

000 BENEFITS AND PITFALLS OF REINFORCEMENT 001 LEARNING FOR LANGUAGE MODEL PLANNING: 002 A THEORETICAL PERSPECTIVE

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Recent reinforcement learning (RL) methods have substantially enhanced the
014 planning capabilities of Large Language Models (LLMs), yet the theoretical basis
015 for their effectiveness remains elusive. In this work, we investigate RL's bene-
016 fits and limitations through a tractable graph-based abstraction, focusing on pol-
017 icy gradient (PG) and Q-learning methods. Our theoretical analyses reveal that
018 supervised fine-tuning (SFT) may introduce co-occurrence-based spurious solu-
019 tions, whereas RL achieves correct planning primarily through exploration, un-
020 der scoring exploration's role in enabling better generalization. However, we also
021 show that PG suffers from diversity collapse, where output diversity decreases
022 during training and persists even after perfect accuracy is attained. By contrast,
023 Q-learning provides two key advantages: off-policy learning and diversity preser-
024 vation at convergence. We further demonstrate that careful reward design is nec-
025 essary to prevent **Q-value bias** in Q-learning. Finally, applying our framework to
026 the real-world planning benchmark Blocksworld, we confirm that these behaviors
027 manifest in practice.

028 1 INTRODUCTION

030 Planning is a fundamental cognitive construct that underpins human intelligence, shaping our abil-
031 ity to organize tasks, coordinate activities, and formulate complex solutions such as mathematical
032 proofs. It enables humans to decompose complex goals into manageable steps, anticipate potential
033 challenges, and maintain coherence during problem solving. Similarly, planning plays a pivotal role
034 in state-of-the-art Large Language Models (LLMs), enhancing their ability to address structured and
035 long-horizon tasks with greater accuracy and reliability.

036 Early generations of LLMs primarily relied on next-token prediction and passive statistical learning,
037 which limited their planning capabilities to short-horizon, reactive responses. The o1 family of mod-
038 els represents a major advance in planning by incorporating reinforcement learning (RL) objectives
039 that reward accurate, multi-step reasoning and penalize errors. Inspired by the success of o1, RL
040 has been applied to enhance planning capabilities in various settings, including task decompositon
041 for tool use (Wu et al., 2024a; Luo et al., 2025) and gaming (Yang et al., 2024), visual-language
042 spatial navigation (Chu et al., 2025), and long-horizon robotics tasks (Dalal et al., 2024). These ap-
043 proaches have demonstrated significantly better performance than their supervised fine-tuning (SFT)
044 counterparts. For more related works, please refer to Appendix B.

045 Despite recent successes, the theoretical basis underlying RL's advantage over SFT in planning tasks
046 and the limitations of current RL methods remain to be established. To enable a tractable analysis of
047 the gradient dynamics, we adopt the data generation model from (Wang et al., 2024b). Within their
048 framework, planning is abstracted as a path-finding problem over a graph structure. For example, a
049 tool-use scenario can be modeled as identifying a valid call sequence within an API call graph (Wu
050 et al., 2024b).

051 To capture the fundamental limitations of SFT in planning, we begin by presenting a structural
052 characterization of its stable point for path planning (**Section 3**). Our analyses, expanding the obser-
053 vation of Wang et al. (2024b) that transformer-based LLM architectures cannot identify reachability
relationships through transitivity in SFT, show that it introduces co-occurrence-based spurious solu-

054 tions into planning tasks. This characterization provides a basis for comparison with and motivation
 055 for using the RL-based learning approach in language model planning.
 056

057 Focusing on the behaviors of RL-based learning dynamics, we first consider policy gradient (PG),
 058 a widely adopted algorithm for tuning large language models (**Section 4**). Our analysis yields three
 059 key findings. First, with only 0-1 outcome rewards, each iteration of PG equivalently corresponds
 060 to an SFT process on the exploration data; however, PG empirically outperforms SFT due to the
 061 exploration-driven data augmentation it enables. Second, although PG converges to a model that
 062 outputs correct paths for all source-target pairs seen during training, we uncover a diversity collapse
 063 phenomenon: the model’s output diversity steadily declines throughout training and continues to
 064 diminish even after achieving 100% training accuracy. Third, we show that KL regularization acts
 065 as an explicit diversity-preserving term, but at the expense of accuracy.

066 We then analyze Q-learning, a paradigm well known in game playing but rarely applied to
 067 LLMs (Mnih et al., 2013) (**Section 5**). Our analysis yields two key findings. First, when trained
 068 with only an outcome reward signal, Q-learning suffers from [Q-value bias](#); however, incorporating
 069 process rewards eliminates this issue. Second, once this issue is addressed, Q-learning offers
 070 two theoretical advantages over PG: it converges to a solution that preserves output diversity when
 071 achieving optimal training accuracy, and it naturally supports off-policy learning. The latter is par-
 072 ticularly important in practice, since rollouts performed with a quantized model or large batch sizes
 073 are effectively off-policy, as exemplified by the VeRL framework (Sheng et al., 2024). Finally, we
 074 validate all these theoretical findings through experiments.

075 To summarize, our main contribution is a theoretical treatment of the impact of reinforcement learning
 076 on language model planning. Our mathematical analysis of learning dynamics sheds light on
 077 phenomena observed in practice—for example, SFT tends to memorize while RL promotes generalization;
 078 PG methods often suffer from diversity collapse; and KL regularization helps mitigate
 079 diversity degradation, albeit at the cost of reduced accuracy. Other findings point to promising future
 080 directions, such as leveraging Q-learning to achieve both diversity and accuracy, as well as enabling
 081 off-policy learning. Taken together, these results provide a principled foundation for understanding
 082 and advancing reinforcement learning methods in language model planning.

083 2 PRELIMINARIES

085 2.1 PATH PLANNING DATASET: SYNTAX AND DATA SOURCES

087 Following (Wang et al., 2024b), we abstract planning in large language models as path planning over
 088 an *unknown* directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} represents the set of nodes and \mathcal{E} represents the
 089 set of edges. Each node $v \in \mathcal{V}$ is represented by a unique token. The language model’s vocabulary
 090 consists of these node tokens and a special end-of-sequence token, `\n`. An edge $(u, v) \in \mathcal{E}$ signifies
 091 a directed connection from node u to node v . A node t is reachable from a node s if a directed
 092 path from s to t exists in \mathcal{G} . We denote by $\mathbf{A} \in \{0, 1\}^{|\mathcal{V}| \times |\mathcal{V}|}$ the adjacency matrix of \mathcal{G} , where
 093 $\mathbf{A}[u, v] = 1$ if and only if $(u, v) \in \mathcal{E}$, and by $\mathbf{R} \in \{0, 1\}^{|\mathcal{V}| \times |\mathcal{V}|}$ the reachability matrix, where
 094 $\mathbf{R}[t, s] = 1$ if and only if t is reachable from s .
 095

096 **Running Example (Blocksworld).** To connect this abstraction to real-world LLM planning sce-
 097 narios, consider the Blocksworld domain (Valmeekam et al., 2023b). In Blocksworld, we are given
 098 several colored blocks (e.g., Grey, Black, Red, White) placed either on a table or stacked on each
 099 other, and the task is to transform an initial arrangement (*source state*) into a target arrangement
 100 (*target state*) using valid moves. For example, the *source state* may place all blocks on the table,
 101 and the *target state* requires stacking them so that Red is on Grey, Grey is on Black, and Black is
 102 on White. We map every distinct block configuration to a node in \mathcal{V} ; edges in \mathcal{E} correspond to valid
 103 single moves such as “place White on Grey”. A valid plan is therefore equivalent to a path in \mathcal{G}
 104 connecting the source node s and target node t .

105 This abstraction matches natural language planning tasks: in the original benchmark, the LLM is
 106 given two textual descriptions of initial and target states and asked to generate a sequence of natural
 107 language actions to achieve the goal. In our abstract setup, we strip away language semantics to
 108 focus on the core planning structure while retaining the same problem difficulty.

108 The set of all reachable source-target pairs (s, t) is partitioned into a training set D_{Train} and a test
 109 set D_{Test} . We define three corresponding data stages:
 110

111 • **SFT Training Data:** We construct a training dataset \mathcal{D}^{SFT} for supervised fine-tuning by sampling
 112 multiple (K) paths for each reachable pair $(s, t) \in D_{\text{Train}}$ by random walk. Each training data in
 113 \mathcal{D}^{SFT} is a sequence in the format “ $s \ t \ s \ a \ b \ c \ t \ \backslash n$ ”, where $s \ a \ b \ c \ t$ are tokens for nodes in a valid
 114 path from s to t , and $\backslash n$ indicates the end of the sequence. We call the model after SFT training
 115 the *base model*.
 116 • **RL Training Data:** We sample pairs (s, t) from D_{Train} and let the model itself (on-policy) or the
 117 base model (off-policy) generate the remaining tokens in the sequence. When the model outputs
 118 $\backslash n$ or the generation reaches the maximum length, an outcome reward or some step rewards will
 119 be given, depending on the used reward format.
 120 • **Test Data:** When testing, we provide pairs (s, t) from D_{Test} , which are never encountered in
 121 either SFT or RL training. The model is tasked with generating a valid path from s to t .

122 Throughout the empirical study, we use a one-layer, single-head Transformer as the backbone model.
 123 The embedding size is set to $d = 120$. The graph \mathcal{G} in our main empirical validation is generated
 124 using the Erdős-Rényi model with $|\mathcal{V}| = 100$ nodes and an edge probability of 0.15. The ratio
 125 of the sets $|D_{\text{Train}}|/|D_{\text{Test}}|$ is approximately 0.25 (approximately 20% pairs are in D_{Train}). The
 126 number of paths sampled for each reachable pair in D_{Train} is $K = 10$. We also consider the graph
 127 \mathcal{G}^{BW} that characterizes the transition between different block configurations in Blocksworld, which
 128 is proposed by Valmeekam et al. (2023a) to evaluate the LLM’s planning ability. The details for the
 129 graph construction are presented in Appendix G.

130 2.2 REINFORCEMENT LEARNING ALGORITHMS

132 We first define the notation. Given a vector \mathbf{x} , we denote its m -th element by $\mathbf{x}[m]$. For a given
 133 sequence “ $s \ t \ s \ a \ b \ c \ t \ \backslash n$ ”, we represent it as $\mathbf{u} = (u_{\text{source}}, u_{\text{target}}, u_1, \dots, u_m, \dots)$. We denote by
 134 $\hat{\mathbf{u}}_m$ the output probability vector of the current model at the m -th position, and by $\hat{\mathbf{u}}_m^{\text{base}}$ that of the
 135 base model before RL. The model parameters are denoted by θ .
 136

137 **Policy Gradient.** Let \mathcal{P} be the set of valid paths. The outcome reward is only given at the end of
 138 the path and is defined by $R(\mathbf{u}) = r \delta_{\mathbf{u} \in \mathcal{P}} + p$, where $r > 0$ and p are constants, and δ denotes the
 139 indicator function that is 1 if condition is true and 0 otherwise. For an individual trajectory, the loss
 140 function is

$$141 \quad \ell = - \sum_{m \geq 1} \left(\underbrace{R(\mathbf{u}) \log \hat{\mathbf{u}}_m[u_{m+1}]}_{\text{Policy Gradient}} + \underbrace{\lambda \log \hat{\mathbf{u}}_m[u_{m+1}] \left\{ \log \frac{\hat{\mathbf{u}}_m[u_{m+1}]}{\hat{\mathbf{u}}_m^{\text{base}}[u_{m+1}]} \right\}}_{\text{KL Divergence}} \right), \quad (1)$$

144 where λ controls the KL regularization strength, and $\{\cdot\}$ means the term is detached and will not
 145 contribute to the gradient.

147 **Q-Learning.** The goal of Q-learning is to approximate the Q-function with the model logits. Let
 148 $Q_{\theta}(s_m, a_m)$ be the Q-function where $s_m = (u_{\text{source}}, u_{\text{target}}, u_1, \dots, u_m)$ is the state, $a_m \in \mathcal{V}$
 149 is the action, and $s'_m = (u_{\text{source}}, u_{\text{target}}, u_1, \dots, u_m, a_m)$ is their next state. The objective is
 150 $\sum_m (Q_{\theta}(s_m, a_m) - [R(s_m, a_m) + \max_{a'_m} Q_{\theta}(s'_m, a'_m)])^2$. We denote the logits at step m by
 151 $\tilde{\mathbf{u}}_m$. For an individual trajectory, the loss is given by
 152

$$153 \quad \ell = \sum_{m \geq 1} \left(\tilde{\mathbf{u}}_m[u_{m+1}] - R(\mathbf{u}, m) - \left\{ \max_k \tilde{\mathbf{u}}_{m+1}[k] \right\} \right)^2. \quad (2)$$

155 For Q-learning’s reward $R(\mathbf{u}, m)$, we study two scenarios: (i) *outcome reward*, where the reward
 156 depends on whether the path is correct, and (ii) *process reward*, where intermediate rewards are
 157 given based on adjacency and target checks. Specifically,

$$159 \quad R(\mathbf{u}, m) = \begin{cases} \delta_{\mathbf{u} \in \mathcal{P}} \delta_{u_{m+1} = u_{\text{target}}}, & \text{If outcome reward,} \\ \underbrace{\delta_{u_{m+1} = u_{\text{target}}}}_{\text{Target check}} - \underbrace{\delta_{(u_m, u_{m+1}) \notin \mathcal{E}}}_{\text{Adjacency check}}, & \text{If process reward.} \end{cases} \quad (3)$$

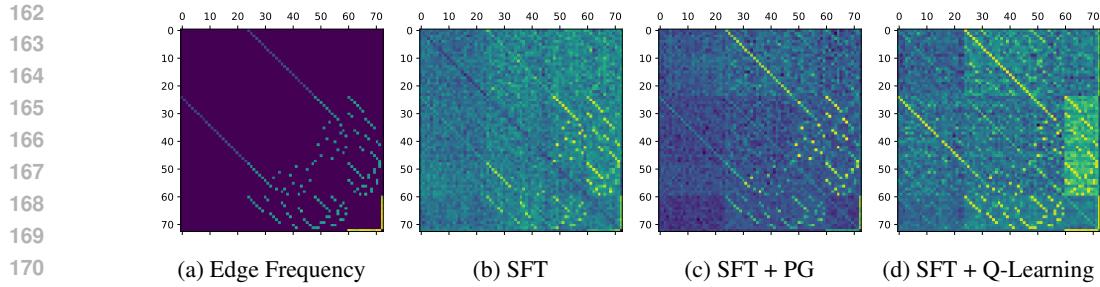


Figure 1: Frequency of edge occurrences in the SFT training data \mathcal{D}^{SFT} and the adjacency structures learned by different models. The underlying graph represents transitions between block configurations in Blocksworld (Valmeekam et al., 2023a).

That is, in the outcome reward setting, a reward of 1 is given only if the entire path is valid, and it is assigned at the step when the target is reached. In contrast, in the process reward setting, we do not check whether the entire path is valid or not. The model is always rewarded upon reaching the target, but it is also penalized at any step that transitions to a non-adjacent node.

3 LIMITATIONS OF SUPERVISED FINE-TUNING IN PLANNING

Focusing on the stationarity of the training dynamics, we present a basic structural characterization that captures a fundamental limitation of SFT in planning. Our analysis builds on an early finding of Wang et al. (2024b), which showed that transformer-based SFT planning approaches lack transitivity-learning mechanisms needed to obtain complete reachability structures. The new characterization expands and complements the earlier results and provides a theoretical explanation for why SFT-based planning tends to rely on memorization. More importantly, this result establishes a theoretical basis for comparison with RL-based planning frameworks and highlights the role of exploration in achieving better generalization during the adaptive learning process.

3.1 DISCUSSIONS ON EXISTING FINDINGS

To set up our characterization, we first review the analysis framework of Wang et al. (2024b), which examines the training dynamics of a one-layer, single-head Transformer under an autoregressive loss function. Their analysis shows that, during training, the model encodes both the adjacency and reachability structures of the underlying graph in its learnable parameters. The model then predicts the next node in a sequence by ensuring that it is adjacent to the current node and lies along a path toward the target node. A full description of their approach is given in Algorithm 1 in Appendix C.

Wang et al. (2024b) showed, both theoretically and experimentally, that the adjacency and reachability information stored in a model’s weights is generally **incomplete**. To formalize this, consider a training dataset \mathcal{D}^{SFT} . The *observed adjacency matrix* $\mathbf{A}^{\text{obs}}(\mathcal{D}^{\text{SFT}})$ contains exactly those edges (j, k) that appear in at least one path from \mathcal{D}^{SFT} . Similarly, the *observed reachability matrix* $\mathbf{R}^{\text{obs}}(\mathcal{D}^{\text{SFT}})$ records that a target node t is reachable from an intermediate node k if \mathcal{D}^{SFT} contains a sequence with target t in which k occurs as a non-source node. We refer to such pairs (t, k) as *observed reachable pairs*.

However, we find that even when an adjacency relation appears in \mathcal{D}^{SFT} , the SFT model may not learn a high weight for it. To illustrate this, we run experiments on the Blockworld dataset, and the results are presented in Figure 1. In Figure 1a, we show the frequency of all adjacency relationships in the training set (every adjacency relationship appears at least once), where brighter regions indicate higher frequencies. Then Figure 1b displays the corresponding weights learned after SFT. By comparing them, we observe that some adjacency relationships present in the data are not well captured by the model, especially those with low frequency. This observation motivates us to further investigate the model’s stable (optimal) points.

216
217

3.2 CHARACTERIZATION OF THE STABLE POINT IN SFT-BASED LEARNING DYNAMICS

218
219
220
221

Building on the observation of Wang et al. (2024b) that next-node prediction depends mainly on the current and target nodes, we adopt the following natural assumption about model expressiveness for our structural characterization. Recall that u_{target} and u_m denote the target node and the current node at position m , respectively.

222
223
224

Assumption 3.1. *The model’s predicted logits for the next token can be expressed as a function of the (target, current) node pair; i.e., there exists a function \mathbf{f} such that the logits $\hat{\mathbf{u}}_m = \mathbf{f}(u_{\text{target}}, u_m)$.*

225
226
227
228

Note that in the assumption, \mathbf{f} can be an arbitrary function. Our experiments validate this assumption. As shown in Section G.1, the evolution of attention maps during training for SFT, PG, and Q-learning demonstrates that the trained transformer acts primarily as a function of the target and current nodes.

229
230

We now characterize the structure of the stable point achieved by SFT. Due to space limitations, we defer all the proofs in this paper to the appendix.

231
232
233

Theorem 3.1 (Optimal Solution of SFT). *Assume Assumption 3.1 holds. Let $N_{u_{\text{target}}, u_m, k}$ denote the number of occurrences in the training dataset where the target node is u_{target} , the current node is u_m , and the next node is k . The optimal solution of SFT satisfies:*

234
235
236

$$\frac{\exp(\mathbf{f}(u_{\text{target}}, u_m)[k])}{\sum_{k'} \exp(\mathbf{f}(u_{\text{target}}, u_m)[k'])} = \frac{N_{u_{\text{target}}, u_m, k}}{\sum_{k'} N_{u_{\text{target}}, u_m, k'}} \quad \text{if } \sum_{k'} N_{u_{\text{target}}, u_m, k'} > 0.$$

237
238

If $\sum_{k'} N_{u_{\text{target}}, u_m, k'} = 0$, output can be any probability distribution.

239
240

Takeaway 1: SFT memorizes co-occurrence relationships in the training dataset.

241
242
243
244
245
246
247

Theorem 3.1 extends the findings of Wang et al. (2024b), which showed that SFT-based mechanisms may fail to learn the complete adjacency and reachability matrices, leading to spurious correlations. However, those earlier results did not specify the nature of the solutions to which the model converges. Complementing their work, Theorem 3.1 clarifies this by showing that SFT essentially memorizes co-occurrence relationships among the target node, the current node, and the immediate next node based on their frequencies in \mathcal{D}^{SFT} . Hence, SFT will fail to exploit transitivity information (which never appears in \mathcal{D}^{SFT}) to capture the true graph connectivity required for path planning.

248
249
250
251
252
253
254

In Figure 1, we further compare the weights of models trained by two RL approaches, PG and Q-learning. Both RL approaches capture the adjacency relationships better. Similar findings are reported by Chu et al. (2025), who empirically observe that SFT tends to memorize while RL exhibits better generalization. Our structural analysis in Theorem 3.1 provides a theoretical explanation for the first part of this phenomenon, namely, why “SFT memorizes”. In the following sections, we examine the two RL-based approaches, PG and Q-learning, and provide a theoretical explanation of the second part, i.e., why “RL generalizes”.

255

4 PATH PLANNING CAPACITIES OF POLICY GRADIENT

256
257
258
259
260
261
262

In this section, we examine the path-planning capacity of the policy gradient, the core principle behind advanced RL algorithms such as PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024). Understanding the strengths and limitations of the basic policy gradient provides theoretical insights into its behavior, highlights the mechanisms that enable effective path planning, and clarifies the challenges that motivate more sophisticated approaches.

263
264

4.1 THEORETICAL ANALYSIS

265
266
267
268
269

We first establish the connection between policy gradient (PG) and supervised fine-tuning (SFT), highlighting the potential advantages of PG over SFT. We then analyze PG’s training dynamics and show that, without KL regularization, the model can achieve 100% training accuracy (under temperature sampling) while progressively losing output diversity. Finally, we demonstrate that, when initialized with a reasonably capable base model, adding a KL regularization helps preserve diversity and thereby enhances generalization, albeit sometimes at the cost of accuracy.

270 To make this connection precise, we show that the PG loss function closely resembles the SFT loss,
 271 restricted to the subset of data generated during RL training that corresponds to correct paths.

272 **Theorem 4.1** (Connections between PG and SFT). *Assume Assumption 3.1 holds. Let $\mathcal{D}^{RL,t}$ denote
 273 the set of data generated during the RL training step t . When $r = 1, p = 0$ (i.e., reward 1 for a
 274 correct path and reward 0 otherwise) and $\lambda = 0$ (i.e., without KL regularization), the loss function
 275 of Policy Gradient is the same as the loss function of using SFT only on correct paths in $\mathcal{D}^{RL,t}$.*

276 As shown by Wang et al. (2024b), SFT can learn the adjacency and reachability relations. Thus,
 277 Theorem 4.1 shows that PG can capture these relations presented in the dataset $(\bigcup_{t=1}^T \mathcal{D}^{RL,t}) \cap \mathcal{P}$.
 278 However, unlike SFT, which relies on a fixed training dataset, PG generates data on-policy during
 279 training. As the model improves, it can explore and discover new correct paths that were absent from
 280 the initial training set. This exploration-driven data augmentation enables PG to achieve stronger
 281 performance beyond what SFT alone can provide.

282 **Takeaway 2: PG outperforms SFT primarily because its iterative data generation process
 283 encourages exploration and effectively expands the training dataset.**

284 Building on the loss function, we analyze the gradient and identify two distinctive properties of
 285 on-policy PG updates.

286 **Theorem 4.2** (Convergence of PG without KL regularization). *Assume Assumption 3.1 holds. For
 287 any i, j pair, let $C(i, j)$ denote the set of nodes that can reach i and are adjacent to j . The following
 288 then holds: If $r = 1, p = 0$ and $\lambda = 0$, then (i) the gradient $\frac{\partial \ell}{\partial \mathbf{f}(i, j)[k]}$ for $k \notin C(i, j)$ is always
 289 positive, and (ii) the total sum of gradient $\sum_k \frac{\partial \ell}{\partial \mathbf{f}(i, j)[k]} = 0$.*

290 Theorem 4.2 shows that the logits $\mathbf{f}(i, j)[k]$ corresponding to incorrect tuples (i, j, k) , i.e., cases
 291 where node j cannot reach node i through node k , will continue to decrease, while some other logits
 292 will not converge to $-\infty$. Consequently, under gradient descent, the probability that the model
 293 outputs a wrong path in D_{Train} converges to zero.

294 Next, we analyze how the model’s output diversity evolves. Intuitively, the most diverse model that
 295 still achieves 100% accuracy is one that produces a uniform distribution over $C(i, j)$ for each target
 296 node i and current node j . We now analyze the evolution of the KL divergence between this uniform
 297 distribution and the model’s output distribution during PG training without KL regularization.

298 **Theorem 4.3** (Diversity Collapse of PG without KL regularization). *Assume Assumption 3.1 holds.
 299 Let $U_{C(i, j)}$ denote the uniform probability distribution on support $C(i, j)$. When $r = 1, p = 0$ and
 300 $\lambda = 0$, and logits $\mathbf{f}^t(i, j)[k]$ for $k \notin C(i, j)$ is $-\infty$, where $\mathbf{f}^t(i, j)$ denotes the logits value of $\mathbf{f}(i, j)$
 301 at time step t . For any such PG gradient descent step t , we have that*

$$302 \text{KL}(U_{C(i, j)} || \text{softmax}(\mathbf{f}^t(i, j))) \leq \mathbb{E}[\text{KL}(U_{C(i, j)} || \text{softmax}(\mathbf{f}^{t+1}(i, j)))].$$

303 Note that the metric $\text{KL}(U_{C(i, j)} || \text{softmax}(\mathbf{f}^t(i, j)))$ takes minimum value when $\text{softmax}(\mathbf{f}^t(i, j))$
 304 is also the uniform distribution on $C(i, j)$, and takes maximum value when $\text{softmax}(\mathbf{f}^t(i, j))$ is a
 305 one-hot vector. Thus, Theorem 4.3 demonstrates that even after attaining 100% accuracy on D_{Train} ,
 306 the model continues to exhibit declining output diversity.

307 **Takeaway 3: In the absence of KL divergence, output diversity continuously declines.**

308 This diversity-collapse phenomenon has been reported in the literature (Cui et al., 2025) and can
 309 impair a model’s ability to generalize. To address it, many techniques have been proposed, the most
 310 common being KL regularization. To better understand its role, we analyze the stable point of the
 311 model under KL regularization, highlighting both its advantages and limitations.

312 **Theorem 4.4** (The effect of KL regularization). *When $r = 1, p = 0$ and $\lambda > 0$, the stable point of
 313 the PG model satisfies the following, under Assumption 3.1: For any fixed i, j , either $\mathbf{q}(i, j)[k] = 0$
 314 or $\mathbf{q}(i, j)[k] \propto \mathbf{q}^{\text{base}}(i, j)[k] \exp(\mathbf{p}(i, j)[k]/\lambda)$. Here $\mathbf{q}(i, j)[k]$ is the probability of outcome k in
 315 $\text{softmax}(\mathbf{f}(i, j))$, $\mathbf{q}^{\text{base}}(i, j)[k]$ is the probability of outcome k in the base model, and $\mathbf{p}(i, j)[k]$ is
 316 the probability of tuple i, j, k belonging to a valid path given output probability $\{\mathbf{q}(i, j)[k]\}_{i, j, k}$.*

317 This result shows that KL regularization constrains the trained model to remain close to the base
 318 model, thereby preserving some of its diversity. This effect is a *double-edged sword*. Consider a
 319 valid next node k for which the base model assigns low probability, i.e., $\mathbf{q}^{\text{base}}(i, j)[k]$ is small. On

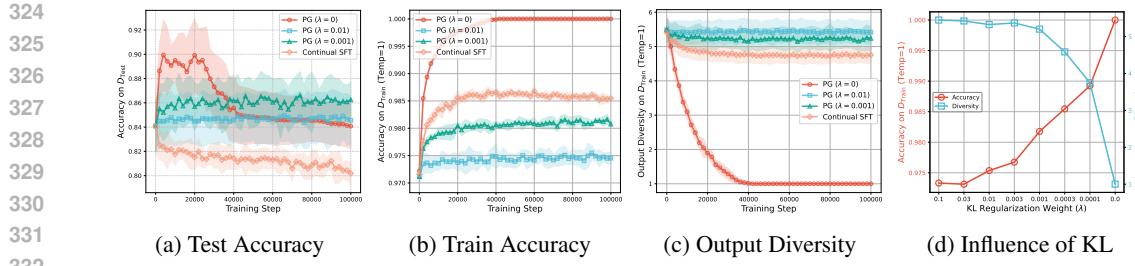


Figure 2: Empirical results of PG training. Both PG and continual SFT are initialized from the same base model. Figures (a)-(c) illustrate the training dynamics of test accuracy (under greedy decoding), training accuracy (under temperature sampling), and response diversity (under temperature sampling). Figure (d) shows how different KL regularization strengths affect the final models.

the one hand, KL regularization prevents $q(i, j)[k]$ from becoming arbitrarily small, increasing the chance of generating valid paths involving k . On the other hand, it also prevents $q(i, j)[k]$ from becoming very large, limiting potential gains when the base model’s prior is suboptimal. This tradeoff explains seemingly contradictory findings in recent literature: when the base model is already capable, KL regularization preserves diversity and improves generalization, but when the base model is weak, the regularization may hinder learning by overly constraining policy updates.

Takeaway 4: KL regularization explicitly acts as a diversity-preserving mechanism, provided that the base model is reasonably capable, but this comes at the cost of reduced train accuracy.

4.2 EMPIRICAL VALIDATIONS

The results are presented in Figure 2, where we compare PG with different KL regularization factor λ against continual SFT. All models are initialized from the same base model after SFT training, while continual SFT means training the model for more time steps on the same SFT dataset \mathcal{D}^{SFT} . The empirical results match the takeaways we summarized from our theoretical findings, as detailed below.

Takeaway 2: In Figure 2a, as the training progresses, the test accuracy of Continual SFT constantly decreases, while all the PG methods can achieve an improvement, since they benefit from exploration-driven training data. **Takeaway 3:** In Figure 2b and 2c, we can see that PG without KL regularization progressively achieves and maintains 100% training accuracy, but its output diversity, i.e., the average number of distinct correct paths generated over 100 sampling trials for the same source-target pair, keeps decreasing during training. In the end, the model eventually produces only one path per pair. Moreover, as shown in Figure 2a, when the diversity diminishes, continued training degrades test accuracy. **Takeaway 4:** As a comparison, PG with KL regularization maintains high output diversity in the end, but their training accuracy is limited. This trade-off is further stated in Figure 2d: with a higher factor λ , the model can have a higher output diversity and a lower training accuracy. Along with Figure 2a, it is shown that KL regularization prevents the model from deviating too far from the base model in terms of both diversity and training accuracy. This mitigates overfitting but also caps potential gains in test accuracy.

5 ANALYSIS OF THE Q-LEARNING-BASED PLANNING MECHANISM

In this section, we analyze the Q-learning mechanism for language-model planning under two different reward designs. We show that stepwise process rewards enable convergence, preserve diversity, and remain valid under off-policy sampling, whereas outcome rewards collapse to trivial solutions. Our analysis begins under Assumption 3.1 for both reward types, and we then extend the process-reward analysis to a more concrete linear Transformer model without this assumption.

378 5.1 THEORETICAL ANALYSIS
379380 To analyze the structure and convergence of the Q-learning stable point, we introduce a mild assumption
381 which we call the persistent exploration assumption about the RL-based learning dynamics.382 **Assumption 5.1** (Persistent exploration). *At training step t , let $i_t = u_{\text{target}}$, $j_t = u_m$, k_t , respectively, denote the target, current, and next nodes. We assume for every (i, j, k) , $\exists \underline{N}_{i,j,k}^{\text{prop}} > 0$ such that*

385
$$\liminf_{T \rightarrow \infty} \frac{1}{T} \sum_{t=0}^{T-1} \delta_{(i_t, j_t, k_t) = (i, j, k)} \geq \underline{N}_{i,j,k}^{\text{prop}}.$$

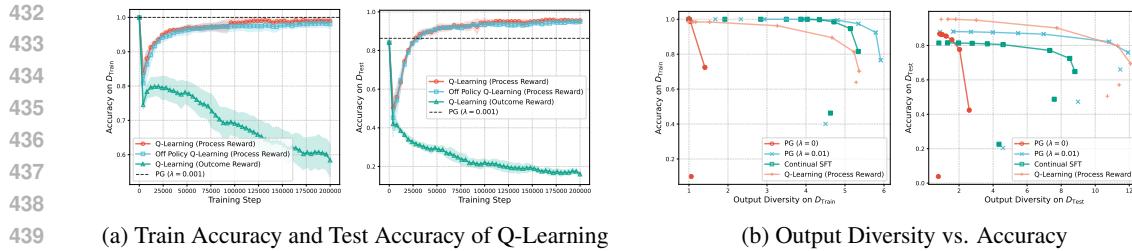
386
387

388 Under the persistent exploration assumption, every coordinate is updated frequently enough to allow
389 convergence analysis. In practice, this assumption is usually satisfied, for instance:390 **Lemma 5.1.** *Training with ϵ -exploration (i.e., exploring each alternative action with probability
391 proportional to ϵ) satisfies the persistent exploration assumption.*392 With the outcome reward, the signal merely verifies whether the entire sequence constitutes a valid
393 path ending at target i . It does not differentiate between current nodes j or candidate next nodes k
394 when $k \neq i$. As a result, at a stable point, all logits collapse to the same constant c_i for each fixed
395 target i , causing the parameters to lose structural information, as stated in the theorem below.396 **Theorem 5.1** (Stable points of outcome reward). *Assume the RL-training uses the outcome re-
397 ward $R(\mathbf{u}, m) = \delta_{\mathbf{u} \in \mathcal{P}} \delta_{u_{m+1} = u_{\text{target}}}$, and a stable point exists under persistent exploration (Assump-
398 tion 3.1). Then, at any stable point of the Q-learning model, for each fixed target i and $k \neq i$, all
399 logits $\mathbf{f}(i, j)[k]$ take the same value depending only on i .*400 With the process reward, the update rule accounts for both adjacency and target conditions. The
401 next theorem establishes that the process converges to well-defined limits that capture the underlying
402 graph structure.403 **Theorem 5.2** (Stable points of process reward). *Assume Assumption 3.1 holds and the process
404 reward is used, i.e. $R(\mathbf{u}, m) = \delta_{u_{m+1} = u_{\text{target}}} - \delta_{(u_m, u_{m+1}) \notin \mathcal{E}}$. Suppose the score vector $\mathbf{f}(i, j) \in \mathbb{R}^n$
405 is initialized at zero and updated under the persistent exploration assumption with learning rate η .
406 Then, in the Q-learning model, as $t \rightarrow \infty$, $\mathbf{f}^{(t)}(i, j)[i] \rightarrow \mathbf{A}[j, i]$, and for $k \neq i$,*

407
$$\mathbf{f}^{(t)}(i, j)[k] \rightarrow \begin{cases} 1, & \mathbf{A}[j, k] = 1 \text{ and } \mathbf{R}[i, k] = 1, \\ 0, & \text{exactly one of } (\mathbf{A}[j, k] = 1) \text{ or } (\mathbf{R}[i, k] = 1), \\ -1, & \mathbf{A}[j, k] = 0 \text{ and } \mathbf{R}[i, k] = 0. \end{cases}$$

408
409

410 Here “ \rightarrow ” denotes convergence or “tend to”. Moreover, the convergence is linear; the effective
411 rate depends on η and the update proportions $\underline{N}_{i,j,k}^{\text{prop}}$.412 **Takeaway 5: Different from PG methods, in Q-learning, relying solely on the outcome reward
413 signal can cause Q-value bias, whereas introducing process rewards mitigates this issue.**414 To gain further insight in a setting closer to practice, we analyze a simplified but concrete one-layer,
415 single-head linear Transformer without the abstraction of Assumption 3.1.416 **Assumption 5.2** (Linear transformer Wang et al. (2024b)). *We work under the simplified Trans-
417 former setting in Wang et al. (2024b): (1) The token embedding matrix and the output weight matrix
418 are both set to the identity; (2) Attention is fixed entirely on the target node u_{target} , so the attention
419 block contributes only the value lookup $\mathbf{W}^V[u_{\text{target}}, \cdot]$; (3) All layer normalizations are removed,
420 and the feedforward block is replaced by a linear map of the form $\text{FFN}(\mathbf{X}) = \mathbf{X}\mathbf{W}^M$. Under these
421 assumptions, the logit decomposes as $\tilde{\mathbf{u}}_{m+1}[k] = \mathbf{W}^M[u_m, k] + \mathbf{W}^V[u_{\text{target}}, k]$, where \mathbf{W}^M arises
422 from the feed-forward weights and \mathbf{W}^V from the value matrix of the attention block.*423 Despite this simplification, the analyzed results remain consistent with the experiments of real Trans-
424 formers, as demonstrated in Wang et al. (2024b). This formulation aligns with the actual 1-layer
425 1-head Transformer architecture, offering greater practical utility compared to the abstract function
426 $\mathbf{f}(i, j)[k]$. The subsequent result characterizes the set of stable points under this decomposition and
427 is consistent with the structural limits established in Theorem 5.2.



(a) Train Accuracy and Test Accuracy of Q-Learning

(b) Output Diversity vs. Accuracy

Figure 3: Empirical comparison between Q-learning and PG. Figure (a) shows the training dynamics of training and test accuracy (under greedy decoding). Figure (b) compares the Pareto frontiers of output diversity and accuracy on the training and test sets (under temperature decoding).

Theorem 5.3 (Stable points of process reward). *Assume Assumption 5.2 holds. For a linear transformer, assume training uses the process reward, and the persistent exploration condition holds. At a stable point of the Q-learning model, for each k there exists $c_k \in \mathbb{R}$ such that*

$$\mathbf{W}^M[j, k] = \mathbf{A}[j, k] - 1 + c_k, \mathbf{W}^V[i, k] = \mathbf{R}[i, k] - c_k.$$

Conversely, any such $(\mathbf{W}^M, \mathbf{W}^V)$ is a stable point. Hence, the set of stable points is $\{(\mathbf{W}^M, \mathbf{W}^V) : c_k \in \mathbb{R}, k \in [|\mathcal{V}|]\}$.

Theorem 5.1 shows that if only outcome reward is used, the learned logits collapse to a constant across all states for a given target. In contrast, Theorem 5.2 and Theorem 5.3 show that with persistent exploration, process rewards can preserve adjacency and reachability (note that in Theorem 5.3, the constant c_k is immaterial in terms of path planning, since for any stable point, $\tilde{\mathbf{u}}_{m+1}[k] = \mathbf{W}^M[u_m, k] + \mathbf{W}^V[u_{\text{target}}, k] = \mathbf{A}[j, k] + \mathbf{R}[i, k] - 1$, which is the same as Theorem 5.2). Moreover, the convergence holds even under off-policy sampling, and action diversity is preserved because all feasible next nodes converge to the logit value 1.

Takeaway 6: Compared to PG methods, Q-learning can operate off-policy and better maintains output diversity.

5.2 EMPIRICAL VALIDATIONS

We first examine the training and test accuracy results in Figure 3a, where we compare Q-learning under different reward designs and sampling policies. All models are initialized from the same base model. Figure 3b states the diversity-accuracy trade-off of Q-learning models, policy gradient models, and the continual SFT model (under different temperatures). Figure 4 illustrates the logits of an on-policy Q-learning model with process rewards and fixed attention (attention fixed on the target node u_{target}). The model is initialized from the same base model as in Figure 3, and is further trained with reinforcement steps on all pairs $(s, t) \in \mathcal{D}^{\text{SFT}}$ where $t \in [20]$. In each row i , we plot the logits for nodes 0–20 (normalized to $[0, 1]$) when the current node is 0 and the target node is i . White indicates larger logits, black indicates smaller logits, and green frames highlight nodes that are both children of node 0 and ancestors of i , corresponding to valid outputs. The empirical results are consistent with the takeaways introduced above, as detailed below.

Takeaway 5: In Figure 3a, Q-learning with process rewards achieves comparable training accuracy and significantly better test accuracy than the PG model, while Q-learning with outcome rewards collapses and converges to near-zero accuracy on both training and test sets. Examining each row of Figure 4, we observe that the logits of feasible nodes gradually increase and converge to the largest values within their respective rows, which aligns with Theorem 5.2 and 5.3 and confirms that process rewards enable the model to recover the correct graph structure. **Takeaway 6:** In Figure 3a, off-policy Q-learning with process rewards attains training and test accuracy comparable to on-policy Q-learning with process rewards, demonstrating that Q-learning can operate off-policy. Finally, Figure 3b further highlights that the Q-learning process rewards preserve output diversity. Figure 4 also reflects this phenomenon: within each row, the logits of feasible nodes become increasingly close to one another (approaching white) over time, indicating convergence to diverse but correct transitions.

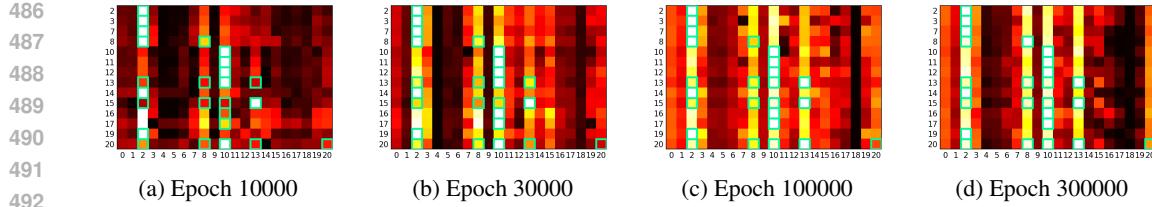


Figure 4: Heatmap of normalized logits from the Q-learning model with process reward. For each row i , green blocks indicate valid next nodes given the current node 0 and target node i . The logits corresponding to these valid actions consistently increase during training.

6 CONCLUSION

In this paper, we analyze the benefits and limitations of reinforcement learning in language model planning through the lens of learning dynamics. Our theoretical analysis shows that supervised fine-tuning introduces spurious co-occurrence solutions, while policy gradient and Q-learning outperform SFT primarily through exploration. We further identify a critical drawback of basic policy gradient—*diversity collapse*—and show that Q-learning mitigates this issue while supporting off-policy learning. These insights clarify the mechanisms behind the recent success of RL-based approaches and highlight principled research directions, such as leveraging Q-learning for robust, scalable, and generalizable planning in language models.

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REPRODUCIBILITY STATEMENT
541542 We attach all the source code necessary to reproduce our experimental results in the supplemen-
543 tary materials. As for the theoretical results, complete proofs of all the theorems are provided in
544 Appendix C, D, and E for full transparency and verification.
545546 REFERENCES
547548 Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang
549 Yang. Graphllm: Boosting graph reasoning ability of large language model. *arXiv preprint*
550 *arXiv:2310.05845*, 2023.551 Nuo Chen, Yuhang Li, Jianheng Tang, and Jia Li. Graphwiz: An instruction-following language
552 model for graph computational problems. In *Proceedings of the 30th ACM SIGKDD Conference*
553 *on Knowledge Discovery and Data Mining*, pp. 353–364, 2024a.554 Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language
555 and graph assistant. *arXiv preprint arXiv:2402.08170*, 2024b.
556557 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
558 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
559 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.560 Andrew Cohen, Andrey Gromov, Kaiyu Yang, and Yuandong Tian. Spectral journey: How trans-
561 formers predict the shortest path. *arXiv preprint arXiv:2502.08794*, 2025.562 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
563 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
564 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025.565 Xinnan Dai, Haohao Qu, Yifen Shen, Bohang Zhang, Qihao Wen, Wenqi Fan, Dongsheng Li, Jiliang
566 Tang, and Caihua Shan. How do large language models understand graph patterns? a benchmark
567 for graph pattern comprehension. *arXiv preprint arXiv:2410.05298*, 2024.568 Xinnan Dai, Kai Yang, Jay Revolinsky, Kai Guo, Aoran Wang, Bohang Zhang, and Jiliang Tang.
569 From sequence to structure: Uncovering substructure reasoning in transformers. *arXiv preprint*
570 *arXiv:2507.10435*, 2025.
571572 Murtaza Dalal, Tarun Chiruvolu, Devendra Chaplot, and Ruslan Salakhutdinov. Plan-seq-
573 learn: Language model guided rl for solving long horizon robotics tasks. *arXiv preprint*
574 *arXiv:2405.01534*, 2024.575 Artur Back De Luca and Kimon Fountoulakis. Simulation of graph algorithms with looped trans-
576 formers. *arXiv preprint arXiv:2402.01107*, 2024.
577578 Jiayan Guo, Lun Du, and Hengyu Liu. Gpt4graph: Can large language models understand graph
579 structured data? an empirical evaluation and benchmarking. *arXiv preprint arXiv:2305.15066*,
580 2023.581 Xiaojun Guo, Ang Li, Yifei Wang, Stefanie Jegelka, and Yisen Wang. G1: Teaching llms to reason
582 on graphs with reinforcement learning. *arXiv preprint arXiv:2505.18499*, 2025.
583584 Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
585 Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: LLMs can't plan, but can help planning
586 in LLM-modulo frameworks. In *Forty-first International Conference on Machine Learning*, 2024.
587 URL <https://openreview.net/forum?id=Th8JPEmH4z>.
588589 Xufang Luo, Yuge Zhang, Zhiyuan He, Zilong Wang, Siyun Zhao, Dongsheng Li, Luna K Qiu, and
590 Yuqing Yang. Agent lightning: Train any ai agents with reinforcement learning. *arXiv preprint*
591 *arXiv:2508.03680*, 2025.

594 Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, and Xing Xie.
 595 Graphinstruct: Empowering large language models with graph understanding and reasoning ca-
 596 pability. *arXiv preprint arXiv:2403.04483*, 2024.

597

598 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
 599 stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint*
 600 *arXiv:1312.5602*, 2013.

601

602 Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa Jojc, Hamid
 603 Palangi, Robert Ness, and Jonathan Larson. Evaluating cognitive maps and planning in large
 604 language models with CogEval. *Advances in Neural Information Processing Systems*, 36, 2023.

605

606 Nanda Neel, Chan Lawrence, Lieberum Tom, Smith Jess, and Steinhardt Jacob. Progress measures
 607 for grokking via mechanistic interpretability. In *International Conference on Learning Represen-
 608 tations*, 2023.

609

610 Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and
 611 Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms. *arXiv*
 612 *preprint arXiv:2402.05862*, 2024.

613

614 Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
 615 Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
 616 algorithms. *Advances in Neural Information Processing Systems*, 37:78320–78370, 2024.

617

618 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 619 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

620

621 Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
 622 without verification or rl is suboptimal. *arXiv preprint arXiv:2502.12118*, 2025.

623

624 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 625 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 626 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

627

628 Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
 629 gingGPT: Solving AI tasks with ChatGPT and its friends in Huggingface. *Advances in Neural*
 630 *Information Processing Systems*, 36, 2023.

631

632 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 633 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*
 634 *arXiv: 2409.19256*, 2024.

635

636 Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving Olympiad geometry
 637 without human demonstrations. *Nature*, 625(7995):476–482, 2024.

638

639 Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao
 640 Kambhampati. Planbench: An extensible benchmark for evaluating large language
 641 models on planning and reasoning about change. In A. Oh, T. Naumann, A. Glober-
 642 son, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Pro-
 643 cessing Systems*, volume 36, pp. 38975–38987. Curran Associates, Inc., 2023a. URL
 644 https://proceedings.neurips.cc/paper_files/paper/2023/file/7a92bcdede88c7af108072faf5485c8-Paper-Datasets_and_Benchmarks.pdf.

645

646 Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
 647 planning abilities of large language models-a critical investigation. *Advances in Neural Infor-
 648 mation Processing Systems*, 36, 2023b.

649

650 Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
 651 and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
 652 *arXiv preprint arXiv:2305.16291*, 2023a.

648 Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
 649 Can language models solve graph problems in natural language? *Advances in Neural Information*
 650 *Processing Systems*, 36, 2023b.

651

652 Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
 653 Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
 654 *Frontiers of Computer Science*, 18(6):1–26, 2024a.

655 Siwei Wang, Yifei Shen, Shi Feng, Haoran Sun, Shang-Hua Teng, and Wei Chen. Alpine: Unveil-
 656 ing the planning capability of autoregressive learning in language models. *Advances in neural*
 657 *information processing systems*, 37:119662–119688, 2024b.

658

659 Qinzhuo Wu, Wei Liu, Jian Luan, and Bin Wang. Toolplanner: A tool augmented llm for multi gran-
 660 ularity instructions with path planning and feedback. *arXiv preprint arXiv:2409.14826*, 2024a.

661

662 Xixi Wu, Yifei Shen, Caihua Shan, Kaitao Song, Siwei Wang, Bohang Zhang, Jiarui Feng, Hong
 663 Cheng, Wei Chen, Yun Xiong, et al. Can graph learning improve planning in llm-based agents?
 664 *Advances in Neural Information Processing Systems*, 37:5338–5383, 2024b.

665

666 Jingkang Yang, Yuhao Dong, Shuai Liu, Bo Li, Ziyue Wang, Haoran Tan, Chencheng Jiang, Jiamu
 667 Kang, Yuanhan Zhang, Kaiyang Zhou, et al. Octopus: Embodied vision-language programmer
 668 from environmental feedback. In *European conference on computer vision*, pp. 20–38. Springer,
 2024.

669

670 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
 671 enforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
 672 *preprint arXiv:2504.13837*, 2025.

673

674 Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
 675 Zhongzhi Li, Xiangyuan Xue, Yijiang Li, et al. The landscape of agentic reinforcement learning
 676 for llms: A survey. *arXiv preprint arXiv:2509.02547*, 2025a.

677

678 Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
 679 Tian, Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models.
 680 *arXiv preprint arXiv:2509.08827*, 2025b.

681

682 Hanlin Zhu, Baihe Huang, Shaolun Zhang, Michael Jordan, Jiantao Jiao, Yuandong Tian, and Stu-
 683 art J Russell. Towards a theoretical understanding of the ‘reversal curse’ via training dynamics.
 684 *Advances in Neural Information Processing Systems*, 37:90473–90513, 2024.

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A THE USE OF LARGE LANGUAGE MODELS
703

704 In this paper, the core conceptual framework and its iterative development were driven by human
705 researchers. LLMs served strictly in a supporting capacity, primarily employed for linguistic re-
706 finement of the manuscript to enhance readability while preserving original technical content. The
707 whole paper is carefully supervised, reviewed, and modified by the authors who maintain complete
708 responsibility for the scientific validity, technical accuracy, and ethical integrity of this work.
709

710
711 B MORE RELATED WORKS
712713 B.1 PLANNING OF LLMs
714

715 Planning is a fundamental component of human intelligence and autonomous agents. Several studies
716 have evaluated the planning capabilities of LLMs trained without reinforcement learning, such
717 as CogEval (Momennejad et al., 2023) and Blockworlds (Valmeekam et al., 2023b). These works
718 consistently report negative results, suggesting that LLMs lack inherent planning abilities. In con-
719 trast, models such as *o1* show the ability to solve such problems, though the underlying mechanisms
720 remain unclear.

721 On the other hand, LLM-based agents have demonstrated remarkable competence in performing
722 real-world planning tasks, even without RL training (Wang et al., 2024a). Many of these plan-
723 ning tasks can be naturally abstracted as path planning problems on a graph. For example, in
724 tool-augmented agents (Shen et al., 2023), tool dependencies can be modeled as a graph where
725 nodes represent tools and edges represent dependency relations (Wu et al., 2024b). Planning, in
726 this context, involves finding a path of tools to fulfill the user’s request. Similarly, in mathemati-
727 cal reasoning agents (Trinh et al., 2024), theorem dependencies form a graph where constructing a
728 proof is equivalent to finding a path. In game-playing agents such as Voyager (Wang et al., 2023a),
729 skill dependencies create a graph structure where planning determines the sequence of skills needed
730 to accomplish tasks. These observations motivate our abstraction of planning as a path planning
731 problem in this work.

732 Agents trained without RL face two key challenges: (1) supervised fine-tuning loss is misaligned
733 with the agent’s ultimate objectives, and (2) real-world data is scarce. RL addresses the first issue
734 by explicitly optimizing for the end goal through a reward signal, and the second by generating
735 exploratory data. Consequently, RL significantly mitigates these limitations and improves perfor-
736 mance (Zhang et al., 2025a). Our paper further examines the benefits of RL over SFT, as well as the
737 limitations of RL, providing insights for future research directions.

738
739 B.2 RL FOR LLMs
740

741 Recently, RL has been widely adopted to enhance reasoning capabilities in language models, exem-
742 plified by milestone systems such as OpenAI’s *o1* and DeepSeek-R1. This paradigm has inspired
743 a new wave of reasoning-focused models, including Qwen-3 and Phi-4 Reasoning (Zhang et al.,
744 2025b). State-of-the-art LLM-based agents also commonly employ RL (Zhang et al., 2025a).

745 Despite its empirical success, the mechanisms by which RL improves LLM performance remain an
746 active area of research, with current understanding scattered across multiple works. For instance,
747 Chu et al. (2025) empirically compares SFT and RL on reasoning benchmarks, concluding that RL
748 provides better generalization. Theoretical analysis in (Setlur et al., 2025) further shows that any
749 verification-free approach, such as SFT, is suboptimal. Additionally, Yue et al. (2025) identifies an
750 *entropy mechanism*, establishing and empirically validating a trade-off between entropy and accu-
751 racy during RL training.

752 In this paper, we focus on path planning as a case study and derive results consistent with prior
753 work: (1) SFT tends to memorize training data and produce co-occurrence-driven outputs; (2) RL
754 surpasses SFT primarily through exploration; and (3) diversity collapse occurs during PG training.
755 Beyond these findings, we uncover evidence suggesting that Q-learning may offer advantages over
policy gradient methods, introducing a new perspective on RL for LLMs.

756 B.3 GRAPH PROBLEMS WITH LANGUAGE MODELS
757

758 Graph problems serve as a valuable testbed for analyzing the reasoning capabilities of language
759 models. From an empirical standpoint, several benchmarks have been proposed (Guo et al., 2023;
760 Wang et al., 2023b; Dai et al., 2024), spanning a spectrum of tasks: classic graph problems (e.g.,
761 connectivity, path-finding, and pattern detection), graph neural network (GNN) benchmarks (e.g.,
762 node and graph classification), and semantic graph-based question answering (e.g., on knowledge
763 graphs). Without additional training, LLMs generally underperform on these tasks. To improve
764 performance, early approaches leverage instruction tuning and DPO (Luo et al., 2024; Chen et al.,
765 2024a; Perozzi et al., 2024; Chai et al., 2023; Chen et al., 2024b), while later methods employ
766 RL (Guo et al., 2025), which consistently achieves superior results.

767 There are three major paradigms for analyzing how transformers solve graph-related reasoning tasks.
768 The first is *mechanistic interpretability*, which reverse-engineers trained model weights (Neel et al.,
769 2023). For example, Cohen et al. (2025) observed that transformers implement a spectral algorithm
770 to compute shortest paths. However, this paradigm largely relies on empirical observation without
771 theoretical grounding. The second paradigm is based on *expressiveness* analysis (Dai et al., 2024;
772 Sanford et al., 2024; Dai et al., 2025; De Luca & Fountoulakis, 2024), constructing weight configu-
773 rations that enable transformers to simulate algorithms. Yet, such configurations are often unrealistic
774 for transformers trained via SGD (e.g., embedding vectors explicitly set to $1, 2, \dots, L$ (Dai et al.,
775 2024)). The third paradigm investigates *gradient dynamics*, which is both practical and challenging
776 due to the non-convexity of the optimization landscape. Prior work has analyzed path-finding in
777 directed graphs (Wang et al., 2024b) and compositionality of paths (Zhu et al., 2024).

778 To the best of our knowledge, this work presents the first analysis of RL gradient dynamics in LLMs.
779 Our results explain why RL-based methods outperform SFT approaches and highlight the potential
780 advantages of Q-learning–driven methods, opening promising directions for future research.

781 C APPENDIX FOR SFT
782783 C.1 PATH PLANNING ALGORITHM IN TRANSFORMER
784785 **Algorithm 1** A handcrafted path planning algorithm
786

787 1: **Input:** Adjacency matrix \mathbf{A} , reachability matrix \mathbf{R} , source node s , target node t
788 2: Set path $P = [s \ t \ s]$ and set current node $i = s$
789 3: **while** $i \neq t$ **do**
790 4: Obtain $S = \{k | \mathbf{A}_{(i,k)} = 1 \text{ and } \mathbf{R}_{(t,k)} = 1\}$
791 5: Randomly sample next node k from S
792 6: Append k to path P , and set $i = k$
793 7: **end while**
794 8: **output** path P

795 C.2 PROOF OF THEOREM 3.1
796

797 *Proof.* The next-token prediction cross-entropy loss can be written as
798

$$802 \ell = - \sum_{\mathbf{u} \in \mathcal{D}^{\text{SFT}}} \sum_{m \geq 1} \sum_k \delta_{k=u_{m+1}} \log \hat{\mathbf{u}}_m[k].$$

803 Under the assumption that the output distribution $\hat{\mathbf{u}}_m$ depends only on the target node u_{target} and the
804 current node u_m , we can aggregate identical terms, and express the loss as
805

$$806 - \sum_{u_{\text{target}}, u_m} \left(\sum_{k'} N_{u_{\text{target}}, u_m, k'} \right) \left(\sum_k \frac{N_{u_{\text{target}}, u_m, k}}{\sum_{k'} N_{u_{\text{target}}, u_m, k'}} \log \frac{\exp(\mathbf{f}(u_{\text{target}}, u_m)[k])}{\sum_{k'} \exp(\mathbf{f}(u_{\text{target}}, u_m)[k'])} \right).$$

If $\sum_{k'} N_{u_{\text{target}}, u_m, k'} \neq 0$, the expression in brackets is the cross-entropy between the empirical distribution and the distribution of doing softmax on vector $\mathbf{f}(u_{\text{target}}, u_m)$. It is minimized when

$$\frac{\exp(\mathbf{f}(u_{\text{target}}, u_m)[k])}{\sum_{k'} \exp(\mathbf{f}(u_{\text{target}}, u_m)[k'])} = \frac{N_{u_{\text{target}}, u_m, k}}{\sum_{k'} N_{u_{\text{target}}, u_m, k'}}.$$

If $\sum_{k'} N_{u_{\text{target}}, u_m, k'} = 0$, the loss does not depend on $\mathbf{f}(u_{\text{target}}, u_m)$, so it can be any valid probability distribution. \square

D APPENDIX FOR POLICY GRADIENT

D.1 PROOF OF THEOREM 4.1

Proof. In this case, the loss function of policy gradient is

$$\ell = \sum_{\mathbf{u} \in \mathcal{D}^{\text{RL,t}}} \delta_{\mathbf{u} \in \mathcal{P}} \left(- \sum_{m \geq 1} \log \hat{\mathbf{u}}_m[u_{m+1}] \right) = \sum_{\mathbf{u} \in \mathcal{D}^{\text{RL,t}} \cap \mathcal{P}} \left(- \sum_{m \geq 1} \log \hat{\mathbf{u}}_m[u_{m+1}] \right).$$

\square

D.2 PROOF OF THEOREM 4.2

Proof. We first rewrite the loss function as

$$\ell = \sum_{\mathbf{u} \in \mathcal{D}^{\text{RL,t}} \cap \mathcal{P}} \left(- \sum_{m \geq 1} \log \hat{\mathbf{u}}_m[u_{m+1}] \right) = \sum_{i,j,k} N_{i,j,k}^{R,P,t} \left(- \log \frac{\exp(\mathbf{f}(i,j)[k])}{\sum_{k'} \exp(\mathbf{f}(i,j)[k'])} \right),$$

where $N_{i,j,k}^{R,P,t}$ denote the number of times that $u_{\text{target}} = i$, $u_m = j$ and $u_{m+1} = k$ for $m \geq 1$ in set $\mathcal{D}^{\text{RL,t}} \cap \mathcal{P}$. Then we can take the gradient and get

$$\frac{\partial \ell}{\partial \mathbf{f}(i,j)[k]} = -N_{i,j,k}^{R,P,t} + \frac{\exp(\mathbf{f}(i,j)[k])}{\sum_{k'} \exp(\mathbf{f}(i,j)[k'])} \sum_{k'} N_{i,j,k'}^{R,P,t}.$$

For a wrong tuple i, j, k (where k is not adjacent with j or k cannot reach i), $N_{i,j,k}^{R,P,t}$ is always zero. Thus, the gradient is always positive. On the other hand, we will also have

$$\sum_k \frac{\partial \ell}{\partial \mathbf{f}(i,j)[k]} = - \sum_k N_{i,j,k}^{R,P,t} + \frac{\sum_k \exp(\mathbf{f}(i,j)[k])}{\sum_{k'} \exp(\mathbf{f}(i,j)[k'])} \sum_{k'} N_{i,j,k'}^{R,P,t} = 0.$$

\square

D.3 PROOF OF THEOREM 4.3

Proof. Note that

$$\begin{aligned} KL(U_{C(i,j)} || \text{softmax}(\mathbf{f}(i,j))) &= \sum_{k \in C(i,j)} \frac{1}{|C(i,j)|} \left(-\log |C(i,j)| - \log \frac{\exp(\mathbf{f}(i,j)[k])}{\sum_{k' \in C(i,j)} \exp(\mathbf{f}(i,j)[k'])} \right) \\ &= -\log |C(i,j)| - \frac{1}{|C(i,j)|} \sum_{k \in C(i,j)} \log \frac{\exp(\mathbf{f}(i,j)[k])}{\sum_{k' \in C(i,j)} \exp(\mathbf{f}(i,j)[k'])}. \end{aligned}$$

Thus, it is sufficient to prove

$$\sum_{k \in C(i,j)} \log \frac{\exp(\mathbf{f}^t(i,j)[k])}{\sum_{k' \in C(i,j)} \exp(\mathbf{f}^t(i,j)[k'])} \geq \mathbb{E} \left[\sum_{k \in C(i,j)} \log \frac{\exp(\mathbf{f}^{t+1}(i,j)[k])}{\sum_{k' \in C(i,j)} \exp(\mathbf{f}^{t+1}(i,j)[k'])} \right].$$

864 According to the gradient, we have that
 865

$$866 \quad \mathbf{f}^{t+1}(i, j)[k] = \mathbf{f}^t(i, j)[k] - \eta \left(-N_{i, j, k}^{R, P, t} + \frac{\exp(\mathbf{f}(i, j)[k])}{\sum_{k' \in C(i, j)} \exp(\mathbf{f}(i, j)[k'])} \sum_{k' \in C(i, j)} N_{i, j, k'}^{R, P, t} \right),$$

867 Here η is the step size.
 868

869 Let $N_{i, j}^{R, P, t} = \sum_{k' \in C(i, j)} N_{i, j, k'}^{R, P, t}$, then due to the on-policy updating in policy gradient, we know
 870 that $N_{i, j, k}^{R, P, t}$ is the counter of outcome k for $N_{i, j}^{R, P, t}$ independent multi-nomial random variables with
 871 parameters $\left\{ \frac{\exp(\mathbf{f}^t(i, j)[k])}{\sum_{k' \in C(i, j)} \exp(\mathbf{f}^t(i, j)[k'])} \right\}_{k \in C(i, j)}$. This means that
 872

$$873 \quad \mathbb{E}[\mathbf{f}^{t+1}(i, j)[k]] = \mathbf{f}^t(i, j)[k].$$

874 Moreover, since $\log \left(\sum_{k' \in C(i, j)} \exp(\mathbf{f}^t(i, j)[k']) \right)$ is a convex function, we also have
 875

$$876 \quad \mathbb{E} \left[\log \left(\sum_{k' \in C(i, j)} \exp(\mathbf{f}^{t+1}(i, j)[k']) \right) \right] \geq \log \left(\sum_{k' \in C(i, j)} \exp(\mathbb{E}[\mathbf{f}^{t+1}(i, j)[k']]) \right) \\ 877 \quad = \log \left(\sum_{k' \in C(i, j)} \exp(\mathbf{f}^t(i, j)[k']) \right)$$

878 Because of this, we have
 879

$$880 \quad \sum_{k \in C(i, j)} \log \frac{\exp(\mathbf{f}^t(i, j)[k])}{\sum_{k' \in C(i, j)} \exp(\mathbf{f}^t(i, j)[k'])} - \mathbb{E} \left[\sum_{k \in C(i, j)} \log \frac{\exp(\mathbf{f}^{t+1}(i, j)[k])}{\sum_{k' \in C(i, j)} \exp(\mathbf{f}^{t+1}(i, j)[k'])} \right] \\ 881 \quad = \sum_{k \in C(i, j)} \mathbf{f}^t(i, j)[k] - \mathbb{E} \left[\sum_{k \in C(i, j)} \mathbf{f}^{t+1}(i, j)[k] \right] - |C(i, j)| \log \left(\sum_{k' \in C(i, j)} \exp(\mathbf{f}^t(i, j)[k']) \right) \\ 882 \quad + |C(i, j)| \mathbb{E} \left[\log \left(\sum_{k' \in C(i, j)} \exp(\mathbf{f}^{t+1}(i, j)[k']) \right) \right] \\ 883 \quad \geq 0.$$

900 \square
 901
 902

903 D.4 PROOF OF THEOREM 4.4

904 *Proof.* When $\lambda > 0$, the loss function is
 905

$$906 \quad \ell = \sum_{i, j, k} N_{i, j, k}^{R, P, t} (-\log \mathbf{q}(i, j)[k]) + \lambda \sum_{i, j, k} N_{i, j, k}^{R, t} \left(\log \mathbf{q}(i, j)[k] \left\{ \log \frac{\mathbf{q}(i, j)[k]}{\mathbf{q}_{\text{base}}(i, j)[k]} \right\} \right),$$

907 where $N_{i, j, k}^{R, t}$ denote the number of times that $u_{\text{target}} = i$, $u_m = j$ and $u_{m+1} = k$ for $m \geq 1$ in set
 908 $\mathcal{D}^{\text{RL}, t}$.
 909

910 We can take the gradient and get:
 911

$$912 \quad \frac{\partial \ell}{\partial \mathbf{f}(i, j)[k]} = -N_{i, j, k}^{R, P, t} + \mathbf{q}(i, j)[k] \sum_{k'} N_{i, j, k'}^{R, P, t} + \lambda N_{i, j, k}^{R, t} (1 - \mathbf{q}(i, j)[k]) \log \frac{\mathbf{q}(i, j)[k]}{\mathbf{q}_{\text{base}}(i, j)[k]} \\ 913 \quad - \lambda \sum_{k' \neq k} N_{i, j, k'}^{R, t} \mathbf{q}(i, j)[k] \log \frac{\mathbf{q}(i, j)[k]}{\mathbf{q}_{\text{base}}(i, j)[k]}.$$

918 Taking expectation, we can get:
919

$$\begin{aligned} \mathbb{E} \left[\frac{\partial \ell}{\partial \mathbf{f}(i, j)[k]} \right] &= -\mathbb{E}[N_{i, j, k}^{R, P, t}] + \mathbf{q}(i, j)[k] \sum_{k'} \mathbb{E}[N_{i, j, k'}^{R, P, t}] + \lambda \mathbb{E}[N_{i, j, k}^{R, t}] (1 - \mathbf{q}(i, j)[k]) \log \frac{\mathbf{q}(i, j)[k]}{\mathbf{q}_{\text{base}}(i, j)[k]} \\ &\quad - \lambda \sum_{k' \neq k} \mathbb{E}[N_{i, j, k'}^{R, t}] \mathbf{q}(i, j)[k] \log \frac{\mathbf{q}(i, j)[k]}{\mathbf{q}_{\text{base}}(i, j)[k]}. \end{aligned}$$

925
926 Letting $N_{i, j}^{R, t} = \sum_k N_{i, j, k}^{R, t}$, then due to on-policy training, we have that $\mathbb{E}[N_{i, j, k}^{R, P, t}] =$
927 $N_{i, j}^{R, t} \mathbf{q}(i, j)[k] \mathbf{p}(i, j)[k]$, and $\mathbb{E}[N_{i, j, k}^{R, t}] = N_{i, j}^{R, t} \mathbf{q}(i, j)[k]$.
928

929 Hence

$$\begin{aligned} \mathbb{E} \left[\frac{\partial \ell}{\partial \mathbf{f}(i, j)[k]} \right] &= -N_{i, j}^{R, t} \mathbf{q}(i, j)[k] \mathbf{p}(i, j)[k] + N_{i, j}^{R, t} \mathbf{q}(i, j)[k] \sum_{k'} \mathbf{q}(i, j)[k'] \mathbf{p}(i, j)[k'] \\ &\quad + \lambda N_{i, j}^{R, t} \mathbf{q}(i, j)[k] (1 - \mathbf{q}(i, j)[k]) \log \frac{\mathbf{q}(i, j)[k]}{\mathbf{q}_{\text{base}}(i, j)[k]} - \lambda N_{i, j}^{R, t} \sum_{k' \neq k} \mathbf{q}(i, j)[k] \mathbf{q}(i, j)[k'] \log \frac{\mathbf{q}(i, j)[k]}{\mathbf{q}_{\text{base}}(i, j)[k]} \\ &= N_{i, j}^{R, t} \mathbf{q}(i, j)[k] \sum_{k'} \mathbf{q}(i, j)[k'] \left(\mathbf{p}(i, j)[k] - \mathbf{p}(i, j)[k'] + \lambda \log \frac{\mathbf{q}(i, j)[k]}{\mathbf{q}_{\text{base}}(i, j)[k]} - \lambda \log \frac{\mathbf{q}(i, j)[k']}{\mathbf{q}_{\text{base}}(i, j)[k']} \right). \end{aligned}$$

940
941 The stable point must satisfy that, for any tuple i, j, k , $\mathbb{E} \left[\frac{\partial \ell}{\partial \mathbf{f}(i, j)[k]} \right] = 0$. And we claim that in this
942 case, for fixed i, j and any k' such that $\mathbf{q}(i, j)[k'] > 0$, their $\mathbf{p}(i, j)[k'] + \lambda \log \frac{\mathbf{q}(i, j)[k']}{\mathbf{q}_{\text{base}}(i, j)[k']}$ should
943 equal. Otherwise we can always look for $k^* = \arg \min_{k': \mathbf{q}(i, j)[k'] > 0} \mathbf{p}(i, j)[k'] + \lambda \log \frac{\mathbf{q}(i, j)[k']}{\mathbf{q}_{\text{base}}(i, j)[k']}$,
944 and its expected gradient $\mathbb{E} \left[\frac{\partial \ell}{\partial \mathbf{f}(i, j)[k^*]} \right]$ is strict negative. \square
945

E APPENDIX FOR Q-LEARNING

E.1 PROOF OF LEMMA 5.1

951 *Proof.* Fix any triple (i, j, k) . Consider training sequences whose first two nodes satisfy $u_{\text{source}} \in \mathcal{V}$
952 and $u_{\text{target}} = i$. By the definition of the training process, $\mathbb{P}(u_{\text{source}} \in \mathcal{V}, u_{\text{target}} = i) > 0$. Under
953 ϵ -exploration uniform over \mathcal{V} ,

$$\forall v \in \mathcal{V} : \mathbb{P}(\text{next node} = v) \geq \epsilon / |\mathcal{V}|.$$

956 Condition on the event $\{u_{\text{source}} \in \mathcal{V}, u_{\text{target}} = i\}$. Then in the next two decisions,

$$\mathbb{P}(u_2 = j \mid u_{\text{source}} \in \mathcal{V}, u_{\text{target}} = i) \geq \epsilon / |\mathcal{V}|, \quad \mathbb{P}(u_3 = k \mid u_{\text{source}} \in \mathcal{V}, u_{\text{target}} = i, u_2 = j) \geq \epsilon / |\mathcal{V}|.$$

957 Hence

$$\mathbb{P}(u_{\text{target}} = i, u_2 = j, u_3 = k) \geq p_0(\epsilon / |\mathcal{V}|)^2 > 0.$$

958 Each occurrence of $(u_{\text{target}}, u_2, u_3) = (i, j, k)$ triggers one update of $\mathbf{f}(i, j)[k]$. Since each occurrence
959 yields an update of $\mathbf{f}(i, j)[k]$, we obtain

$$\liminf_{T \rightarrow \infty} \frac{1}{T} \sum_{t=0}^{T-1} \delta_{(i_t, j_t, k_t) = (i, j, k)} \geq \underline{N}_{i, j, k}^{\text{prop}} > 0,$$

960 which is the persistent exploration condition. \square
961

E.2 PROOF OF THEOREM 5.1

962 *Proof.* At a stable point, the expected update of each coordinate vanishes. The per-step loss is
963

$$\ell = (\mathbf{f}(u_{\text{target}}, u_m)[u_{m+1}] - \delta_{\mathbf{u} \in \mathcal{P}} \delta_{u_{m+1} = u_{\text{target}}} - \{\max_{k'} \mathbf{f}(u_{\text{target}}, u_{m+1})[k']\})^2.$$

972 Taking the gradient with respect to $\mathbf{f}(u_{\text{target}}, u_m)[u_{m+1}]$ and setting the expectation to zero yields,
 973 for every triple (i, j, k) ,

$$975 \quad \mathbf{f}(i, j)[k] = \mathbb{E}[\delta_{\mathbf{u} \in \mathcal{P}} \delta_{k=i}] + \max_{k'} \mathbf{f}(i, k)[k']. \quad (4)$$

977 If $k \neq i$, the expectation term in equation 4 vanishes, so

$$979 \quad \mathbf{f}(i, j)[k] = \max_{k'} \mathbf{f}(i, k)[k'],$$

980 which does not depend on j . Thus, for each $k \neq i$, we have

$$982 \quad \mathbf{f}(i, j)[k] = \max_{k'} \mathbf{f}(i, k)[k'] = \max_{k' \neq i} \left(\max_{k''} \mathbf{f}(i, k')[k''], \mathbf{f}(i, k)[i] \right) = \max_{k' \neq i} \max_{k''} \mathbf{f}(i, k')[k''].$$

984 Here the second equality separates the case $k' = i$ from $k' \neq i$: if $k' = i$, the chain terminates
 985 immediately, corresponding to the $\dots \rightarrow k \rightarrow i$ path, so we take the value $\mathbf{f}(i, k)[i]$ directly. If $k' \neq$
 986 i , we must expand one step further, leading to $\max_{k''} \mathbf{f}(i, k')[k'']$. The last equality then observes
 987 that including the $k' = i$ term does not change the maximization, since it is already dominated by
 988 the expansion over $k' \neq i$. Thus the final expression simply enumerates all possible terms with the
 989 restriction $k' \neq i$. This expression no longer depends on k or j .

990 Therefore, for each fixed i and $k \neq i$, all $\mathbf{f}(i, j)[k]$ take a common value c_i , independent of j and
 991 k . \square

993 E.3 PROOF OF THEOREM 5.2

994 *Proof.* For clarity, we introduce two notations that will be used repeatedly. First, for $i, k \in [n]$ and
 995 iteration t , define

$$997 \quad S_{i,k}^{(t)} := \max_{k'} \mathbf{f}^{(t)}(i, k)[k'].$$

998 Second, we write $k \in \text{Anc}(i)$ if there exists $m \geq 1$ such that $(\mathbf{A}^m)[k, i] = 1$, i.e. k is an ancestor of
 999 i .

1000 The per-step loss under the process reward is

$$1002 \quad \ell = (\mathbf{f}(u_{\text{target}}, u_m)[u_{m+1}] - (\delta_{u_{m+1}=u_{\text{target}}} - \delta_{(u_m, u_{m+1}) \notin \mathcal{E}}) - \{\max_{k'} \mathbf{f}(u_{\text{target}}, u_{m+1})[k']\})^2.$$

1004 Taking the gradient with respect to the active coordinate $\mathbf{f}(u_{\text{target}}, u_m)[u_{m+1}]$ gives

$$1006 \quad \frac{\partial \ell}{\partial \mathbf{f}(u_{\text{target}}, u_m)[u_{m+1}]} = 2(\mathbf{f}(u_{\text{target}}, u_m)[u_{m+1}] - \delta_{u_{m+1}=u_{\text{target}}} + \delta_{(u_m, u_{m+1}) \notin \mathcal{E}} - \max_{k'} \mathbf{f}(u_{\text{target}}, u_{m+1})[k']).$$

1008 Applying gradient descent with learning rate η yields

$$1010 \quad \mathbf{f}(u_{\text{target}}, u_m)[u_{m+1}] \leftarrow (1 - 2\eta) \mathbf{f}(u_{\text{target}}, u_m)[u_{m+1}] + 2\eta(\delta_{u_{m+1}=u_{\text{target}}} - \delta_{(u_m, u_{m+1}) \notin \mathcal{E}} + \max_{k'} \mathbf{f}(u_{\text{target}}, u_{m+1})[k']).$$

1012 Renaming $(i, j, k) = (u_{\text{target}}, u_m, u_{m+1})$ and writing $S_{i,k}^{(t)} = \max_{k'} \mathbf{f}^{(t)}(i, k)[k']$, the recursion is

$$1014 \quad \mathbf{f}^{(t+1)}(i, j)[k] = (1 - 2\eta) \mathbf{f}^{(t)}(i, j)[k] + 2\eta(\delta_{k=i} + (\mathbf{A}[j, k] - 1) + S_{i,k}^{(t)}). \quad (\star)$$

1016 When $k = i$, by convention $S_{i,i}^{(t)} = 0$, so the update is

$$1018 \quad \mathbf{f}^{(t+1)}(i, j)[i] = (1 - 2\eta) \mathbf{f}^{(t)}(i, j)[i] + 2\eta \mathbf{A}[j, i].$$

1019 This linear recursion has fixed point $\mathbf{A}[j, i]$ and solution

$$1021 \quad \mathbf{f}^{(t)}(i, j)[i] = (1 - (1 - 2\eta)^t) \mathbf{A}[j, i],$$

1023 which converges to 1 if $\mathbf{A}[j, i] = 1$ and to 0 otherwise. The contraction factor is $|1 - 2\eta|$.

1024 For $k \neq i$, the limit of $S_{i,k}^{(t)}$ must be analyzed. If $k \in \text{Anc}(i) \setminus \{i\}$, then either k is a parent
 1025 of i , in which case $\mathbf{f}^{(t)}(i, k)[i] \rightarrow 1$ and hence $S_{i,k}^{(t)} \rightarrow 1$, or k has a child r with $r \in \text{Anc}(i)$.

1026 Inductively $S_{i,r}^{(t)} \rightarrow 1$, and then (\star) implies $\mathbf{f}^{(t)}(i, k)[r] \rightarrow 1$, so $S_{i,k}^{(t)} \rightarrow 1$. If $k \notin \text{Anc}(i)$, then
 1027 all children r of k also satisfy $r \notin \text{Anc}(i)$, and inductively $S_{i,r}^{(t)} \rightarrow 0$, giving $\mathbf{f}^{(t+1)}(i, k)[r] =$
 1028 $(1-2\eta)\mathbf{f}^{(t)}(i, k)[r] + 2\eta S_{i,r}^{(t)} \rightarrow 0$. Thus $S_{i,k}^{(t)} \rightarrow 0$. Therefore the limit is $S_{i,k}^{(t)} \rightarrow 1$ if $k \in \text{Anc}(i) \setminus \{i\}$
 1029 and $S_{i,k}^{(t)} \rightarrow 0$ otherwise.
 1030
 1031

1032 For $k \neq i$, substituting the limiting $S_{i,k}^{(t)}$ into (\star) gives
 1033
 1034

$$\mathbf{f}^{(t+1)}(i, j)[k] = (1-2\eta)\mathbf{f}^{(t)}(i, j)[k] + 2\eta((\mathbf{A}[j, k] - 1) + S_{i,k}^{(t)}).$$

1035 If $\mathbf{A}[j, k] = 1$ and $k \in \text{Anc}(i)$, then $S_{i,k}^{(t)} \rightarrow 1$, so $\mathbf{f}^{(t)}(i, j)[k] \rightarrow 1$. If $\mathbf{A}[j, k] = 1$ and $k \notin \text{Anc}(i)$,
 1036 then $S_{i,k}^{(t)} \rightarrow 0$, so $\mathbf{f}^{(t)}(i, j)[k] \rightarrow 0$. If $\mathbf{A}[j, k] = 0$ and $k \in \text{Anc}(i)$, then $S_{i,k}^{(t)} \rightarrow 1$, so the recursion
 1037 is $\mathbf{f}^{(t+1)}(i, j)[k] = (1-2\eta)\mathbf{f}^{(t)}(i, j)[k]$, implying $\mathbf{f}^{(t)}(i, j)[k] \rightarrow 0$. If $\mathbf{A}[j, k] = 0$ and $k \notin \text{Anc}(i)$,
 1038 then $S_{i,k}^{(t)} \rightarrow 0$, so the recursion is $\mathbf{f}^{(t+1)}(i, j)[k] = (1-2\eta)\mathbf{f}^{(t)}(i, j)[k] - 2\eta$, which converges to
 1039 -1 . These limits match the cases in the theorem.
 1040

1041 To establish rates, define the weight error $e_t^W(i, j, k) = \mathbf{f}^{(t)}(i, j)[k] - \mathbf{f}^*(i, j)[k]$ and the max error
 1042 $e_t^S(i, k) = S_{i,k}^{(t)} - S_{i,k}^*$. When $k = i$, the recursion is
 1043

$$e_{t+1}^W(i, j, i) = (1-2\eta) e_t^W(i, j, i),$$

1044 so each update contracts the error by $|1-2\eta|$. Under persistent exploration, the coordinate (i, j, i)
 1045 is updated with positive frequency $\underline{N}_{i,j,i}^{\text{prop}}$, so in global time
 1046

$$|e_t^W(i, j, i)| \leq C (|1-2\eta|^{\frac{\underline{N}_{i,j,i}^{\text{prop}}}{2} - \varepsilon})^t$$

1047 for any $\varepsilon > 0$ and large enough t .
 1048

1049 When $k \neq i$, the recursion is
 1050

$$e_{t+1}^W(i, j, k) = (1-2\eta) e_t^W(i, j, k) + 2\eta e_t^S(i, k).$$

1051 The error $e_t^S(i, k)$ depends only on $\{e_t^W(i, k, r) : r \text{ is a child of } k\}$. Along any directed path
 1052 $k = v_0 \rightarrow v_1 \rightarrow \dots \rightarrow v_m = i$, the error at k can decay only after the error at v_1 has already
 1053 decayed, and so on. Thus, the effective contraction factor for $e_t^W(i, j, k)$ is the product of the per-
 1054 edge contraction rates
 1055

$$\prod_{n=0}^{m-1} (|1-2\eta|^{\frac{\underline{N}_{i,v_n,v_{n+1}}^{\text{prop}}}{2} - \varepsilon}).$$

1056 Formally, by induction, for any $\varepsilon > 0$ and sufficiently large t we have
 1057

$$|e_t^W(i, j, k)| \leq C \left(\max_{\text{paths } p: k \rightarrow i} \prod_{(v_n, v_{n+1}) \in p} |1-2\eta|^{\frac{\underline{N}_{i,v_n,v_{n+1}}^{\text{prop}}}{2} - \varepsilon} \right)^t.$$

1058 Therefore, all iterates converge linearly in global time, with effective rates determined jointly by η
 1059 and the update proportions $\underline{N}_{i,j,k}^{\text{prop}}$. This completes the proof. \square
 1060

1061 E.4 PROOF OF THEOREM 5.3

1062 *Proof.* Let $N_{i,j,k}^{\text{prop}}$ denote the asymptotic proportion of triples $(u_{\text{target}}, u_m, u_{m+1}) = (i, j, k)$ occurring in the generated sequences at the stable point, under the given sampling method and the persistent exploration condition. Equivalently, $N_{i,j,k}^{\text{prop}}$ is the limiting frequency with which state j transitions to k with target i in the trajectories sampled by the model. By definition $N_{i,j,k}^{\text{prop}} > 0$ for all i, j, k .
 1063

1064 At a stable point of the updates, the expected gradient with respect to each parameter must vanish.
 1065 Averaging the stationarity conditions with weights $N_{i,j,k}^{\text{prop}}$ yields, for all i, j ,

$$\sum_j N_{i,j,k}^{\text{prop}} \left(\mathbf{W}^M[j, k] + \mathbf{W}^V[i, k] - \mathbf{A}[j, k] + 1 - \delta_{i=k} - \max_{k'} (\mathbf{W}^M[k, k'] + \mathbf{W}^V[i, k']) \right) = 0,$$

$$\sum_i N_{i,j,k}^{\text{prop}} \left(\mathbf{W}^M[j, k] + \mathbf{W}^V[i, k] - \mathbf{A}[j, k] + 1 - \delta_{i=k} - \max_{k'} (\mathbf{W}^M[k, k'] + \mathbf{W}^V[i, k']) \right) = 0.$$

1080 Introduce centered variables
 1081 $\mathbf{S}_{j,k} := \mathbf{W}^M[j, k] - \mathbf{A}[j, k] + 1$, $\mathbf{T}_{i,k} := \mathbf{W}^V[i, k] - \delta_{i=k} - \max_{k'}(\mathbf{W}^M[k, k'] + \mathbf{W}^V[i, k'])$,
 1082 so that normalizing each sum by its positive denominator gives the block system
 1083 $\mathbf{S}_k + \mathbf{P}_k \mathbf{T}_k = \mathbf{0}, \quad \mathbf{T}_k + \mathbf{Q}_k \mathbf{S}_k = \mathbf{0}, \quad (5)$
 1084 where $\mathbf{S}_k = (\mathbf{S}_{j,k})_{j \in [n]}$, $\mathbf{T}_k = (\mathbf{T}_{i,k})_{i \in [n]}$, and
 1085 $(\mathbf{P}_k)[j, i] = \frac{N_{i,j,k}^{\text{prop}}}{\sum_{i'} N_{i',j,k}^{\text{prop}}}, \quad (\mathbf{Q}_k)[i, j] = \frac{N_{i,j,k}^{\text{prop}}}{\sum_{j'} N_{i,j',k}^{\text{prop}}}.$
 1086 Since $N_{i,j,k}^{\text{prop}} > 0$, every entry of $\mathbf{P}_k, \mathbf{Q}_k$ is strictly positive, and both are row-stochastic. Hence
 1087 $\mathbf{P}_k \mathbf{Q}_k$ and $\mathbf{Q}_k \mathbf{P}_k$ are strictly positive stochastic matrices. By the Perron–Frobenius theorem, both
 1088 have a simple eigenvalue 1 with eigenvector $\mathbf{1}$, and all other eigenvalues satisfy $|\lambda| < 1$. Thus
 1089 $\ker(\mathbf{I} - \mathbf{P}_k \mathbf{Q}_k) = \text{span}\{\mathbf{1}\}, \quad \ker(\mathbf{I} - \mathbf{Q}_k \mathbf{P}_k) = \text{span}\{\mathbf{1}\}.$
 1090 From equation 5, eliminating \mathbf{T}_k yields $\mathbf{S}_k = (\mathbf{P}_k \mathbf{Q}_k) \mathbf{S}_k$, so $\mathbf{S}_k = c_k \mathbf{1}$ for some $c_k \in \mathbb{R}$, and then
 1091 $\mathbf{T}_k = -\mathbf{Q}_k \mathbf{S}_k = -c_k \mathbf{1}$. Returning to the definitions,
 1092 $\mathbf{W}^M[j, k] = \mathbf{A}[j, k] - 1 + c_k, \quad \mathbf{W}^V[i, k] = \delta_{i=k} + \max_{k'}(\mathbf{W}^M[k, k'] + \mathbf{W}^V[i, k']) - c_k.$
 1093 Substituting $\mathbf{W}^M[k, k'] = \mathbf{A}[k, k'] - 1 + c_k$ and writing $\mathbf{V}_{i,k'} := \mathbf{W}^V[i, k'] - c_k$ gives
 1094 $\mathbf{V}_{i,k} = \delta_{i=k} + \max_{k': \mathbf{A}[k, k']=1} \mathbf{V}_{i,k'}.$
 1095 On a DAG, the unique $\{0, 1\}$ solution of this recursion is the reachability indicator $\mathbf{R}_{i,k}$. An induction
 1096 over a topological order shows $\mathbf{V}_{i,k} = \mathbf{R}_{i,k}$ for all i, k . Therefore
 1097 $\mathbf{W}^V[i, k] = \mathbf{R}[i, k] - c_k.$
 1098 Finally, note that if $(\mathbf{S}_k, \mathbf{T}_k)$ solves equation 5, then so does $(\mathbf{S}_k + c\mathbf{1}, \mathbf{T}_k - c\mathbf{1})$ for any $c \in \mathbb{R}$,
 1099 since $\mathbf{P}_k \mathbf{1} = \mathbf{Q}_k \mathbf{1} = \mathbf{1}$. Hence, the solution set for each k is exactly a one-dimensional affine line
 1100 parametrized by c_k .
 1101 Conversely, if $(\mathbf{W}^M, \mathbf{W}^V)$ is of the above form, then plugging it into the update equations shows
 1102 that the expected increment is identically zero: both sides of the gradient equations cancel by
 1103 construction, so the point is stationary. Therefore, these conditions are not only necessary but also
 1104 sufficient for stability. \square

F EQUIVALENCE OF UNCLIPPED PPO AND POLICY GRADIENT

For a sequence \mathbf{u} , the policy gradient objective is

$$\ell_{\text{PG}}(\mathbf{u}) = - \sum_{m \geq 1} R(\mathbf{u}) \log \hat{\mathbf{u}}_m[u_{m+1}],$$

where $R(\mathbf{u}) = r \delta_{\mathbf{u} \in \mathcal{P}} + p$. Taking the gradient gives

$$\begin{aligned} \nabla_{\theta} \ell_{\text{PG}}(\mathbf{u}) &= - \sum_{m \geq 1} R(\mathbf{u}) \nabla_{\theta} \log \hat{\mathbf{u}}_m[u_{m+1}] \\ &= - \sum_{m \geq 1} R(\mathbf{u}) \frac{\nabla_{\theta} \hat{\mathbf{u}}_m[u_{m+1}]}{\hat{\mathbf{u}}_m[u_{m+1}]} \end{aligned}$$

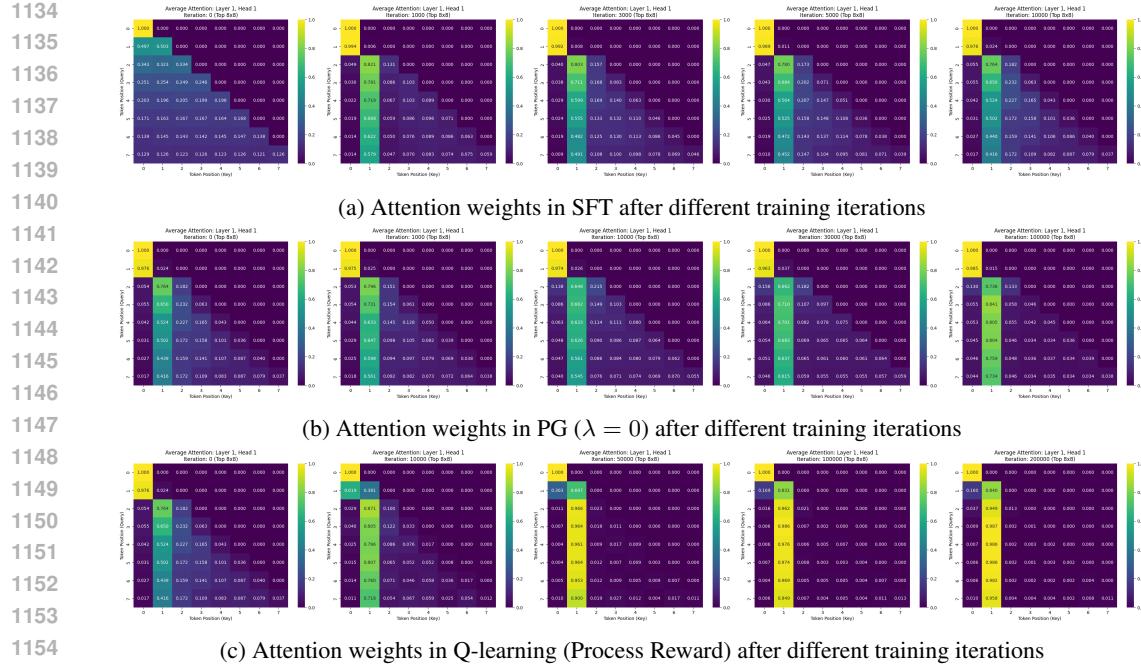
For unclipped PPO, the ratio between new and old probabilities is formed, with the denominator detached. The loss is

$$\ell_{\text{PPO-uc}}(\mathbf{u}) = - \sum_{m \geq 1} R(\mathbf{u}) \frac{\hat{\mathbf{u}}_m[u_{m+1}]}{\{\hat{\mathbf{u}}_m[u_{m+1}]\}}.$$

Since the denominator $\{\hat{\mathbf{u}}_m[u_{m+1}]\}$ is treated as constant, its gradient vanishes. Thus

$$\nabla_{\theta} \ell_{\text{PPO-uc}}(\mathbf{u}) = - \sum_{m \geq 1} R(\mathbf{u}) \frac{\nabla_{\theta} \hat{\mathbf{u}}_m[u_{m+1}]}{\{\hat{\mathbf{u}}_m[u_{m+1}]\}}.$$

Comparing with the policy gradient expression, we see the two gradients coincide. Therefore, for any fixed sequence \mathbf{u} , unclipped PPO with a stop-gradient denominator is exactly equivalent to vanilla policy gradient.



G ADDITIONAL EXPERIMENTAL RESULTS

G.1 VALIDATION OF LEARNED ATTENTION

This subsection visualizes the evolution of attention maps during training for SFT, PG, and Q-learning. Our analysis first focuses on a one-layer, one-head transformer at various training steps (Figure 5). For each model, we compute the average attention weight over the SFT training dataset \mathcal{D}^{SFT} .

Specifically, the weight at position i in row k (where $i \leq k$) represents the average attention the model assigns to the i -th token when predicting the $(k+1)$ -th token, averaged over all paths in \mathcal{D}^{SFT} longer than $k+1$. Since the underlying graph has 100 sparse nodes, path lengths in \mathcal{D}^{SFT} are generally short; consequently, we display only the first 8 rows.

Our visualizations reveal that during SFT, the transformer allocates most attention to the target node. Combined with the residual connections, which allow access to the current node’s information, this suggests that the model learns to predict the next node based primarily on the target and current nodes. This empirical finding aligns with the results of Wang et al. (2024b). Another interesting phenomenon in SFT is that the attention weight on the target node quickly peaks and then gradually decreases, while remaining dominant. We hypothesize that this may be due to overfitting on \mathcal{D}^{SFT} , leading the model to develop auxiliary prediction strategies. This overfitting could also explain the decreasing generalization performance of SFT observed in our experiments.

In contrast, for both PG and Q-learning, the attention on the target node increases throughout training. In Q-learning, the final attention weight on the target node exceeds 95%, making it the closest to the conditions outlined in Assumption 3.1.

To further validate our findings, we extend the analysis to a two-layer, one-head transformer. As shown in Figure 6, which displays the attention map averaged over \mathcal{D}^{SFT} , both layers predominantly attend to the target and current nodes. This pattern strongly supports our assumption that the transformer operates as a function of the target and current nodes, confirming the consistency of this behavior across model architectures.

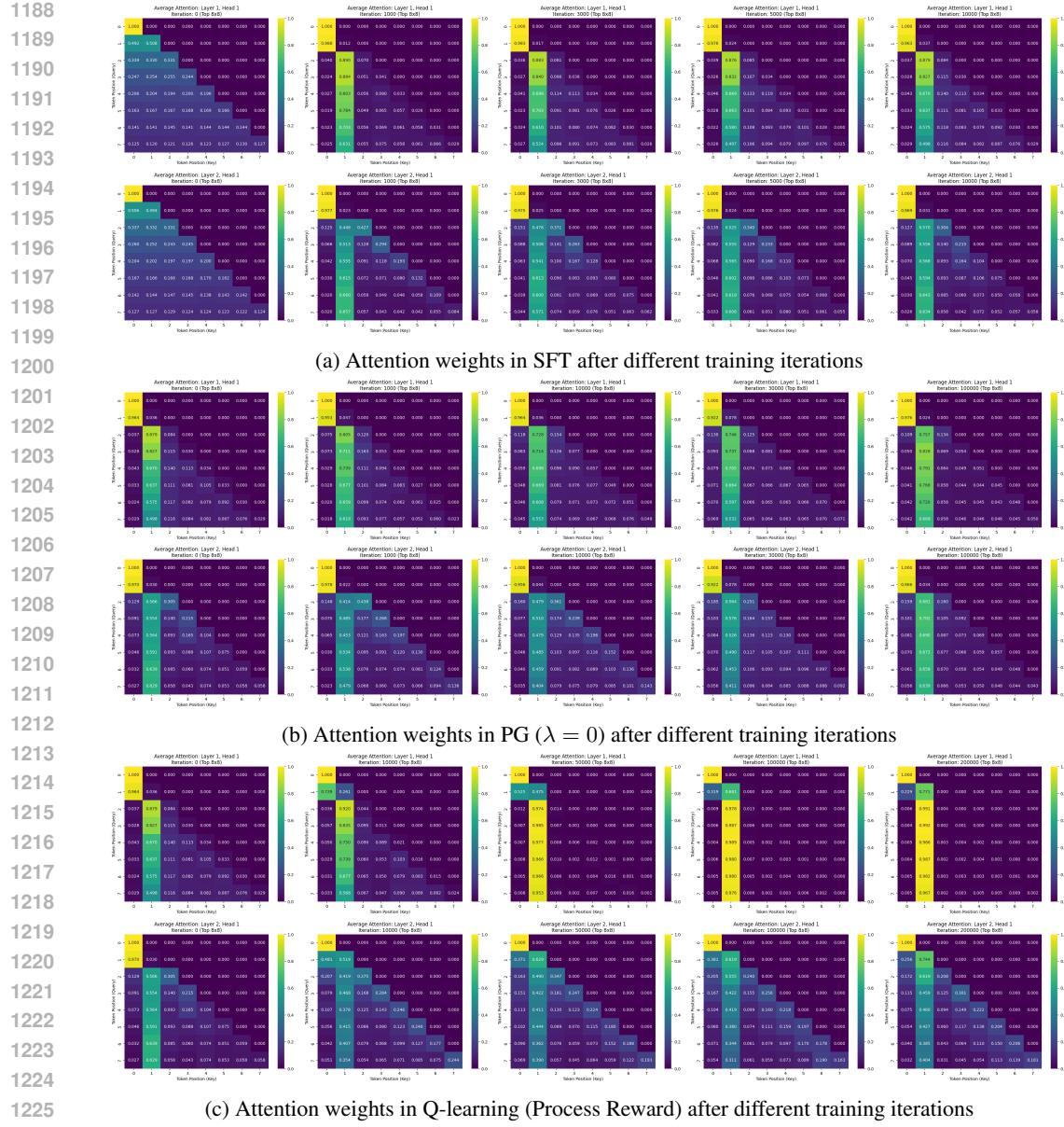


Figure 6: Empirical validation that the trained two-layer one-head transformer acts as a function of the target and current nodes.

G.2 EXPERIMENTS ON ERDŐS-RÉNYI GRAPHS

Beyond the setup in Section 2, we conduct additional experiments to compare RL methods with SFT. The graph construction and initial SFT stage remain unchanged. After SFT, we split all **reachable pairs** into an RL training set $D_{\text{RL-Train}}$ and an RL test set $D_{\text{RL-Test}}$. This yields four intersections: $D_{\text{Train2Train}} := D_{\text{Train}} \cap D_{\text{RL-Train}}$, $D_{\text{Train2Test}} := D_{\text{Train}} \cap D_{\text{RL-Test}}$, $D_{\text{Test2Train}} := D_{\text{Test}} \cap D_{\text{RL-Train}}$, and $D_{\text{Test2Test}} := D_{\text{Test}} \cap D_{\text{RL-Test}}$.

During the RL process, the model generates paths for pairs in $D_{\text{RL-Train}}$ and receives reward signals. The main difference between this setup and that in Section 2 is that the RL training set now contains new pairs that were unseen during SFT ($D_{\text{Test2Train}}$). Therefore, the initial model is not perfect on these new training pairs. Additionally, some pairs from the SFT training set are not used for RL training ($D_{\text{Train2Test}}$), which allows us to measure the extent of forgetting. We consider the same

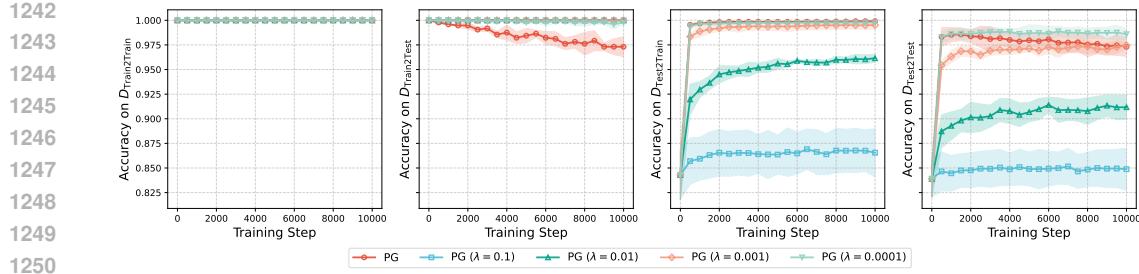


Figure 7: The test accuracy of PG with different KL coefficients on four data splits after fine-tuning the SFT model on $D_{RL-Train}$. All accuracies are evaluated with greedy decoding.

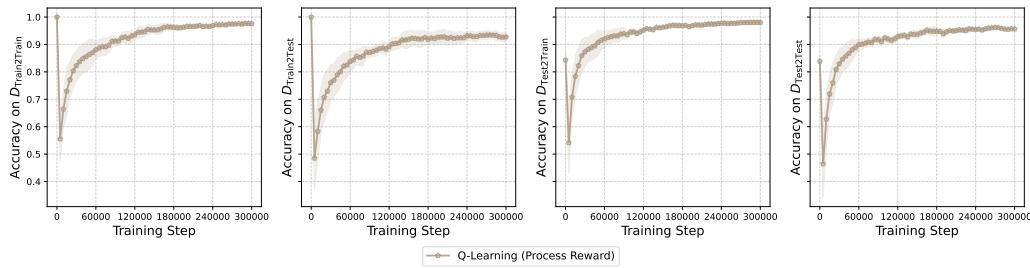


Figure 8: The test accuracy of Q-learning on four data splits after fine-tuning the SFT model on $D_{RL-Train}$. All accuracies are evaluated with greedy decoding.

RL algorithms introduced in Section 2: PG and Q-learning, whose training curves are presented in Figures 7 and 8, respectively. All accuracies are evaluated using greedy decoding.

From Figure 7, we observe the opposing effects of KL regularization on $D_{Train2Test}$ and $D_{Test2Train}$. PG without KL regularization ($\lambda = 0$) and less regularized PG ($\lambda = 0.0001$) achieve significantly higher accuracy on $D_{Test2Train}$. Stronger KL regularization hinders the model’s ability to learn new pairs, which aligns with **Takeaway 4**: KL regularization reduces training accuracy. Conversely, PG without KL regularization ($\lambda = 0$) tends to overfit the training data and exhibits continual forgetting of previous knowledge learned during SFT. Results on $D_{Test2Test}$ further demonstrate that overly strong KL regularization can hinder PG’s improvement. Among all settings, $\lambda = 10^{-4}$ achieves the best balance, indicating that a well-chosen KL weight can improve generalization with minimal sacrifice in training accuracy.

Compared to PG and the performance observed in Section 5, Q-learning exhibits slower convergence in this setting. One possible explanation is that the initial model performs poorly on the new training pairs, generating more failure cases and causing stronger “re-instantiation.”

G.3 EXPERIMENTS ON GRAPH REPRESENTED FOR BLOCKSWORLD

We also run experiments on Blocksworld (Valmeeckam et al., 2023a), a benchmark for evaluating LLM planning ability (Kambhampati et al., 2024). The environment consists of blocks stacked on a table, and the goal is to rearrange the blocks from an initial configuration to a target configuration using a sequence of actions. We model this into a path-finding task, in which each configuration is a node in a graph, and an edge connects two nodes if one configuration can be transformed into the other by a single valid action, such as moving a block from one stack to another. We consider Blocksworld with four blocks and construct an undirected graph with 73 nodes: 24 configurations of a single stack of four blocks, 24 configurations with three blocks in one stack and one block on the table, 12 configurations with two stacks of two blocks, 12 configurations with one stack of two blocks and two blocks on the table, and one configuration with all blocks on the table.

Since accuracy comparison is not our focus, all node pairs are used for SFT training. The SFT dataset contains 50,000 paths sampled from the graph, with source and target nodes drawn uniformly from the 73 nodes. During RL training, the model generates paths for, and is updated on, all

1296 node pairs. We use policy gradient and Q-learning as introduced in Section 2. After training, we
1297 evaluate the learned weights using the metric of Wang et al. (2024b), which measures the model’s
1298 understanding of graph adjacency. As shown in Figure 1, with fixed training data, SFT may not learn
1299 the complete adjacency very well. In contrast, both PG and Q-learning improve the learned adjac-
1300 ency. In particular, Q-learning nearly recovers the complete adjacency, consistent with the results
1301 in Section 5.

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349