alpha = 1.5$
Prompt	P-sim↑ I-sim↓	P-sim I-sim	P-sim I-sim	P-sim I-sim	P-sim I-sim
Architecture	27.13	81.81	27.12	81.73	27.14
Furniture	29.30	81.24	29.32	81.37	29.33
Car	26.30	87.57	26.30	87.58	26.31

Table 3: Ablation of α for 10 corrector steps.

D.3 CONTROLLED EXPERIMENT WITH GROUND TRUTH SCORES

To empirically validate the rate separation results in Theorems 4.1 and 5.1, we designed a controlled experiment using synthetic data where the manifold and ground truth scores are known analytically.

We consider the unit circle manifold $\mathcal{M} = \{x \in \mathbb{R}^2 \mid \|x\| = 1\}$ with a Von Mises distribution $p_{\text{data}}(\theta) \propto \exp(\kappa \cos(\theta - \theta_0))$, where we used $\kappa = 4$ and $\theta_0 = \pi$. This setup allows us to compute the analytic ground truth score $s^*(x, \sigma)$. We then inject a deterministic error field $e(x)$ into the true score:

$$\hat{s}(x, \sigma) = s^*(x, \sigma) + e(x), \quad \text{with } e(x) = -\nabla \left(\frac{1}{2} \left\| x - \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\|^4 \right).$$

The magnitude of this error term $e(x)$ is $O(1)$ with respect to σ .

We compare the performance of the standard reverse diffusion process against our proposed TS Langevin dynamics using this corrupted score \hat{s} . As shown in Figure 4, the standard reverse diffusion process using \hat{s} produces samples that deviate significantly from the ground truth p_{data} , confirming that $O(1)$ score errors are sufficient to corrupt distributional recovery, while the TS Langevin dynamics with $\alpha = 1$ robustly recovers the uniform distribution on the circle.

D.4 SENSITIVITY ANALYSIS OF HYPERPARAMETER α

To evaluate the sensitivity of the hyperparameter α , we performed an ablation study using the Stable Diffusion 1.5 model, under the same setting as in Section 7.2 of our paper. We tested $\alpha \in \{0, 0.1, 0.5, 1.0, 1.5\}$ across three prompt categories, with the number of corrector steps fixed at 10 and 20. Note that $\alpha = 0$ corresponds to the standard predictor-corrector baseline.

As shown in Tables 3 and 4, our method yields consistent improvements over the baseline ($\alpha = 0$) once α is sufficiently large ($\alpha \geq 0.5$), demonstrating that the performance gains are robust and not limited to a narrow hyperparameter setting. The performance is particularly stable for $\alpha \in [1.0, 1.5]$, which aligns well with our theoretical framework (Theorems 5.1 and 5.2) that guarantees convergence to the uniform distribution for any $\alpha < 2$. While we utilized $\alpha = 1$ in Table 2 for

	$\alpha = 0$	$\alpha = 0.1$	$\alpha = 0.5$	$\alpha = 1.0$	$\alpha = 1.5$
Prompt	P-sim↑ I-sim↓	P-sim I-sim	P-sim I-sim	P-sim I-sim	P-sim I-sim
Architecture	26.87	81.60	26.85	81.56	26.97
Furniture	28.98	81.72	28.99	81.65	29.07
Car	26.26	88.06	26.26	88.09	26.25

Table 4: Ablation of α 20 corrector steps.

simplicity, these results suggest that slightly more aggressive tempering ($\alpha = 1.5$) can provide further gains in diversity and quality.

E CONVERGENCE OF TS LANGEVIN

In this section, we deduce the mixing time analysis, i.e. the convergence analysis for a stochastic process, of the TS Langevin to the estimation of the Poincaré constant. The goal is to show that TS Langevin is not necessarily slower—and can in fact be significantly faster—than the standard Langevin dynamics in terms of mixing time. To carry out such an analysis, we assume that the score network is a gradient field, i.e. $s(\cdot, \sigma) = \nabla \log p_\theta$ for some parameterized density function. WLOG, we assume p_θ is normalized as the normalizing factor does not affect the velocity field s .

E.1 CONVERGENCE ANALYSIS OF LANGEVIN DYNAMICS USING FUNCTIONAL INEQUALITY

To analyze the convergence of Langevin dynamics, it is customary to use a functional inequality satisfied by the invariant measure p_∞ of the Langevin dynamics (Here, p_t denotes the density of the process at time t , and p_∞ is its stationary distribution. This notation differs from p_θ , and the distinction should be clear from context). In this response, we focus on the Poincaré inequality (PI): We say p_∞ satisfies PI(C_{PI}) if for all $f \in H^1(p_\infty)$ (Sobolev space weighted by p_∞),

$$\int (f - \int f dp_\infty)^2 dp_\infty \leq \frac{1}{C_{\text{PI}}} \int |\nabla f|^2 dp_\infty,$$

where we call $C_{\text{PI}} > 0$ is the Poincaré constant.

Consider the overdamped Langevin dynamics with potential $U_\sigma : \mathbb{R}^d \rightarrow \mathbb{R}$:

$$dX(t) = -\nabla U_\sigma(X(t))dt + \sqrt{2}dW(t),$$

and let $p_t = \text{Law}(X(t))$. Under mild assumptions, $p_\infty \propto \exp(-U_\sigma)$ is the unique invariance measure of the above dynamics. If $p_\infty \propto \exp(-U_\sigma)$ satisfies PI(C_{PI}), then

$$\chi^2(p_t, p_\infty) \leq e^{-C_{\text{PI}}t} \chi^2(p_0, p_\infty),$$

where χ^2 denotes the χ^2 -divergence. In particular, to ensure $\chi^2(p_t, p_\infty) \leq \eta$ for some target accuracy $\eta > 0$, it suffices to take $t = O(\frac{1}{C_{\text{PI}}} \log \frac{1}{\eta})$. Thus, the larger the Poincaré constant, the faster the convergence.

E.2 ANALYZING THE EFFECT OF DRIFT SCALING TO THE POINCARÉ CONSTANT.

Under the assumptions of our paper, the comparison between the mixing of standard Langevin and TS Langevin therefore reduces to comparing their Poincaré constants. We illustrate how drift scaling affects the Poincaré constant in the simple case where the data manifold is the unit circle:

$$\mathcal{M} = \{x \in \mathbb{R}^d : \|x\| = 1\}.$$

In this case, the squared distance function can be computed in a closed form:

$$d(x) = \frac{1}{2} \text{dist}^2(x, \mathcal{M}) = \frac{1}{2} \|x - \frac{x}{\|x\|}\|^2 = \frac{1}{2} (\|x\| - 1)^2.$$

Following section 5 of our paper, we assume the score error is $O(\sigma^\beta)$ for some $-2 < \beta < 0$. Recall that we assume the learned score is a gradient field, i.e. $s(\cdot, \sigma) = \nabla \log p_\theta$. Let us further suppose that the problem dimension is $d = 2$, i.e. $x \in \mathbb{R}^2$, and the density function p_θ (corresponding to the learned score $s(\cdot, \sigma)$) has the following form

$$-\log p_\theta = \frac{1}{\sigma^2} d(x) + \sigma^\beta \phi(x), \text{ where } \phi(x) = (|x_1| - 1)^2,$$

where x_1 denotes the first coordinate of x . Clearly, this function satisfies all requirement in our paper. Crucially, such a construction ensures that the score error is $O(\sigma^\beta)$.

Standard Langevin dynamics. We restate the standard Langevin dynamics for the ease of reference:

$$dX(t) = \nabla \log p_\theta(X(t))dt + \sqrt{2}dW(t).$$

Without temperature scaling, the error function $\phi(x)$ introduces two separated modes $(-1, 0)$ and $(+1, 0)$. For such a multimodal measure, classical Eyring-Kramers law or the large deviation principle results imply that the Poincaré constant can scale as

$$C_{\text{PI}}^{\text{LD}} = O(\exp(-\sigma^\beta)).$$

Consequently, the mixing time of the original Langevin dynamics can become *exponentially large* as $\sigma \rightarrow 0$.

TS Langevin. We restate the standard Langevin dynamics for the ease of reference:

$$dX(t) = \sigma^\alpha \nabla \log p_\theta(X(t))dt + \sqrt{2}dW(t) = \nabla \log p_\theta^{\sigma^\alpha}(X(t))dt + \sqrt{2}dW(t).$$

Under mild conditions, the unique equilibrium measure is $p_\theta^{\sigma^\alpha}$. We show that, under our standing assumptions and $\alpha > -\beta$, that its Poincaré constant, denoted as $C_{\text{PI}}^{\text{TS}}$, is *uniformly bounded away from zero, independent of σ* for sufficiently small σ . Here we summarize the main steps:

- Recall the Holley–Stroock perturbation principle (Holley & Stroock, 1987): Let U and \tilde{U} be two potential functions defined on \mathbb{R}^d . Suppose that the corresponding Gibbs measures $p_\infty \propto \exp(-U)$ and $\tilde{p}_\infty \propto \exp(-\tilde{U})$ satisfy Poincaré inequality with constants C_{PI} and \tilde{C}_{PI} respectively. One has

$$\tilde{C}_{\text{PI}} \geq \exp(-\text{osc}(\tilde{U}, U))C_{\text{PI}},$$

where the oscillation between U and \tilde{U} is defined as

$$\text{osc}(\tilde{U}, U) := \sup_{x \in \mathbb{R}^d} (\tilde{U} - U) - \inf_{x \in \mathbb{R}^d} (\tilde{U} - U).$$

Since $2 > \alpha > -\beta$, a Holley–Stroock perturbation argument implies that the PI constant of $p_\theta^{\sigma^\alpha}$ is comparable (up to a fixed factor) to that of the measure $\mu_d \propto \exp(-d(x)/\sigma^{2-\alpha})$ for small σ . We denote the Poincaré constant of this ideal potential as $C_{\text{PI}}^{\text{dist}}$.

A short proof for the above statement: Pick

$$\tilde{U} = \log p_\theta^{\sigma^\alpha} \text{ and } U = d(x)/\sigma^{2-\alpha}.$$

One can bound $\text{osc}(\tilde{U}, U)$ using Theorem 3.1 of our submission. Apply the above principle to yield

$$C_{\text{PI}}^{\text{TS}} \geq \exp(-O(\sigma^{\alpha+\beta}))C_{\text{PI}}^{\text{dist}} \geq \exp(-1)C_{\text{PI}}^{\text{dist}},$$

for a sufficiently small σ .

- We note that the distance function $d(x)$ is locally Polyak–Łojasiewicz, and hence one can expect the recent results (Gong et al., 2024) on the temperature-independent Poincaré constant for locally log-PL measure can be applied. The only requirement in (Gong et al., 2024) that is not satisfied by μ_d is that it is not C^2 at $x = 0$.

- 1728 • We therefore introduce a smoothed potential
 1729

1730
$$V_c(x) := \frac{\|x\|^2}{2} + \frac{1}{2} - \sqrt{\|x\|^2 + c^2},$$

 1731

1732 and apply Holley–Stroock again to compare the PI constant of μ_d with that of $\mu_c \propto$
 1733 $\exp(-V_c/\sigma^{2-\alpha})$. Choosing $c = \sigma^{3-\alpha}$, we can verify that V_c satisfies the assumptions of the
 1734 log-PL result (Gong et al., 2024), which implies that the corresponding Poincaré constant (de-
 1735 noted as $C_{\text{PI}}^{\text{smooth}}$) is *independent of σ* .

1736 A short proof to bound $C_{\text{PI}}^{\text{dist}}$ with $C_{\text{PI}}^{\text{smooth}}$: Pick

1737
$$\tilde{U}(x) = d(x)/\sigma^{2-\alpha} \text{ and } U(x) = V_c(x)/\sigma^{2-\alpha}.$$

 1738

1739 To bound $\text{osc}(\tilde{U}, U)$, notice that

1740
$$|d(x) - V_c(x)| = |\|x\| - \sqrt{\|x\|^2 + c^2}| = \frac{c^2}{\|x\| + \sqrt{\|x\|^2 + c^2}} \leq c = \sigma^{3-\alpha}.$$

 1741

1742 Apply the perturbation principle to yield

1743
$$C_{\text{PI}}^{\text{dist}} \geq \exp(-O(\sigma))C_{\text{PI}}^{\text{smooth}} \geq \exp(-1)C_{\text{PI}}^{\text{smooth}},$$

 1744

1745 for a sufficiently small σ .

1746 • Combining these comparisons shows that the Poincaré constant of $p_\theta^{\sigma^\alpha}$, i.e., $C_{\text{PI}}^{\text{TS}}$, differs from
 1747 $C_{\text{PI}}^{\text{dist}}$ and $C_{\text{PI}}^{\text{smooth}}$ only by a constant factor.

1748 • In this point, we discuss on proving $C_{\text{PI}}^{\text{smooth}}$ is independent of σ . First, we note that directly
 1749 apply the result in (Gong et al., 2024) on the potential V_c already yields that the Poincaré constant
 1750 $C_{\text{PI}}^{\text{smooth}}$ is of order $\Omega(c)$: It is easy to verify the assumptions in (Gong et al., 2024), i.e. local PL,
 1751 non-saddle point, growth condition beyond a compact set, and the boundedness of $|\Delta V_c|$, i.e. the
 1752 absolute value of the Laplacian of V_c within a compact set. We can hence directly use Theorem 2
 1753 in (Gong et al., 2024). However, the quantity $|\Delta V_c|$ is of order $\frac{1}{c}$ in this vanilla analysis and hence
 1754 we would yield that the Poincaré constant $C_{\text{PI}}^{\text{smooth}}$ is of order $\Omega(c)$. It turns out that by exploiting
 1755 the particular structure of V_c , we can further improve this result: We note that $|\Delta V_c|$ does *not* need
 1756 to hold in the neighborhood of the local maximum set and their analysis still goes through. We
 1757 hence pick this neighborhood as a ball centered around the local maximum $x = 0$ with radius 0.1.
 1758 One can see that outside of this neighborhood but within a compact set, $|\Delta V_c|$ is bounded by a
 1759 σ -independent constant. Then $C_{\text{PI}}^{\text{smooth}}$ could be proved to be $\Omega(1)$. We highlight that even the
 1760 vanilla $\Omega(c)$ bound already establishes the exponential difference between $C_{\text{PI}}^{\text{TS}}$ (lower bounded
 1761 by a polynomial in σ) and $C_{\text{PI}}^{\text{LD}}$ (upper bounded by exponential of $-1/\text{poly}(\sigma)$). Of course, the
 1762 $\Omega(1)$ one leads to even bigger separation.

1763
 1764 Putting these estimates together, we see that, at least in this unit-circle example, *TS Langevin mixes*
 1765 *strictly faster* than the original Langevin dynamics in the small- σ regime. This illustrates that
 1766 temperature-scaled Langevin is not necessarily slower—and can in fact be significantly faster—than
 1767 the standard Langevin dynamics in terms of mixing time.

1768
 1769 **E.3 A REFINED ANALYSIS FOR $C_{\text{PI}}^{\text{smooth}}$**

1770 Directly applying the result in (Gong et al., 2024), we have that $C_{\text{PI}}^{\text{smooth}} = \Omega(\frac{1}{\sigma})$ for a sufficiently
 1771 small σ . In this subsection, we show that this can be improved to $C_{\text{PI}}^{\text{smooth}} = \Omega(1)$ with a small
 1772 modification to the analysis of the Lyapunov function in (Gong et al., 2024).

1773 **Proposition E.1.** (Menz & Schlichting, 2014, Theorem 3.8) Consider the Langevin dynamics

1774
$$dX(t) = -\nabla V(X(t))dt + \sqrt{2\epsilon}dW(t).$$

 1775

1776 Define the associated infinitesimal generator \mathcal{L} as

1777
$$\mathcal{L} := -\nabla V \cdot \nabla + \epsilon \Delta \tag{21}$$

 1778

1779 A function $\mathcal{W} : \mathbb{R}^d \rightarrow [1, \infty)$ is a Lyapunov function for \mathcal{L} if there exists $U \subseteq \mathbb{R}^d$, $b > 0$, $\sigma > 0$,
 1780 such that

1781
$$\forall x \in \mathbb{R}^d, \epsilon^{-1}\mathcal{L}\mathcal{W}(x) \leq -\sigma\mathcal{W}(x) + b1_U(x). \tag{22}$$

Given the existence of such a Lyapunov function \mathcal{W} , if one further has that the truncated Gibbs measure $\mu_{\epsilon,U}$ satisfies PI with constant $\text{PI}_{\epsilon,U} > 0$, the Gibbs measure μ_ϵ satisfies PI with constant

$$\rho_\epsilon \geq \frac{\sigma}{b + \rho_{\epsilon,U}} \rho_{\epsilon,U}. \quad (23)$$

In the context of this section, $\epsilon = \sigma^{2-\alpha}$ and $V = V_c$. In (Gong et al., 2024), the Lyapunov function is chosen to be $\mathcal{W} = \exp(\frac{V}{2\epsilon})$ and eq. (22) can be simplified to

$$\frac{\mathcal{L}\mathcal{W}}{\epsilon\mathcal{W}} = \frac{\Delta V}{2\epsilon} - \frac{|\nabla V|^2}{4\epsilon^2} \leq -\sigma + b1_U. \quad (24)$$

To establish the above inequality, Gong et al. (2024) partition the whole domain \mathbb{R}^d into multiple disjoint parts: (1) U , (2) a neighborhood of the global minimum but outside of U , (3) neighborhoods of local maximum, (4) beyond a compact set that contains all critical points, and (5) the rest. We discuss our treatment of each subdomain.

- On (1), we follow the choice of U in (Gong et al., 2024) so the local Poincaré inequality there directly holds.
- On (2), i.e. in the neighborhood of the global minimum (note that under the assumptions of (Gong et al., 2024), all local minima are global minima), but outside of the neighborhood U , we follow the argument as (Gong et al., 2024).
- On (4), Beyond a compact set that contains all the local minima and maximum, we can verify that V_c above fulfills the requirements of V in (Gong et al., 2024) and hence the argument directly carries over.
- On (3), i.e. in a neighborhood of the local maximum, since the Laplacian is already negative, one can directly obtain eq. (24). Note that we will pick this neighborhood to be the ball centered at $x = 0$ with radius 0.1 for V_c , denoted by $\mathbb{B}(0, 0.1)$.
- On (5), i.e. within the said compact set, but outside of the neighborhoods of the global minimum and local maximum, (Gong et al., 2024) requires the Laplacian to be bounded. We note that the analysis in (Gong et al., 2024) is a bit loose and they require the boundedness to hold on the whole compact set. However, there is no need to assume the boundedness of the Laplacian on $\mathbb{B}(0, 0.1)$ as eq. (24) is already established in (3).

Based on the above discussion, we notice that the global bound on the Laplacian of V_c is only required within a compact set, but outside of $\mathbb{B}(0, 0.1)$, which is hence a constant independent of ϵ . We hence obtain the $\Omega(1)$ bound on the Poincaré constant.