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ABSTRACT

With an ever-growing zoo of LLMs and benchmarks, the need to orchestrate mul-
tiple models for improved task performance has never been more pressing. While
frameworks like Mixture-of-Agents (MoA) attempt to coordinate LLMs, they of-
ten fall short in terms of (1) selecting relevant agents, (2) facilitating effective
intra-agent communication, and (3) integrating responses efficiently. In this work,
we propose Graph-of-Agents (GoA), a new graph-based framework for model-
ing multi-agent LLM communication. Our approach begins with node sampling,
selecting only the most relevant agents by leveraging model cards that summa-
rize each model’s domain, task specialization, and other characteristics. Next, we
construct edges between the selected agents by evaluating their responses against
one another to determine relevance ordering. Directed message passing is then
performed from highly relevant agents to less relevant ones to enhance their re-
sponses, followed by reverse message passing to refine the original responses
of the more relevant agents. Finally, the updated responses are aggregated via
graph-based pooling (e.g., max or mean pooling) to produce a single, unified an-
swer. We evaluate GoA on diverse multi-domain benchmarks (MMLU, MMLU-
Pro, GPQA) and domain-specific benchmarks (MATH, HumanEval, MedM-
CQA), with an agent pool of 6 LLMs spanning multiple domains. Surpris-
ingly, GoA achieves superior performance using only 3 selected agents, outper-
forming recent multi-agent LLM baselines that utilize all 6 agents simultane-
ously. By adopting a graph structure, GoA offers both scalability and effectiveness
through structured message passing—positioning it as a strong candidate for nav-
igating the challenges of the ever-growing LLM zoo. The source code of GoA can
be found at https://anonymous.4open.science/r/goa-F23C.

1 INTRODUCTION

Too many LLMs, too many benchmarks. As the ecosystem of Large Language Models (LLMs) (Wei
et al., 2022a) rapidly diversifies, researchers are increasingly overwhelmed—not just by the sheer
number of models available, but also by the complexity of evaluating and combining them effectively
at test time to solve complex tasks. In this era of abundant LLMs, a central challenge emerges:

(Q) Given the diversity of available LLMs, how can we design an effective playground where
agents interact synergistically—leveraging strengths, compensating for weaknesses, and im-
proving decision-making through efficient collaboration?

As an early attempt to address this challenge, Mixture-of-Agents (MoA) (Wang et al., 2024a; Li
et al., 2025) has recently been introduced as a pioneering approach that explores how leveraging mul-
tiple LLMs can enhance overall model performance through the Mixture-of-Experts (MoE) (Shazeer
et al., 2017) framework. As illustrated in Figure 1 (c), MoA aggregates responses from multiple
LLM agents, appends them to the original query and feeds the enriched input to the next layer. This
facilitates multi-agent synergy, enabling models to complement each other and refine predictions
collaboratively. While MoA has shown that integrating multiple LLMs can be advantageous over a
single model, it still faces several limitations that hinder its scalability and effectiveness:

Which agents? As shown in Figure 1 (b), following the scaling law of diverse LLM agents, se-
lecting a relevant subset from a large pool of agents handling complex and diverse queries (Figure 1
(a)) is a crucial challenge. The current MoA approach lacks an effective agent selection mecha-
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Figure 1: Current multi-agent LLM pipeline and our proposed approach.(a) Given a query that spans diverse
domains (e.g., biomedical + math + code), (b) selecting and organizing agents from a large pool of LLMs
to form an effective multi-agent system remains a significant challenge. (c) The current Mixture-of -Agents
(MoA) approach integrates all available agents, aggregates their responses, and forwards the combined output
to the next layer. However, it lacks generalizability to larger agent pools (e.g., 10 or 100) and suffers from
heavy intra-layer communication overhead. (d) In contrast, our proposed Graph-of Agents (GoA) addresses
this challenge through a graph-based structure. In GoA, only a subset of relevant agents is selected to form the
graph’s nodes, with intra-layer communication facilitated via directed message passing—flowing from more
relevant agents to less relevant ones. By leveraging this graph structure, GoA achieves greater scalability and
enables more efficient communication between agents, resulting in a more powerful and adaptive framework.

nism, instead forwarding queries to all available agents, leading to excessive computational costs.
This not only risks multi-agent system explosion but also introduces noise from irrelevant agents,
highlighting the need for a more efficient and practical agent selection strategy.

How do they communicate? Once agents are selected, facilitating effective communication among
them becomes a pivotal challenge. MoA adopts a many-to-one aggregation scheme, but this ap-
proach has notable drawbacks: it requires collecting responses from all available agents and treating
them as a single chunk, which fails to capture fine-grained interactions—such as one-to-one commu-
nication between individual agent pairs. Moreover, since different agents have varying strengths and
relevance depending on the query, treating all agent messages equally can hinder consensus. Instead,
adaptively weighting responses based on their relevance is crucial for improving decision-making.

How to integrate? Finally, when making the final decision, MoA aggregates responses by con-
catenating tokens from all agents. However, this approach incurs a huge computational cost, with
a complexity of O(LNd), where L is the number of communication layers, N is the number of
agents, and d is the token length per agent. Given that token usage is directly tied to cost, this
method becomes prohibitively expensive. Moreover, not all agents contribute equally valuable re-
sponses—some domain-specialized agents produce significantly higher-quality outputs than others.
A scalable integration mechanism that prioritizes more reliable agents while reducing the impact of
less relevant ones is essential for cost-efficient and effective decision-making.

⋆ Our Approach. To address these challenges, we propose a graph-based multi-agent framework,
Graph-of-Agents (GoA), as a novel remedy to enhance multi-agent communication. GoAfunda-
mentally rethinks multi-agent collaboration by modeling agents as nodes and their relevance-based
relationships as edges, enabling structured message passing. This graph-based design allows for the
selective activation of only relevant agents (as a subgraph of entire pool) while capturing inter-agent
interactions through message passing and finalizing decisions via graph-based pooling. GoA follows
a structured process, as shown in Figure 1 (d):

❶ Which agents? → Node Sampling: GoA begins by selecting relevant agents based on available
metadata (e.g., domain, task) from model cards. This information is provided to a meta-LLM, simply
a general-domain LLM, which identifies the most relevant agents given the query.

❷ How do they communicate? → Edge Sampling & Message Passing: Once nodes (agents) are
selected, we obtain their initial responses and ask each agent to rank others, capturing the signifi-
cance of each agent’s output. Based on these rankings, we construct directed edges in two perspec-
tives: (i) Source-to-Target: Higher-ranked agents (i.e., highly influential nodes with more relevant
responses) propagate their information to lower-ranked agents, allowing them to refine their re-
sponses based on more confident initial answers. (ii) Target-to-Source: After lower-ranked agents
update their responses, the refined information is passed back to the higher-ranked agents, enabling
them to further adjust their outputs based on the improved responses from their neighborhood agents.
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❸ How to integrate? → Graph Pooling: With refined responses, GoA applies max or mean pool-
ing, akin to graph pooling, to adaptively aggregate the outputs of multiple agents. GoA is extensively
evaluated on diverse multi-domain benchmarks (MMLU, MMLU-Pro, GPQA) and domain-specific
benchmarks (MATH, HumanEval, MedMCQA), demonstrating its generalizability and adaptabil-
ity across a wide range of tasks. These results highlight the effectiveness of viewing multi-agent
collaboration through the lens of graph structures.

It is important to note that, unlike traditional multi-agent learning method that require model fine-
tuning or additional training, our proposed GoA framework, as like MoA, operates purely through
the prompt interface. This design ensures compatibility with black-box LLM APIs while maintain-
ing high adaptability across diverse domains during test-time inference.

Our contributions are three-fold:

• We identify key challenges in current multi-agent LLM systems: selecting which agents to sample,
facilitating effective communication, and integrating responses efficiently.

• We formulate multi-agent collaboration as a graph-based framework and introduce GoA, which
incorporates node sampling, edge sampling, message passing, and graph pooling. This enables
not only the construction of a scalable multi-agent LLM ecosystem, but also enhances inter-agent
communication.

• We demonstrate the effectiveness of GoA across diverse benchmarks, including MMLU, MMLU-
Pro, GPQA, MATH, HumanEval, and MedMCQA. Notably, using only 3 agents, GoA outper-
forms recent multi-agent baselines that rely on pools of 6 agents, highlighting how graph-based
structures improve both the scalability and effectiveness of multi-agent collaboration.

2 RELATED WORK

LLM Reasoning and Test-Time Inference. Test-time reasoning with LLMs has seen rapid ad-
vances through prompt engineering techniques such as Chain-of-Thought (CoT) (Wei et al., 2022b),
Tree-of-Thought (Yao et al., 2023), and Graph-of-Thought (Besta et al., 2024; Yao et al., 2024),
which enable models to decompose complex problems into structured sub-tasks. While most prior
work focuses on improving a single LLM’s reasoning via internal prompting strategies (Zhou et al.,
2023; Xu et al., 2024; Feng et al., 2024), a parallel direction has emerged around collaborative rea-
soning at inference time using multiple LLMs (Du et al., 2023a; Chan et al., 2023). In these multi-
agent setups, multiple LLMs interact in test-time without additional finetuning, often aiming to
boost factual accuracy or reasoning diversity. However, these approaches typically rely on simplis-
tic communication protocols such as symmetric debate or sequential refinement, lacking structured
mechanisms for message routing or adaptive collaboration. Our work builds on this foundation
by proposing a graph-based test-time collaboration framework that formalizes agent interactions
through directional message passing, enabling richer and more scalable multi-agent reasoning.

LLM Ensembles and Multi-Agent LLM Collaboration. Another approach to leveraging mul-
tiple LLMs is ensemble-based inference, where outputs from several models are aggregated or se-
lected (Fang et al., 2024; Yuan et al., 2023). Recent works introduce router mechanisms (Wang
et al., 2023c; Hari & Thomson, 2023; Wang et al., 2024b) to reduce computational cost by se-
lectively querying a subset of models. However, many of these ensemble strategies treat LLMs
as interchangeable units without modeling their relationships. Meanwhile, graph-based structures
have begun to emerge to coordinate multi-agent systems, notably in frameworks like MacNet (Qian
et al., 2024) and GPTSwarm (Zhuge et al., 2024), which model agents as nodes in static DAGs.
Yet, these approaches often rely on predefined topologies or assume a single agent role-playing
multiple personas, limiting flexibility and expressiveness. In contrast, our proposed framework,
Graph-of-Agents (GoA), constructs dynamic graphs based on task relevance, enabling one-to-one
communication across a diverse pool of specialized LLMs. Through node sampling, directional edge
construction, and graph pooling,GoA supports efficient and adaptive collaboration—addressing the
underexplored challenge of coordinating heterogeneous agents for domain-diverse reasoning at test
time.
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Figure 2: Overall pipeline of GoA. (a) Overview: Given a query (Q) spanning diverse domains, GoA ap-
proaches multi-agent LLMs through the lens of a graph framework and produces an answer (A). (b) Node
Sampling: Each agent is mapped to a model card containing domain and task information. The Meta-LLM, a
general-purpose LLM, takes Q and the model cards as input and selects the most relevant agents, forming an
adaptive multi-agent framework. (c) Edge Sampling: After collecting initial responses from selected agents,
each agent evaluates the relevance of others (excluding itself) to generate a normalized score matrix. Edges are
established in Source-to-Target and Target-to-Source directions, while low-relevance nodes are pruned using
a threshold τ=0.05. (d) Message Passing: GoA first passes messages from source to target nodes, allowing
lower-ranked agents to refine responses, then reverses the flow to update source nodes. (e) Graph Pooling:
With updated responses structured as a graph, GoA outputs the final prediction via max or mean pooling.

3 METHODOLOGY

3.1 PRELIMINARIES AND NOTATIONS

Multi-agent LLMs. We define a system of N LLM agents, where each agent i ∈ 1, . . . , N special-
izes in a particular domain or task. The agents collaboratively process a given query Q to generate
an optimized response A.

As a graph. We represent the multi-agent system as a directed graph, G = (V, E), where V =
v1, . . . , vN denotes the set of agent nodes and E ⊆ V × V is the directed edges. Once a subset of S
relevant agents are selected from the multi-agent pool of size N , the adjacency matrix A ∈ RS×S

is constructed. The matrix is defined such that Aij > 0 if (vi, vj) ∈ E and Aij = 0 otherwise.

3.2 OUR APPORACH: GOA

In this section, we present GoA, a novel approach specifically designed to enhance multi-agent
communication through a graph-based framework, as shown in Figure 2.

Overview. GoA begins with node sampling, where a meta-LLM (a general-purpose LLM) selects
the most relevant agents from a given pool based on the query and a model card dictionary. Each
model card summarizes information extracted from the Hugging Face README file, including the
LLM’s domain and specialized tasks (Sec. 3.2.1). After collecting initial responses from the selected
agents, we rank each agent based on scores assigned by other agents. Agents are then sorted by
these scores to define two node types: source nodes (highly relevant and influential) and target
nodes (less influential). This establishes bidirectional relationships: source-to-target and target-to-
source (Sec. 3.2.2). In the message-passing, we first propagate messages from source to target,
allowing target nodes to refine their responses based on input from more relevant agents. We then
reverse the flow—target to source—so that source nodes can further refine their outputs using the
updated responses. This two-step process ensures that each agent’s contribution is weighted by its
relevance to the query (Sec. 3.2.3). Finally, we apply graph pooling: either max pooling based on the
most connected source node or mean pooling guided by the meta-LLM to generate the final answer
(Sec. 3.2.4).
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3.2.1 WHICH AGENTS? → NODE SAMPLING

Given a query Q, our goal is to select a subset of agents most relevant to the task. To achieve
this, we leverage publicly available model cards from Hugging Face (Jain, 2022), which contain
useful metadata such as the dataset the LLM was trained on, its specialized domain, model size.
Using this information, we summarize each agent’s model card into three key categories: (1) The
domain of the LLM, (2) The specialized task, and (3) The model size and special features. Once
the summarized model card is obtained, we prompt the Meta-LLM1 to determine which agents are
most likely to generate the most effective response given the query. Formally, the selected subset of
agents, Vs ⊆ V , is obtained as:

Vs = Meta-LLM(Top-k|Q,Model Cards), (1)

where Top-k selects the k most relevant agents based on their alignment with the query and model
card information. For example, as illustrated in Figure 2 (b), if the query pertains to biomedical,
mathematics, and code-related domains, the selected agents would primarily belong to these special-
ized areas to maximize multi-agent synergy. This approach effectively filters out unnecessary agents
(e.g., law-related models), preventing agent explosion (i.e., involving an unmanageable number of
agents) while maintaining relevance agents for handling the query, answering “Which agents?”.

3.2.2 HOW DO THEY COMMUNICATE? → (1) EDGE SAMPLING

Once the subset of selected agents Vs is obtained, we prompt each agent to generate its initial
response to the query Q, forming a response set R = {v1(Q), . . . , vS(Q)}, where S = |Vs|. To
model inter-agent relevance, we construct a score matrix in which each agent scores the responses of
all other agents (excluding its own to reduce self-bias) based on alignment with Q. These scores are
normalized such that each agent distributes a total score of 1.0 across the remaining S−1 agents. We
then compute a relevance score Sj for each agent j by summing the scores it receives from others:

Sj =

S∑
i=1
i̸=j

Scorei→j . (2)

The relevance scores S are then used to rank agents and determine their communication roles (e.g.,
source vs. target). To avoid including weak or noisy responders—particularly in cases where model
cards may lack detailed information—we introduce a threshold hyperparameter τ . Agents with
Sj < τ are pruned from the communication graph, ensuring scalability and better task-fit in the
constructed structure.

Using the remaining high-relevance agents, we define a weighted directed adjacency matrix A ∈
RS×S to govern message passing. Each entry Aji represents how much influence agent i exerts
on agent j when passing messages. It is computed by normalizing the total relevance scores of all
neighbors of agent j:

Aji =
Si∑

k∈Nj
Sk

, where Nj = {i | (i → j) ∈ E}. (3)

This scoring formulation ensures that more relevant agents have proportionally greater influence, and
it enables fine-grained 1-to-1 communication tailored to task-specific needs. Figure 2(c) illustrates
how the score matrix and pruning mechanism dynamically shape the communication graph.

3.2.3 HOW DO THEY COMMUNICATE? → (2) MESSAGE PASSING

Now, given the edge information and weighted adjacency matrix, we proceed with message passing,
a key advantage of the graph structure. To incorporate the significance of each agent, GoA performs
message passing in two steps: Source-to-Target followed by Target-to-Source.

1Any general-purpose LLM. In our experiments, we used Qwen2.5-7B-Instruct (Team, 2024) from 7–8B
agent pool.
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Source-to-Target. For highly influential nodes, it is crucial to maintain their initial strength rather
than being influenced by less significant or noisy nodes. Conversely, less significant nodes benefit
from receiving messages (i.e., more relevant responses to the query) from stronger nodes. Thus, we
first propagate information from source nodes (higher-ranked agents) to target nodes (lower-ranked
agents), allowing the latter to refine their responses based on more confident initial answers:

R
′

j = vj

(∥∥S
j=i+1

AijRsorted
i

)
, where i < j ≤ S, (4)

where R′

j represents the updated response for target node j after receiving messages from source
node i. Here, vj(·) denotes the forward pass of LLM j,

∥∥ represents the concatenation of neighboring
responses, and Rsorted

i represents the sorted responses, ranked from highly relevant to less relevant
based on the relevance scores S obtained in Equation 2. With these updated responses, we now
proceed with the Target-to-Source step.

Target-to-Source. Since the previous step only updates target nodes, we also allow source nodes
to refine their responses based on the improved outputs of their neighbors (R′

j), rather than the
initial responses from target nodes. This enables source nodes to incorporate the consensus of their
neighboring agents, indirectly influenced by the original source node, leading to further refinement:

R
′′

i = vi

(∥∥S
j=i+1

AjiR
′

j

)
, where i < j ≤ S, (5)

where R′′

i represents the refined response for source nodes. With both source and target nodes refin-
ing their responses collaboratively through the graph structure, we effectively address the question
of “How do they communicate?”. We now move on to the final step: response integration.

3.2.4 HOW TO INTEGRATE? → GRAPH POOLING

To address the question of “How to integrate?” while minimizing the computational cost associated
with token stacking, we formalize response integration through graph pooling, a common approach
in graph-based tasks that requires aggregating node representations into a single graph representa-
tion. Motivated by this, we propose two pooling strategies: ❶ Max-Pooling, which relies on the
most influential node (i.e., the agent with the highest number of incoming edges, indicating a higher
relevance score). ❷ Mean-Pooling, which balances contributions by considering responses from all
selected agents but on a reduced scale, unlike MoA, which involves all available agents. Formally,
this can be expressed as:

A =

{
R′′

max-source if max-pooling
Meta-LLM(Average|R′′

) if mean-pooling,
(6)

where R′′

max-source denotes the refined response of the agent with the highest number of source edges
(i.e., the most relevant agent). In summary, max-pooling prioritizes the response of the most sig-
nificant agent, while mean-pooling incorporates responses from all selected agents, requiring an
additional forward pass through the Meta-LLM. We introduce these two variants as GoAmax and
GoAmean, which will be analyzed in the experiment sections. The averaging is performed in a
weighted manner using the relevance scores assigned during edge sampling.

3.3 GOA GENERALIZES MOA

Lastly, we demonstrate that GoA generalizes the existing MoA framework. Specifically, as illus-
trated in Figure 1 (c), the message-passing and response-updating procedure of MoA (Wang et al.,
2024a) can be formulated as:

R
′

i = vi(
∥∥N
j=1

Rj +Q). (7)

Comparing this to Equation 4, we establish the following:

Proposition 1 Graph-of-Agents (GoA) reduces to MoA when the node sampling parameter k equals
the total number of agents N , the adjacency matrix is fully connected with all edge weights set to 1,
i.e., A ∈ RN×N = 1, and a self-loop is included with the initial query (Q) at each layer, ultimately
aggregated via mean pooling.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Benchmark performance across multi-domain and domain-specific benchmarks. Single-
agent baselines: General: Qwen2.5-7B-Instruct (Team, 2024), Code: Qwen2.5-Coder-7B-
Instruct (Hui et al., 2024), Math: Mathstral-7B-v0.1 (AI, 2024), Biomedical: Bio-Medical-Llama-
3-8B (Con, 2024), Finance: finance-Llama3-8B (Cheng et al., 2024), Legal: Saul-7B-Instruct-
v1 (Colombo et al., 2024). Multi-agent baselines: Debate (Du et al., 2023b), Self-Consistency
(SC) (Wang et al., 2023a), Refine (Madaan et al., 2023), ReConcile (Chen et al., 2023), MoA (Wang
et al., 2024a), and Self-MoA (Li et al., 2025). Our proposed framework, GoA (Graph-of-Agents),
despite using only 3 agents (i.e., top-k=3), outperforms both multi-agent baselines with 6 agents and
single-agent models, demonstrating strong collaborative synergy and capability across both multi-
domain and domain-specific tasks. All performance is measured using zero-shot CoT in test-time.

Multi-Domain Domain-Specific
MMLU MMLU-Pro GPQA MATH Human Eval MedMCQA

Single-Agent

General 77.61 53.90 32.83 69.00 81.50 55.22
Code 68.04 42.33 33.84 59.60 85.37 45.57
Math 63.47 37.19 30.81 48.60 57.93 45.25
Biomedical 46.60 27.90 25.25 18.80 20.73 47.00
Finance 54.11 25.52 28.28 13.80 27.44 42.08
Legal 55.86 27.57 30.30 12.40 36.59 41.50

Multi-Agent
(6 Agents)

Debate 72.53 47.05 29.29 69.60 40.24 53.05
SC 77.97 54.12 36.36 69.80 82.57 55.70
Refine 77.40 54.71 38.92 71.60 80.49 54.94
ReConcile 69.61 44.19 34.34 45.60 50.20 54.60
MoA 75.71 53.33 32.83 65.80 76.22 54.94
Self-MoA 78.14 54.19 33.84 68.20 79.27 55.56

Multi-Agent
(3 Agents)

GoAMax 79.18 54.78 39.98 69.83 84.67 60.04
GoAMean 78.52 54.27 40.54 73.12 84.98 57.92

Thus, GoA serves as a more flexible and extensible generalization of multi-agent communication
frameworks. By introducing structured message passing, adaptive agent selection, and weighted
aggregation, GoA can scale to large agent pools while maintaining efficiency and robustness. As
our work focuses on test-time inference, the prompts used in this study are provided in Appendix B.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Benchmarks. We evaluate performance on two multi-domain (MMLU (Hendrycks et al., 2020),
MMLU-Pro (Wang et al., 2024c), GPQA (Rein et al., 2023)) and three domain-specific benchmarks
(MATH (Lightman et al., 2023), HumanEval (Chen et al., 2021), MedMCQA (Pal et al., 2022)).
For MMLU and MMLU-Pro, due to their large sizes, we used stratified sampling: 50 samples per
category across 57 categories for MMLU, and 150 samples per category across 14 categories for
MMLU-Pro. For the agent pool, we primarily leveraged six LLMs with 7–8B parameters, covering
diverse domains such as General, Code, Math, Biomedical, Finance, and Legal. The specific LLMs
are listed in Table 1, and details on the benchmarks and baselines are provided in Appendix C.

4.2 MAIN RESULTS

Effectiveness. In Table 1, we present benchmark results across both multi-domain and domain-
specific tasks, comparing single-agent baselines, multi-agent baselines with 6 agents, and our pro-
posed GoA (3 agents). ❶ Among single-agent baselines, the general-purpose model achieves the
highest average performance (61.15), but falls short of the best-performing multi-agent models.
Specialized agents (e.g., Math, Biomedical, Finance) tend to perform well only in narrow domains
and underperform in others, leading to lower overall averages. ❷ Multi-agent baselines with 6
agents—especially Refine (62.15) and Self-MoA (61.63)—demonstrate improved performance over
all single-agent baselines, confirming the benefits of agent collaboration. However, their effec-
tiveness varies across benchmarks, with no single method dominating all tasks. ❸ Our proposed
GoA method outperforms all baselines across most metrics. GoAMax achieves the highest aver-
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age score, with top performance on MMLU (79.18), MMLU-Pro (54.78), and MedMCQA (60.04).
GoAMean records the best scores on GPQA (40.54), MATH (73.12), and HumanEval (84.98), show-
ing robust and consistent gains across both reasoning and domain-specific tasks. ❹ Notably, while
other multi-agent methods rely on integrating all 6 agents, GoA achieves superior results using only
3, suggesting that selective and structured agent collaboration can be more effective than full inte-
gration. For detailed performance comparison plots for each category in MMLU and MMLU-Pro,
please refer to Appendix D.

Table 2: Efficiency analysis in MMLU-Pro.
Acc. Calls Tokens (k) Time (s)

MoA 53.33 19 56.05 240.26

GoAMax 54.78 11 19.18 100.43
GoAMean 54.27 12 22.58 118.52

Efficiency. Another crucial perspective for test-
time LLM collaboration is efficiency—that is, han-
dling multiple LLMs in a scalable manner. Table 2
presents a comparison between MoA and GoA on
the MMLU-Pro dataset in terms of accuracy, number
of LLM calls, average token usage (input + output),
and latency. Unlike MoA, which employs multiple
rounds of proposers (i.e., all available agents) and a final aggregator, GoA reduces LLM usage and
latency while improving accuracy. This improvement stems from its design philosophy—node and
edge sampling followed by graph pooling—which selectively involves only relevant agents in the
system, making it a more efficient and practical approach for multi-agent LLM collaboration.

Table 3: Scaling up with gpt-4o model.
GPQA MedMCQA HumanEval

gpt-4o 47.47 77.00 90.20

Debate (6 Agents) 53.03 80.00 85.98
Reconcile (6 Agents) 53.03 75.00 91.46
MoA (6 Agents) 50.51 80.00 92.07
DyLAN (8 Agents) 58.89 81.00 92.07

GoAMax (3 Agents) 55.05 82.00 93.29
GoAMax (6 Agents) 56.57 83.00 93.90

Scaling Up. To evaluate generalization to pro-
prietary models, we tested GoA with gpt-4o
on GPQA, MedMCQA (100 sampled), and
HumanEval. As shown in Table 3, multi-
agent setups consistently outperform the single-
agent baseline. Notably, while DyLAN (Liu
et al., 2024) employs eight specialized agents
(e.g., ‘Python Assistant’, ‘Algorithm Devel-
oper’), our GoA with only three agents achieves
higher performance, mirroring trends seen with
open-source models. This advantage stems from our graph-based reasoning and relevance-aware
message-passing mechanism (Section 4.3), which enables targeted and noise-resilient communica-
tion. These results highlight that well-designed communication strategies can be more effective than
simply increasing the number of agents, underscoring both the effectiveness and scalability of GoA.

4.3 WHY GRAPH?

The key aspect of GoA is its graph-based framework for multi-agent LLM collaboration. In this sec-
tion, we show how the graph structure and the new message-passing benefit LLM collaboration.

0.9 0.1-

- 0.01.0
0.7 -0.3

∑

∑

1
1
1

1.6 0.11.3 3

𝓠:
'The lingual branch of the mandibular 
trigeminal nerve (0) provides general 
sensation to the anterior two-thirds of 
the tongue, but it is not primarily 
responsible for taste. The chorda tympani 
branch of the facial nerve (1) is 
responsible for providing general 
sensation to the anterior two-thirds of 
the tongue. … Therefore, the correct 
answer is 1: chorda tympani branch of the 
facial nerve. >> Final Answer: 1’

'Answer: 0'

'Answer: 1'

'Answer: 1'

'Answer: 0'

'Answer: 1'

'Answer: 0'

(1)Domain is Biomedical domain, 
which is highly relevant to 
anatomy questions…. 

(2) Repeated to ensure a strong 
performance

(3) General knowledge model can 
handle a wide range of questions, 
including anatomical ones.

Node Sampling Edge Sampling

Loss of somatic sensation over 
the anterior two-thirds of the 
tongue indicates damage to the

0: "lingual branch of the 
mandibular trigeminal nerve.",
1: "chorda tympani branch of 
the facial nerve.",
2: "lingual branch of the 
glossopharyngeal nerve.",
3: "hypoglossal nerve."

Message Passing Graph Pooling

1.6
3

1.3
3

Target  → Source

'Answer: 0''Answer: 0'

'The lingual branch of 
the mandibular trigeminal 
nerve provides somatic 
sensation to the anterior 
two-thirds of the tongue.
The chorda tympani branch 
of the facial nerve 
provides taste sensation 
to the anterior two-
thirds of the tongue.
Therefore, loss of 
somatic sensation over 
damage to the …
>> Final Answer: 0'

(a) MoA

(b) GoA

'Answer: 0''Answer: 0'!.#
$  ≤ 0.05

(1) Source-to-Target

(2) Target-to-Source

Figure 3: Reasoning process of (a) Mixture-of-Agents (MoA) and (b) Graph-of-Agents (GoA).
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Graph-based Reasoning. Figure 3 presents a case study illustrating how a graph-based framework
improves reasoning by comparing recent MoA with our proposed GoA when handling an anatomy-
domain from the MMLU dataset. In MoA, all available agents are used, including those from
unrelated domains such as math and code. These irrelevant agents introduce noise (e.g., ‘Answer:
1’), which negatively affects the final prediction. In contrast, GoA avoids irrelevant agent usage
by applying node sampling followed by edge sampling, thereby constructing a query-specific graph
structure. This enables targeted message-passing among relevant agents, leading to more accurate
discussions (e.g., ‘Answer: 0’) and final predictions. Overall, this comparison shows how a graph-
based framework enhances reasoning in multi-agent scenarios by leveraging structured interactions
and relevance-aware message passing.

Table 4: Effectiveness of Message-Passing.
HumanEval

Qwen2.5-Coder-7B-Instruct 85.37
Seed-Coder-8B-Instruct 80.49
deepseek-coder-7b-instruct-v1.5 73.17

MoA - MoE-based (3 Agents) 85.37
Debate - Debate-based (3 Agents) 71.95
Reconcile - Confidence-based (3 Agents) 80.61

GoAMax - Graph-based (3 Agents) 85.98

Relevance-aware Message-Passing. We now
delve into GoA’s relevance-aware message-
passing framework under a stricter fixed-node
setting, targeting the HumanEval benchmark
with three code-specific models. As shown
in Table 4, the baseline models exhibit vary-
ing performance—Qwen2.5-Coder-7B-Instruct
performs best, while the others fall behind.
In the multi-agent setting, we compare our
approach against existing frameworks: MoA
(MoE-based) Wang et al. (2024a), Debate Du et al. (2023b), and Reconcile (confidence-based) Chen
et al. (2023), with our GoA (graph-based) achieving the highest performance. This gain stems from
its tailored message-passing mechanism, where edges are formed based on node relevance to the
given question: information flows from highly relevant nodes (e.g., Qwen2.5-Coder-7B-Instruct)
to less relevant ones (e.g., deepseek-coder-7b-instruct-v1.5), which update their internal state, fol-
lowed by a feedback phase that produces an aggregated response. These results demonstrate that
graph-based approaches—especially when combined with relevance-aware message passing—offer
a promising paradigm for LLM collaboration.

4.4 ABLATION STUDY

Table 5: Ablation study on modules, top-k, and τ .
MMLU-Pro GPQA

GoA (Top-k=3, τ=0.05) 54.78 39.98
w/o Target-to-Source 53.66 38.03
w/o Source-to-Target 52.21 36.12
w/o Scoring (Aij = 1) 52.91 37.34

Top-k=2 53.54 36.75
Top-k=5 54.65 39.13

τ=0.1 53.12 38.43
τ=0.2 52.78 37.12

Table 5 presents an ablation analysis on
MMLU-Pro and GPQA. The top row shows the
original GoA setting with the best performance.
❶ Removing Target-to-Source message passing
leads to a noticeable drop (–1.12 MMLU-Pro,
–1.95 GPQA), showing that feedback from tar-
get nodes is crucial. ❷ Removing Source-to-
Target causes even larger degradation (–2.57,
–3.86), highlighting the importance of initial
information flow. Together, these results con-
firm the complementary role of bidirectional
message passing. ❸ Disabling edge scoring
(Aij = 1) consistently reduces performance, validating the benefit of relevance-based weighting.
❹ Varying the number of agents shows k = 2 limits diversity while k = 5 introduces slight degra-
dation (likely requiring tailored τ ), with k = 3 remaining scalable and performant. ❺ Adjusting the
edge threshold τ shows that overly sparse graphs (τ = 0.1, 0.2) harm performance, while τ = 0.05
balances focus and connectivity. Overall, these results demonstrate that bidirectional message pass-
ing, adaptive edge scoring, and selective agent activation all contribute to GoA’s effectiveness.

5 CONCLUSION

In this study, we introduce GoA, a graph-based framework that re-designs multi-agent communi-
cation to address key challenges: selecting relevant agents, enabling effective communication, and
integrating responses efficiently. Extensive experiments demonstrate consistent gains across diverse
benchmarks. We believe GoA can advance the development of large-scale collective intelligence in
the emerging multi-agent LLM era.
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ETHICS STATEMENT

We propose a graph-based multi-agent LLM collaboration framework, GoA. However, the LLMs
used in GoA may still exhibit inherent biases and undesirable traits from pretraining. Consequently,
its outputs carry similar risks of misuse as other test-time methods.

REPRODUCIBILITY STATEMENT

We provide our code at the anonymous link: https://anonymous.4open.science/r/
goa-F23C. All experiments were conducted on an A6000 GPU. The datasets used are publicly
available.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use ChatGPT2 exclusively for grammar checking and text refinement. Its role was limited to
polishing author-written text and did not involve research ideation.

B PROMPTS

As our proposed GoA framework operates during test-time inference, the detailed prompts for each
stage are provided below:

• Model Card Extraction: See Table 6

• Node Sampling: See Table 7

• Edge Sampling: See Table 8

• Message-Passing (1) Source-to-Target: See Table 9

• Message-Passing (2) Target-to-Source: See Table 10

• Graph-Pooling: See Table 11

C DETAILS ON EXPERIMENTAL SETTINGS

Benchmarks. We evaluate our framework on the following benchmarks:

• MMLU (Hendrycks et al., 2020): A comprehensive multi-domain benchmark with 57 di-
verse subjects (which can be grouped into 4 broader categories), designed to test general
knowledge and reasoning across humanities, STEM, and other domains. In this study, we
employed stratified sampling with 50 samples per subject to ensure balanced representa-
tion.

• MMLU-Pro (Wang et al., 2024c): A professional-level extension of MMLU comprising
14 categories focused on advanced reasoning tasks in professional fields. In this study, we
employed stratified sampling with 150 samples per category to ensure balanced represen-
tation.

• GPQA (Rein et al., 2023): A challenging benchmark targeting graduate-level question
answering with an emphasis on deep understanding and domain-specific reasoning.

• MATH (Lightman et al., 2023): A benchmark comprising high school and competition-
level mathematics problems, designed to test symbolic reasoning and multi-step problem
solving. We used a subest of 500 problems.

• HumanEval (Chen et al., 2021): A code generation benchmark consisting of programming
problems that evaluate functional correctness of generated code.

• MedMCQA (Pal et al., 2022): A multiple-choice medical question answering benchmark
based on real medical entrance exams, assessing biomedical and clinical knowledge.

Multi-Agent Baselines. We compare our method against the following multi-agent LLM baselines:

• Debate (Du et al., 2023b): A multi-agent collaboration approach where agents engage in
structured debates to converge on a final answer.

• Self-Consistency (SC) (Wang et al., 2023b): A single agent generates multiple reasoning
paths, and the final answer is chosen by majority voting across these diverse outputs.

• Refine (Madaan et al., 2023): A refinement-based collaboration framework where agents
iteratively improve one another’s responses.

2https://chatgpt.com/
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• ReConcile (Chen et al., 2023): A confidence-based collaboration strategy where agent
responses are weighted and reconciled based on self-assessed confidence.

• MoA (Wang et al., 2024a): A Mixture-of-Agents method where different experts contribute
to decision-making in a proposer-and-aggregator fashion.

• Self-MoA (Li et al., 2025): A variant of MoA composed of multiple instances of a single
model, where the single model is the top-performing model for each task.

D DETAILED COMPARISON ON EACH CATEGORY

Figure 4 and Figure 5 show the fine-grained performance across each category in the MMLU and
MMLU-Pro benchmarks, respectively. We compare domain-specific agents and a strong baseline,
Self-MoA (utilizing 6 agents), with our proposed method, GoA (utilizing 3 agents). We observe that
in most cases, the general-domain agent (G) performs strongly across diverse domains. However,
it lacks generalizability across all categories and, like Self-MoA (Li et al., 2025), underperforms
compared to GoA. This is due to GoA’s ability to adapt to diverse domains through relevant node
selection (e.g., the law agent in law-specific question (Figure 5)) and a tailored message-passing
framework that effectively captures domain-relevant information in response to each question.

G: Qwen2.5-7B-Instruct
C: Qwen2.5-Coder-7B-Instruct
M: Mathstral-7B-v0.1
B: Bio-Medical-Llama-3-8B
F: finance-Llama3-8B
L: Saul-7B-Instruct-v1
Self-MoA (6 Agents)
GoA (3 Agents)

A
cc

.

Figure 4: MMLU benchmark results across 4 categories. The last two color bars represent Self-MoA
and GoA, respectively. Self-MoA integrates 6 agents, while GoA utilizes 3 agents.

G: Qwen2.5-7B-Instruct
C: Qwen2.5-Coder-7B-Instruct
M: Mathstral-7B-v0.1
B: Bio-Medical-Llama-3-8B
F: finance-Llama3-8B
L: Saul-7B-Instruct-v1
Self-MoA (6 Agents)
GoA (3 Agents)

A
cc

.
A

cc
.

A
cc

.

Figure 5: MMLU-Pro benchmark results across 14 categories. The last two color bars represent
Self-MoA and GoA, respectively. Self-MoA integrates 6 agents, while GoA utilizes 3 agents.
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E LIMITATION AND FUTURE WORK

While GoA demonstrates strong performance in multi-agent collaboration, several limitations re-
main. First, the current node sampling mechanism primarily relies on publicly available model card
information to select relevant agents. However, model card descriptions may be incomplete, incon-
sistent, or lack crucial details about a model’s strengths and weaknesses in specific domains. As a
result, the selection process may not always optimally align with the query requirements. Future
work could explore more adaptive selection mechanisms, such as meta-learning-based optimiza-
tion or reinforcement learning techniques, to dynamically refine agent selection based on historical
performance and contextual relevance.

Moreover, GoA primarily focuses on text-based reasoning tasks, leveraging structured communica-
tion among language models. However, many real-world applications require multimodal reasoning,
where agents process and integrate textual, visual, and numerical information simultaneously. Ex-
tending GoA to multimodal domains by incorporating vision-language models, structured numerical
reasoning, or even cross-modal knowledge fusion would be a promising direction.
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Table 6: Prompt for extracting key information from a Hugging Face Model Card. An example
using Qwen2.5-Coder-7B is provided.

Model Card Extraction - System Prompt

You are an expert in analyzing and summarizing AI model documentation.

Model Card Extraction - User Prompt

You are given the README file of a language model:

language:
- en
base_model:
- Qwen/Qwen2.5-Coder-7B
pipeline_tag: text-generation
library_name: transformers
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
---

# Introduction
Qwen2.5-Coder is the latest series of Code-Specific ...
- code generation, code reasoning and code fixing.
- ...

Please extract and summarize the model’s key characteristics clearly and concisely in the
following structured format:

1. Domain: The primary domain or application area the model is designed for (e.g., general-
purpose, biomedical, finance, coding, math, etc.).
2. Task Specialization: Describe the task types the model is designed for or excels at. Be
as specific as possible, including the domain context of each task (e.g., biomedical question
answering, clinical decision support, financial sentiment classification, code generation). Do
not include performance metrics, benchmark names, or evaluation results.
3. Parameter Size: The number of parameters in the model (approximate if not explicitly
stated).
4. Special Features: Any distinguishing aspects such as fine-tuning datasets (if applicable).

Your summary will later be used to compare multiple models for selection purposes. Return
your answer in bullet-point format, using the exact field names shown above. Keep it concise
but specific enough for model comparison.

Answer:
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Table 7: Prompt for Node Sampling.

Node Sampling - System Prompt

You are an AI model selection expert. Your task is to select the most relevant AI models to answer a given
question based on their domain, specialized capabilities, and overall performance.

Selection Criteria:
• Domain Match (Primary Factor): Prefer models that are trained in the relevant domain for the

question.

• Task Specialization: If the question requires a specific skill (e.g., reasoning, code generation,
biomedical text processing), prioritize models that explicitly specialize in that area.

• Generalist Models Consideration: If a generalist model is known to perform well in the given
domain or task, include at least one such model in the selection.

• Size vs. Performance Balance: Do NOT rely solely on model size when selecting between
generalist and specialized models. If a generalist model is significantly larger (e.g., 13B vs. 7B),
prefer the larger model. Otherwise, choose based on task performance and known effectiveness.

If a model is highly relevant, you may select it multiple times. If a question does not specify a domain,
general models should be preferred.

Node Sampling - Use Prompt

Given the question: messages[0] and the following model descriptions: model descriptions,
select the top top k models that best fit the question.

Selection Rules:
• Return a comma-separated list of indices (e.g., "0,1,1,3").

• The list must contain exactly top k values.

• You may repeat an index if the model is highly relevant.

• Only use numbers in the range [0, max index]. Do not include explanations.

Example Selections:
• If the question is about biomedical research: "0,5,5" (favoring biomedical models, but keep-

ing a generalist model if available).

• If the question is a reasoning-based general question: "0,0,1,2" (favoring generalist models
with some specialized).

example_dict = {
1: "0",
2: "0,3",
3: "0,1,5",
4: "0,0,4,5",
5: "0,1,2,3,5",
6: "0,0,2,3,4,5"

}

Answer Format:
Strictly follow the format below. Do not add any explanations or extra text. Example:
example dict[max index+1]

Answer:
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Table 8: Edge Sampling Prompt.

Edge Sampling - System Prompt

You are an expert at evaluating AI model responses. You must rank and score the responses relatively,
assigning a numerical score to each such that the total sum of all scores is exactly 1.0.

Edge Sampling - User Prompt

Given the question: messages[0], and other models’ responses: other responses

Evaluate the following responses from models: other models
Assign a score to each response based on:

• Correctness (most important)

• Coherence
• Relevance

Distribute a total of 1.0 point across all responses. Better responses should receive higher scores. Do not
provide explanations.

Response Format:
Please assign scores in the same order as the responses shown above, from top to bottom. The order of
models is: other models

Make sure:
• The list has exactly len(other models) scores

• The sum of the scores is exactly 1.0

• Do not include any extra text

Example Dictionary:

example_dict = {
1: [1.0],
2: [0.7, 0.3],
3: [0.1, 0.1, 0.8],
4: [0.3, 0.4, 0.1, 0.2],
5: [0.2, 0.4, 0.1, 0.3, 0.0]

}

example_str = ", ".join(f"’
{other_models[i]}’: {example_dict[len(other_models)][i]}"
for i in range(len(other_models)))

Example: example_str

Answer:
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Table 9: Message-Passing: Source-to-Target Prompt.
Source-to-Target - System Prompt

You are refining your response by incorporating insights from other models. Each model’s contribution
is weighted by its relevance score. Use their ideas carefully to improve your answer, while keeping the
strengths and clarity of your original response.

Source-to-Target - User Prompt

Question: messages[0]

Your initial response: initial responses[target]

The following responses were provided by other models. They are considered more relevant and may offer
valuable insights to improve your answer.

descriptions

While reviewing these responses, carefully consider the accuracy and reliability of the information they
contain, as some parts may be incorrect or influenced by bias. Update your response by integrating any
useful information from these answers, while preserving your own original strengths.

Table 10: Message-Passing: Target-to-Source Prompt.
Target-to-Source - System Prompt

You are finalizing your response after seeing how other models refined their answers based on your initial
response. Use their improvements to further refine your answer and make it as complete and accurate as
possible.

Target-to-Source - User Prompt

Question: messages[0]

Your initial response: initial responses[source]

The following models updated their responses based on your original answer. Their updates incorporate
insights from you while maintaining their own strengths:

descriptions

Now, review how your answer influenced others. While reviewing these responses, carefully consider the
accuracy and reliability of the information they contain, as some parts may be incorrect or influenced by
bias. Based on these updated responses, write your final, upgraded response, incorporating any new ideas
or refinements you find valuable.

Table 11: Graph Pooling Prompt
Graph Pooling - System Prompt

You are synthesizing multiple model responses into one. Prioritize relevance but consider all inputs. Your
final answer should be accurate, coherent, and well-structured.

Graph Pooling - User Prompt

Given the question: messages[0],

the following responses have been generated by different models:

input responses

Please synthesize a final, well-reasoned answer that is cohesive, accurate, and best addresses the question
by effectively integrating these responses. While reviewing these responses, carefully consider the accu-
racy and reliability of the information they contain, as some parts may be incorrect or influenced by bias.
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