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ABSTRACT

Recent reinforcement learning (RL) methods have substantially enhanced the
planning capabilities of Large Language Models (LLMs), yet the theoretical basis
for their effectiveness remains elusive. In this work, we investigate RL’s bene-
fits and limitations through a tractable graph-based abstraction, focusing on pol-
icy gradient (PG) and Q-learning methods. Our theoretical analyses reveal that
supervised fine-tuning (SFT) may introduce co-occurrence-based spurious solu-
tions, whereas RL achieves correct planning primarily through exploration, un-
derscoring exploration’s role in enabling better generalization. However, we also
show that PG suffers from diversity collapse, where output diversity decreases
during training and persists even after perfect accuracy is attained. By contrast,
Q-learning provides two key advantages: off-policy learning and diversity preser-
vation at convergence. We further demonstrate that careful reward design is nec-
essary to prevent Q-value bias in Q-learning. Finally, applying our framework to
the real-world planning benchmark Blocksworld, we confirm that these behaviors
manifest in practice.

1 INTRODUCTION

Planning is a fundamental cognitive construct that underpins human intelligence, shaping our abil-
ity to organize tasks, coordinate activities, and formulate complex solutions such as mathematical
proofs. It enables humans to decompose complex goals into manageable steps, anticipate potential
challenges, and maintain coherence during problem solving. Similarly, planning plays a pivotal role
in state-of-the-art Large Language Models (LLMs), enhancing their ability to address structured and
long-horizon tasks with greater accuracy and reliability.

Early generations of LLMs primarily relied on next-token prediction and passive statistical learning,
which limited their planning capabilities to short-horizon, reactive responses. The ol family of mod-
els represents a major advance in planning by incorporating reinforcement learning (RL) objectives
that reward accurate, multi-step reasoning and penalize errors. Inspired by the success of ol, RL
has been applied to enhance planning capabilities in various settings, including task decomposition
for tool use (Wu et al.l 2024a; [Luo et al., 2025 and gaming (Yang et al., [2024), visual-language
spatial navigation (Chu et al., 2025), and long-horizon robotics tasks (Dalal et al.,[2024)). These ap-
proaches have demonstrated significantly better performance than their supervised fine-tuning (SFT)
counterparts. For more related works, please refer to Appendix [B]

Despite recent successes, the theoretical basis underlying RL’s advantage over SFT in planning tasks
and the limitations of current RL methods remain to be established. To enable a tractable analysis of
the gradient dynamics, we adopt the data generation model from (Wang et al., [2024b)). Within their
framework, planning is abstracted as a path-finding problem over a graph structure. For example, a
tool-use scenario can be modeled as identifying a valid call sequence within an API call graph (Wu
et al.l [2024b).

To capture the fundamental limitations of SFT in planning, we begin by presenting a structural
characterization of its stable point for path planning (Section[3). Our analyses, expanding the obser-
vation of [Wang et al.[(2024b)) that transformer-based LLM architectures cannot identify reachability
relationships through transitivity in SFT, show that it introduces co-occurrence-based spurious solu-
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tions into planning tasks. This characterization provides a basis for comparison with and motivation
for using the RL-based learning approach in language model planning.

Focusing on the behaviors of RL-based learning dynamics, we first consider policy gradient (PG),
a widely adopted algorithm for tuning large language models (Sectiond). Our analysis yields three
key findings. First, with only 0-1 outcome rewards, each iteration of PG equivalently corresponds
to an SFT process on the exploration data; however, PG empirically outperforms SFT due to the
exploration-driven data augmentation it enables. Second, although PG converges to a model that
outputs correct paths for all source—target pairs seen during training, we uncover a diversity collapse
phenomenon: the model’s output diversity steadily declines throughout training and continues to
diminish even after achieving 100% training accuracy. Third, we show that KL regularization acts
as an explicit diversity-preserving term, but at the expense of accuracy.

We then analyze Q-learning, a paradigm well known in game playing but rarely applied to
LLMs (Mnih et al, 2013) (Section [5). Our analysis yields two key findings. First, when trained
with only an outcome reward signal, Q-learning suffers from Q-value bias; however, incorporat-
ing process rewards eliminates this issue. Second, once this issue is addressed, Q-learning offers
two theoretical advantages over PG: it converges to a solution that preserves output diversity when
achieving optimal training accuracy, and it naturally supports off-policy learning. The latter is par-
ticularly important in practice, since rollouts performed with a quantized model or large batch sizes
are effectively off-policy, as exemplified by the VeRL framework (Sheng et al.l 2024). Finally, we
validate all these theoretical findings through experiments.

To summarize, our main contribution is a theoretical treatment of the impact of reinforcement learn-
ing on language model planning. Our mathematical analysis of learning dynamics sheds light on
phenomena observed in practice—for example, SFT tends to memorize while RL promotes gen-
eralization; PG methods often suffer from diversity collapse; and KL regularization helps mitigate
diversity degradation, albeit at the cost of reduced accuracy. Other findings point to promising future
directions, such as leveraging Q-learning to achieve both diversity and accuracy, as well as enabling
off-policy learning. Taken together, these results provide a principled foundation for understanding
and advancing reinforcement learning methods in language model planning.

2 PRELIMINARIES

2.1 PATH PLANNING DATASET: SYNTAX AND DATA SOURCES

Following (Wang et al.| 2024b), we abstract planning in large language models as path planning over
an unknown directed graph G = (V, ), where V represents the set of nodes and £ represents the
set of edges. Each node v € V is represented by a unique token. The language model’s vocabulary
consists of these node tokens and a special end-of-sequence token, \n. An edge (u,v) € & signifies
a directed connection from node w to node v. A node ¢ is reachable from a node s if a directed
path from s to ¢ exists in G. We denote by A € {0,1}VI*IVI the adjacency matrix of G, where
Alfu,v] = 1if and only if (u,v) € &, and by R € {0, 1}/VI*VI the reachability matrix, where
RJt, s] = 1if and only if ¢ is reachable from s.

Running Example (Blocksworld). To connect this abstraction to real-world LLM planning sce-
narios, consider the Blocksworld domain (Valmeekam et al.,|2023b)). In Blocksworld, we are given
several colored blocks (e.g., Grey, Black, Red, White) placed either on a table or stacked on each
other, and the task is to transform an initial arrangement (source state) into a target arrangement
(target state) using valid moves. For example, the source state may place all blocks on the table,
and the target state requires stacking them so that Red is on Grey, Grey is on Black, and Black is
on White. We map every distinct block configuration to a node in V; edges in £ correspond to valid
single moves such as “place White on Grey”. A valid plan is therefore equivalent to a path in G
connecting the source node s and target node ¢.

This abstraction matches natural language planning tasks: in the original benchmark, the LLM is
given two textual descriptions of initial and target states and asked to generate a sequence of natural
language actions to achieve the goal. In our abstract setup, we strip away language semantics to
focus on the core planning structure while retaining the same problem difficulty.
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The set of all reachable source-target pairs (s, ) is partitioned into a training set Dy,i, and a test
set Dtess. We define three corresponding data stages:

* SFT Training Data: We construct a training dataset DS¥T for supervised fine-tuning by sampling
multiple (K) paths for each reachable pair (s,t) € Dryain by random walk. Each training data in
DSFT g a sequence in the format “s ¢ s a b ¢ t \n”, where s a b ¢ t are tokens for nodes in a valid
path from s to ¢, and \n indicates the end of the sequence. We call the model after SFT training
the base model.

* RL Training Data: We sample pairs (s, t) from Dry.;, and let the model itself (on-policy) or the
base model (off-policy) generate the remaining tokens in the sequence. When the model outputs
\n or the generation reaches the maximum length, an outcome reward or some step rewards will
be given, depending on the used reward format.

» Test Data: When testing, we provide pairs (s,t) from Dres, which are never encountered in
either SFT or RL training. The model is tasked with generating a valid path from s to t.

Throughout the empirical study, we use a one-layer, single-head Transformer as the backbone model.
The embedding size is set to d = 120. The graph G in our main empirical validation is generated
using the Erd8s-Rényi model with |V| = 100 nodes and an edge probability of 0.15. The ratio
of the sets | Dyain|/|Dest| is approximately 0.25 (approximately 20% pairs are in Dryain). The
number of paths sampled for each reachable pair in Dy,;y, is X' = 10. We also consider the graph
GBW that characterizes the transition between different block configurations in Blocksworld, which
is proposed by [Valmeekam et al.| (2023a)) to evaluate the LLM’s planning ability. The details for the
graph construction are presented in Appendix

2.2 REINFORCEMENT LEARNING ALGORITHMS

We first define the notation. Given a vector x, we denote its m-th element by x[m]. For a given
sequence “s ¢t s a b ¢t \n”, we represent it as U = (Usource, Utarget, U1, - * 5 Um, - - - ). We denote by
1, the output probability vector of the current model at the m-th position, and by 4% that of the
base model before RL. The model parameters are denoted by 6.

Policy Gradient. Let P be the set of valid paths. The outcome reward is only given at the end of
the path and is defined by R(u) = r duep + p, where r > 0 and p are constants, and ¢ denotes the
indicator function that is 1 if condition is true and 0 otherwise. For an individual trajectory, the loss
function is

(== (R(u> log Tt [t 41] +A10g T [t 41] {log um{um} ) v

mo1 ﬁ?gse [Um+1]

Policy Gradient
KL Divergence

where A controls the KL regularization strength, and {-} means the term is detached and will not
contribute to the gradient.

Q-Learning. The goal of Q-learning is to approximate the Q-function with the model logits. Let
Q6(Sm,am) be the Q-function where s, = (Usource, Utarget; U1, - , U, ) is the state, an, € V
is the action, and s/, = (Usource, Utarget, U, * * * 5 Um, @) 1 their next state. The objective is

> (Qo(Sm,am) — [R(Sm, am) + maxa Qo(sh,, aﬁn)])Q. We denote the logits at step m by
U,,. For an individual trajectory, the loss is given by

2
= U — — U . 2

/ ngl (um[um+1] R(u,m) {mkax um+1[k‘]}> 2)

For Q-learning’s reward R(u, m), we study two scenarios: (i) outcome reward, where the reward

depends on whether the path is correct, and (ii) process reward, where intermediate rewards are
given based on adjacency and target checks. Specifically,

OueP O =t If outcome reward,

R(u,m) =446 ~ O(up,umi1)ges 1f process reward. 3

Um +1=Utarget

Target check Adjacency check
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Figure 1: Frequency of edge occurrences in the SFT training data DSFT and the adjacency structures
learned by different models. The underlying graph represents transitions between block configura-

tions in Blocksworld (Valmeekam et a1.|, 2023al).

That is, in the outcome reward setting, a reward of 1 is given only if the entire path is valid, and it
is assigned at the step when the target is reached. In contrast, in the process reward setting, we do
not check whether the entire path is valid or not. The model is always rewarded upon reaching the
target, but it is also penalized at any step that transitions to a non-adjacent node.

3 LIMITATIONS OF SUPERVISED FINE-TUNING IN PLANNING

Focusing on the stationarity of the training dynamics, we present a basic structural characterization
that captures a fundamental limitation of SFT in planning. Our analysis builds on an early find-
ing of Wang et al| (2024Db), which showed that transformer-based SFT planning approaches lack
transitivity-learning mechanisms needed to obtain complete reachability structures. The new char-
acterization expands and complements the earlier results and provides a theoretical explanation for
why SFT-based planning tends to rely on memorization. More importantly, this result establishes
a theoretical basis for comparison with RL-based planning frameworks and highlights the role of
exploration in achieving better generalization during the adaptive learning process.

3.1 DISCUSSIONS ON EXISTING FINDINGS

To set up our characterization, we first review the analysis framework of[Wang et al.|(2024b)), which
examines the training dynamics of a one-layer, single-head Transformer under an autoregressive
loss function. Their analysis shows that, during training, the model encodes both the adjacency and
reachability structures of the underlying graph in its learnable parameters. The model then predicts
the next node in a sequence by ensuring that it is adjacent to the current node and lies along a path
toward the target node. A full description of their approach is given in Algorithm[I]in Appendix [C|

‘Wang et al.| (2024b) showed, both theoretically and experimentally, that the adjacency and reach-
ability information stored in a model’s weights is generally incomplete. To formalize this, con-
sider a training dataset DSFT. The observed adjacency matrix A°(DSFT) contains exactly those
edges (j, k) that appear in at least one path from DSFT. Similarly, the observed reachability matrix
R (DSFT) records that a target node ¢ is reachable from an intermediate node k if DSFT contains
a sequence with target ¢ in which k occurs as a non-source node. We refer to such pairs (¢, k) as
observed reachable pairs.

However, we find that even when an adjacency relation appears in DSFT, the SFT model may not
learn a high weight for it. To illustrate this, we run experiments on the Blockworld dataset, and the
results are presented in Figure [T} In Figure [Ta] we show the frequency of all adjacency relation-
ships in the training set (every adjacency relationship appears at least once), where brighter regions
indicate higher frequencies. Then Figure [Tb] displays the corresponding weights learned after SFT.
By comparing them, we observe that some adjacency relationships present in the data are not well
captured by the model, especially those with low frequency. This observation motivates us to further
investigate the model’s stable (optimal) points.
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3.2 CHARACTERIZATION OF THE STABLE POINT IN SFT-BASED LEARNING DYNAMICS

Building on the observation of [Wang et al.|(2024b) that next-node prediction depends mainly on the
current and target nodes, we adopt the following natural assumption about model expressiveness for
our structural characterization. Recall that uger and u,,, denote the target node and the current node
at position m, respectively.

Assumption 3.1. The model’s predicted logits for the next token can be expressed as a function of
the (target, current) node pair, i.e., there exists a function £ such that the logits Uy, = f(Warger, Um,)-

Note that in the assumption, f can be an arbitrary function. Our experiments validate this assump-
tion. As shown in Section the evolution of attention maps during training for SFT, PG, and
Q-learning demonstrates that the trained transformer acts primarily as a function of the target and
current nodes.

‘We now characterize the structure of the stable point achieved by SFT. Due to space limitations, we
defer all the proofs in this paper to the appendix.

Theorem 3.1 (Optimal Solution of SFT). Assume Assumptionholds. Let Ny,yyperum i denote the
number of occurrences in the training dataset where the target node is Urger, the current node is
U, and the next node is k. The optimal solution of SFT satisfies:

eXp(f(utargm Um) [k]) _ N, UtargetsUm 1K
Zk/ eXp(f(Umrgetv Um ) [K']) Zk/ Nutmgmum-,k

I >0 Nersum k¢ = 0, output can be any probability distribution.

l:f § N'U«mrgenum;k/ > 0
’ o

Takeaway 1: SFT memorizes co-occurrence relationships in the training dataset.

Theorem 3.T]extends the findings of Wang et al.|(2024b), which showed that SFT-based mechanisms
may fail to learn the complete adjacency and reachability matrices, leading to spurious correlations.
However, those earlier results did not specify the nature of the solutions to which the model con-
verges. Complementing their work, Theorem [3.1] clarifies this by showing that SFT essentially
memorizes co-occurrence relationships among the target node, the current node, and the immediate
next node based on their frequencies in DSFT. Hence, SFT will fail to exploit transitivity information
(which never appears in DSFT) to capture the true graph connectivity required for path planning.

In Figure [I] we further compare the weights of models trained by two RL approaches, PG and
Q-learning. Both RL approaches capture the adjacency relationships better. Similar findings are re-
ported by |Chu et al.| (2025)), who empirically observe that SFT tends to memorize while RL exhibits
better generalization. Our structural analysis in Theorem [3.1] provides a theoretical explanation for
the first part of this phenomenon, namely, why “SFT memorizes”. In the following sections, we
examine the two RL-based approaches, PG and Q-learning, and provide a theoretical explanation of
the second part, i.e., why “RL generalizes”.

4 PATH PLANNING CAPACITIES OF POLICY GRADIENT

In this section, we examine the path-planning capacity of the policy gradient, the core principle
behind advanced RL algorithms such as PPO (Schulman et al., 2017) and GRPO (Shao et al.,[2024).
Understanding the strengths and limitations of the basic policy gradient provides theoretical insights
into its behavior, highlights the mechanisms that enable effective path planning, and clarifies the
challenges that motivate more sophisticated approaches.

4.1 THEORETICAL ANALYSIS

We first establish the connection between policy gradient (PG) and supervised fine-tuning (SFT),
highlighting the potential advantages of PG over SFT. We then analyze PG’s training dynamics
and show that, without KL regularization, the model can achieve 100% training accuracy (under
temperature sampling) while progressively losing output diversity. Finally, we demonstrate that,
when initialized with a reasonably capable base model, adding a KL regularization helps preserve
diversity and thereby enhances generalization, albeit sometimes at the cost of accuracy.
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To make this connection precise, we show that the PG loss function closely resembles the SFT loss,
restricted to the subset of data generated during RL training that corresponds to correct paths.

Theorem 4.1 (Connections between PG and SFT). Assume Assumption[3.1|holds. Let DRV denote
the set of data generated during the RL training step t. Whenr = 1, p = 0 (i.e., reward 1 for a
correct path and reward 0 otherwise) and \ = 0 (i.e., without KL regularization), the loss function
of Policy Gradient is the same as the loss function of using SFT only on correct paths in DRV,

As shown by Wang et al.| (2024b)), SFT can learn the adjacency and reachability relations. Thus,
Theorem shows that PG can capture these relations presented in the dataset (U_; DR N P,
However, unlike SFT, which relies on a fixed training dataset, PG generates data on-policy during
training. As the model improves, it can explore and discover new correct paths that were absent from
the initial training set. This exploration-driven data augmentation enables PG to achieve stronger
performance beyond what SFT alone can provide.

Takeaway 2: PG outperforms SFT primarily because its iterative data generation process
encourages exploration and effectively expands the training dataset.

Building on the loss function, we analyze the gradient and identify two distinctive properties of
on-policy PG updates.

Theorem 4.2 (Convergence of PG without KL regularization). Assume Assumption 3.1 holds. For
any i, j pair, let C(i, j) denote the set of nodes that can reach i and are adjacent to j. The following

then holds: If r = 1, p = 0 and A\ = 0, then (i) the gradient ﬁf)[k]for k ¢ C(i,j) is always
positive, and (ii) the total sum of gradient ), m =0.

Theorem shows that the logits f(i, j)[k] corresponding to incorrect tuples (i, j, k), i.e., cases
where node j cannot reach node ¢ through node &, will continue to decrease, while some other logits
will not converge to —oo. Consequently, under gradient descent, the probability that the model
outputs a wrong path in Dy, converges to zero.

Next, we analyze how the model’s output diversity evolves. Intuitively, the most diverse model that
still achieves 100% accuracy is one that produces a uniform distribution over C(3, j) for each target
node 7 and current node j. We now analyze the evolution of the KL divergence between this uniform
distribution and the model’s output distribution during PG training without KL regularization.

Theorem 4.3 (Diversity Collapse of PG without KL regularization). Assume Assumption[3.1holds.
Let Uc; ;) denote the uniform probability distribution on support C (i, j). Whenr =1, p = 0 and
A = 0, and logits £ (i, j) [k] for k ¢ C(i,j) is —oo, where £'(i, j) denotes the logits value of £(i, j)
at time step t. For any such PG gradient descent step t, we have that

KL(Uc(,j lsoftmax(£' (i, ) < E[KL(Uc(j |lsoftmax (£ (i, ))].

Note that the metric K L(Uc; ;) ||softmax(f*(i, j))) takes minimum value when softmax(f’(, j))
is also the uniform distribution on C(i, 5), and takes maximum value when softmax(ft(i, j)) is a
one-hot vector. Thus, Theorem@]demonstrates that even after attaining 100% accuracy on Dyaiy,
the model continues to exhibit declining output diversity.

Takeaway 3: In the absence of KL divergence, output diversity continuously declines.

This diversity-collapse phenomenon has been reported in the literature (Cui et al.| [2025) and can
impair a model’s ability to generalize. To address it, many techniques have been proposed, the most
common being KL regularization. To better understand its role, we analyze the stable point of the
model under KL regularization, highlighting both its advantages and limitations.

Theorem 4.4 (The effect of KL regularization). When r = 1, p = 0 and A > 0, the stable point of
the PG model satisfies the following, under Assumption ' For any fixed i, j, either q(i,j)[k] =0
or q(i,7)[k] oc q?¢(i, 7)[k] exp(p(i, 7)[k]/N\). Here q(i,j)[k] is the probability of outcome k in
softmax(£(i, j)), q?¢(i, j)[k] is the probability of outcome k in the base model, and p(i, j)[k] is
the probability of tuple 1, j, k belonging to a valid path given output probability {q(t, 7)[k]}s j k-

This result shows that KL regularization constrains the trained model to remain close to the base
model, thereby preserving some of its diversity. This effect is a double-edged sword. Consider a
valid next node k for which the base model assigns low probability, i.e., q°**°(i, j)[k] is small. On
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Figure 2: Empirical results of PG training. Both PG and continual SFT are initialized from the
same base model. Figures (a)-(c) illustrate the training dynamics of test accuracy (under greedy de-
coding), training accuracy (under temperature sampling), and response diversity (under temperature
sampling). Figure (d) shows how different KL regularization strengths affect the final models.

the one hand, KL regularization prevents q(, j)[k] from becoming arbitrarily small, increasing the
chance of generating valid paths involving k. On the other hand, it also prevents q(%, j)[k] from be-
coming very large, limiting potential gains when the base model’s prior is suboptimal. This tradeoff
explains seemingly contradictory findings in recent literature: when the base model is already capa-
ble, KL regularization preserves diversity and improves generalization, but when the base model is
weak, the regularization may hinder learning by overly constraining policy updates.

Takeaway 4: KL regularization explicitly acts as a diversity-preserving mechanism, provided
that the base model is reasonably capable, but this comes at the cost of reduced train accuracy.

4.2 EMPIRICAL VALIDATIONS

The results are presented in Figure [2| where we compare PG with different KL regularization factor
A against continual SFT. All models are initialized from the same base model after SFT training,
while continual SFT means training the model for more time steps on the same SFT dataset DSFT.
The empirical results match the takeaways we summarized from our theoretical findings, as detailed
below.

Takeaway 2: In Figure as the training progresses, the test accuracy of Continual SFT con-
stantly decreases, while all the PG methods can achieve an improvement, since they benefit from
exploration-driven training data. Takeaway 3: In Figure [2b] and we can see that PG without
KL regularization progressively achieves and maintains 100% training accuracy, but its output di-
versity, i.e., the average number of distinct correct paths generated over 100 sampling trials for the
same source-target pair, keeps decreasing during training. In the end, the model eventually produces
only one path per pair. Moreover, as shown in Figure 2a] when the diversity diminishes, continued
training degrades test accuracy. Takeaway 4: As a comparison, PG with KL regularization main-
tains high output diversity in the end, but their training accuracy is limited. This trade-off is further
stated in Figure[2d} with a higher factor A, the model can have a higher output diversity and a lower
training accuracy. Along with Figure[2a] it is shown that KL regularization prevents the model from
deviating too far from the base model in terms of both diversity and training accuracy. This mitigates
overfitting but also caps potential gains in test accuracy.

5 ANALYSIS OF THE Q-LEARNING-BASED PLANNING MECHANISM

In this section, we analyze the Q-learning mechanism for language-model planning under two differ-
ent reward designs. We show that stepwise process rewards enable convergence, preserve diversity,
and remain valid under off-policy sampling, whereas outcome rewards collapse to trivial solutions.
Our analysis begins under Assumption [3.1] for both reward types, and we then extend the process-
reward analysis to a more concrete linear Transformer model without this assumption.
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5.1 THEORETICAL ANALYSIS

To analyze the structure and convergence of the Q-learning stable point, we introduce a mild assump-
tion, which we call the persistent exploration assumption about the RL-based learning dynamics.

Assumption 5.1 (Persistent exploration). At training step t, let iy = Ugrgers Jt = Um, ki, respec-
tively, denote the target, current, and next nodes. We assume for every (i, j, k), INT"Y > 0 such
that
L T2
.. prop
i inf > 8, g ko)=Gik) = NP7
t=0

Under the persistent exploration assumption, every coordinate is updated frequently enough to allow
convergence analysis. In practice, this assumption is usually satisfied, for instance:

Lemma 5.1. Training with e-exploration (i.e., exploring each alternative action with probability
proportional to €) satisfies the persistent exploration assumption.

With the outcome reward, the signal merely verifies whether the entire sequence constitutes a valid
path ending at target ¢. It does not differentiate between current nodes j or candidate next nodes k
when k # i. As a result, at a stable point, all logits collapse to the same constant ¢; for each fixed
target ¢, causing the parameters to lose structural information, as stated in the theorem below.

Theorem 5.1 (Stable points of outcome reward). Assume the RL-training uses the outcome re-
ward R(W, m) = Ouep Ou,, ;1 =uume» Nd a stable point exists under persistent exploration (Assump-
tion[3.1). Then, at any stable point of the Q-learning model, for each fixed target i and k # i, all
logits £(i, j)[k] take the same value depending only on i.

With the process reward, the update rule accounts for both adjacency and target conditions. The
next theorem establishes that the process converges to well-defined limits that capture the underlying
graph structure.

Theorem 5.2 (Stable points of process reward). Assume Assumption holds and the process
reward is used, i.e. R(W, M) = O, =wg = O umsr )¢ - SUppose the score vector (i, j) € R"
is initialized at zero and updated under the persistent exploration assumption with learning rate 7.
Then, in the Q-learning model, as t — oo, £ (i, j)[i] — Al[j, ], and for k # i,

1, Alj,kl=1 and R[i,K =1,
£ (i, )[k] — {0,  exactly one of (A[j, k] = 1) or (R[i, k] = 1),
-1, Al[j,k] =0 and RJi, k] = 0.

Here “—"” denotes convergence or “tend to”. Moreover, the convergence is linear; the effective
rate depends on 1 and the update proportions N7}

Takeaway 5: Different from PG methods, in Q-learning, relying solely on the outcome reward
signal can cause Q-value bias, whereas introducing process rewards mitigates this issue.

To gain further insight in a setting closer to practice, we analyze a simplified but concrete one-layer,
single-head linear Transformer without the abstraction of Assumption [3.1]

Assumption 5.2 (Linear transformer Wang et al.| (2024b)). We work under the simplified Trans-
former setting in\Wang et al.|(12024b): (1) The token embedding matrix and the output weight matrix
are both set to the identity; (2) Attention is fixed entirely on the target node Uuyge;, SO the attention
block contributes only the value lookup Wv[u,arge,, ‘|, (3) All layer normalizations are removed,
and the feedforward block is replaced by a linear map of the form FFN(X) = XW™, Under these
assumptions, the logit decomposes as Uy, +1[k] = WM [y, k] + WY [Uarger, k], where WM arises
from the feed-forward weights and WV from the value matrix of the attention block.

Despite this simplification, the analyzed results remain consistent with the experiments of real Trans-
formers, as demonstrated in |Wang et al.[ (2024b)). This formulation aligns with the actual 1-layer
1-head Transformer architecture, offering greater practical utility compared to the abstract function
£(i, 7)[k]. The subsequent result characterizes the set of stable points under this decomposition and
is consistent with the structural limits established in Theorem [5.2}
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Figure 3: Empirical comparison between Q-learning and PG. Figure (a) shows the training dynamics
of training and test accuracy (under greedy decoding). Figure (b) compares the Pareto frontiers of
output diversity and accuracy on the training and test sets (under temperature decoding).

Theorem 5.3 (Stable points of process reward). Assume Assumption holds. For a linear trans-
former, assume training uses the process reward, and the persistent exploration condition holds. At
a stable point of the Q-learning model, for each k there exists cy, € R such that

WM[]v k] = A[]v k} -1 +ck7wv[ia k] = R[Z7k] — Ck-

Conversely, any such (W™ WV is a stable point. Hence, the set of stable points is {( W™, WV) :
Cx € R» ke [|V|]}

Theorem shows that if only outcome reward is used, the learned logits collapse to a con-
stant across all states for a given target. In contrast, Theorem [5.2] and Theorem [5.3] show that
with persistent exploration, process rewards can preserve adjacency and reachability (note that in
Theorem the constant ¢; is immaterial in terms of path planning, since for any stable point,
i1 (k] = WM [up,, k] + WY [tgreer, K] = A[j, k] + R[i, k] — 1, which is the same as Theo-
rem[5.2). Moreover, the convergence holds even under off-policy sampling, and action diversity is
preserved because all feasible next nodes converge to the logit value 1.

Takeaway 6: Compared to PG methods, Q-learning can operate off-policy and better main-
tains output diversity.

5.2 EMPIRICAL VALIDATIONS

We first examine the training and test accuracy results in Figure [3a] where we compare Q-learning
under different reward designs and sampling policies. All models are initialized from the same
base model. Figure [3bstates the diversity-accuracy trade-off of Q-learning models, policy gradient
models, and the continual SFT model (under different temperatures). Figure [ illustrates the logits
of an on-policy Q-learning model with process rewards and fixed attention (attention fixed on the
target node Uyrger). The model is initialized from the same base model as in Figure 3} and is further
trained with reinforcement steps on all pairs (s,t) € DSI'T where t € [20]. In each row i, we plot
the logits for nodes 020 (normalized to [0, 1]) when the current node is 0 and the target node is i.
White indicates larger logits, black indicates smaller logits, and green frames highlight nodes that
are both children of node 0 and ancestors of 7, corresponding to valid outputs. The empirical results
are consistent with the takeaways introduced above, as detailed below.

Takeaway 5: In Figure [3a] Q-learning with process rewards achieves comparable training accuracy
and significantly better test accuracy than the PG model, while Q-learning with outcome rewards
collapses and converges to near-zero accuracy on both training and test sets. Examining each row of
Figure [d we observe that the logits of feasible nodes gradually increase and converge to the largest
values within their respective rows, which aligns with Theorem[5.2)and[5.3]and confirms that process
rewards enable the model to recover the correct graph structure. Takeaway 6: In Figure oft-
policy Q-learning with process rewards attains training and test accuracy comparable to on-policy
Q-learning with process rewards, demonstrating that Q-learning can operate off-policy. Finally,
Figure [3b] further highlights that the Q-learning process rewards preserve output diversity. Figure []
also reflects this phenomenon: within each row, the logits of feasible nodes become increasingly
close to one another (approaching white) over time, indicating convergence to diverse but correct
transitions.
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Figure 4: Heatmap of normalized logits from the Q-learning model with process reward. For each
row ¢ , green blocks indicate valid next nodes given the current node 0 and target node ¢. The logits
corresponding to these valid actions consistently increase during training.

6 CONCLUSION

In this paper, we analyze the benefits and limitations of reinforcement learning in language model
planning through the lens of learning dynamics. Our theoretical analysis shows that supervised
fine-tuning introduces spurious co-occurrence solutions, while policy gradient and Q-learning out-
perform SFT primarily through exploration. We further identify a critical drawback of basic pol-
icy gradient—diversity collapse—and show that Q-learning mitigates this issue while supporting
off-policy learning. These insights clarify the mechanisms behind the recent success of RL-based
approaches and highlight principled research directions, such as leveraging Q-learning for robust,
scalable, and generalizable planning in language models.
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REPRODUCIBILITY STATEMENT

We attach all the source code necessary to reproduce our experimental results in the supplemen-
tary materials. As for the theoretical results, complete proofs of all the theorems are provided in
Appendix [C] [D] and[E] for full transparency and verification.
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A THE USE OF LARGE LANGUAGE MODELS

In this paper, the core conceptual framework and its iterative development were driven by human
researchers. LLMs served strictly in a supporting capacity, primarily employed for linguistic re-
finement of the manuscript to enhance readability while preserving original technical content. The
whole paper is carefully supervised, reviewed, and modified by the authors who maintain complete
responsibility for the scientific validity, technical accuracy, and ethical integrity of this work.

B MORE RELATED WORKS

B.1 PLANNING OF LLMS

Planning is a fundamental component of human intelligence and autonomous agents. Several stud-
ies have evaluated the planning capabilities of LLMs trained without reinforcement learning, such
as CogEval (Momennejad et al., 2023) and Blockworlds (Valmeekam et al.| [2023b). These works
consistently report negative results, suggesting that LLMs lack inherent planning abilities. In con-
trast, models such as o/ show the ability to solve such problems, though the underlying mechanisms
remain unclear.

On the other hand, LLM-based agents have demonstrated remarkable competence in performing
real-world planning tasks, even without RL training (Wang et al., |2024a). Many of these plan-
ning tasks can be naturally abstracted as path planning problems on a graph. For example, in
tool-augmented agents (Shen et al.l [2023)), tool dependencies can be modeled as a graph where
nodes represent tools and edges represent dependency relations (Wu et al.l 2024b). Planning, in
this context, involves finding a path of tools to fulfill the user’s request. Similarly, in mathemati-
cal reasoning agents (Trinh et al., [2024), theorem dependencies form a graph where constructing a
proof is equivalent to finding a path. In game-playing agents such as Voyager (Wang et al., 2023a)),
skill dependencies create a graph structure where planning determines the sequence of skills needed
to accomplish tasks. These observations motivate our abstraction of planning as a path planning
problem in this work.

Agents trained without RL face two key challenges: (1) supervised fine-tuning loss is misaligned
with the agent’s ultimate objectives, and (2) real-world data is scarce. RL addresses the first issue
by explicitly optimizing for the end goal through a reward signal, and the second by generating
exploratory data. Consequently, RL significantly mitigates these limitations and improves perfor-
mance (Zhang et al.,2025a)). Our paper further examines the benefits of RL over SFT, as well as the
limitations of RL, providing insights for future research directions.

B.2 RL FOR LLMS

Recently, RL has been widely adopted to enhance reasoning capabilities in language models, exem-
plified by milestone systems such as OpenAI’s o/ and DeepSeek-R1. This paradigm has inspired
a new wave of reasoning-focused models, including Qwen-3 and Phi-4 Reasoning (Zhang et al.
2025b)). State-of-the-art LLM-based agents also commonly employ RL (Zhang et al., [2025a)).

Despite its empirical success, the mechanisms by which RL improves LLM performance remain an
active area of research, with current understanding scattered across multiple works. For instance,
Chu et al.| (2025) empirically compares SFT and RL on reasoning benchmarks, concluding that RL
provides better generalization. Theoretical analysis in (Setlur et al.l |2025) further shows that any
verification-free approach, such as SFT, is suboptimal. Additionally, [Yue et al.| (2025) identifies an
entropy mechanism, establishing and empirically validating a trade-off between entropy and accu-
racy during RL training.

In this paper, we focus on path planning as a case study and derive results consistent with prior
work: (1) SFT tends to memorize training data and produce co-occurrence-driven outputs; (2) RL
surpasses SFT primarily through exploration; and (3) diversity collapse occurs during PG training.
Beyond these findings, we uncover evidence suggesting that Q-learning may offer advantages over
policy gradient methods, introducing a new perspective on RL for LLMs.
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B.3 GRAPH PROBLEMS WITH LANGUAGE MODELS

Graph problems serve as a valuable testbed for analyzing the reasoning capabilities of language
models. From an empirical standpoint, several benchmarks have been proposed (Guo et al., 2023
Wang et al., |2023b; |Dai et al., [2024)), spanning a spectrum of tasks: classic graph problems (e.g.,
connectivity, path-finding, and pattern detection), graph neural network (GNN) benchmarks (e.g.,
node and graph classification), and semantic graph-based question answering (e.g., on knowledge
graphs). Without additional training, LLMs generally underperform on these tasks. To improve
performance, early approaches leverage instruction tuning and DPO (Luo et al., 2024} |Chen et al.|
2024a}; Perozzi et al., 2024} |Chai et al., 2023} [Chen et al., 2024b), while later methods employ
RL (Guo et al., [2025)), which consistently achieves superior results.

There are three major paradigms for analyzing how transformers solve graph-related reasoning tasks.
The first is mechanistic interpretability, which reverse-engineers trained model weights (Neel et al.}
2023). For example, Cohen et al.|(2025) observed that transformers implement a spectral algorithm
to compute shortest paths. However, this paradigm largely relies on empirical observation without
theoretical grounding. The second paradigm is based on expressiveness analysis (Dai et al., 2024;
Sanford et al.| [2024; |Dai et al., [2025} |De Luca & Fountoulakis, [2024])), constructing weight configu-
rations that enable transformers to simulate algorithms. Yet, such configurations are often unrealistic
for transformers trained via SGD (e.g., embedding vectors explicitly set to 1,2,..., L (Dai et al.
2024)). The third paradigm investigates gradient dynamics, which is both practical and challenging
due to the non-convexity of the optimization landscape. Prior work has analyzed path-finding in
directed graphs (Wang et al.,2024b) and compositionality of paths (Zhu et al., 2024)).

To the best of our knowledge, this work presents the first analysis of RL gradient dynamics in LLMs.
Our results explain why RL-based methods outperform SFT approaches and highlight the potential
advantages of Q-learning—driven methods, opening promising directions for future research.

C APPENDIX FOR SFT

C.1 PATH PLANNING ALGORITHM IN TRANSFORMER

Algorithm 1 A handcrafted path planning algorithm

1: Input: Adjacency matrix A, reachability matrix R, source node s, target node ¢

2: Set path P = [s ¢ s] and set current node i = s
3: while i # ¢ do

4: Obtain S = {k|A(z,k) = 1land R(t,k) =1}
5: Randomly sample next node k from S

6: Append k to path P, and seti = k

7: end while

8: output path P

C.2 PROOF OF THEOREM[3.1]

Proof. The next-token prediction cross-entropy loss can be written as

== > 3" hmup, logim[k].

ueDSFrm>1 k

Under the assumption that the output distribution 1, depends only on the target node aree; and the
current node u,,,, we can aggregate identical terms, and express the loss as

_ Z Z N & Z Numrgehurn, N log eXp(f(uta_rge[y Um) [k} ) .
1% e k Zk/ Numrgq,um,k’ Zk’ exp(f(ulﬂfget’ um)[kq)

Utarget, Um
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If >, Nugeium k7 0, the expression in brackets is the cross-entropy between the empirical
distribution and the distribution of doing softmax on vector f(%arget, U ). It is minimized when

exp(f(utargeta um) [k] ) Nulargel JUm K
Zk’ exp(f(utargeta Iu’m)[k/}) Zk’ uldrgel7“m7k/ '

If D1 Nugger,um k' = 0, the loss does not depend on f (target, Um ), 80 it can be any valid probability
distribution. O

D APPENDIX FOR POLICY GRADIENT

D.1 PROOF OF THEOREM [4.1]

Proof. In this case, the loss function of policy gradient is

Z duep | — Z log Gy [um+1] | = Z - Zlogﬁm[umﬂ]

WEDRLE m>1 ueDRLNP m2>1

D.2 PROOF OF THEOREM [4.2]

Proof. We first rewrite the loss function as

N t exp(f(i, j)|k
= > =D logtpfum] | =D NSY <10g >k gc(pgf(z?g)][;’])) 7

ueDRLNP m=>1 .9,k

where N R, Pt denote the number of times that wget = 4, Up = J and Uy,41 = k for m > 1in set
DRLN 73 Then we can take the gradient and get

ot __ n7R,Pi exp(£(i, ) [k]) NP

ot(i, )k Nig > exp(£(i, J)[K]) % R

NRPt

For a wrong tuple i, j, k (where k is not adjacent with j or k£ cannot reach 7), IV, ok

Thus, the gradient is always positive. On the other hand, we will also have

is always zero.

Z ot _ _ N\ NRP > exp(£(d, j)[K]) R.Pt _
ot (i, j =k exp(E(L G)R]) 40

D.3 PROOF OF THEOREM [4.3]

Proof. Note that

i i,5) = b et — 1o exp(£(4, j)[k])
KL(Ug(;,j||softmax(f(i, j)) keg(:m) |C(i,§)] ( log |C(i,7)] — 1 ng'eC(z - exp(EG, )[kl])>
— log|C(i, )| — —— S log exp(f(i, ) [k])

|C(i, )] kEC (i) Zk’ec(@ﬂexp(f(ivj)[k/]).

Thus, it is sufficient to prove

ek e ) K)
D S <1 ol D DI s e (2o o3 Ty

keC(i,5) keC(i,5)
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According to the gradient, we have that

t+1 — ft(i i _ R,Pt exp(f (i, 5)[k]) R,Pt
£ DK = £ 9k -1 ka +Zk’eC(zg)eXp(( )[kl])k'e%(:i,y)N”k/ ’

Here 7 is the step size.

Let NWP = 37,

RPt
thatN”k

R,P,t
€C(i,7) Nzyk”

is the counter of outcome k for

exp(£*(i,5)[k]) :
parameters { Swcon, SBE DD }kec(i’j). This means that

then due to the on-policy updating in policy gradient, we know

NED independent multi-nomial random variables with

E[f1 (i, ) [K)] = £(3, 1) k).
Moreover, since log (Zk’eC(i,j) exp(ft(i, 7) [k’])) is a convex function, we also have

Ellog( Y exp(f™(i,4)[k) > log [ D exp(B[E (i, 5)[K])
k'eC (i) k'eC(i.j)

= log| > exp(f'(i,)K])

K €C(,5)
Because of this, we have

e (L))
D o B B | 2 S G,

keC(ij) | keC (i)

= > fEHE-E| D> £ )R - CG6L ) log | > exp(f (i, 5)[K'])

keC(i.j) keC (i) k' €C(i.4)

HCGEHE [log [ Y exp(ET (i, 4)[K])
k'e€C(4,5)

v

0.

D.4 PROOF OF THEOREM [4.4]

Proof. When \ > 0, the loss function is

0= NP (~loga(i, j)[k) + 1> ”k<10ngj)[k]{logM}>v

1,5,k 1,5,k
where N7 i k denote the number of times that wurget = @, U = J and Uy,1 = Kk form > 1 in set
DRL,t.
We can take the gradient and get:
ot R,Pt . R,Pt Rt o q(i, j)[k]
- = N k N7 AN k] log —————
5F. )T w4 DI DN+ AN, (1 =l D) e G
a(i, j)[K]
Y , log — I/
Z k q i '] ] 0g base(l j)[/ﬂ}

k'#£k
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Taking expectation, we can get:

= [argm) = VR a0 BN+ MBI a3k s i
B Rt qa(i, j)[K]
AZ# Nl DETIO8 Gty 1Ry

Letting NR’t = >N ]’tk, then due to on-policy training, we have that E[NZRJIZt] =

N (i, /) kp(i, [, and E[N%] = N a(, 3)[k].

Hence

ol
= oo
= =N a(i,5)klpG,5)k + N a6, 5)] Zqzy e

q(i, j) K]

q(4, J)[k]

AN i, )k (1~ ai, 5)[k]) lo gw

AN i q _aB )k
AN ; ];Cq( ,J)[k]a(i, 5)[K] 1o 8 Spwe(i, A

) N 700 1 ali. ) 1K)
= Va8 S oG] (Pl G ]+ Mos D s LI ).

The stable point must satisfy that, for any tuple i, j, k, E {#f)[k]} = 0. And we claim that in this

case, for fixed 7, j and any &’ such that q(i, j)[k’] > 0, their p(i, j)[K'] + Alog % should

a(i,j) k']
a™(i,5)[k']”

and its expected gradient E [%} is strict negative. O

equal. Otherwise we can always look for k* = arg ming:.q¢i >0 P(4, ) [F'] + Alog

E APPENDIX FOR Q-LEARNING

E.1 PROOF OF LEMMA [5.1]

Proof. Fix any triple (i, j, k). Consider training sequences whose first two nodes satisfy usource € V
and ey = 7. By the definition of the training process, P(usource € V, Uarget = %) > 0. Under
e-exploration uniform over V),

Yo eV : P(nextnode =v) > ¢€/|V|.
Condition on the event {usource € V, Utarger = ¢}. Then in the next two decisions,

]P)(U2 =7 | Usource € V, Utarget = Z) =

V|> P(US =k ‘ Usource € V,'U/target =1, ug = ]) > 6/|V|
Hence

]P)(utarget =1i,Uup = ja uz = k) > po(E/‘V|)2
Each occurrence of (warger, U2, u3) = (4, J, k) triggers one update of f(i, j)[k]. Since each occur-
rence yields an update of f(i, j)[k], we obtain

T—1
1
. prop
lim inf — ; Qiv-geavy=idiky = NETE >0,
which is the persistent exploration condition. O
E.2 PROOF OF THEOREM [5.]]

Proof. At a stable point, the expected update of each coordinate vanishes. The per-step loss is

(= (f(ula.rgetu um)[um+1] - 6u€7’ 5um+1:um,~gd - {H}CE}X f(utargen um+1)[k/]})2'
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Taking the gradient with respect to f(target, Um ) [Um+1] and setting the expectation to zero yields,
for every triple (i, j, k),

£(i, 7)[K] = Ebuep Op=i] + max £(7, k)[K']. 4)

If k # i, the expectation term in equation 4] vanishes, so

£, )] = max G, B) K,

which does not depend on j. Thus, for each k # i, we have

£(i,5)[k] = max £(i, k)[K'] = meax (H]z?;x £(i, K)[K"], £(i,k)[i]) = max max £(i, k") [K"].

Here the second equality separates the case k' = i from k' # i: if ¥’ = 4, the chain terminates
immediately, corresponding to the - - - — k — ¢ path, so we take the value f (7, k)[¢] directly. If &' #
i, we must expand one step further, leading to maxy~ £(, k")[k”]. The last equality then observes
that including the ¥’ = 4 term does not change the maximization, since it is already dominated by
the expansion over k&’ # 7. Thus the final expression simply enumerates all possible terms with the
restriction k&’ # 4. This expression no longer depends on & or j.

Therefore, for each fixed i and k # 4, all £(4, j)[k] take a common value ¢;, independent of j and
k. O

E.3 PROOF OF THEOREM[3.2]

Proof. For clarity, we introduce two notations that will be used repeatedly. First, for i,k € [n] and
iteration ¢, define

S{ = max £ (i, k)[K).

Second, we write k € Anc(i) if there exists m > 1 such that (A™)[k, ] = 1, i.e. k is an ancestor of
1.

The per-step loss under the process reward is
2
(= (f(“targelv U ) [Um 1] — (5um+1:umrgcl - 5(um,um+1)¢8) - {H}ﬁXf(ulargetv uerl)[k/}}) .

Taking the gradient with respect to the active coordinate f(wurget; Urm) [ttrm1] gives

19/4
8f(utarget7 Um) [um-&-l}

=2 (f(utargela Um) [Um+1] _5um+1:u,u,gcl+5(’u7n,,um,+1 V¢E _H}gx f(utargen Um+1 ) [k/]) .
Applying gradient descent with learning rate 7 yields

f(ulal'geta um) [Um+1] — (1727’) f(utargetv um) [Um+1]+277 (5um+1:umrga 75('&m,ﬂm+l)¢g +mk;%x f(utargeta Um+1 ) [k,]) .
Renaming (7, j, k) = (Uarget, U, Um+1) and writing Sz(tk): = max £ (i, k)[K'], the recursion is

£ (6, )] = (1 — 20)ED (i, 5)[K] + 20(0k—; + (A[j, k] — 1) + S). ()

When k = i, by convention SZ-(? = 0, so the update is
£V ()] = (1= 20)f 0 (0, 5)[i) + 20 Alj, ).
This linear recursion has fixed point A [j, ¢] and solution
£, )] = (1= (1= 2n)") Alj, ),
which converges to 1 if A[j,i] = 1 and to 0 otherwise. The contraction factor is |1 — 27|.

For k # i, the limit of Sl(tlz must be analyzed. If k& € Anc(i) \ {4}, then either & is a parent
of i, in which case f()(i, k)[i] — 1 and hence Sft,g — 1, or k has a child r with r € Anc(7).
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Inductively S’Z(? — 1, and then (%) implies £*)(i, k)[r] — 1, so Sz(tlz — 1. If & ¢ Anc(2), then
all children r of k also satisfy r ¢ Anc(i), and inductively S(t) — 0, giving £ (i, k)[r] =

2,

(1—20)fD (3, k) [r ]+2775(t) — 0. Thus S(t) — 0. Therefore the limit is S( ) S 1lifk e Anc(i)\{i}
and S,(t) — 0 otherwise.

For k # i, substituting the limiting S ) . into (x) gives
PO gk = (1= 29 @GR + 2n((ALLK = 1)+ S{).

If Alj, k] = 1 and k € Anc(i), then S} — 1,50 £0)(i, j)[k] — 1. If A[ ', k] = land k ¢ Anc(i),
then S’i(f,z — 0,50 £ (i, 5)[k] — 0. If A[j, k] = 0 and k € Anc(i), then S . — 1, so the recursion
is £E+1 (i, §)[k] = (1 — 2n)fD (4, 5)[k], implying £ (i, §)[k] — 0. If A] ,k] =0and k ¢ Anc(i),
then Sl(tlz — 0, so the recursion is £V (4, j)[k] = (1 — 2n)f® (4, 7)[k] — 2n, which converges to
—1. These limits match the cases in the theorem.

To establish rates, define the weight error e}" (i, j, k) = £ (i, j)[k] — £*(i, 7)[k] and the max error

e (i, k) = S(t) S} - When k = 4, the recursion is
e (i,3:1) = (1= 2n) e (i,5,),

so each update contracts the error by |1 — 2n|. Under persistent exploration, the coordinate (4, 7, )
is updated with positive frequency NP, so in global time

=—1,7,1°
e (i, 0)] < C (|1 = 2 HE )"
for any € > 0 and large enough ¢.

When k # i, the recursion is
The error e (i, k) depends only on {e}V (i, k,r) : risachildof k}. Along any directed path
= vy — vy — -+ — Uy, = i, the error at k can decay only after the error at v; has already

decayed, and so on. Thus, the effective contraction factor for e}V (i, j, k) is the product of the per-

edge contraction rates
m—1

NERer
IT (11 - 2q) ),
n=0

Formally, by induction, for any € > 0 and sufficiently large ¢ we have

t
.. NPToP —
lef" (i,4, k)| < C (F,aﬂf?ﬁf—n [T 1—2p™imemen 5) :

(Vn,Vn41)€EP

Therefore, all iterates converge linearly in global time, with effective rates determined jointly by n
and the update proportions N;"°P. This completes the proof. O

E.4 PROOF OF THEOREM[3.3]

Proof. Let N} ;Olf denote the asymptotic proportion of triples (Uarget, Ums Um+1) = (i, 7, k) oc-
curring in the generated sequences at the stable point, under the given sampling method and the
persistent exploration condition. Equivalently, N;’°" is the limiting frequency with which state j
transitions to & with target i in the trajectories sampled by the model. By definition N}’°" > 0 for
all i, j. k.

At a stable point of the updates, the expected gradient with respect to each parameter must vanish.

Averaging the stationarity conditions with weights N”;% yields, for all 4, j,

> NPEp (WM[j, K +WVYi k] — A[j, k] + 1 — 6i—p, — n}c@x(wM[k, K+ WY, kq)) =0,
J

S NEE (WK + WYL k] = ALK+ 1 i — max(WY [k K]+ WY LK) = 0.
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Introduce centered variables
S = WYk — Al K+ 1, T o= WYL K] — Gy, — max(WH [k, K]+ WY [0, B),

so that normalizing each sum by its positive denominator gives the block system
Sk +Pr T =0, Tr+ QrSr =0, (5)
where Si. = (S; 1) jein]>» Tk = (Tik)ie[n), and
prop ProP

(Po)lj,i] = =225, QWi ] = =22k s
Z sz]llz Z Nv,p]’pk

Since N7 > 0, every entry of Py, Qy is strictly positive, and both are row-stochastic. Hence
P Qi and QP are strictly positive stochastic matrices. By the Perron—Frobenius theorem, both
have a simple eigenvalue 1 with eigenvector 1, and all other eigenvalues satisfy |A\| < 1. Thus

ker(I — P Q) = span{1}, ker(I — QxPyx) = span{1}.
From equation eliminating T, yields Sy, = (PxQg)Sk, s0 S = ¢x1 for some ¢, € R, and then
T = —QiSk = —ci 1. Returning to the definitions,

WM k] = Alj, k] — 1 + cg, WV i, k] = 6i—p + H}Cz?,x(WM[h El+ WY, E)) — .

Substituting WM [k, k'] = Ak, k'] — 1 + ¢ and writing V; j» := WV [i, k'] — ¢}, gives

Vi,k = 0=k + max Vi,k'/-
k' Ak, k=1

On a DAG, the unique {0, 1} solution of this recursion is the reachability indicator R, %. Aninduc-
tion over a topological order shows V; ;, = R,; j, for all ¢, k. Therefore

WVi, k] = R[i, k] — cx.
Finally, note that if (S, T}) solves equation 5] then so does (Si + ¢1, Ty, — c1) for any ¢ € R,

since P;1 = Q;1 = 1. Hence, the solution set for each k is exactly a one-dimensional affine line
parametrized by cy.

Conversely, if (W WV is of the above form, then plugging it into the update equations shows
that the expected increment is identically zero: both sides of the gradient equations cancel by con-
struction, so the point is stationary. Therefore, these conditions are not only necessary but also
sufficient for stability. O

F EQUIVALENCE OF UNCLIPPED PPO AND POLICY GRADIENT

For a sequence u, the policy gradient objective is
Ip(u Z R(u) log 4y, [tm41],
m>1
where R(u) = r dyep + p. Taking the gradient gives
Volpg(u Z R(u)Vg log G [tm41]

m>1

_ Z R Vallm um+1] .

m>1 unL Uf’rn—i— 1 ]

For unclipped PPO, the ratio between new and old probabilities is formed, with the denominator
detached. The loss is

O [umia]
Cppo- R(u .
e mz; 1 {um m+1]}
Since the denominator {Q,,[um,+1]} is treated as constant, its gradient vanishes. Thus
\%
Voleroue(w) = — 3 R(u M'
m>1 {um Um+1]}

Comparing with the policy gradient expression, we see the two gradients coincide. Therefore, for
any fixed sequence u, unclipped PPO with a stop-gradient denominator is exactly equivalent to
vanilla policy gradient.
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(c) Attention weights in Q-learning (Process Reward) after different training iterations

Figure 5: Empirical validation that the trained one-layer one-head transformer acts as a function
of the target node and the current node. The visualization of attention maps across SFT, PG, and
Q-learning training shows a consistent, strong focus on the target node (token position 1).

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 VALIDATION OF LEARNED ATTENTION

This subsection visualizes the evolution of attention maps during training for SFT, PG, and Q-
learning. Our analysis first focuses on a one-layer, one-head transformer at various training steps
(Figure3). For each model, we compute the average attention weight over the SFT training dataset
DSFT

Specifically, the weight at position ¢ in row k£ (where ¢ < k) represents the average attention the
model assigns to the i-th token when predicting the (k + 1)-th token, averaged over all paths in
DSFT longer than k + 1. Since the underlying graph has 100 sparse nodes, path lengths in DSFT are
generally short; consequently, we display only the first 8 rows.

Our visualizations reveal that during SFT, the transformer allocates most attention to the target node.
Combined with the residual connections, which allow access to the current node’s information, this
suggests that the model learns to predict the next node based primarily on the target and current
nodes. This empirical finding aligns with the results of |[Wang et al.| (2024b). Another interesting
phenomenon in SFT is that the attention weight on the target node quickly peaks and then gradually
decreases, while remaining dominant. We hypothesize that this may be due to overfitting on DSFT,
leading the model to develop auxiliary prediction strategies. This overfitting could also explain the
decreasing generalization performance of SFT observed in our experiments.

In contrast, for both PG and Q-learning, the attention on the target node increases throughout train-
ing. In Q-learning, the final attention weight on the target node exceeds 95%, making it the closest
to the conditions outlined in Assumption 3.1}

To further validate our findings, we extend the analysis to a two-layer, one-head transformer. As
shown in Figure@ which displays the attention map averaged over DT, both layers predominantly
attend to the target and current nodes. This pattern strongly supports our assumption that the trans-
former operates as a function of the target and current nodes, confirming the consistency of this
behavior across model architectures.
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(c) Attention weights in Q-learning (Process Reward) after different training iterations

Figure 6: Empirical validation that the trained two-layer one-head transformer acts as a function of
the target and current nodes.

G.2 EXPERIMENTS ON ERDOS-RENYI GRAPHS

Beyond the setup in Section[2] we conduct additional experiments to compare RL methods with SFT.
The graph construction and initial SFT stage remain unchanged. After SFT, we split all reachable
pairs into an RL training set DRy, Tyvain and an RL test set Dry,Test. This yields four intersections:
Drrvain2Train *= Drain N DRL-Trains DTrain2Test = DTrain N DRL-Tests DTest2Train = DTest N
DRL-Train, and DTestQTest = DTest N DRL-Test-

During the RL process, the model generates paths for pairs in Dry,-Tvain and receives reward signals.
The main difference between this setup and that in Section [2is that the RL training set now contains
new pairs that were unseen during SFT (DestoTvain).- Therefore, the initial model is not perfect on
these new training pairs. Additionally, some pairs from the SFT training set are not used for RL
training (Dyain2Test), Which allows us to measure the extent of forgetting. We consider the same
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Figure 7: The test accuracy of PG with different KL coefficients on four data splits after fine-tuning
the SFT model on DRy, Tyain. All accuracies are evaluated with greedy decoding.
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Figure 8: The test accuracy of Q-learning on four data splits after fine-tuning the SFT model on
DRI, Train- All accuracies are evaluated with greedy decoding.

RL algorithms introduced in Section |2} PG and Q-learning, whose training curves are presented in
Figures [7]and 8] respectively. All accuracies are evaluated using greedy decoding.

From Figure we observe the opposing effects of KL regularization on DyainoTest ad DTest2Train-
PG without KL regularization (A = 0) and less regularized PG (A = 0.0001) achieve significantly
higher accuracy on DregtoTrain. Stronger KL regularization hinders the model’s ability to learn new
pairs, which aligns with Takeaway 4: KL regularization reduces training accuracy. Conversely, PG
without KL regularization (A = 0) tends to overfit the training data and exhibits continual forgetting
of previous knowledge learned during SFT. Results on DregioTest further demonstrate that overly
strong KL regularization can hinder PG’s improvement. Among all settings, A\ = 10~% achieves
the best balance, indicating that a well-chosen KL weight can improve generalization with minimal

sacrifice in training accuracy.

Compared to PG and the performance observed in Section[5] Q-learning exhibits slower convergence
in this setting. One possible explanation is that the initial model performs poorly on the new training
pairs, generating more failure cases and causing stronger “re-instantiation.”

G.3 EXPERIMENTS ON GRAPH REPRESENTED FOR BLOCKSWORLD

We also run experiments on Blocksworld (Valmeekam et al., |2023a)), a benchmark for evaluating
LLM planning ability (Kambhampati et al.,[2024). The environment consists of blocks stacked on
a table, and the goal is to rearrange the blocks from an initial configuration to a target configuration
using a sequence of actions. We model this into a path-finding task, in which each configuration
is a node in a graph, and an edge connects two nodes if one configuration can be transformed into
the other by a single valid action, such as moving a block from one stack to another. We consider
Blocksworld with four blocks and construct an undirected graph with 73 nodes: 24 configurations
of a single stack of four blocks, 24 configurations with three blocks in one stack and one block on
the table, 12 configurations with two stacks of two blocks, 12 configurations with one stack of two
blocks and two blocks on the table, and one configuration with all blocks on the table.

Since accuracy comparison is not our focus, all node pairs are used for SFT training. The SFT
dataset contains 50,000 paths sampled from the graph, with source and target nodes drawn uni-
formly from the 73 nodes. During RL training, the model generates paths for, and is updated on, all
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node pairs. We use policy gradient and Q-learning as introduced in Section 2} After training, we
evaluate the learned weights using the metric of [Wang et al.| (2024b), which measures the model’s
understanding of graph adjacency. As shown in Figure[I] with fixed training data, SFT may not learn
the complete adjacency very well. In contrast, both PG and Q-learning improve the learned adja-
cency. In particular, Q-learning nearly recovers the complete adjacency, consistent with the results
in Section
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