
8th ICML Workshop on Automated Machine Learning (2021)

Dynamic Pruning of a Neural Network
via Gradient Signal-to-Noise Ratio

Julien Siems∗ siemsj@cs.uni-freiburg.de
University of Freiburg

Aaron Klein kleiaaro@amazon.de
Amazon Web Services

Cedric Archambeau cedrica@amazon.com
Amazon Web Services

Maren Mahsereci∗ maren.mahsereci@uni-tuebingen.de

University of Tübingen

Abstract
While training highly overparameterized neural networks is common practice in deep learning,
research into post-hoc weight-pruning suggests that more than 90% of parameters can be removed
without loss in predictive performance. To save resources, zero-shot and one-shot pruning attempt
to find such a sparse representation at initialization or at an early stage of training. Though
efficient, there is no justification, why the sparsity structure should not change during training.
Dynamic sparsity pruning undoes this limitation and allows to adapt the structure of the sparse
neural network during training. In this work we propose to use the gradient noise to make pruning
decisions. The procedure enables us to automatically adjust the sparsity during training without
imposing a hand-designed sparsity schedule, while at the same time being able to recover from
previous pruning decisions by unpruning connections as necessary. We evaluate our method on
image and tabular datasets and demonstrate that we reach similar performance as the dense
model from which the sparse network is extracted, while exposing less hyperparameters than
other dynamic sparsity methods.

1. Introduction

Deep neural networks have been applied successfully to several machine learning tasks spanning,
for instance, computer vision and natural language processing. However, neural networks tend to
reach the best performance if they are highly overparameterized (Nakkiran et al., 2020), resulting in
high inference and training cost. Post-hoc pruning and retraining can often prune parameters in a
network to 1/10 or 1/100 of the total number of parameters of the unpruned network and result in a
better predictive performance (Han et al., 2015), raising questions of how one may prune parameters
already during training. To that end, several approaches have emerged, that can be distinguished
roughly by when the network is being pruned: at or close to initialization (Frankle and Carbin,
2018; Wang et al., 2019, SNIP, GASP respectively), during training (Lin et al., 2019, DPF) and
post-hoc after training (Han et al., 2015). A fourth category would be iterative magnitude pruning
to discover lottery tickets (Frankle and Carbin, 2018). Pruning at initialization via gradient-based
weight pruning such as SNIP or GRASP find sparse networks which one can train efficiently from
scratch. However, they only prune once early on and do not adapt the sparse network during
training. An extensive comparison of different pruning at initialization method was done by Frankle
et al. (2021) who discuss benefits and shortcomings of each method. They found that magnitude
pruning after training outperformed GRASP and SNIP and that methods for pruning at initialization
appear to actually suffer from the initialization and work better when used after training for a few

∗. Work done while at Amazon Web Services.

©2021 Dynamic Pruning of a Neural Network
via Gradient Signal-to-Noise Ratio.

iterations. Finally, they found that the layer ratios found via SNIP/GRASP are more informative
than the individual weights per layer found. This work questions the utility of the pruning at
initialization setting.

In this paper, we propose a method that extends Dynamic Pruning with Feedback (DPF) (Lin
et al., 2019). DPF prunes during training and finds the sparse network and weights simultaneously,
due to which this setting is sometimes coined ‘dynamic sparsity’ (Mocanu et al., 2018; Mostafa and
Wang, 2019; Lin et al., 2019). A dynamic sparsity/pruning algorithm caters to the dynamics of the
optimization process rather than observing and pruning at one snapshot in time. Our extension
provides a novel pruning criterion which collects statistics from the optimization of the network
to decide when to consider a weight for pruning and changes based on the dataset and the model
architecture used. Concretely our contributions are the following:

• We propose to use the signal-to-noise ratio (SNR) of the mini-batch gradient to measure
when a weight can be considered for pruning. This automatically provides a custom sparsity
schedule that depends on the present dataset and network architecture.

• Using our novel sparsity criterion, we allow the number of non-zero entries in the sparsity
masks to decrease and increase during training.

• We demonstrate the effectiveness of our approach on image and tabular datasets where we
obtain results on par with dense learning and DPF, while gaining additional insights into the
learning procedure through the sparsity schedule. In contrast to DPF, our algorithm needs
no manual sparsity schedule which is a difficult parameter to set in practice and depends on
the network architecture and training dataset.

2. Related Work

Pruning before training/at initialization. Several methods exist to prune at initialization.
One was proposed with Lottery Ticket Hypothesis (LTH) (Frankle and Carbin, 2018; Frankle et al.,
2019a). They showed that any sufficiently overparameterized network contains sparse subnetworks
which train at least as quickly and generalize as well as the original unpruned network. However, they
are expensive to find. Alternatively, the gradients at initialization can be used to score connections in
a network and identify dominant sparse networks, e.g., via SNIP (Lee et al., 2018) or GRASP (Wang
et al., 2019). In those settings the sparsity mask remains fixed during training.

Pruning during training. Mocanu et al. (2018) proposed sparse evolutionary training (SET)
which prunes and regrows connections in a network at the end of each training epoch, following a
predefined sparsity schedule. This setting was extended by Mostafa and Wang (2019) and Dettmers
and Zettlemoyer (2019) by regrowing via loss gradient and by momentum magnitude respectively,
allowing to remove the hand-designed sparsity. Our work is closely related to Dynamic Pruning
with Feedback (DPF) (Lin et al., 2019), which is explained in more detail in Section 4. Sparsity can
also be learned via gradients during training as demonstrated by Louizos et al. (2018) who uses L0
regularization, or more recently by Kusupati et al. (2020) who learn sparsity thresholds.

Pruning after training. This setting is the most commonly used in practice and has seen research
interest for at least three decades. Prominent early examples were Optimal Brain Damage (Le Cun
et al., 1989) and Optimal Brain Surgeon (Hassibi and Stork, 1992) which used approximations to
the Hessian to prune neural networks. More recent approaches in this setting include Molchanov
et al. (2019) and Theis et al. (2018) who prune based on the first and second order taylor expansions
of the pruning problem respectively.

Neural architecture search. The search for a sparse neural network may also be seen as a form
of neural architecture search (NAS), which can be carried out in an existing overparameterized

2

Algorithm 1 The detailed training procedure of pruning guided by gradient SNR.

Require: uncompressed model weights θ ∈ Rd, pruned weights: θ̂, mask: mprune ∈ {0, 1}d; SNR exp. avg.: γ,
burn-in steps: binsteps, mask: m ∈ {0, 1}d; training iterations: T .

1: for t = 0, . . . , T do
2: if t > binsteps then . trigger mask update, by default after binsteps = 1 epoch
3: compute SNR mask msnr ← {snr(θit) > 1 | i in |θt|} . let spsnr be the sparsity of the resulting mask
4: compute MAG mask mmag ← {|θit| > γ | i in |θt|} . γ cut-off weight mag. acc to spsnr

5: compute PRUNE mask mprune ←mmag ∧msnr . only prune, if mmag and msnr agree to prune
6: end if
7: θ̂t ←mprune � θt . apply resulting mask

8: compute (mini-batch) gradient ∇LB(θ̂) . forward/backward pass with pruned weights θ̂t
9: update msnr,t . update SNR exp mov. avg. per weight

10: θt+1 ← gradient update ∇LB(θ̂) to θt . via arbitrary optimizer (e.g. SGD with momentum)
11: end for
Ensure: θT and θ̂T

network via dense to sparse pruning, similar to one-shot NAS (Liu et al., 2018), but may also
include regrowing new connections (Mocanu et al., 2018; Dettmers and Zettlemoyer, 2019) like in
evolutionary NAS (Real et al., 2019; Elsken et al., 2018). Sparse networks have also seen usage in
continual learning (Cheung et al., 2019; Wortsman et al., 2020) where sparse subnetworks of a large
neural network are used to avoid catastrophic forgetting.

3. Background: Signal-To-Noise Ratio of a Mini-Batch Gradient

This section introduces the signal-to-noise ratio (SNR) of a mini-batch gradient; Section 4 shows
how it will be used in the dynamic pruning algorithm. The gradient SNR assesses the reliability
of a mini-batch gradient with respect to the noise resulting from the individual datapoints in the

mini-batch at every training step. Let B = {(xi, yi)}|B|i=1 be a mini-batch with (xi, yi) ∼ p(x, y)
i.i.d. draws and let ∇L(θ) be the true but unknown gradient of the risk L(θ) with respect to the
weights θ of the neural network fθ(x). Furthermore, let ΣB(θ) := Cov[∇`i(θ)]/|B| be the covariance
of the mini-batch gradient ∇LB(θ) =

∑
i∇`i(θ))/|B| with gradients for individual datapoints denoted

by ∇`i(θ) := ∇`(fθ(xi), yi). Due to the i.i.d assumption on the training data one can motivate the
normal distribution ∇LB(θ) ∼ N (∇L(θ),ΣB(θ)) via the central-limit theorem.

Mahsereci et al. (2017) use this distribution ∇LB ∼ N to construct the following criterion: If
the statistic z(θ) := log p(∇LB(θ)|∇L(θ) = 0) coincides with its expectation Ex[z(θ)], then the
mini-batch gradient is not informative anymore as it can be fully explained by sample noise and a
vanishing, underlying true gradient ∇L(θ) = 0. More formally, per weight θk, and with the simplifi-
cation ΣB(θ) = diag(Var[∇`i(θ)])/|B|, it happens when snr(θk) ≤ 1, where snr(θk) := ∇L2

B,k(θ)/ΣB,kk(θ)

is the signal-to-noise ratio (SNR). In practice, the gradient variances ΣB,kk(θ) required for the SNR
can be efficiently estimated during backpropagation from the mini-batch itself (Dangel et al., 2020).

4. Method

Our work builds upon Dynamic Pruning with Feedback (DPF) (Lin et al., 2019) which performs
weight magnitude pruning according to a predefined pruning schedule during training. Crucially, the
method allows to recover from sub-optimal pruning decisions early on during training by updating
the parameters of the underlying unpruned model alongside the pruned model and periodically
recomputing the weight magnitude mask based on the unpruned weights, allowing weights to reenter
the pruned network. Due to the simplicity of this method it is a good baseline for the dynamic
pruning setting, which the authors demonstrated to work well in practice.

However, two drawbacks of DPF should be noted. First, the sparsity schedule has to be manually
set prior to training and is the same regardless of the dataset and model. Second, we argue that

3

Table 1: Top-1 test accuracy of different baseline methods for different target sparsity ratios. We
record the final achieved sparsity ratio for our method in brackets.

Methods

Dataset
Baseline on
dense model

Ours Lottery Ticket GRASP - ABS DPF
Target

Pr. Ratio

Electricity 0.154 ± 0.721e-3
0.157 ± 2.095e-3
(Sp. 0.64 ± 0.02)

0.2 ± 1.873e-3 0.153 ± 0.822e-3 0.153 ± 0.904e-3 0.7
0.190 ± 2.725e-3 0.156 ± 1.066e-3 0.153 ± 1.4e-3 0.8
0.429 ± 0.0 0.162 ± 2.174e-3 0.154 ± 1.549e-3 0.95

Covertype 0.158 ± 1.218e-3
0.16 ± 1.322e-3
(Sp. 0.8 ± 0.02)

0.253 ± 5.938e-3 0.158 ± 2.567e-3 0.155 ± 2.701e-3 0.7
0.227 ± 0.436e-3 0.158 ± 2.431e-3 0.153 ± 1.5e-3 0.8
0.533 ± 0.0 0.148 ± 2.937e-3 0.156 ± 1.366e-3 0.95

FMNIST 0.0863 ± 2.834e-3
0.0934 ± 2.593e-3
(Sp. 0.76 ± 0.01)

0.0989 ± 1.597e-3 0.0953 ± 2.317e-3 0.0915 ± 2.522e-3 0.7
0.1008 ± 2.024e-3 0.0983 ± 2.428e-3 0.0945 ± 3.827e-3 0.8
0.9 ± 0.0 0.104 ± 2.310e-3 0.1049 ± 2.276e-3 0.95

MNIST 8.233 ± 0.17
9.4e-3 ± 0.668e-3
(Sp. 0.71 ± 0.18)

12.1e-3 ± 0.294e-3 8.8e-3 ± 0.51e-3 9.033e-3 ± 1.053e-3 0.7
12.13e-3 ± 0.047e-3 10.047e-3 ± 0.826e-3 9.733e-3 ± 0.818e-3 0.8
0.8865 ± 0.0 16.033e-3 ± 2.38e-3 11.6e-3 ± 0.082e-3 0.95

CIFAR-10 0.076 ± 1.975e-3
0.083 ± 1.686e-3
(Sp. 0.81 ± 0.03)

- -
0.0892 ± 1.37e-3 0.7
0.0894 ± 1.476e-3 0.8
0.096 ± 2.217e-3 0.95

dynamic pruning algorithms should consider the gradients during training to make pruning decisions,
as these are more meaningful at the beginning of the optimization than only the weight magnitude
due to the random weight initialization. In addition to these drawbacks the number of steps between
mask updates (16 SGD steps) was found using hyperparameter optimization, leading to defaults
which may not transfer to other settings and defeating the purpose of pruning.

We propose to use the mini-batch gradient SNR to determine when a weight is no longer produc-
ing an informative gradient and only then to consider it for weight magnitude pruning. Like DPF,
we compute a global magnitude based mask (MAG) based on the unpruned weights. The decision
to prune is then taken if the SNR mask and MAG mask agree to prune a weight. This operation
performs a logical AND and only prunes weights that are both converged as well as small. As the
SNR is computed per neuron and gradually decreases below 1 during training of the weight, our
method does not need a manual sparsity schedule. In particular, we set the sparsity of the MAG
mask according to the sparsity arising automatically from the SNR mask, which allows us to prune
less in the beginning and more at the end of training. At any stage of the pruning process, the
algorithm has access to both gradient as well as weight magnitude information and is thus able to
adapt to the dynamics of the optimization process (Algorithm 1).

To avoid overpruning towards the end of training when the SNR of most weights transitions
from > 1 to < 1, we put the pruning on hold based on the training loss, which deactivates pruning
when the training loss increases. Pruning is resumed, when the best so far seen training loss is
reached again. Although this heuristic seems to work reasonably well for the datasets we tried, and
effectively ties the total sparsity to the loss, learning a global sparsity parameter during dynamic
pruning is so far unsolved, and we leave finding a more elegant solution to overpruning for future
work.

As a limitation of our method we require more memory compared to DPF, since we do not only
need to save the pruned and unpruned model like DPF, but in addition also the gradient SNR for
each weight. Further, our computational requirements also increase by a multiplicative factor of
approximatly 1.25 (Dangel et al., 2020) since we compute the SNR per gradient computation.

5. Experiments

In our experiments, we directly compare to DPF (Lin et al., 2019) and normal dense training. In
addition, we compare with GRASP-ABS, a variant of GRASP (Evci et al., 2020) proposed by Frankle

4

et al. (2021) which uses the absolute value of the score in order to make GRASP more reliable. In
section 5.1, we test our pruning method on MNIST (LeCun et al., 2010), FashionMNIST (Xiao
et al., 2017) and Cifar-10 (Krizhevsky et al., 2009) using a simple Convolutional Neural Network
and ResNet18 (He et al., 2016). In section 5.2 we perform a similar analysis on tabular data from
OpenML (Vanschoren et al., 2013) using multi-layer perceptrons. Details in Appendix A.1.

5.1 Image data

Figure 1: Results for FashionMNIST, MNIST, COVERTYPE and ELECTRICITY comparing our
method to regular dense training and DPF for two different target sparsity ratios. Results averaged
over 3 random seeds, DPF with target sparsity of 0.8. In the first row we plot the validation error
at each epoch and we find that our method performs on par with DPF and normal dense training.
The second row visualizes the global sparsity of the model at each epoch, which varies depending
on the dataset because of the gradient SNR. The third row shows the IOU between the new and old
mask at every mask update.

0.10

0.15

V
al

id
at

io
n

er
ro

r

Ours
DPF
Dense

0.0

0.5

1.0

S
pa

rs
ity

SNR
MAG & SNR

0 100 200
Epochs

10
2

1
- I

O
U

MAG
SNR

Dataset: cifar-10

Figure 2: Results on CIFAR-
10 dataset. Averaged over 3
random seeds, DPF with tar-
get sparsity of 0.8

The results on FashionMNIST and MNIST are shown on the left
in Figure 1. Our algorithm compares favorably with DPF and dense
training. Compared to DPF’s schedule, our inferred schedule tends
to prune many irrelevant weights at the beginning of training and
the SNR mask may momentarily reduce the sparsity during training,
which is not possible for DPF’s mask. The initial pruning is followed
by several consolidation epochs, in which the SNR mask will only
slowly increase in sparsity. This consolidation period is shorter for
MNIST compared to FashionMNIST, pointing to the intuition, that
MNIST is easier to solve than FashionMNIST, which in turn allows
to remove parameters more quickly.

An ablation experiment using only the magnitude mask or only
the SNR mask for pruning is shown in Figure 3 in the Appendix.
Pruning based only on the SNR mask leads to eventual overpruning
and pruning based only on the MAG mask with a fixed sparsity
prunes too many weights too early.

We also visualize the intersection over union of consecutive masks
in the lower plots of each Figure measured in terms of their inter-
section over union (IOU) before and after a mask update. We show
1 - IOU in order to use a log scale as the mask changes happen at

different magnitudes during training. Similarly to (Frankle et al., 2019b), we found that the weight
magnitude mask (MAG) changes less towards the end of training. In contrast, the SNR mask changes

5

more towards the end of training, which is to be expected as more weights will converge and hence
their SNR will be less than 1.

The results for pruning a ResNet-18 on CIFAR-10 are shown in Figure 2. Our method has the
same final performance as DPF, but training is less noisy and at a similar speed as the dense model.

5.2 Tabular data

The results obtained on Electricity and Covertype from OpenML Vanschoren et al. (2013) are shown
in the right half of Figure 1. DPF performs better than our method and dense training for Covertype
and on par to our method and dense on Electricity.

5.3 A different weight update strategy

In the course of our experiments, we also implemented a different strategy for weight updates which
differs from DPF (Lin et al., 2019). For context: In DPF a weight θi may become unpruned if one
of the following conditions holds:

1. If a different weight θj decreases in magnitude, below the current cutoff threshold, and the
weight θi is close to this threshold then the weight is unpruned.

2. In DPF, gradient updates are also performed for pruned weights, hence a weight may become
unpruned if the gradient update pushes its magnitude back into the current magnitude mask.

In our experiments, we investigated our proposed method and DPF if we only use condition (1),
which hence reduces the chance of unpruning a weight during training. The results are shown in
Figures 5 and 6 in the Appendix. DPF is noticeably less noisy in this setting, otherwise the final
performances for our method and DPF are almost identical, apart from CIFAR-10 where DPF
works worse in this setting. For CIFAR-10, our method also reaches higher final sparsities than in
the results shown in Section 5.1. Since the SNR criterion ensures that only small and converged
weights, with gradients resembling white noise, are being pruned, we conjecture that updating them
still after being pruned mostly adds disruptive noise into the network, hence not updating them
(dropping condition 2.) smoothes the curves without loosing performance. DFP in contrast may
suffer from this change, since weight magnitude pruning alone may prune weights that did not reach
their final value yet and hence updating them (at the expense of a noisy learning curve) is more
crucial.

6. Conclusion & Future Work

We proposed the signal-to-noise ratio of mini-batch gradients as a new pruning criterion, which
measures when a weight is no longer producing an informative gradient. We explain how to extend
DPF (Lin et al., 2019) using the new criterion which allows the network to decrease its sparsity
if necessary, which makes the pruning more flexible. In our experiments, we demonstrate that we
can obtain results on par with normal dense training and DPF on image and tabular data, while
exposing no free parameter. We leave as future work the question on how to compute the SNR for
more complex networks and how to prevent overpruning more elegantly than using early stopping
on the pruning masks.

7. Broader impact

We see opportunities of our work for positive impact, by contributing to potential energy savings
in training neural networks and making them more memory efficient, hence reducing their carbon
footprint and financial cost. However, our work may also lead to negative side effects. For example,

6

while our method produces sparse networks, the resulting classifiers may not necessarily be fair and
could for example give dominating groups in a population even greater weight, than non-sparse
networks.

References

Brian Cheung, Alexander Terekhov, Yubei Chen, Pulkit Agrawal, and Bruno Olshausen. Super-
position of many models into one. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/

file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf.

Felix Dangel, Frederik Kunstner, and Philipp Hennig. BackPACK: Packing more into backprop. In
International Conference on Learning Representations, 2020.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. In International Conference on Learning Representations, 2018.

Utku Evci, Yani A Ioannou, Cem Keskin, and Yann Dauphin. Gradient flow in sparse neural
networks and how lottery tickets win. arXiv preprint arXiv:2010.03533, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2018.

Jonathan Frankle, G. Dziugaite, Daniel M. Roy, and Michael Carbin. Stabilizing the lottery ticket
hypothesis. arXiv: Learning, 2019a.

Jonathan Frankle, David J Schwab, and Ari S Morcos. The early phase of neural network training.
In International Conference on Learning Representations, 2019b.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Pruning neural
networks at initialization: Why are we missing the mark? In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=Ig-VyQc-MLK.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for effi-
cient neural networks. In Proceedings of the 28th International Conference on Neural Information
Processing Systems-Volume 1, pages 1135–1143, 2015.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: optimal brain
surgeon. In Proceedings of the 5th International Conference on Neural Information Processing
Systems, pages 164–171, 1992.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
International Conference on Machine Learning, pages 5544–5555. PMLR, 2020.

7

https://proceedings.neurips.cc/paper/2019/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://openreview.net/forum?id=Ig-VyQc-MLK

Yann Le Cun, John S Denker, and Sara A Solla. Optimal brain damage. In Proceedings of the 2nd
International Conference on Neural Information Processing Systems, pages 598–605, 1989.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. In International Conference on Learning Representations, 2018.

Tao Lin, Sebastian U Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model pruning
with feedback. In International Conference on Learning Representations, 2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations, 2018.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l 0 regularization. In International Conference on Learning Representations, 2018.

Maren Mahsereci, Lukas Balles, Christoph Lassner, and Philipp Hennig. Early stopping without a
validation set. arXiv preprint arXiv:1703.09580, 2017.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):1–12, 2018.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11264–11272, 2019.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In International Conference on Machine Learning, pages
4646–4655. PMLR, 2019.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.
Deep double descent: Where bigger models and more data hurt. In 8th International Conference
on Learning Representations,{ICLR} 2020,, 2020.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for im-
age classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pages 4780–4789, 2019.

Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster gaze prediction with
dense networks and fisher pruning. arXiv preprint arXiv:1801.05787, 2018.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked science
in machine learning. SIGKDD Explorations, 15(2):49–60, 2013. doi: 10.1145/2641190.2641198.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2019.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. Advances in Neural Information
Processing Systems, 33, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. 2017.

8

Appendix A. Appendix

A.1 Experimental details

A.1.1 Image data

All experiments for MNIST and FashionMNIST use a small CNN with 4 convolutional layers with
relu activation function, each followed by max pooling, and a final linear layer. The number of filters
doubles between consecutive filters with an initial filter count of 16.

An initial learning rate of 1e-2 which decays according to a cosine schedule (Loshchilov and
Hutter, 2016) to 1e-4 and is used with the Adam optimizer (Kingma and Ba). An additional L2
regularization of 1e-4 is used for all experiments.

A.2 Tabular data

We use multi-layer perceptrons with 7 layers and a width of 512 to be sufficiently overparameterized.
The optimization was carried out with the same parameters as for image data, however with an initial
learning rate of 1e-1.

A.3 Ablation study

Figure 3: Ablation experiment when only using a magnitude mask or the dynamic SNR mask for
pruning. To illustrate the behavior no early stopping on the pruning level is performed.

A.4 Mask update strategies

DPF (Lin et al., 2019) used an extra hyperparameter search to determine the number of SGD steps
between mask updates to be 16. However, depending on the dataset and network architecture the
default may no longer be optimal. Therefore, we investigate the impact of the frequency of mask
updates on the optimization. We compare dense training to updating the mask after every and after
32 and 128 SGD steps. Note, that in these experiments we do not perform any early stopping on
the pruning level.

We find that the number of mask updates has only a small influence on the optimization overall
and only slightly changes the maximum attained sparsity level. More mask updates tend to lead to
higher levels of sparsity in particular for the openml datasets electricity and covertype for which we
use MLPs. For the ConvNets used for MNIST and FMNIST .

A.5 Ablation on weight update strategy

The effect of the alternative weight update strategy as outlined in Section 5.3 in the main paper is
shown in Figure 5 for CIFAR-10, and in Figure 6 for MNIST, FashionMNIST, COVERTYPE and
ELECTRICITY.

9

A.6 Effect of the number of burn-in epochs and the memory width of the exp. mov.
avg of the gradient SNR

The gradient SNR can be a noisy quantity. Hence, in the algorithm we smooth it with an exponential
moving average with a fixed factor γ ∈ [0, 1] over optimization steps as proposed by Mahsereci et al.
(2017). In this section, we investigate what influence the parameter γ has on the pruning algorithm,
and motivate a non-sensitive default. The smoothed SNR is computed as follows: snrsmooth

t =
γsnrsmooth

t−1 + (1 − γ)snrt(θ). The smoothing factor γ has a simple interpretation. Roughly after
m steps, the contribution of the SNR value snrt−m of previous iteration t −m will have decayed
to about γm percent relative to the current value snrt. This number of iterations m is roughly
the ‘memory’ of the smoother. We want the memory to be as large as possible (to reduce as much
noise as possible) much small enough such that the smoothed SNR is flexible, that is the memory
should be small in comparison to the total length T of the optimization run. The formula is thus
γ = (0.01)−m for a residual contribution of 1%. The relative memory rm := m

T can be set to a
meaningful default. The smaller rm, the smaller γ resulting in less smoothing.

A second parameter is the number of burn-in steps binsteps after which we start pruning. The
results of the ablation are shown in Figure 7 for varying rm ∈ {0.02, 0.1} which equals 1/50-th
and 1/10-th of the total run respectively, and binsteps ∈ {1, 10}. We find that a large window of
rm = 1/10 prunes too cautiously, and the smaller window rm = 1/50 works well across all tested
datasets and networks. The number of burning steps binsteps seems to have no effect on the final
pruned network. Hence, as defaults for all experiments we chose rm = 0.02 = 1/50 and binsteps = 1
epoch.

A.7 Layer-wise pruning ratios of our method

In Figures 8 and 9 we visualize the sparsity per layer at each training epoch for our proposed method.
We find that the SNR mask tends to want to prune more layers in the layers closer to the input and
less closer to the output, while the reverse is true for the MAG mask.

10

Figure 4: Ablation study on the influence of the number of SGD steps between mask updates.

11

0.10

0.15

V
al

id
at

io
n

er
ro

r

Ours
DPF
Dense

0.0

0.5

1.0

S
pa

rs
ity

SNR
MAG & SNR

0 100 200
Epochs

10
4

10
3

10
2

1
- I

O
U

MAG
SNR

Dataset: cifar-10

Figure 5: Results on CIFAR-10 dataset. Averaged over 3 random seeds, DPF with target sparsity
of 0.8

0.08

0.10

V
al

id
at

io
n

er
ro

r

Ours
DPF
Dense

0.0

0.5

1.0

S
pa

rs
ity

SNR
MAG & SNR

0 100 200
Epochs

10
3

1
- I

O
U MAG

SNR

Dataset: fmnist

0.0075
0.0100
0.0125

V
al

id
at

io
n

er
ro

r

Ours
DPF
Dense

0.0

0.5

1.0

S
pa

rs
ity

SNR
MAG & SNR

0 100 200
Epochs

10
3

1
- I

O
U MAG

SNR

Dataset: mnist

0.125

0.150

0.175

V
al

id
at

io
n

er
ro

r

Ours
DPF
Dense

0.0

0.5

1.0

S
pa

rs
ity

SNR
MAG & SNR

0 100 200
Epochs

10
4

10
2

1
- I

O
U

MAG
SNR

Dataset: covertype

0.150

0.175

V
al

id
at

io
n

er
ro

r

Ours
DPF
Dense

0.0

0.5

1.0

S
pa

rs
ity

SNR
MAG & SNR

0 100 200
Epochs

10
3

1
- I

O
U

MAG
SNR

Dataset: electricity

Figure 6: Results for FashionMNIST and MNIST comparing our method to regular dense training
and DPF for two different target sparsity ratios. Results averaged over 3 random seeds, DPF with
target sparsity of 0.8

12

Figure 7: Ablation study on the influence of the burn in steps binsteps and the memory fraction rm
of the exp. mov. avg of the SNR.

13

Figure 8: Sparsities per layer found by our method during training for the magnitude (MAG), the
mini-batch gradient SNR (SNR) and the combined mask (MAG& SNR).

14

Figure 9: Sparsities per layer found by our method for CIFAR-10.

15

	Introduction
	Related Work
	Background: Signal-To-Noise Ratio of a Mini-Batch Gradient
	Method
	Experiments
	Image data
	Tabular data
	A different weight update strategy

	Conclusion & Future Work
	Broader impact
	Appendix
	Experimental details
	Image data

	Tabular data
	Ablation study
	Mask update strategies
	Ablation on weight update strategy
	Effect of the number of burn-in epochs and the memory width of the exp. mov. avg of the gradient SNR
	Layer-wise pruning ratios of our method

