
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BENEFITS AND PITFALLS OF REINFORCEMENT
LEARNING FOR LANGUAGE MODEL PLANNING:
A THEORETICAL PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent reinforcement learning (RL) methods have substantially enhanced the
planning capabilities of Large Language Models (LLMs), yet the theoretical basis
for their effectiveness remains elusive. In this work, we investigate RL’s bene-
fits and limitations through a tractable graph-based abstraction, focusing on pol-
icy gradient (PG) and Q-learning methods. Our theoretical analyses reveal that
supervised fine-tuning (SFT) may introduce co-occurrence-based spurious solu-
tions, whereas RL achieves correct planning primarily through exploration, un-
derscoring exploration’s role in enabling better generalization. However, we also
show that PG suffers from diversity collapse, where output diversity decreases
during training and persists even after perfect accuracy is attained. By contrast,
Q-learning provides two key advantages: off-policy learning and diversity preser-
vation at convergence. We further demonstrate that careful reward design is nec-
essary to prevent Q-value bias in Q-learning. Finally, applying our framework to
the real-world planning benchmark Blocksworld, we confirm that these behaviors
manifest in practice.

1 INTRODUCTION

Planning is a fundamental cognitive construct that underpins human intelligence, shaping our abil-
ity to organize tasks, coordinate activities, and formulate complex solutions such as mathematical
proofs. It enables humans to decompose complex goals into manageable steps, anticipate potential
challenges, and maintain coherence during problem solving. Similarly, planning plays a pivotal role
in state-of-the-art Large Language Models (LLMs), enhancing their ability to address structured and
long-horizon tasks with greater accuracy and reliability.

Early generations of LLMs primarily relied on next-token prediction and passive statistical learning,
which limited their planning capabilities to short-horizon, reactive responses. The o1 family of mod-
els represents a major advance in planning by incorporating reinforcement learning (RL) objectives
that reward accurate, multi-step reasoning and penalize errors. Inspired by the success of o1, RL
has been applied to enhance planning capabilities in various settings, including task decomposition
for tool use (Wu et al., 2024a; Luo et al., 2025) and gaming (Yang et al., 2024), visual-language
spatial navigation (Chu et al., 2025), and long-horizon robotics tasks (Dalal et al., 2024). These ap-
proaches have demonstrated significantly better performance than their supervised fine-tuning (SFT)
counterparts. For more related works, please refer to Appendix B.

Despite recent successes, the theoretical basis underlying RL’s advantage over SFT in planning tasks
and the limitations of current RL methods remain to be established. To enable a tractable analysis of
the gradient dynamics, we adopt the data generation model from (Wang et al., 2024b). Within their
framework, planning is abstracted as a path-finding problem over a graph structure. For example, a
tool-use scenario can be modeled as identifying a valid call sequence within an API call graph (Wu
et al., 2024b).

To capture the fundamental limitations of SFT in planning, we begin by presenting a structural
characterization of its stable point for path planning (Section 3). Our analyses, expanding the obser-
vation of Wang et al. (2024b) that transformer-based LLM architectures cannot identify reachability
relationships through transitivity in SFT, show that it introduces co-occurrence-based spurious solu-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tions into planning tasks. This characterization provides a basis for comparison with and motivation
for using the RL-based learning approach in language model planning.

Focusing on the behaviors of RL-based learning dynamics, we first consider policy gradient (PG),
a widely adopted algorithm for tuning large language models (Section 4). Our analysis yields three
key findings. First, with only 0-1 outcome rewards, each iteration of PG equivalently corresponds
to an SFT process on the exploration data; however, PG empirically outperforms SFT due to the
exploration-driven data augmentation it enables. Second, although PG converges to a model that
outputs correct paths for all source–target pairs seen during training, we uncover a diversity collapse
phenomenon: the model’s output diversity steadily declines throughout training and continues to
diminish even after achieving 100% training accuracy. Third, we show that KL regularization acts
as an explicit diversity-preserving term, but at the expense of accuracy.

We then analyze Q-learning, a paradigm well known in game playing but rarely applied to
LLMs (Mnih et al., 2013) (Section 5). Our analysis yields two key findings. First, when trained
with only an outcome reward signal, Q-learning suffers from Q-value bias; however, incorporat-
ing process rewards eliminates this issue. Second, once this issue is addressed, Q-learning offers
two theoretical advantages over PG: it converges to a solution that preserves output diversity when
achieving optimal training accuracy, and it naturally supports off-policy learning. The latter is par-
ticularly important in practice, since rollouts performed with a quantized model or large batch sizes
are effectively off-policy, as exemplified by the VeRL framework (Sheng et al., 2024). Finally, we
validate all these theoretical findings through experiments.

To summarize, our main contribution is a theoretical treatment of the impact of reinforcement learn-
ing on language model planning. Our mathematical analysis of learning dynamics sheds light on
phenomena observed in practice–for example, SFT tends to memorize while RL promotes gen-
eralization; PG methods often suffer from diversity collapse; and KL regularization helps mitigate
diversity degradation, albeit at the cost of reduced accuracy. Other findings point to promising future
directions, such as leveraging Q-learning to achieve both diversity and accuracy, as well as enabling
off-policy learning. Taken together, these results provide a principled foundation for understanding
and advancing reinforcement learning methods in language model planning.

2 PRELIMINARIES

2.1 PATH PLANNING DATASET: SYNTAX AND DATA SOURCES

Following (Wang et al., 2024b), we abstract planning in large language models as path planning over
an unknown directed graph G = (V, E), where V represents the set of nodes and E represents the
set of edges. Each node v ∈ V is represented by a unique token. The language model’s vocabulary
consists of these node tokens and a special end-of-sequence token, \n. An edge (u, v) ∈ E signifies
a directed connection from node u to node v. A node t is reachable from a node s if a directed
path from s to t exists in G. We denote by A ∈ {0, 1}|V|×|V| the adjacency matrix of G, where
A[u, v] = 1 if and only if (u, v) ∈ E , and by R ∈ {0, 1}|V|×|V| the reachability matrix, where
R[t, s] = 1 if and only if t is reachable from s.

Running Example (Blocksworld). To connect this abstraction to real-world LLM planning sce-
narios, consider the Blocksworld domain (Valmeekam et al., 2023b). In Blocksworld, we are given
several colored blocks (e.g., Grey, Black, Red, White) placed either on a table or stacked on each
other, and the task is to transform an initial arrangement (source state) into a target arrangement
(target state) using valid moves. For example, the source state may place all blocks on the table,
and the target state requires stacking them so that Red is on Grey, Grey is on Black, and Black is
on White. We map every distinct block configuration to a node in V; edges in E correspond to valid
single moves such as “place White on Grey”. A valid plan is therefore equivalent to a path in G
connecting the source node s and target node t.

This abstraction matches natural language planning tasks: in the original benchmark, the LLM is
given two textual descriptions of initial and target states and asked to generate a sequence of natural
language actions to achieve the goal. In our abstract setup, we strip away language semantics to
focus on the core planning structure while retaining the same problem difficulty.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The set of all reachable source-target pairs (s, t) is partitioned into a training set DTrain and a test
set DTest. We define three corresponding data stages:

• SFT Training Data: We construct a training dataset DSFT for supervised fine-tuning by sampling
multiple (K) paths for each reachable pair (s, t) ∈ DTrain by random walk. Each training data in
DSFT is a sequence in the format “s t s a b c t \n”, where s a b c t are tokens for nodes in a valid
path from s to t, and \n indicates the end of the sequence. We call the model after SFT training
the base model.

• RL Training Data: We sample pairs (s, t) from DTrain and let the model itself (on-policy) or the
base model (off-policy) generate the remaining tokens in the sequence. When the model outputs
\n or the generation reaches the maximum length, an outcome reward or some step rewards will
be given, depending on the used reward format.

• Test Data: When testing, we provide pairs (s, t) from DTest, which are never encountered in
either SFT or RL training. The model is tasked with generating a valid path from s to t.

Throughout the empirical study, we use a one-layer, single-head Transformer as the backbone model.
The embedding size is set to d = 120. The graph G in our main empirical validation is generated
using the Erdős-Rényi model with |V| = 100 nodes and an edge probability of 0.15. The ratio
of the sets |DTrain|/|DTest| is approximately 0.25 (approximately 20% pairs are in DTrain). The
number of paths sampled for each reachable pair in DTrain is K = 10. We also consider the graph
GBW that characterizes the transition between different block configurations in Blocksworld, which
is proposed by Valmeekam et al. (2023a) to evaluate the LLM’s planning ability. The details for the
graph construction are presented in Appendix G.

2.2 REINFORCEMENT LEARNING ALGORITHMS

We first define the notation. Given a vector x, we denote its m-th element by x[m]. For a given
sequence “s t s a b c t \n”, we represent it as u = (usource, utarget, u1, · · · , um, · · ·). We denote by
ûm the output probability vector of the current model at the m-th position, and by ûbase

m that of the
base model before RL. The model parameters are denoted by θ.

Policy Gradient. Let P be the set of valid paths. The outcome reward is only given at the end of
the path and is defined by R(u) = r δu∈P + p, where r > 0 and p are constants, and δ denotes the
indicator function that is 1 if condition is true and 0 otherwise. For an individual trajectory, the loss
function is

ℓ = −
∑
m≥1

(
R(u) log ûm[um+1]︸ ︷︷ ︸

Policy Gradient

+λ log ûm[um+1]

{
log

ûm[um+1]

ûbase
m [um+1]

}
︸ ︷︷ ︸

KL Divergence

)
, (1)

where λ controls the KL regularization strength, and {·} means the term is detached and will not
contribute to the gradient.

Q-Learning. The goal of Q-learning is to approximate the Q-function with the model logits. Let
Qθ(sm, am) be the Q-function where sm = (usource, utarget, u1, · · · , um) is the state, am ∈ V
is the action, and s′m = (usource, utarget, u1, · · · , um, am) is their next state. The objective is∑

m

(
Qθ(sm, am) − [R(sm, am) + maxa′

m
Qθ(s

′
m, a′m)]

)2
. We denote the logits at step m by

ũm. For an individual trajectory, the loss is given by

ℓ =
∑
m≥1

(
ũm[um+1]−R(u,m)−

{
max

k
ũm+1[k]

})2

. (2)

For Q-learning’s reward R(u,m), we study two scenarios: (i) outcome reward, where the reward
depends on whether the path is correct, and (ii) process reward, where intermediate rewards are
given based on adjacency and target checks. Specifically,

R(u,m) =


δu∈Pδum+1=utarget , If outcome reward,

δum+1=utarget︸ ︷︷ ︸
Target check

− δ(um,um+1)̸∈E︸ ︷︷ ︸
Adjacency check

, If process reward. (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

(a) Edge Frequency

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

(b) SFT

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

5.0 2.5 0.0 2.5 5.0 7.5 10.0

(c) SFT + PG

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

75 50 25 0 25 50 75

(d) SFT + Q-Learning

Figure 1: Frequency of edge occurrences in the SFT training data DSFT and the adjacency structures
learned by different models. The underlying graph represents transitions between block configura-
tions in Blocksworld (Valmeekam et al., 2023a).

That is, in the outcome reward setting, a reward of 1 is given only if the entire path is valid, and it
is assigned at the step when the target is reached. In contrast, in the process reward setting, we do
not check whether the entire path is valid or not. The model is always rewarded upon reaching the
target, but it is also penalized at any step that transitions to a non-adjacent node.

3 LIMITATIONS OF SUPERVISED FINE-TUNING IN PLANNING

Focusing on the stationarity of the training dynamics, we present a basic structural characterization
that captures a fundamental limitation of SFT in planning. Our analysis builds on an early find-
ing of Wang et al. (2024b), which showed that transformer-based SFT planning approaches lack
transitivity-learning mechanisms needed to obtain complete reachability structures. The new char-
acterization expands and complements the earlier results and provides a theoretical explanation for
why SFT-based planning tends to rely on memorization. More importantly, this result establishes
a theoretical basis for comparison with RL-based planning frameworks and highlights the role of
exploration in achieving better generalization during the adaptive learning process.

3.1 DISCUSSIONS ON EXISTING FINDINGS

To set up our characterization, we first review the analysis framework of Wang et al. (2024b), which
examines the training dynamics of a one-layer, single-head Transformer under an autoregressive
loss function. Their analysis shows that, during training, the model encodes both the adjacency and
reachability structures of the underlying graph in its learnable parameters. The model then predicts
the next node in a sequence by ensuring that it is adjacent to the current node and lies along a path
toward the target node. A full description of their approach is given in Algorithm 1 in Appendix C.

Wang et al. (2024b) showed, both theoretically and experimentally, that the adjacency and reach-
ability information stored in a model’s weights is generally incomplete. To formalize this, con-
sider a training dataset DSFT. The observed adjacency matrix Aobs(DSFT) contains exactly those
edges (j, k) that appear in at least one path from DSFT. Similarly, the observed reachability matrix
Robs(DSFT) records that a target node t is reachable from an intermediate node k if DSFT contains
a sequence with target t in which k occurs as a non-source node. We refer to such pairs (t, k) as
observed reachable pairs.

However, we find that even when an adjacency relation appears in DSFT, the SFT model may not
learn a high weight for it. To illustrate this, we run experiments on the Blockworld dataset, and the
results are presented in Figure 1. In Figure 1a, we show the frequency of all adjacency relation-
ships in the training set (every adjacency relationship appears at least once), where brighter regions
indicate higher frequencies. Then Figure 1b displays the corresponding weights learned after SFT.
By comparing them, we observe that some adjacency relationships present in the data are not well
captured by the model, especially those with low frequency. This observation motivates us to further
investigate the model’s stable (optimal) points.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 CHARACTERIZATION OF THE STABLE POINT IN SFT-BASED LEARNING DYNAMICS

Building on the observation of Wang et al. (2024b) that next-node prediction depends mainly on the
current and target nodes, we adopt the following natural assumption about model expressiveness for
our structural characterization. Recall that utarget and um denote the target node and the current node
at position m, respectively.

Assumption 3.1. The model’s predicted logits for the next token can be expressed as a function of
the (target, current) node pair, i.e., there exists a function f such that the logits ũm = f(utarget, um).

Note that in the assumption, f can be an arbitrary function. Our experiments validate this assump-
tion. As shown in Section G.1, the evolution of attention maps during training for SFT, PG, and
Q-learning demonstrates that the trained transformer acts primarily as a function of the target and
current nodes.

We now characterize the structure of the stable point achieved by SFT. Due to space limitations, we
defer all the proofs in this paper to the appendix.

Theorem 3.1 (Optimal Solution of SFT). Assume Assumption 3.1 holds. Let Nutarget,um,k denote the
number of occurrences in the training dataset where the target node is utarget, the current node is
um, and the next node is k. The optimal solution of SFT satisfies:

exp(f(utarget, um)[k])∑
k′ exp(f(utarget, um)[k′])

=
Nutarget,um,k∑
k′ Nutarget,um,k′

if
∑
k′

Nutarget,um,k′ > 0.

If
∑

k′ Nutarget,um,k′ = 0, output can be any probability distribution.

Takeaway 1: SFT memorizes co-occurrence relationships in the training dataset.

Theorem 3.1 extends the findings of Wang et al. (2024b), which showed that SFT-based mechanisms
may fail to learn the complete adjacency and reachability matrices, leading to spurious correlations.
However, those earlier results did not specify the nature of the solutions to which the model con-
verges. Complementing their work, Theorem 3.1 clarifies this by showing that SFT essentially
memorizes co-occurrence relationships among the target node, the current node, and the immediate
next node based on their frequencies inDSFT. Hence, SFT will fail to exploit transitivity information
(which never appears in DSFT) to capture the true graph connectivity required for path planning.

In Figure 1, we further compare the weights of models trained by two RL approaches, PG and
Q-learning. Both RL approaches capture the adjacency relationships better. Similar findings are re-
ported by Chu et al. (2025), who empirically observe that SFT tends to memorize while RL exhibits
better generalization. Our structural analysis in Theorem 3.1 provides a theoretical explanation for
the first part of this phenomenon, namely, why “SFT memorizes”. In the following sections, we
examine the two RL-based approaches, PG and Q-learning, and provide a theoretical explanation of
the second part, i.e., why “RL generalizes”.

4 PATH PLANNING CAPACITIES OF POLICY GRADIENT

In this section, we examine the path-planning capacity of the policy gradient, the core principle
behind advanced RL algorithms such as PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024).
Understanding the strengths and limitations of the basic policy gradient provides theoretical insights
into its behavior, highlights the mechanisms that enable effective path planning, and clarifies the
challenges that motivate more sophisticated approaches.

4.1 THEORETICAL ANALYSIS

We first establish the connection between policy gradient (PG) and supervised fine-tuning (SFT),
highlighting the potential advantages of PG over SFT. We then analyze PG’s training dynamics
and show that, without KL regularization, the model can achieve 100% training accuracy (under
temperature sampling) while progressively losing output diversity. Finally, we demonstrate that,
when initialized with a reasonably capable base model, adding a KL regularization helps preserve
diversity and thereby enhances generalization, albeit sometimes at the cost of accuracy.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To make this connection precise, we show that the PG loss function closely resembles the SFT loss,
restricted to the subset of data generated during RL training that corresponds to correct paths.
Theorem 4.1 (Connections between PG and SFT). Assume Assumption 3.1 holds. Let DRL,t denote
the set of data generated during the RL training step t. When r = 1, p = 0 (i.e., reward 1 for a
correct path and reward 0 otherwise) and λ = 0 (i.e., without KL regularization), the loss function
of Policy Gradient is the same as the loss function of using SFT only on correct paths in DRL,t.

As shown by Wang et al. (2024b), SFT can learn the adjacency and reachability relations. Thus,
Theorem 4.1 shows that PG can capture these relations presented in the dataset (∪Tt=1DRL,t) ∩ P .
However, unlike SFT, which relies on a fixed training dataset, PG generates data on-policy during
training. As the model improves, it can explore and discover new correct paths that were absent from
the initial training set. This exploration-driven data augmentation enables PG to achieve stronger
performance beyond what SFT alone can provide.

Takeaway 2: PG outperforms SFT primarily because its iterative data generation process
encourages exploration and effectively expands the training dataset.

Building on the loss function, we analyze the gradient and identify two distinctive properties of
on-policy PG updates.
Theorem 4.2 (Convergence of PG without KL regularization). Assume Assumption 3.1 holds. For
any i, j pair, let C(i, j) denote the set of nodes that can reach i and are adjacent to j. The following
then holds: If r = 1, p = 0 and λ = 0, then (i) the gradient ∂ℓ

∂f(i,j)[k] for k /∈ C(i, j) is always

positive, and (ii) the total sum of gradient
∑

k
∂ℓ

∂f(i,j)[k] = 0.

Theorem 4.2 shows that the logits f(i, j)[k] corresponding to incorrect tuples (i, j, k), i.e., cases
where node j cannot reach node i through node k, will continue to decrease, while some other logits
will not converge to −∞. Consequently, under gradient descent, the probability that the model
outputs a wrong path in DTrain converges to zero.

Next, we analyze how the model’s output diversity evolves. Intuitively, the most diverse model that
still achieves 100% accuracy is one that produces a uniform distribution over C(i, j) for each target
node i and current node j. We now analyze the evolution of the KL divergence between this uniform
distribution and the model’s output distribution during PG training without KL regularization.
Theorem 4.3 (Diversity Collapse of PG without KL regularization). Assume Assumption 3.1 holds.
Let UC(i,j) denote the uniform probability distribution on support C(i, j). When r = 1, p = 0 and
λ = 0, and logits f t(i, j)[k] for k /∈ C(i, j) is −∞, where f t(i, j) denotes the logits value of f(i, j)
at time step t. For any such PG gradient descent step t, we have that

KL(UC(i,j)||softmax(f t(i, j)) ≤ E[KL(UC(i,j)||softmax(f t+1(i, j))].

Note that the metric KL(UC(i,j)||softmax(f t(i, j))) takes minimum value when softmax(f t(i, j))
is also the uniform distribution on C(i, j), and takes maximum value when softmax(f t(i, j)) is a
one-hot vector. Thus, Theorem 4.3 demonstrates that even after attaining 100% accuracy on DTrain,
the model continues to exhibit declining output diversity.

Takeaway 3: In the absence of KL divergence, output diversity continuously declines.

This diversity-collapse phenomenon has been reported in the literature (Cui et al., 2025) and can
impair a model’s ability to generalize. To address it, many techniques have been proposed, the most
common being KL regularization. To better understand its role, we analyze the stable point of the
model under KL regularization, highlighting both its advantages and limitations.
Theorem 4.4 (The effect of KL regularization). When r = 1, p = 0 and λ > 0, the stable point of
the PG model satisfies the following, under Assumption 3.1: For any fixed i, j, either q(i, j)[k] = 0
or q(i, j)[k] ∝ qbase(i, j)[k] exp(p(i, j)[k]/λ). Here q(i, j)[k] is the probability of outcome k in
softmax(f(i, j)), qbase(i, j)[k] is the probability of outcome k in the base model, and p(i, j)[k] is
the probability of tuple i, j, k belonging to a valid path given output probability {q(i, j)[k]}i,j,k.

This result shows that KL regularization constrains the trained model to remain close to the base
model, thereby preserving some of its diversity. This effect is a double-edged sword. Consider a
valid next node k for which the base model assigns low probability, i.e., qbase(i, j)[k] is small. On

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000 100000
Training Step

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Ac
cu

ra
cy

 o
n

D
Te

st

PG (= 0)
PG (= 0.01)
PG (= 0.001)
Continual SFT

(a) Test Accuracy

0 20000 40000 60000 80000 100000
Training Step

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Ac
cu

ra
cy

 o
n

D
Tr

ai
n (

Te
m

p=
1)

PG (= 0)
PG (= 0.01)
PG (= 0.001)
Continual SFT

(b) Train Accuracy

0 20000 40000 60000 80000 100000
Training Step

1

2

3

4

5

6

Ou
tp

ut
 D

iv
er

sit
y

on
 D

Tr
ai

n (
Te

m
p=

1)

PG (= 0)
PG (= 0.01)
PG (= 0.001)
Continual SFT

(c) Output Diversity

0.1 0.03 0.01 0.003 0.001 0.0003 0.0001 0.0
KL Regularization Weight ()

0.975

0.980

0.985

0.990

0.995

1.000

Ac
cu

ra
cy

 o
n

D
Tr

ai
n (

Te
m

p=
1)

Accuracy
Diversity

1

2

3

4

5

Di
ve

rs
ity

(d) Influence of KL

Figure 2: Empirical results of PG training. Both PG and continual SFT are initialized from the
same base model. Figures (a)-(c) illustrate the training dynamics of test accuracy (under greedy de-
coding), training accuracy (under temperature sampling), and response diversity (under temperature
sampling). Figure (d) shows how different KL regularization strengths affect the final models.

the one hand, KL regularization prevents q(i, j)[k] from becoming arbitrarily small, increasing the
chance of generating valid paths involving k. On the other hand, it also prevents q(i, j)[k] from be-
coming very large, limiting potential gains when the base model’s prior is suboptimal. This tradeoff
explains seemingly contradictory findings in recent literature: when the base model is already capa-
ble, KL regularization preserves diversity and improves generalization, but when the base model is
weak, the regularization may hinder learning by overly constraining policy updates.

Takeaway 4: KL regularization explicitly acts as a diversity-preserving mechanism, provided
that the base model is reasonably capable, but this comes at the cost of reduced train accuracy.

4.2 EMPIRICAL VALIDATIONS

The results are presented in Figure 2, where we compare PG with different KL regularization factor
λ against continual SFT. All models are initialized from the same base model after SFT training,
while continual SFT means training the model for more time steps on the same SFT dataset DSFT.
The empirical results match the takeaways we summarized from our theoretical findings, as detailed
below.

Takeaway 2: In Figure 2a, as the training progresses, the test accuracy of Continual SFT con-
stantly decreases, while all the PG methods can achieve an improvement, since they benefit from
exploration-driven training data. Takeaway 3: In Figure 2b and 2c, we can see that PG without
KL regularization progressively achieves and maintains 100% training accuracy, but its output di-
versity, i.e., the average number of distinct correct paths generated over 100 sampling trials for the
same source-target pair, keeps decreasing during training. In the end, the model eventually produces
only one path per pair. Moreover, as shown in Figure 2a, when the diversity diminishes, continued
training degrades test accuracy. Takeaway 4: As a comparison, PG with KL regularization main-
tains high output diversity in the end, but their training accuracy is limited. This trade-off is further
stated in Figure 2d: with a higher factor λ, the model can have a higher output diversity and a lower
training accuracy. Along with Figure 2a, it is shown that KL regularization prevents the model from
deviating too far from the base model in terms of both diversity and training accuracy. This mitigates
overfitting but also caps potential gains in test accuracy.

5 ANALYSIS OF THE Q-LEARNING-BASED PLANNING MECHANISM

In this section, we analyze the Q-learning mechanism for language-model planning under two differ-
ent reward designs. We show that stepwise process rewards enable convergence, preserve diversity,
and remain valid under off-policy sampling, whereas outcome rewards collapse to trivial solutions.
Our analysis begins under Assumption 3.1 for both reward types, and we then extend the process-
reward analysis to a more concrete linear Transformer model without this assumption.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.1 THEORETICAL ANALYSIS

To analyze the structure and convergence of the Q-learning stable point, we introduce a mild assump-
tion, which we call the persistent exploration assumption about the RL-based learning dynamics.

Assumption 5.1 (Persistent exploration). At training step t, let it = utarget, jt = um, kt, respec-
tively, denote the target, current, and next nodes. We assume for every (i, j, k), ∃Nprop

i,j,k > 0 such
that

lim inf
T→∞

1

T

T−1∑
t=0

δ(it,jt,kt)=(i,j,k) ≥ Nprop
i,j,k .

Under the persistent exploration assumption, every coordinate is updated frequently enough to allow
convergence analysis. In practice, this assumption is usually satisfied, for instance:

Lemma 5.1. Training with ϵ-exploration (i.e., exploring each alternative action with probability
proportional to ϵ) satisfies the persistent exploration assumption.

With the outcome reward, the signal merely verifies whether the entire sequence constitutes a valid
path ending at target i. It does not differentiate between current nodes j or candidate next nodes k
when k ̸= i. As a result, at a stable point, all logits collapse to the same constant ci for each fixed
target i, causing the parameters to lose structural information, as stated in the theorem below.

Theorem 5.1 (Stable points of outcome reward). Assume the RL-training uses the outcome re-
ward R(u,m) = δu∈P δum+1=utarget , and a stable point exists under persistent exploration (Assump-
tion 3.1). Then, at any stable point of the Q-learning model, for each fixed target i and k ̸= i, all
logits f(i, j)[k] take the same value depending only on i.

With the process reward, the update rule accounts for both adjacency and target conditions. The
next theorem establishes that the process converges to well-defined limits that capture the underlying
graph structure.

Theorem 5.2 (Stable points of process reward). Assume Assumption 3.1 holds and the process
reward is used, i.e. R(u,m) = δum+1=utarget − δ(um,um+1)/∈E . Suppose the score vector f(i, j) ∈ Rn

is initialized at zero and updated under the persistent exploration assumption with learning rate η.
Then, in the Q-learning model, as t→∞, f (t)(i, j)[i] −→ A[j, i], and for k ̸= i,

f (t)(i, j)[k] −→


1, A[j, k] = 1 and R[i, k] = 1,

0, exactly one of (A[j, k] = 1) or (R[i, k] = 1),

−1, A[j, k] = 0 and R[i, k] = 0.

Here “−→” denotes convergence or “tend to”. Moreover, the convergence is linear; the effective
rate depends on η and the update proportions Nprop

i,j,k .

Takeaway 5: Different from PG methods, in Q-learning, relying solely on the outcome reward
signal can cause Q-value bias, whereas introducing process rewards mitigates this issue.

To gain further insight in a setting closer to practice, we analyze a simplified but concrete one-layer,
single-head linear Transformer without the abstraction of Assumption 3.1.

Assumption 5.2 (Linear transformer Wang et al. (2024b)). We work under the simplified Trans-
former setting in Wang et al. (2024b): (1) The token embedding matrix and the output weight matrix
are both set to the identity; (2) Attention is fixed entirely on the target node utarget, so the attention
block contributes only the value lookup WV [utarget, ·]; (3) All layer normalizations are removed,
and the feedforward block is replaced by a linear map of the form FFN(X) = XWM . Under these
assumptions, the logit decomposes as ũm+1[k] = WM [um, k] +WV [utarget, k], where WM arises
from the feed-forward weights and WV from the value matrix of the attention block.

Despite this simplification, the analyzed results remain consistent with the experiments of real Trans-
formers, as demonstrated in Wang et al. (2024b). This formulation aligns with the actual 1-layer
1-head Transformer architecture, offering greater practical utility compared to the abstract function
f(i, j)[k]. The subsequent result characterizes the set of stable points under this decomposition and
is consistent with the structural limits established in Theorem 5.2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 25000 50000 75000 100000 125000 150000 175000 200000
Training Step

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 o
n

D
Tr

ai
n

Q-Learning (Process Reward)
Off Policy Q-Learning (Process Reward)
Q-Learning (Outcome Reward)
PG (= 0.001)

0 25000 50000 75000 100000 125000 150000 175000 200000
Training Step

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
n

D
Te

st

Q-Learning (Process Reward)
Off Policy Q-Learning (Process Reward)
Q-Learning (Outcome Reward)
PG (= 0.001)

(a) Train Accuracy and Test Accuracy of Q-Learning

1 2 3 4 5 6
Output Diversity on DTrain

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
n

D
Tr

ai
n

PG (= 0)
PG (= 0.01)
Continual SFT
Q-Learning (Process Reward)

2 4 6 8 10 12
Output Diversity on DTest

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 o
n

D
Te

st

PG (= 0)
PG (= 0.01)
Continual SFT
Q-Learning (Process Reward)

(b) Output Diversity vs. Accuracy

Figure 3: Empirical comparison between Q-learning and PG. Figure (a) shows the training dynamics
of training and test accuracy (under greedy decoding). Figure (b) compares the Pareto frontiers of
output diversity and accuracy on the training and test sets (under temperature decoding).

Theorem 5.3 (Stable points of process reward). Assume Assumption 5.2 holds. For a linear trans-
former, assume training uses the process reward, and the persistent exploration condition holds. At
a stable point of the Q-learning model, for each k there exists ck ∈ R such that

WM [j, k] = A[j, k]− 1 + ck,W
V [i, k] = R[i, k]− ck.

Conversely, any such (WM ,WV) is a stable point. Hence, the set of stable points is {(WM ,WV) :
ck ∈ R, k ∈ [|V|]}.

Theorem 5.1 shows that if only outcome reward is used, the learned logits collapse to a con-
stant across all states for a given target. In contrast, Theorem 5.2 and Theorem 5.3 show that
with persistent exploration, process rewards can preserve adjacency and reachability (note that in
Theorem 5.3, the constant ck is immaterial in terms of path planning, since for any stable point,
ũm+1[k] = WM [um, k] + WV [utarget, k] = A[j, k] + R[i, k] − 1, which is the same as Theo-
rem 5.2). Moreover, the convergence holds even under off-policy sampling, and action diversity is
preserved because all feasible next nodes converge to the logit value 1.

Takeaway 6: Compared to PG methods, Q-learning can operate off-policy and better main-
tains output diversity.

5.2 EMPIRICAL VALIDATIONS

We first examine the training and test accuracy results in Figure 3a, where we compare Q-learning
under different reward designs and sampling policies. All models are initialized from the same
base model. Figure 3b states the diversity-accuracy trade-off of Q-learning models, policy gradient
models, and the continual SFT model (under different temperatures). Figure 4 illustrates the logits
of an on-policy Q-learning model with process rewards and fixed attention (attention fixed on the
target node utarget). The model is initialized from the same base model as in Figure 3, and is further
trained with reinforcement steps on all pairs (s, t) ∈ DSFT where t ∈ [20]. In each row i, we plot
the logits for nodes 0–20 (normalized to [0, 1]) when the current node is 0 and the target node is i.
White indicates larger logits, black indicates smaller logits, and green frames highlight nodes that
are both children of node 0 and ancestors of i, corresponding to valid outputs. The empirical results
are consistent with the takeaways introduced above, as detailed below.

Takeaway 5: In Figure 3a, Q-learning with process rewards achieves comparable training accuracy
and significantly better test accuracy than the PG model, while Q-learning with outcome rewards
collapses and converges to near-zero accuracy on both training and test sets. Examining each row of
Figure 4, we observe that the logits of feasible nodes gradually increase and converge to the largest
values within their respective rows, which aligns with Theorem 5.2 and 5.3 and confirms that process
rewards enable the model to recover the correct graph structure. Takeaway 6: In Figure 3a, off-
policy Q-learning with process rewards attains training and test accuracy comparable to on-policy
Q-learning with process rewards, demonstrating that Q-learning can operate off-policy. Finally,
Figure 3b further highlights that the Q-learning process rewards preserve output diversity. Figure 4
also reflects this phenomenon: within each row, the logits of feasible nodes become increasingly
close to one another (approaching white) over time, indicating convergence to diverse but correct
transitions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(a) Epoch 10000 (b) Epoch 30000 (c) Epoch 100000 (d) Epoch 300000

Figure 4: Heatmap of normalized logits from the Q-learning model with process reward. For each
row i , green blocks indicate valid next nodes given the current node 0 and target node i. The logits
corresponding to these valid actions consistently increase during training.

6 CONCLUSION

In this paper, we analyze the benefits and limitations of reinforcement learning in language model
planning through the lens of learning dynamics. Our theoretical analysis shows that supervised
fine-tuning introduces spurious co-occurrence solutions, while policy gradient and Q-learning out-
perform SFT primarily through exploration. We further identify a critical drawback of basic pol-
icy gradient—diversity collapse—and show that Q-learning mitigates this issue while supporting
off-policy learning. These insights clarify the mechanisms behind the recent success of RL-based
approaches and highlight principled research directions, such as leveraging Q-learning for robust,
scalable, and generalizable planning in language models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We attach all the source code necessary to reproduce our experimental results in the supplemen-
tary materials. As for the theoretical results, complete proofs of all the theorems are provided in
Appendix C, D, and E for full transparency and verification.

REFERENCES

Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang
Yang. Graphllm: Boosting graph reasoning ability of large language model. arXiv preprint
arXiv:2310.05845, 2023.

Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li. Graphwiz: An instruction-following language
model for graph computational problems. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 353–364, 2024a.

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language
and graph assistant. arXiv preprint arXiv:2402.08170, 2024b.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025.

Andrew Cohen, Andrey Gromov, Kaiyu Yang, and Yuandong Tian. Spectral journey: How trans-
formers predict the shortest path. arXiv preprint arXiv:2502.08794, 2025.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

Xinnan Dai, Haohao Qu, Yifen Shen, Bohang Zhang, Qihao Wen, Wenqi Fan, Dongsheng Li, Jiliang
Tang, and Caihua Shan. How do large language models understand graph patterns? a benchmark
for graph pattern comprehension. arXiv preprint arXiv:2410.05298, 2024.

Xinnan Dai, Kai Yang, Jay Revolinsky, Kai Guo, Aoran Wang, Bohang Zhang, and Jiliang Tang.
From sequence to structure: Uncovering substructure reasoning in transformers. arXiv preprint
arXiv:2507.10435, 2025.

Murtaza Dalal, Tarun Chiruvolu, Devendra Chaplot, and Ruslan Salakhutdinov. Plan-seq-
learn: Language model guided rl for solving long horizon robotics tasks. arXiv preprint
arXiv:2405.01534, 2024.

Artur Back De Luca and Kimon Fountoulakis. Simulation of graph algorithms with looped trans-
formers. arXiv preprint arXiv:2402.01107, 2024.

Jiayan Guo, Lun Du, and Hengyu Liu. Gpt4graph: Can large language models understand graph
structured data? an empirical evaluation and benchmarking. arXiv preprint arXiv:2305.15066,
2023.

Xiaojun Guo, Ang Li, Yifei Wang, Stefanie Jegelka, and Yisen Wang. G1: Teaching llms to reason
on graphs with reinforcement learning. arXiv preprint arXiv:2505.18499, 2025.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: LLMs can’t plan, but can help planning
in LLM-modulo frameworks. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=Th8JPEmH4z.

Xufang Luo, Yuge Zhang, Zhiyuan He, Zilong Wang, Siyun Zhao, Dongsheng Li, Luna K Qiu, and
Yuqing Yang. Agent lightning: Train any ai agents with reinforcement learning. arXiv preprint
arXiv:2508.03680, 2025.

11

https://openreview.net/forum?id=Th8JPEmH4z

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, and Xing Xie.
Graphinstruct: Empowering large language models with graph understanding and reasoning ca-
pability. arXiv preprint arXiv:2403.04483, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa Jojic, Hamid
Palangi, Robert Ness, and Jonathan Larson. Evaluating cognitive maps and planning in large
language models with CogEval. Advances in Neural Information Processing Systems, 36, 2023.

Nanda Neel, Chan Lawrence, Lieberum Tom, Smith Jess, and Steinhardt Jacob. Progress measures
for grokking via mechanistic interpretability. In International Conference on Learning Represen-
tations, 2023.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and
Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms. arXiv
preprint arXiv:2402.05862, 2024.

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
algorithms. Advances in Neural Information Processing Systems, 37:78320–78370, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
without verification or rl is suboptimal. arXiv preprint arXiv:2502.12118, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
gingGPT: Solving AI tasks with ChatGPT and its friends in Huggingface. Advances in Neural
Information Processing Systems, 36, 2023.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving Olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao
Kambhampati. Planbench: An extensible benchmark for evaluating large language
models on planning and reasoning about change. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 38975–38987. Curran Associates, Inc., 2023a. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
7a92bcdede88c7afd108072faf5485c8-Paper-Datasets_and_Benchmarks.
pdf.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models-a critical investigation. Advances in Neural Informa-
tion Processing Systems, 36, 2023b.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023a.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/7a92bcdede88c7afd108072faf5485c8-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7a92bcdede88c7afd108072faf5485c8-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7a92bcdede88c7afd108072faf5485c8-Paper-Datasets_and_Benchmarks.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? Advances in Neural Information
Processing Systems, 36, 2023b.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):1–26, 2024a.

Siwei Wang, Yifei Shen, Shi Feng, Haoran Sun, Shang-Hua Teng, and Wei Chen. Alpine: Unveil-
ing the planning capability of autoregressive learning in language models. Advances in neural
information processing systems, 37:119662–119688, 2024b.

Qinzhuo Wu, Wei Liu, Jian Luan, and Bin Wang. Toolplanner: A tool augmented llm for multi gran-
ularity instructions with path planning and feedback. arXiv preprint arXiv:2409.14826, 2024a.

Xixi Wu, Yifei Shen, Caihua Shan, Kaitao Song, Siwei Wang, Bohang Zhang, Jiarui Feng, Hong
Cheng, Wei Chen, Yun Xiong, et al. Can graph learning improve planning in llm-based agents?
Advances in Neural Information Processing Systems, 37:5338–5383, 2024b.

Jingkang Yang, Yuhao Dong, Shuai Liu, Bo Li, Ziyue Wang, Haoran Tan, Chencheng Jiang, Jiamu
Kang, Yuanhan Zhang, Kaiyang Zhou, et al. Octopus: Embodied vision-language programmer
from environmental feedback. In European conference on computer vision, pp. 20–38. Springer,
2024.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
Zhongzhi Li, Xiangyuan Xue, Yijiang Li, et al. The landscape of agentic reinforcement learning
for llms: A survey. arXiv preprint arXiv:2509.02547, 2025a.

Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
Tian, Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models.
arXiv preprint arXiv:2509.08827, 2025b.

Hanlin Zhu, Baihe Huang, Shaolun Zhang, Michael Jordan, Jiantao Jiao, Yuandong Tian, and Stu-
art J Russell. Towards a theoretical understanding of the’reversal curse’via training dynamics.
Advances in Neural Information Processing Systems, 37:90473–90513, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

In this paper, the core conceptual framework and its iterative development were driven by human
researchers. LLMs served strictly in a supporting capacity, primarily employed for linguistic re-
finement of the manuscript to enhance readability while preserving original technical content. The
whole paper is carefully supervised, reviewed, and modified by the authors who maintain complete
responsibility for the scientific validity, technical accuracy, and ethical integrity of this work.

B MORE RELATED WORKS

B.1 PLANNING OF LLMS

Planning is a fundamental component of human intelligence and autonomous agents. Several stud-
ies have evaluated the planning capabilities of LLMs trained without reinforcement learning, such
as CogEval (Momennejad et al., 2023) and Blockworlds (Valmeekam et al., 2023b). These works
consistently report negative results, suggesting that LLMs lack inherent planning abilities. In con-
trast, models such as o1 show the ability to solve such problems, though the underlying mechanisms
remain unclear.

On the other hand, LLM-based agents have demonstrated remarkable competence in performing
real-world planning tasks, even without RL training (Wang et al., 2024a). Many of these plan-
ning tasks can be naturally abstracted as path planning problems on a graph. For example, in
tool-augmented agents (Shen et al., 2023), tool dependencies can be modeled as a graph where
nodes represent tools and edges represent dependency relations (Wu et al., 2024b). Planning, in
this context, involves finding a path of tools to fulfill the user’s request. Similarly, in mathemati-
cal reasoning agents (Trinh et al., 2024), theorem dependencies form a graph where constructing a
proof is equivalent to finding a path. In game-playing agents such as Voyager (Wang et al., 2023a),
skill dependencies create a graph structure where planning determines the sequence of skills needed
to accomplish tasks. These observations motivate our abstraction of planning as a path planning
problem in this work.

Agents trained without RL face two key challenges: (1) supervised fine-tuning loss is misaligned
with the agent’s ultimate objectives, and (2) real-world data is scarce. RL addresses the first issue
by explicitly optimizing for the end goal through a reward signal, and the second by generating
exploratory data. Consequently, RL significantly mitigates these limitations and improves perfor-
mance (Zhang et al., 2025a). Our paper further examines the benefits of RL over SFT, as well as the
limitations of RL, providing insights for future research directions.

B.2 RL FOR LLMS

Recently, RL has been widely adopted to enhance reasoning capabilities in language models, exem-
plified by milestone systems such as OpenAI’s o1 and DeepSeek-R1. This paradigm has inspired
a new wave of reasoning-focused models, including Qwen-3 and Phi-4 Reasoning (Zhang et al.,
2025b). State-of-the-art LLM-based agents also commonly employ RL (Zhang et al., 2025a).

Despite its empirical success, the mechanisms by which RL improves LLM performance remain an
active area of research, with current understanding scattered across multiple works. For instance,
Chu et al. (2025) empirically compares SFT and RL on reasoning benchmarks, concluding that RL
provides better generalization. Theoretical analysis in (Setlur et al., 2025) further shows that any
verification-free approach, such as SFT, is suboptimal. Additionally, Yue et al. (2025) identifies an
entropy mechanism, establishing and empirically validating a trade-off between entropy and accu-
racy during RL training.

In this paper, we focus on path planning as a case study and derive results consistent with prior
work: (1) SFT tends to memorize training data and produce co-occurrence-driven outputs; (2) RL
surpasses SFT primarily through exploration; and (3) diversity collapse occurs during PG training.
Beyond these findings, we uncover evidence suggesting that Q-learning may offer advantages over
policy gradient methods, introducing a new perspective on RL for LLMs.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.3 GRAPH PROBLEMS WITH LANGUAGE MODELS

Graph problems serve as a valuable testbed for analyzing the reasoning capabilities of language
models. From an empirical standpoint, several benchmarks have been proposed (Guo et al., 2023;
Wang et al., 2023b; Dai et al., 2024), spanning a spectrum of tasks: classic graph problems (e.g.,
connectivity, path-finding, and pattern detection), graph neural network (GNN) benchmarks (e.g.,
node and graph classification), and semantic graph-based question answering (e.g., on knowledge
graphs). Without additional training, LLMs generally underperform on these tasks. To improve
performance, early approaches leverage instruction tuning and DPO (Luo et al., 2024; Chen et al.,
2024a; Perozzi et al., 2024; Chai et al., 2023; Chen et al., 2024b), while later methods employ
RL (Guo et al., 2025), which consistently achieves superior results.

There are three major paradigms for analyzing how transformers solve graph-related reasoning tasks.
The first is mechanistic interpretability, which reverse-engineers trained model weights (Neel et al.,
2023). For example, Cohen et al. (2025) observed that transformers implement a spectral algorithm
to compute shortest paths. However, this paradigm largely relies on empirical observation without
theoretical grounding. The second paradigm is based on expressiveness analysis (Dai et al., 2024;
Sanford et al., 2024; Dai et al., 2025; De Luca & Fountoulakis, 2024), constructing weight configu-
rations that enable transformers to simulate algorithms. Yet, such configurations are often unrealistic
for transformers trained via SGD (e.g., embedding vectors explicitly set to 1, 2, . . . , L (Dai et al.,
2024)). The third paradigm investigates gradient dynamics, which is both practical and challenging
due to the non-convexity of the optimization landscape. Prior work has analyzed path-finding in
directed graphs (Wang et al., 2024b) and compositionality of paths (Zhu et al., 2024).

To the best of our knowledge, this work presents the first analysis of RL gradient dynamics in LLMs.
Our results explain why RL-based methods outperform SFT approaches and highlight the potential
advantages of Q-learning–driven methods, opening promising directions for future research.

C APPENDIX FOR SFT

C.1 PATH PLANNING ALGORITHM IN TRANSFORMER

Algorithm 1 A handcrafted path planning algorithm

1: Input: Adjacency matrix A, reachability matrix R, source node s, target node t
2: Set path P = [s t s] and set current node i = s
3: while i ̸= t do
4: Obtain S = {k|A(i,k) = 1 and R(t,k) = 1}
5: Randomly sample next node k from S
6: Append k to path P , and set i = k
7: end while
8: output path P

C.2 PROOF OF THEOREM 3.1

Proof. The next-token prediction cross-entropy loss can be written as

ℓ = −
∑

u∈DSFT

∑
m≥1

∑
k

δk=um+1 log ûm[k].

Under the assumption that the output distribution ûm depends only on the target node utarget and the
current node um, we can aggregate identical terms, and express the loss as

−
∑

utarget,um

(∑
k′

Nutarget,um,k′

)(∑
k

Nutarget,um,k∑
k′ Nutarget,um,k′

log
exp(f(utarget, um)[k])∑
k′ exp(f(utarget, um)[k′])

)
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

If
∑

k′ Nutarget,um,k′ ̸= 0, the expression in brackets is the cross-entropy between the empirical
distribution and the distribution of doing softmax on vector f(utarget, um). It is minimized when

exp(f(utarget, um)[k])∑
k′ exp(f(utarget, um)[k′])

=
Nutarget,um,k∑
k′ Nutarget,um,k′

.

If
∑

k′ Nutarget,um,k′ = 0, the loss does not depend on f(utarget, um), so it can be any valid probability
distribution.

D APPENDIX FOR POLICY GRADIENT

D.1 PROOF OF THEOREM 4.1

Proof. In this case, the loss function of policy gradient is

ℓ =
∑

u∈DRL,t

δu∈P

−∑
m≥1

log ûm[um+1]

 =
∑

u∈DRL,t∩P

−∑
m≥1

log ûm[um+1]

 .

D.2 PROOF OF THEOREM 4.2

Proof. We first rewrite the loss function as

ℓ =
∑

u∈DRL,t∩P

−∑
m≥1

log ûm[um+1]

 =
∑
i,j,k

NR,P,t
i,j,k

(
− log

exp(f(i, j)[k])∑
k′ exp(f(i, j)[k′])

)
,

where NR,P,t
i,j,k denote the number of times that utarget = i, um = j and um+1 = k for m ≥ 1 in set

DRL,t ∩ P . Then we can take the gradient and get

∂ℓ

∂f(i, j)[k]
= −NR,P,t

i,j,k +
exp(f(i, j)[k])∑
k′ exp(f(i, j)[k′])

∑
k′

NR,P,t
i,j,k′ .

For a wrong tuple i, j, k (where k is not adjacent with j or k cannot reach i), NR,P,t
i,j,k is always zero.

Thus, the gradient is always positive. On the other hand, we will also have∑
k

∂ℓ

∂f(i, j)[k]
= −

∑
k

NR,P,t
i,j,k +

∑
k exp(f(i, j)[k])∑
k′ exp(f(i, j)[k′])

∑
k′

NR,P,t
i,j,k′ = 0.

D.3 PROOF OF THEOREM 4.3

Proof. Note that

KL(UC(i,j)||softmax(f(i, j)) =
∑

k∈C(i,j)

1

|C(i, j)|

(
− log |C(i, j)| − log

exp(f(i, j)[k])∑
k′∈C(i,j) exp(f(i, j)[k

′])

)

= − log |C(i, j)| − 1

|C(i, j)|
∑

k∈C(i,j)

log
exp(f(i, j)[k])∑

k′∈C(i,j) exp(f(i, j)[k
′])

.

Thus, it is sufficient to prove

∑
k∈C(i,j)

log
exp(f t(i, j)[k])∑

k′∈C(i,j) exp(f
t(i, j)[k′])

≥ E

 ∑
k∈C(i,j)

log
exp(f t+1(i, j)[k])∑

k′∈C(i,j) exp(f
t+1(i, j)[k′])

 .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

According to the gradient, we have that

f t+1(i, j)[k] = f t(i, j)[k]− η

−NR,P,t
i,j,k +

exp(f(i, j)[k])∑
k′∈C(i,j) exp(f(i, j)[k

′])

∑
k′∈C(i,j)

NR,P,t
i,j,k′

 ,

Here η is the step size.

Let NR,P,t
i,j =

∑
k′∈C(i,j) N

R,P,t
i,j,k′ , then due to the on-policy updating in policy gradient, we know

that NR,P,t
i,j,k is the counter of outcome k for NR,P,t

i,j independent multi-nomial random variables with

parameters
{

exp(f t(i,j)[k])∑
k′∈C(i,j) exp(f

t(i,j)[k′])

}
k∈C(i,j)

. This means that

E[f t+1(i, j)[k]] = f t(i, j)[k].

Moreover, since log
(∑

k′∈C(i,j) exp(f
t(i, j)[k′])

)
is a convex function, we also have

E

log
 ∑

k′∈C(i,j)

exp(f t+1(i, j)[k′])

 ≥ log

 ∑
k′∈C(i,j)

exp(E[f t+1(i, j)[k′]])


= log

 ∑
k′∈C(i,j)

exp(f t(i, j)[k′])


Because of this, we have

∑
k∈C(i,j)

log
exp(f t(i, j)[k])∑

k′∈C(i,j) exp(f
t(i, j)[k′])

− E

 ∑
k∈C(i,j)

log
exp(f t+1(i, j)[k])∑

k′∈C(i,j) exp(f
t+1(i, j)[k′])


=

∑
k∈C(i,j)

f t(i, j)[k]− E

 ∑
k∈C(i,j)

f t+1(i, j)[k]

− |C(i, j)| log

 ∑
k′∈C(i,j)

exp(f t(i, j)[k′])


+|C(i, j)|E

log
 ∑

k′∈C(i,j)

exp(f t+1(i, j)[k′])


≥ 0.

D.4 PROOF OF THEOREM 4.4

Proof. When λ > 0, the loss function is

ℓ =
∑
i,j,k

NR,P,t
i,j,k (− logq(i, j)[k]) + λ

∑
i,j,k

NR,t
i,j,k

(
logq(i, j)[k]

{
log

q(i, j)[k]

qbase(i, j)[k]

})
,

where NR,t
i,j,k denote the number of times that utarget = i, um = j and um+1 = k for m ≥ 1 in set

DRL,t.

We can take the gradient and get:

∂ℓ

∂f(i, j)[k]
= −NR,P,t

i,j,k + q(i, j)[k]
∑
k′

NR,P,t
i,j,k′ + λNR,t

i,j,k(1− q(i, j)[k]) log
q(i, j)[k]

qbase(i, j)[k]

−λ
∑
k′ ̸=k

NR,t
i,j,k′q(i, j)[k] log

q(i, j)[k]

qbase(i, j)[k]
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Taking expectation, we can get:

E
[

∂ℓ

∂f(i, j)[k]

]
= −E[NR,P,t

i,j,k] + q(i, j)[k]
∑
k′

E[NR,P,t
i,j,k′] + λE[NR,t

i,j,k](1− q(i, j)[k]) log
q(i, j)[k]

qbase(i, j)[k]

−λ
∑
k′ ̸=k

E[NR,t
i,j,k′]q(i, j)[k] log

q(i, j)[k]

qbase(i, j)[k]
.

Letting NR,t
i,j =

∑
k N

R,t
i,j,k, then due to on-policy training, we have that E[NR,P,t

i,j,k] =

NR,t
i,j q(i, j)[k]p(i, j)[k], and E[NR,t

i,j,k] = NR,t
i,j q(i, j)[k].

Hence

E
[

∂ℓ

∂f(i, j)[k]

]
= −NR,t

i,j q(i, j)[k]p(i, j)[k] +NR,t
i,j q(i, j)[k]

∑
k′

q(i, j)[k′]p(i, j)[k′]

+λNR,t
i,j q(i, j)[k](1− q(i, j)[k]) log

q(i, j)[k]

qbase(i, j)[k]
− λNR,t

i,j

∑
k′ ̸=k

q(i, j)[k]q(i, j)[k′] log
q(i, j)[k]

qbase(i, j)[k]

= NR,t
i,j q(i, j)[k]

∑
k′

q(i, j)[k′]

(
p(i, j)[k]− p(i, j)[k′] + λ log

q(i, j)[k]

qbase(i, j)[k]
− λ log

q(i, j)[k′]

qbase(i, j)[k′]

)
.

The stable point must satisfy that, for any tuple i, j, k, E
[

∂ℓ
∂f(i,j)[k]

]
= 0. And we claim that in this

case, for fixed i, j and any k′ such that q(i, j)[k′] > 0, their p(i, j)[k′] + λ log q(i,j)[k′]
qbase(i,j)[k′]

should

equal. Otherwise we can always look for k∗ = argmink′:q(i,j)[k′]>0 p(i, j)[k
′] + λ log q(i,j)[k′]

qbase(i,j)[k′]
,

and its expected gradient E
[

∂ℓ
∂f(i,j)[k∗]

]
is strict negative.

E APPENDIX FOR Q-LEARNING

E.1 PROOF OF LEMMA 5.1

Proof. Fix any triple (i, j, k). Consider training sequences whose first two nodes satisfy usource ∈ V
and utarget = i. By the definition of the training process, P(usource ∈ V, utarget = i) > 0. Under
ϵ-exploration uniform over V ,

∀v ∈ V : P(next node = v) ≥ ϵ/|V|.
Condition on the event {usource ∈ V, utarget = i}. Then in the next two decisions,

P(u2 = j | usource ∈ V, utarget = i) ≥ ϵ/|V|, P(u3 = k | usource ∈ V, utarget = i, u2 = j) ≥ ϵ/|V|.
Hence

P(utarget = i, u2 = j, u3 = k) ≥ p0(ϵ/|V|)2 > 0.

Each occurrence of (utarget, u2, u3) = (i, j, k) triggers one update of f(i, j)[k]. Since each occur-
rence yields an update of f(i, j)[k], we obtain

lim inf
T→∞

1

T

T−1∑
t=0

δ(it,jt,kt)=(i,j,k) ≥ Nprop
i,j,k > 0,

which is the persistent exploration condition.

E.2 PROOF OF THEOREM 5.1

Proof. At a stable point, the expected update of each coordinate vanishes. The per-step loss is

ℓ =
(
f(utarget, um)[um+1]− δu∈P δum+1=utarget − {max

k′
f(utarget, um+1)[k

′]}
)2
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Taking the gradient with respect to f(utarget, um)[um+1] and setting the expectation to zero yields,
for every triple (i, j, k),

f(i, j)[k] = E[δu∈P δk=i] + max
k′

f(i, k)[k′]. (4)

If k ̸= i, the expectation term in equation 4 vanishes, so

f(i, j)[k] = max
k′

f(i, k)[k′],

which does not depend on j. Thus, for each k ̸= i, we have

f(i, j)[k] = max
k′

f(i, k)[k′] = max
k′ ̸=i

(
max
k′′

f(i, k′)[k′′], f(i, k)[i]
)
= max

k′ ̸=i
max
k′′

f(i, k′)[k′′].

Here the second equality separates the case k′ = i from k′ ̸= i: if k′ = i, the chain terminates
immediately, corresponding to the · · · → k → i path, so we take the value f(i, k)[i] directly. If k′ ̸=
i, we must expand one step further, leading to maxk′′ f(i, k′)[k′′]. The last equality then observes
that including the k′ = i term does not change the maximization, since it is already dominated by
the expansion over k′ ̸= i. Thus the final expression simply enumerates all possible terms with the
restriction k′ ̸= i. This expression no longer depends on k or j.

Therefore, for each fixed i and k ̸= i, all f(i, j)[k] take a common value ci, independent of j and
k.

E.3 PROOF OF THEOREM 5.2

Proof. For clarity, we introduce two notations that will be used repeatedly. First, for i, k ∈ [n] and
iteration t, define

S
(t)
i,k := max

k′
f (t)(i, k)[k′].

Second, we write k ∈ Anc(i) if there exists m ≥ 1 such that (Am)[k, i] = 1, i.e. k is an ancestor of
i.

The per-step loss under the process reward is

ℓ =
(
f(utarget, um)[um+1]− (δum+1=utarget − δ(um,um+1)/∈E)− {max

k′
f(utarget, um+1)[k

′]}
)2
.

Taking the gradient with respect to the active coordinate f(utarget, um)[um+1] gives

∂ℓ

∂f(utarget, um)[um+1]
= 2
(
f(utarget, um)[um+1]−δum+1=utarget+δ(um,um+1)/∈E−max

k′
f(utarget, um+1)[k

′]
)
.

Applying gradient descent with learning rate η yields

f(utarget, um)[um+1]← (1−2η) f(utarget, um)[um+1]+2η
(
δum+1=utarget−δ(um,um+1)/∈E+max

k′
f(utarget, um+1)[k

′]
)
.

Renaming (i, j, k) = (utarget, um, um+1) and writing S
(t)
i,k = maxk′ f (t)(i, k)[k′], the recursion is

f (t+1)(i, j)[k] = (1− 2η)f (t)(i, j)[k] + 2η(δk=i + (A[j, k]− 1) + S
(t)
i,k). (⋆)

When k = i, by convention S
(t)
i,i = 0, so the update is

f (t+1)(i, j)[i] = (1− 2η)f (t)(i, j)[i] + 2ηA[j, i].

This linear recursion has fixed point A[j, i] and solution

f (t)(i, j)[i] = (1− (1− 2η)t)A[j, i],

which converges to 1 if A[j, i] = 1 and to 0 otherwise. The contraction factor is |1− 2η|.

For k ̸= i, the limit of S
(t)
i,k must be analyzed. If k ∈ Anc(i) \ {i}, then either k is a parent

of i, in which case f (t)(i, k)[i] → 1 and hence S
(t)
i,k → 1, or k has a child r with r ∈ Anc(i).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Inductively S
(t)
i,r → 1, and then (⋆) implies f (t)(i, k)[r] → 1, so S

(t)
i,k → 1. If k /∈ Anc(i), then

all children r of k also satisfy r /∈ Anc(i), and inductively S
(t)
i,r → 0, giving f (t+1)(i, k)[r] =

(1−2η)f (t)(i, k)[r]+2ηS
(t)
i,r → 0. Thus S(t)

i,k → 0. Therefore the limit is S(t)
i,k → 1 if k ∈ Anc(i)\{i}

and S
(t)
i,k → 0 otherwise.

For k ̸= i, substituting the limiting S
(t)
i,k into (⋆) gives

f (t+1)(i, j)[k] = (1− 2η)f (t)(i, j)[k] + 2η((A[j, k]− 1) + S
(t)
i,k).

If A[j, k] = 1 and k ∈ Anc(i), then S
(t)
i,k → 1, so f (t)(i, j)[k]→ 1. If A[j, k] = 1 and k /∈ Anc(i),

then S
(t)
i,k → 0, so f (t)(i, j)[k]→ 0. If A[j, k] = 0 and k ∈ Anc(i), then S

(t)
i,k → 1, so the recursion

is f (t+1)(i, j)[k] = (1− 2η)f (t)(i, j)[k], implying f (t)(i, j)[k]→ 0. If A[j, k] = 0 and k /∈ Anc(i),
then S

(t)
i,k → 0, so the recursion is f (t+1)(i, j)[k] = (1 − 2η)f (t)(i, j)[k] − 2η, which converges to

−1. These limits match the cases in the theorem.

To establish rates, define the weight error eWt (i, j, k) = f (t)(i, j)[k]− f⋆(i, j)[k] and the max error
eSt (i, k) = S

(t)
i,k − S⋆

i,k. When k = i, the recursion is

eWt+1(i, j, i) = (1− 2η) eWt (i, j, i),

so each update contracts the error by |1 − 2η|. Under persistent exploration, the coordinate (i, j, i)
is updated with positive frequency Nprop

i,j,i , so in global time

|eWt (i, j, i)| ≤ C (|1− 2η|N
prop
i,j,i−ε)t

for any ε > 0 and large enough t.

When k ̸= i, the recursion is
eWt+1(i, j, k) = (1− 2η) eWt (i, j, k) + 2η eSt (i, k).

The error eSt (i, k) depends only on {eWt (i, k, r) : r is a child of k}. Along any directed path
k = v0 → v1 → · · · → vm = i, the error at k can decay only after the error at v1 has already
decayed, and so on. Thus, the effective contraction factor for eWt (i, j, k) is the product of the per-
edge contraction rates

m−1∏
n=0

(|1− 2η|N
prop
i,vn,vn+1).

Formally, by induction, for any ε > 0 and sufficiently large t we have

|eWt (i, j, k)| ≤ C

(
max

paths p:k→i

∏
(vn,vn+1)∈p

|1− 2η|N
prop
i,vn,vn+1

−ε

)t

.

Therefore, all iterates converge linearly in global time, with effective rates determined jointly by η
and the update proportions Nprop

i,j,k . This completes the proof.

E.4 PROOF OF THEOREM 5.3

Proof. Let Nprop
i,j,k denote the asymptotic proportion of triples (utarget, um, um+1) = (i, j, k) oc-

curring in the generated sequences at the stable point, under the given sampling method and the
persistent exploration condition. Equivalently, Nprop

i,j,k is the limiting frequency with which state j

transitions to k with target i in the trajectories sampled by the model. By definition Nprop
i,j,k > 0 for

all i, j, k.

At a stable point of the updates, the expected gradient with respect to each parameter must vanish.
Averaging the stationarity conditions with weights Nprop

i,j,k yields, for all i, j,∑
j

Nprop
i,j,k

(
WM [j, k] +WV [i, k]−A[j, k] + 1− δi=k −max

k′
(WM [k, k′] +WV [i, k′])

)
= 0,

∑
i

Nprop
i,j,k

(
WM [j, k] +WV [i, k]−A[j, k] + 1− δi=k −max

k′
(WM [k, k′] +WV [i, k′])

)
= 0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Introduce centered variables
Sj,k := WM [j, k]−A[j, k] + 1, Ti,k := WV [i, k]− δi=k −max

k′
(WM [k, k′] +WV [i, k′]),

so that normalizing each sum by its positive denominator gives the block system
Sk +Pk Tk = 0, Tk +Qk Sk = 0, (5)

where Sk = (Sj,k)j∈[n], Tk = (Ti,k)i∈[n], and

(Pk)[j, i] =
Nprop

i,j,k∑
i′ N

prop
i′,j,k

, (Qk)[i, j] =
Nprop

i,j,k∑
j′ N

prop
i,j′,k

.

Since Nprop
i,j,k > 0, every entry of Pk,Qk is strictly positive, and both are row-stochastic. Hence

PkQk and QkPk are strictly positive stochastic matrices. By the Perron–Frobenius theorem, both
have a simple eigenvalue 1 with eigenvector 1, and all other eigenvalues satisfy |λ| < 1. Thus

ker(I−PkQk) = span{1}, ker(I−QkPk) = span{1}.
From equation 5, eliminating Tk yields Sk = (PkQk)Sk, so Sk = ck1 for some ck ∈ R, and then
Tk = −QkSk = −ck1. Returning to the definitions,

WM [j, k] = A[j, k]− 1 + ck, WV [i, k] = δi=k +max
k′

(WM [k, k′] +WV [i, k′])− ck.

Substituting WM [k, k′] = A[k, k′]− 1 + ck and writing Vi,k′ := WV [i, k′]− ck gives
Vi,k = δi=k + max

k′:A[k,k′]=1
Vi,k′ .

On a DAG, the unique {0, 1} solution of this recursion is the reachability indicator Ri,k. An induc-
tion over a topological order shows Vi,k = Ri,k for all i, k. Therefore

WV [i, k] = R[i, k]− ck.

Finally, note that if (Sk,Tk) solves equation 5, then so does (Sk + c1,Tk − c1) for any c ∈ R,
since Pk1 = Qk1 = 1. Hence, the solution set for each k is exactly a one-dimensional affine line
parametrized by ck.

Conversely, if (WM ,WV) is of the above form, then plugging it into the update equations shows
that the expected increment is identically zero: both sides of the gradient equations cancel by con-
struction, so the point is stationary. Therefore, these conditions are not only necessary but also
sufficient for stability.

F EQUIVALENCE OF UNCLIPPED PPO AND POLICY GRADIENT

For a sequence u, the policy gradient objective is

ℓPG(u) = −
∑
m≥1

R(u) log ûm[um+1],

where R(u) = r δu∈P + p. Taking the gradient gives

∇θℓPG(u) = −
∑
m≥1

R(u)∇θ log ûm[um+1]

= −
∑
m≥1

R(u)
∇θûm[um+1]

ûm[um+1]
.

For unclipped PPO, the ratio between new and old probabilities is formed, with the denominator
detached. The loss is

ℓPPO-uc(u) = −
∑
m≥1

R(u)
ûm[um+1]

{ûm[um+1]}
.

Since the denominator {ûm[um+1]} is treated as constant, its gradient vanishes. Thus

∇θℓPPO-uc(u) = −
∑
m≥1

R(u)
∇θûm[um+1]

{ûm[um+1]}
.

Comparing with the policy gradient expression, we see the two gradients coincide. Therefore, for
any fixed sequence u, unclipped PPO with a stop-gradient denominator is exactly equivalent to
vanilla policy gradient.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Attention weights in SFT after different training iterations

(b) Attention weights in PG (λ = 0) after different training iterations

(c) Attention weights in Q-learning (Process Reward) after different training iterations

Figure 5: Empirical validation that the trained one-layer one-head transformer acts as a function
of the target node and the current node. The visualization of attention maps across SFT, PG, and
Q-learning training shows a consistent, strong focus on the target node (token position 1).

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 VALIDATION OF LEARNED ATTENTION

This subsection visualizes the evolution of attention maps during training for SFT, PG, and Q-
learning. Our analysis first focuses on a one-layer, one-head transformer at various training steps
(Figure 5). For each model, we compute the average attention weight over the SFT training dataset
DSFT.

Specifically, the weight at position i in row k (where i ≤ k) represents the average attention the
model assigns to the i-th token when predicting the (k + 1)-th token, averaged over all paths in
DSFT longer than k + 1. Since the underlying graph has 100 sparse nodes, path lengths in DSFT are
generally short; consequently, we display only the first 8 rows.

Our visualizations reveal that during SFT, the transformer allocates most attention to the target node.
Combined with the residual connections, which allow access to the current node’s information, this
suggests that the model learns to predict the next node based primarily on the target and current
nodes. This empirical finding aligns with the results of Wang et al. (2024b). Another interesting
phenomenon in SFT is that the attention weight on the target node quickly peaks and then gradually
decreases, while remaining dominant. We hypothesize that this may be due to overfitting on DSFT,
leading the model to develop auxiliary prediction strategies. This overfitting could also explain the
decreasing generalization performance of SFT observed in our experiments.

In contrast, for both PG and Q-learning, the attention on the target node increases throughout train-
ing. In Q-learning, the final attention weight on the target node exceeds 95%, making it the closest
to the conditions outlined in Assumption 3.1.

To further validate our findings, we extend the analysis to a two-layer, one-head transformer. As
shown in Figure 6, which displays the attention map averaged overDSFT, both layers predominantly
attend to the target and current nodes. This pattern strongly supports our assumption that the trans-
former operates as a function of the target and current nodes, confirming the consistency of this
behavior across model architectures.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) Attention weights in SFT after different training iterations

(b) Attention weights in PG (λ = 0) after different training iterations

(c) Attention weights in Q-learning (Process Reward) after different training iterations

Figure 6: Empirical validation that the trained two-layer one-head transformer acts as a function of
the target and current nodes.

G.2 EXPERIMENTS ON ERDŐS-RÉNYI GRAPHS

Beyond the setup in Section 2, we conduct additional experiments to compare RL methods with SFT.
The graph construction and initial SFT stage remain unchanged. After SFT, we split all reachable
pairs into an RL training set DRL-Train and an RL test set DRL-Test. This yields four intersections:
DTrain2Train := DTrain ∩ DRL-Train, DTrain2Test := DTrain ∩ DRL-Test, DTest2Train := DTest ∩
DRL-Train, and DTest2Test := DTest ∩DRL-Test.

During the RL process, the model generates paths for pairs in DRL-Train and receives reward signals.
The main difference between this setup and that in Section 2 is that the RL training set now contains
new pairs that were unseen during SFT (DTest2Train). Therefore, the initial model is not perfect on
these new training pairs. Additionally, some pairs from the SFT training set are not used for RL
training (DTrain2Test), which allows us to measure the extent of forgetting. We consider the same

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Training Step

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

 o
n

D
Tr

ai
n2

Tr
ai

n

0 2000 4000 6000 8000 10000
Training Step

Ac
cu

ra
cy

 o
n

D
Tr

ai
n2

Te
st

0 2000 4000 6000 8000 10000
Training Step

Ac
cu

ra
cy

 o
n

D
Te

st
2T

ra
in

0 2000 4000 6000 8000 10000
Training Step

Ac
cu

ra
cy

 o
n

D
Te

st
2T

es
t

PG PG (= 0.1) PG (= 0.01) PG (= 0.001) PG (= 0.0001)

Figure 7: The test accuracy of PG with different KL coefficients on four data splits after fine-tuning
the SFT model on DRL-Train. All accuracies are evaluated with greedy decoding.

0 60000 120000 180000 240000 300000
Training Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 o
n

D
Tr

ai
n2

Tr
ai

n

0 60000 120000 180000 240000 300000
Training Step

Ac
cu

ra
cy

 o
n

D
Tr

ai
n2

Te
st

0 60000 120000 180000 240000 300000
Training Step

Ac
cu

ra
cy

 o
n

D
Te

st
2T

ra
in

0 60000 120000 180000 240000 300000
Training Step

Ac
cu

ra
cy

 o
n

D
Te

st
2T

es
t

Q-Learning (Process Reward)

Figure 8: The test accuracy of Q-learning on four data splits after fine-tuning the SFT model on
DRL-Train. All accuracies are evaluated with greedy decoding.

RL algorithms introduced in Section 2: PG and Q-learning, whose training curves are presented in
Figures 7 and 8, respectively. All accuracies are evaluated using greedy decoding.

From Figure 7, we observe the opposing effects of KL regularization on DTrain2Test and DTest2Train.
PG without KL regularization (λ = 0) and less regularized PG (λ = 0.0001) achieve significantly
higher accuracy on DTest2Train. Stronger KL regularization hinders the model’s ability to learn new
pairs, which aligns with Takeaway 4: KL regularization reduces training accuracy. Conversely, PG
without KL regularization (λ = 0) tends to overfit the training data and exhibits continual forgetting
of previous knowledge learned during SFT. Results on DTest2Test further demonstrate that overly
strong KL regularization can hinder PG’s improvement. Among all settings, λ = 10−4 achieves
the best balance, indicating that a well-chosen KL weight can improve generalization with minimal
sacrifice in training accuracy.

Compared to PG and the performance observed in Section 5, Q-learning exhibits slower convergence
in this setting. One possible explanation is that the initial model performs poorly on the new training
pairs, generating more failure cases and causing stronger “re-instantiation.”

G.3 EXPERIMENTS ON GRAPH REPRESENTED FOR BLOCKSWORLD

We also run experiments on Blocksworld (Valmeekam et al., 2023a), a benchmark for evaluating
LLM planning ability (Kambhampati et al., 2024). The environment consists of blocks stacked on
a table, and the goal is to rearrange the blocks from an initial configuration to a target configuration
using a sequence of actions. We model this into a path-finding task, in which each configuration
is a node in a graph, and an edge connects two nodes if one configuration can be transformed into
the other by a single valid action, such as moving a block from one stack to another. We consider
Blocksworld with four blocks and construct an undirected graph with 73 nodes: 24 configurations
of a single stack of four blocks, 24 configurations with three blocks in one stack and one block on
the table, 12 configurations with two stacks of two blocks, 12 configurations with one stack of two
blocks and two blocks on the table, and one configuration with all blocks on the table.

Since accuracy comparison is not our focus, all node pairs are used for SFT training. The SFT
dataset contains 50,000 paths sampled from the graph, with source and target nodes drawn uni-
formly from the 73 nodes. During RL training, the model generates paths for, and is updated on, all

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

node pairs. We use policy gradient and Q-learning as introduced in Section 2. After training, we
evaluate the learned weights using the metric of Wang et al. (2024b), which measures the model’s
understanding of graph adjacency. As shown in Figure 1, with fixed training data, SFT may not learn
the complete adjacency very well. In contrast, both PG and Q-learning improve the learned adja-
cency. In particular, Q-learning nearly recovers the complete adjacency, consistent with the results
in Section 5.

25

	Introduction
	Preliminaries
	Path Planning Dataset: Syntax and Data Sources
	Reinforcement Learning Algorithms

	Limitations of Supervised Fine-Tuning in Planning
	Discussions on Existing Findings
	Characterization of the Stable Point in SFT-Based Learning Dynamics

	Path Planning Capacities of Policy Gradient
	Theoretical Analysis
	Empirical Validations

	Analysis of the Q-Learning-Based Planning Mechanism
	Theoretical Analysis
	Empirical Validations

	Conclusion
	The Use of Large Language Models
	More Related Works
	Planning of LLMs
	RL for LLMs
	Graph Problems with Language Models

	Appendix for SFT
	Path Planning Algorithm in Transformer
	Proof of Theorem 3.1

	Appendix for Policy Gradient
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4

	Appendix for Q-Learning
	Proof of Lemma 5.1
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Theorem 5.3

	Equivalence of Unclipped PPO and Policy Gradient
	Additional Experimental Results
	Validation of Learned Attention
	Experiments on Erdős-Rényi Graphs
	Experiments on Graph Represented for Blocksworld

