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ABSTRACT

While there is an extensive body of research on the analysis of Value Iteration
(VI) for discounted cumulative-reward MDPs, prior work on analyzing VI for
(undiscounted) average-reward MDPs has been limited, and most prior results
focus on asymptotic rates in terms of Bellman error. In this work, we conduct
refined non-asymptotic analyses of average-reward MDPs, obtaining a collection
of convergence results that advance our understanding of the setup. Among our
new results, most notable are the O(1/k)-rates of Anchored Value Iteration on the
Bellman error under the multichain setup and the span-based complexity lower
bound that matches the O(1/k) upper bound up to a constant factor of 8 in the
weakly communicating and unichain setups.

1 INTRODUCTION

Average-reward Markov decision processes (MDPs) are a fundamental framework for modeling
decision-making, where the goal is to maximize long-term, steady-state performance. However,
compared to the discounted cumulative-reward counterpart, the average-reward setup is more complex
to analyze, and there has been less prior work on it. It is known that while iterates of VI diverge to
infinity, the normalized iterates and the Bellman error converge to the optimal average reward under a
certain aperiodicity condition. However, despite this understanding of convergence, quantifying the
convergence rates of such methods for various classes of average-reward MDPs has been open.

In this work, we conduct refined non-asymptotic analyses of average-reward MDPs, obtaining a
collection of convergence results advancing our understanding of the setup. Notably, we establish
O(1/k) convergence rates of Anchored Value Iteration on the Bellman error under the multichain
setup, and we present a span-based complexity lower bound that matches the O(1/k)-upper bound
up to a constant factor of 8 in the weakly communicating and unichain setups.

Prior works Non-asym
multi MDP

Asym
multi MDP

Non-asym
w.c. MDP

Asym
w.c. MDP

Non-asym
uni MDP

Asym
uni MDP

[1, 2] ✗ ✗ ✗ ✗ ✓ ✓
[3, 4] ✗ ✓ ✗ ✓ ✓ ✓
[5] ✗ ✗ ✗ ✗ ✓ ✓

Our work ✓ > ✓ ✓ ✓= ✓ ✓ ✓ = ✓ ✓

Table 1: Summary of our contributions. (1: Federgruen et al. (1978), 2: Van Der Wal (1981),
3: Schweitzer & Federgruen (1977), 4: Schweitzer & Federgruen (1979), 5: Bertsekas (1998),
‘Non-asym’ stands for non-asymptotic convergence, ‘Asym’ for asymptotic convergence, ‘multi’ for
multichain, ‘w.c.’ for weakly communicating, and ‘uni’ for unichain.) One check mark indicates
a convergence result (upper bound) and two check marks with a strict inequality sign indicate a
convergence result accompanied by a complexity lower bound but they do not match. Two check
marks with an equal sign indicate a matching complexity lower bound. For multichain MDPs, we
present the first non-asymptotic convergence result in Theorem 2. For weakly communicating
MDPs, we present the first optimal complexity by matching the non-asymptotic convergence result in
Corollary 2 with the complexity lower bound in Theorem 3.
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1.1 NOTATION AND PRELIMINARIES

We quickly review basic definitions and concepts of average-reward Markov decision processes
(MDPs) and reinforcement learning (RL). For further details, refer to standard references such as
Puterman (2014); Bertsekas (2012); Sutton & Barto (2018b).

Average-reward Markov decision processes. Let M(X ) be the space of probability distributions
over X . Write (S,A, P, r) to denote the infinite-horizon undiscounted MDP with finite state space
S, finite action space A, transition matrix P : S ×A → M(S), and bounded reward r : S ×A →
R. Denote π : S → M(A) for a policy, gπ(s) = lim infT→∞

1
T Eπ

[∑T−1
t=0 r(st, at) | s0 = s

]
for average-reward of a given policy, where Eπ denotes the expected value over all trajectories
(s0, a0, s1, a1, . . . , sT−1, aT−1) induced by P and π. We say g⋆ is optimal average reward if g⋆(s) =
maxπ g

π(s) for all s ∈ S. We say π is an ϵ-optimal policy if ∥g⋆ − gπ∥∞ ≤ ϵ.

Value Iteration. Let F(X ) denote the space of bounded measurable real-valued functions over
X . With the given undiscounted MDP (S,A, P, r), for V ∈ F(S), define the Bellman consistency
operators Tπ as

TπV (s) = Ea∼π(· | s),s′∼P (· | s,a) [r(s, a) + V (s′)]

for all s ∈ S, and the Bellman optimality operators T as
TV (s) = max

a∈A

{
r(s, a) + Es′∼P (· | s,a) [V (s′)]

}
for all s ∈ S. For notational conciseness, we write TπV = rπ + PπV , where rπ(s) =
Ea∼π(· | s) [r(s, a)] is the reward induced by policy π and

Pπ(s → s′) = Prob(s → s′ | a ∼ π(· | s), s′ ∼ P (· | s, a))
is transition matrix induced by policy π. We define the standard Value Iteration (VI) for the Bellman
optimality operator as

V k = TV k−1, for k = 1, 2, . . . ,

where V 0 is an initial point. After executing K iterations, VI returns the near-optimal policy πK as a
greedy policy satisfying TπKV K = TV K .

Fixed-point iterations. Given an operator T , classical Banach fixed-point theorem (Banach, 1922)
states that if T is contractive, fixed point of T exists and following Picard iteration

xk = Txk−1 for k = 1, 2, . . . ,

converges to the unique fixed point of T . If T is nonexpansive but not contractive such as the rotation
operator, Picard iteration may not converge to a fixed point. (For undiscounted MDPs, the Bellman
optimality operator is nonexpansive but not necessarily contractive.) In such cases, one may use
Kransnosel’skiı̆-Mann iteration (Mann, 1953; Krasnosel’skiı̆, 1955)

xk = λkx
k−1 + (1− λk)Tx

k−1 for k = 1, 2, . . . ,

where {λk}k∈N ∈ [0, 1], or Halpern iteration (Halpern, 1967)

xk = λkx
0 + (1− λk)Tx

k−1 for k = 1, 2, . . . ,

where x0 is an initial point and {λk}k∈N ∈ [0, 1], to guarantee convergence.

Classification of MDPs. MDPs are classified as follows by the structure of transition matrices.
(For definitions of basic concepts of MDPs such as irreducible class, recurrent class, transient states,
accessibility, etc., please refer to Puterman (2014, Appendix A.2).)

MDP is unichain if the transition matrix corresponding to every deterministic policy consists of
a single irreducible recurrent class plus a possibly empty set of transient states. MDP is weakly
communicating, if there exists a closed set of states where each state in that set is accessible from
every other state in that set under some determinisitc policy, plus a possibly empty set of states which
is transient under every policy. MDP is multichain, if the transition matrix corresponding to any
deterministic policy contains one or more irreducible recurrent classes.

MDP is weakly communicating if MDP is unichain, and MDP is multichain if MDP is weakly
communicating. Since every MDP is multichain, we use the expressions multichain and general
interchangeably.
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Multichain = General

Weakly Communicating

Unichain

Figure 1: Classification of MDPs: Unichain ⊂ Weakly Communicating ⊂ Multichain (General)

Modified Bellman equations. Following Puterman (2014, Section 9.1.1), we consider the modified
Bellman equations defined as

max
a

{∑
s′∈S

P (s′ | s, a)g(s′)

}
= g(s), max

a

{
r(s, a) +

∑
s′∈S

P (s′ | s, a)h(s′)

}
= h(s) + g(s)

for all s ∈ S, and we express these more concisely as

max
π

{Pπg} = g, max
π

{rπ + Pπh} = h+ g.

We say (g⋆, h⋆) is a solution of the modified Bellman equations if (g⋆, h⋆) satisfies the two equations
and there exists a policy π⋆ attaining maximum simultaneously. It is known that solutions of modified
Bellman equations always exist (Puterman, 2014, Proposition 9.1.1). Furthermore, g⋆ is unique and
it is equal to the optimal average reward (Puterman, 2014, Theorem 9.1.2, 9.1.6). Finally, a policy
π⋆ simultaneously attaining the maximum in the modified Bellman equations is an optimal policy
(Puterman, 2014, Theorem 9.1.7, 9.1.8).

If the MDP is weakly communicating or unichain, g⋆ ∈ Rd is a uniform constant vector, i.e., g⋆ = c1
for some c ∈ R, where 1 ∈ Rn is the vector with entries all 1 (Puterman, 2014, Theorem 8.3.2,
8.4.1). Then, first modified Bellman equations holds automatically, and modified Bellman equations
reduce to

max
π

{rπ + Pπh} = h+ g.

1.2 PRIOR WORKS

Average-reward MDP. The setup of average-reward MDP was first introduced by Howard (1960)
in the dynamic programming literature. Blackwell (1962) provided a theoretical framework for
analyzing average-reward MDP. Yushkevich (1974); Denardo & Fox (1968) studied modified Bellman
equations of multichain MDPs and solutions were characterized by Schweitzer & Federgruen (1978);
Schweitzer (1984). In reinforcement learning (RL), average-reward MDP was mainly considered in
the sample-based setup to find optimal policy when the transition matrix and reward are unknown
(Dewanto et al., 2020). For this setup, (Burnetas & Katehakis, 1997) analyzes adaptive policies
for the total expected finite horizon reward, and (Jaksch et al., 2010) provided total regret bound
with respect to an optimal policy. Further, model-based algorithms (Zhang & Ji, 2019), model-free
algorithms (Wei et al., 2020; Wan et al., 2021), policy gradient method (Kakade, 2001), and finite
time analysis (Zhang et al., 2021) have been studied.

Convergence of Value Iteration Value iteration (VI) was first introduced in the DP literature
(Bellman, 1957) and serves as a fundamental dynamic programming algorithm for computing the
value functions. Its approximate and sample-based variants, such as Temporal Different Learn-
ing (Sutton, 1988), Fitted Value Iteration (Ernst et al., 2005; Munos & Szepesvári, 2008), Deep
Q-Network (Mnih et al., 2015), are the workhorses of modern RL algorithms (Bertsekas & Tsitsiklis,
1996; Sutton & Barto, 2018a; Szepesvári, 2010). VI is also routinely applied in diverse settings,
including factored MDPs (Rosenberg & Mansour, 2021), robust MDPs (Bourel et al., 2023), MDPs
with reward machines (Kumar et al., 2024), and MDPs with options (Fruit et al., 2017).

The convergence of VI in average-reward MDPs has been extensively studied. For unichain MDPs,
delta coefficient and ergodicity coefficient have been considered as the linear rate of VI (Seneta, 2006;
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Hübner, 1977), (Puterman, 2014, Theorem 6.6.1), and the J-stage span contraction demonstrates
linear rate of VI for every J-th iterations in terms of span seminorm (Federgruen et al., 1978; Van
Der Wal, 1981), (Puterman, 2014, Theorem 8.5.2). Bertsekas (1998) proposes λ-SSP, which exhibits
non-asymptotic linear convergence under the recurrent assumption. When MDP is multichain, it
is known that normalized iterates converge to the optimal average reward (Puterman, 2014, Theo-
rem 9.4.1) while policy error might not converge to zero. Schweitzer & Federgruen (1977; 1979)
established necessary and sufficient conditions of convergence of VI and established asymptotic
linear convergence on Bellman error.

For convergence of iterates to the h⋆ solution of modified Bellman equations, White (1963) introduced
Relative Value Iteration (RVI) which subtracts a uniform constant for every iteration. Morton &
Wecker (1977) studied sufficient conditions of convergence of RVI. Bravo & Cominetti (2024) studied
asymptotic convergence rates of Rx-RVI on Bellman error in Q-learning setup, and Bravo & Contreras
(2024) also considered Q-learning version of Halpern iteration in average-reward MDP and study
sample complexity.

In Section A of the appendix, we present several tables that thoroughly compare the our new results
with the prior results of the literature, and refer to Della Vecchia et al. (2012) for further detailed
conditions of convergence of VI.

Fixed point iterations. The Banach fixed-point theorem (Banach, 1922) establishes the convergence
of the standard fixed-point iteration with a contractive operator. As a generalization of Picard iteration,
Kransnosel’skiı̆-Mann iteration (KM) (Mann, 1953; Krasnosel’skiı̆, 1955) was introduced, and its
convergence with general nonexpansive operators was shown by Martinet (1970). The Halpern
iteration (Halpern, 1967) converges for nonexpansive operators on Hilbert spaces (Wittmann, 1992)
and uniformly smooth Banach spaces (Reich, 1980; Xu, 2002).

When a nonexpansive operator T is assumed to have a fixed point, the fixed-point residual
∥Txk − xk∥ is a commonly used error measure for fixed-point problems. In Hilbert spaces, the KM
iteration with nonexpansive operators was shown to exhibit O(1/

√
k)-rate by Matsushita (2017).

Sabach & Shtern (2017) first established an O(1/k)-rate for the Halpern iteration, and the constant
was later improved by Lieder (2021); Kim (2021). In general normed spaces, KM iteration with
nonexpansive opeator was proven to exhibit O(1/

√
k)-rate (Baillon & Bruck, 1992; Cominetti et al.,

2014; Bravo & Cominetti, 2018). The Halpern iteration was shown to exhibit O(1/k)-rate for
(nonlinear) nonexpansive operators (Leustean, 2007; Sabach & Shtern, 2017; Contreras & Cominetti,
2022).

Inconsistent fixed-point iteration. A fixed-point iteration for a nonexpansive operator T without a
fixed point is referred to as the inconsistent setup, and it is the analog relevant to the average-reward
MDP setup. There exist a line of researches about convergence of inconsistent fixed-point iteration
in both Hilbert space (Pazy, 1971; Applegate et al., 2024; Bauschke et al., 2014; Liu et al., 2019)
and Banach space (Browder & Petryshyn, 1966; Reich, 1973; Baillon, 1978; Reich & Shafrir, 1987).
Notably, Park & Ryu (2023) studied sublinear convergence rates of KM iteration and Halpern iteration
of the inconsistent setup in Hilbert spaces and established optimality by providing complexity lower
bound.

Complexity lower bounds. With the information-based complexity analysis (Nemirovski, 1992),
complexity lower bound on first-order methods for convex minimization problem has been thoroughly
studied (Nesterov, 2018; Drori, 2017; Drori & Taylor, 2022; Carmon et al., 2020; 2021; Drori &
Shamir, 2020). If a complexity lower bound matches an algorithm’s convergence rate, it establishes
optimality of the algorithm (Nemirovski, 1992; Kim & Fessler, 2016; Salim et al., 2022; Taylor &
Drori, 2023; Drori & Teboulle, 2016; Park & Ryu, 2022). In Hilbert spaces, Park & Ryu (2022)
showed exact complexity lower bound on fixed-point residual for deterministic fixed-point iterations
with contractive and nonexpansive operators. In fixed-point problems, Colao & Marino (2021) estab-
lished Ω

(
1/k1−

√
2/q
)

lower bound on distance to solution for Halpern iteration with a nonexpansive
operator in q-uniformly smooth Banach spaces. In general normed space, Contreras & Cominetti
(2022) provided Ω(1/k) lower bound on the fixed-point residual for the general Mann iteration with
a nonexpansive linear operator, which includes Picard iteration, KM iteration, and Halpern iteration.
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In discounted MDPs, Goyal & Grand-Clément (2022) provided a lower bound on the Bellman error
and distance to optimal value function for fixed-point iterations satisfying span condition with γ-
contractive Bellman operators. Lee & Ryu (2023) improved upon the prior lower bound on Bellman
error by a factor 1− γk+1, and further established Ω(1/k) bound in undiscounted MDP. However,
none of these works consider the average-reward MDP setup. Zurek & Chen (2023) studied sample
complexity of learning a near-optimal policy in an average-reward MDP under generative model.

1.3 CONTRIBUTION

We summarize the contributions of this work as follows.

Non-asymptotic rates. For multichain MDPs, we establish the first non-asymptotic convergence
rates on Bellman error. Theorems 1 and 2 and Corollary 1 and 2 present the non-asymptotic sublinear
rates on both Bellman and policy errors in multichain MDPs (see Tables A.1 and A.2 of the Appendix).
For the Relative Value Iteration (RVI) and its variants as described in Section 6, Theorems 5 and 6
establish the non-asymptotic sublinear rates on both Bellman and policy errors and point convergence
in weakly communicating MDPs (see Tables A.5 and A.6 of the Appendix).

Complexity lower bound. Theorems 3 and 4 present the first complexity lower bounds for the
average-reward MDP setup, one with a multichain MDP and another with a unichain MDP. These
complexity lower bounds apply both to the Bellman error and normalized iterates for value-iteration-
type methods satisfying the span condition.

Characterization of optimal complexity. Through our matching the convergence rates (upper
bound) and the complexity lower bounds, we first establish the optimal complexity of standard VI in
terms the normalized iterates and of Anc-VI in terms of the Bellman error.

2 PERFORMANCE MEASURES

We quickly review the standard performance measures used to quantify convergence rates of value-
iteration-type methods for average-reward MDPs. Let T be the Bellman optimality operator of the
given MDP, and suppose a method generates sequences {V k}k=0,1,... and {πk}k=0,1,.... We call
V k−V 0

αk
with an appropriate scaling factor αk > 0 for k = 0, 1, . . . the normalized iterates. We call

TV k − V k the Bellman error at V k for k = 0, 1, . . . . We call g⋆ − gπk the policy error at πk for
k = 0, 1, . . . . Again, we call the V k = TV k−1 for k = 1, 2, . . . standard Value Iteration (VI) with
greedy policy πk satisfying TπkV k = TV k.

Fact 1 (Classical result, (Puterman, 2014, Theorem 9.4.1)). Consider a general (multichain) MDP.
Then, for k ≥ 1, the normalized iterates of standard VI with αk = k exhibit the rate∥∥∥∥V k − V 0

k
− g⋆

∥∥∥∥
∞

≤ 2

k

∥∥V 0 − h⋆
∥∥
∞ .

Fact 1 shows that the normalized iterates converge to optimal average reward in multichain MDPs
with a non-asymptotic rate. As we will later show with Theorem 4, the O(1/k)-rate on the normalized
iterates of Fact 1 is exactly optimal. However, it is known that the convergence of normalized iterates
does not guarantee convergence of policy error (Della Vecchia et al., 2012, Example 4).
Fact 2 (Classical result, (Puterman, 2014, Theorem 9.1.7, 8.5.5)). Consider a general (multichain)
MDP. If ∥TV − V − g⋆∥∞ = 0, ∥g⋆ − gπV ∥∞ = 0, where πV is greedy policy satisfying TπV V =
TV . Furthermore, if MDP is weakly communicating, ∥g⋆ − gπV ∥∞ ≤ ∥TV − V − g⋆∥∞.

Fact 3 (Classical result, (Puterman, 2014, Theorem 9.4.5)). Consider a general (multichain) MDP.
Assume that the transition matrices corresponding to every average-optimal deterministic policy
are aperiodic. Then, for standard VI, the Bellman error

∥∥TV k − V k − g⋆
∥∥
∞ converges to zero.

Furthermore, ∥gπk − g⋆∥∞ also converges to zero.

Fact 2 shows that, unlike normalized iterate, convergence of Bellman error guarantees convergence
of policy error. But the classical asymptotic convergence results on the Bellman error of Fact 3 has
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no quantitative rate (and also additionally requires aperiodicity), so we establish several stronger
non-asymptotic rates throughout this paper.

We also briefly mention another performance measure considered in average-reward MDPs. The span
seminorm is defined as ∥x∥sp = maxi xi −mini xi for x ∈ Rn. The span seminorm of the Bellman
error ∥TV k − V k∥sp has been considered for weakly communicating and unichain MDPs because
in such setups, the optimal average reward g⋆ is a uniform constant and ∥TV k − V k − g⋆∥sp =
∥TV k − V k∥sp. Therefore, unlike the ∥ · ∥∞-norm of the Bellman error, the span seminorm is
computable without knowledge of g⋆. In this work, we primarily focus on convergence rates of
the normalized iterates and ∥ · ∥∞-norm of the Bellman errors. Nevertheless, we point out that
our results on the latter measure imply rates on the span seminorm of the Bellman error in weakly
communicating and unichain MDP, since ∥TV − V ∥sp ≤ 2 ∥TV − V − g⋆∥∞ (Puterman, 2014,
Section 6.6.1) in such setups.

3 RELAXED VALUE ITERATION

The Relaxed Value Iteration (Rx-VI) is

V k = λkV
k−1 + (1− λk)TV

k−1 (Rx-VI)

for k = 1, 2, . . . , where T is the Bellman optimality operator, V 0 ∈ Rn is a starting point, and
0 ≤ λk < 1 for k = 0, 1, . . . . πk is a greedy policy satisfying TπkV k = TV k for k = 0, 1, . . . .
Notably, Rx-VI obtains the next iterate as a convex combination between the output of T and the
current point V k−1.

We now present our non-asymptotic sublinear converge rates of Rx-VI in terms of the Bellman and
policy errors while deferring the proofs to Section F of the appendix.
Theorem 1. Consider a general (multichain) MDP. Let (g⋆, h⋆) be a solution of the modified Bellman
equations. For k > K, the Bellman and policy errors of Rx-VI with λk = 1/2 exhibits the rate

∥g⋆ − gπk∥∞ ≤
∥∥TV k − V k − g⋆

∥∥
∞ ≤

4
∥∥V 0 − h⋆

∥∥
∞√

π(k −K)
,

where K =
(
2 ∥r∥∞ + 4

∥∥V 0
∥∥
∞ + 16

∥∥V 0 − h⋆
∥∥
∞ + 2 ∥g⋆∥∞

)
/ϵ,

0 < ϵ = inf
π∈S \{π | Pπg⋆=g⋆}

∥Pπg⋆ − g⋆∥∞ ,

and S is the set of all deterministic policies.

We clarify that for general (multichain) MDPs, the Bellman error does not bound the policy error.
However, our analysis shows that the Bellman error does bound the policy error for k > K.

The characterization of K in Theorem 1 is somewhat intricate when considering general MDPs.
This is simplified if we focus on specific class of MDPs which includes weakly communicating and
unichain MDPs.
Corollary 1. Consider a a general (multichain) MDP satsifying Pπg⋆ = g⋆ for any policy π. Let
(g⋆, h⋆) be a solution of the modified Bellman equations. For k ≥ 1, the Bellman and policy errors of
Rx-VI with λk = 1/2 exhibit the rate

∥g⋆ − gπk∥∞ ≤
∥∥TV k − V k − g⋆

∥∥
∞ ≤

4
∥∥V 0 − h⋆

∥∥
∞√

πk
.

Proof of Corollary 1. We apply Theorem 1. By assumption on MDP, S/{π | Pπg⋆ = g⋆} = ∅. So
ϵ = infπ∈∅ ∥Pπg⋆ − g⋆∥∞ = ∞ and K = 0. Finally, we plug K = 0 into Theorem 1.

Note that the weakly communicating MDPs satisfy the assumption of Corollary 1 since g⋆ = c1
for some c ∈ R (Puterman, 2014, Theorem 8.3.2) and so Pπc1 = c1 for any policy π. In the
next section, we will show that the O(1/

√
k)-rate with Rx-VI can be improved to O(1/k)-rate with

Anc-VI. Section B of Appendix presents more general results establishing convergence rates for
arbitrary λk in terms of both the Bellman error and the normalized iterates.
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Broadly speaking, Rx-VI is a well-studied algorithm. This averaging mechanism has been widely
studied in fixed-point theory literature under the name Krasnosel’skiı̆–Mann iteration (Mann, 1953;
Krasnosel’skiı̆, 1955; Bauschke & Combettes, 2017; Baillon & Bruck, 1992; Cominetti et al., 2014).
In the dynamic programming literature, the aperiodic transformation (Puterman, 2014, Section 8.5.4),
which averages the transition matrix and identity to make the transition matrix aperiodic, is closely
related to this averaging mechanism. In the reinforcement learning literature, TD learning and Q
learning use the averaging mechanism to stabilize randomness and ensure convergence (Sutton, 1988;
Watkins, 1989; Bertsekas & Tsitsiklis, 1995; Bravo & Cominetti, 2024), and in tabular setup, Kushner
& Kleinman (1971); Porteus & Totten (1978); Goyal & Grand-Clément (2022); Akian et al. (2022)
studied convergence of Rx-VI in discounted MDP setup. However, to the best of our knowledge, no
prior work has established non-asymptotic rates of Rx-VI or any other value-iteration-type method for
multichain MDPs. Only Schweitzer & Federgruen (1977; 1979) established asymptotic convergence
results for multichain MDPs.

4 ANCHORED VALUE ITERATION

The Anchored Value Iteration is

V k = λkV
0 + (1− λk)TV

k−1 (Anc-VI)

for k = 1, 2, . . . , where T is the Bellman optimality operator, V 0 ∈ Rn is a starting point, and
0 ≤ λk < 1 for k = 0, 1, . . . . πk is a greedy policy satisfying TπkV k = TV k for k = 0, 1, . . . .
Notably, Anc-VI obtains the next iterate as a convex combination between the output of T and the
starting point V 0 (note, Rx-VI uses V k−1 instead of V 0). We call the λkV0 term the anchor term
since, loosely speaking, it serves to retract the iterates back toward the starting point V0. Generally,
λk is set to be a decreasing sequence, and then the strength of the anchor mechanism diminishes as
the iteration progresses.

We now present our non-asymptotic sublinear converge rates of Anc-VI in terms of the Bellman and
policy errors while deferring the proofs to Section G of the Appendix.
Theorem 2. Consider a general (multichain) MDP. Let (g⋆, h⋆) be a solution of the modified Bellman
equations. For k > K, the Bellman and policy errors of Anc-VI with λk = 2

k+2 . exhibits the rate

∥g⋆ − gπk∥∞ ≤
∥∥TV k − V k − g⋆

∥∥
∞ ≤ 8

k + 1

∥∥V 0 − h⋆
∥∥
∞ +

K

k + 1
∥g⋆∥∞ ,

where K =
(
3 ∥r∥∞ + 12

∥∥V 0 − h⋆
∥∥
∞ + 3 ∥g⋆∥∞

)
/ϵ,

0 < ϵ = inf
π∈S \{π | Pπg⋆=g⋆}

∥Pπg⋆ − g⋆∥∞ ,

and S is the set of all deterministic policies.

As before, Theorem 2 claims that the Bellman error bounds the policy error for k > K, and the
characterization of K in Theorem 2 is simplified if we focus on a specific class of MDPs which
includes weakly communicating and unichain MDPs.
Corollary 2. Consider a general (multichain) MDP satsifying Pπg⋆ = g⋆ for any policy π. Let
(g⋆, h⋆) be a solution of the modified Bellman equations. For k ≥ 1, the Bellman and policy errors of
Anc-VI with λk = 2

k+2 exhibits the rate

∥g⋆ − gπk∥∞ ≤
∥∥TV k − V k − g⋆

∥∥
∞ ≤ 8

k + 1

∥∥V 0 − h⋆
∥∥
∞ .

Proof of Corollary 2. Follows from the same line of argument as for Corollary 1.

Note, the anchoring mechanism allows us to improve the rate to O(1/k). In the next section,
we will show that the O(1/k) rate is optimal in the weakly communicating setup by providing a
matching complexity lower bound. Section C of Appendix presents more general results establishing
convergence rates for arbitrary λk in terms of both the Bellman error and the normalized iterates.

The anchor mechanism has been widely studied in minimax optimization and fixed-point problems
(Halpern, 1967; Sabach & Shtern, 2017; Lieder, 2021; Park & Ryu, 2022; Contreras & Cominetti,
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2022; Yoon & Ryu, 2021). In the context of reinforcement learning, Lee & Ryu (2023) applied the
anchoring mechanism to VI to achieve an accelerated convergence rate for cumulative-reward MDPs,
and Bravo & Contreras (2024) applied the anchoring mechanism to Q-learning for average-reward
MDPs. However, to the best of our knowledge, no prior work established a non-asymptotic rate for
value-iteration-type methods for multichain MDP.

We further clarify that our non-asymptotic convergence results in Section 3 and 4 are neither a direct
application nor a direct adaptation of the prior convergence. VI for the average-reward MDP setup
can be thought of as a fixed point iteration without a fixed point, and so most prior analyses assuming
the existence of a fixed point do not apply. Bravo & Contreras (2024); Bravo & Cominetti (2024)
study the convergence of Rx-RVI and Anc-RVI in unichain MDPs by applying results derived from
the fixed-point iteration setup, but their analyses do not extend to mulichain MDPs. In the inconsistent
fixed point iteration setup, analog relevant to the average-reward MDPs setup, prior analyses for
Hilbert space (Pazy, 1971; Applegate et al., 2024; Bauschke et al., 2014; Liu et al., 2019; Park &
Ryu, 2023) are not applicable to Bellman operators since Rd with ∥ · ∥∞-norm is not Hilbert space.
The prior analyses for Banach space assuming uniformly Gateaux differentiable norm (Browder &
Petryshyn, 1966; Reich, 1973; Reich & Shafrir, 1987) or uniform convexity (Browder & Petryshyn,
1966) are not applicable either since ∥ · ∥∞-norm is not uniformly Gateaux differentiable norm
and Rd with ∥ · ∥∞-norm is not uniformly convex space. We note that our analyses specifically
utilize the structure of Bellman operators and modified Bellman equation to obtain a non-asymptotic
convergence rate on both Bellman and policy errors.

5 COMPLEXITY LOWER BOUND

We now present complexity lower bounds establishing optimality of Anc-VI in terms of the Bellman
error and standard VI in terms of the normalized iterates. To the best of our knowledge, Theorems 3
and 4 are the first complexity lower bounds for value-iteration-type methods in the average-reward
MDP setup.

Following the information-based complexity framework (Nemirovski, 1992), we consider the span
condition

V k+1 ∈ V 0 + span{TV 0 − V 0, TV 1 − V 1, . . . , TV k − V k}, (1)

where T is the Bellman optimality operator and span(A) is set of all finite linear combinations of the
elements of A. Standard VI, Rx-VI, and Anc-VI all satisfy equation 1.

Optimality of Anc-VI for Bellman error. We now establish the optimality of Anc-VI for weakly
communicating and unichain MDPs in terms of the Bellman error.

Theorem 3. Let k ≥ 0, n ≥ k + 2, and V 0 ∈ Rn. Then there exists a unichain MDP with |S| = n
and |A| = 1 such that its modified Bellman equations has a solution (g⋆, h⋆) satisfying∥∥∥∥∥

k∑
i=0

ai(TV
i − V i)− g⋆

∥∥∥∥∥
∞

≥ 1

k + 1

∥∥V 0 − h⋆
∥∥
∞

for any iterates {V i}ki=0 satisfying the span condition equation 1 and any choice of real numbers
{ai}ki=0 such that

∑k
i=0 ai = 1.

If we set ak = 1 in Theorem 3, we get
∥∥TV k − V k − g⋆

∥∥
∞ ≥ 1

k+1

∥∥V 0 − h⋆
∥∥
∞. Note that the

construction of Theorem 3 is a unichain MDP, which is also a weakly communicating MDP. The lower
bound matches the 8

k+1

∥∥V 0 − h⋆
∥∥
∞ upper bound of Corollary 5, which applies to both weakly

communicating and unichain MDPs. The upper and lower bounds match up to constant of factor 8,
and we therefore conclude optimality for both weakly communicating and unichain MDPs.

Exact optimality of standard VI for normalized iterates. We now establish the optimality of
standard VI for general (multichain) MDPs in terms of the normalized iterates.
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Theorem 4. Let k ≥ 0, n ≥ k + 3, and V 0 ∈ Rn. Then there exists a multichain MDP with |S| = n
and |A| = 1 such that its modified Bellman equations has a solution (g⋆, h⋆) satisfying∥∥∥∥∥

k∑
i=0

ai(TV
i − V i)− g⋆

∥∥∥∥∥
∞

≥ 2

k + 1

∥∥V 0 − h⋆
∥∥
∞

for any iterates {V i}ki=0 satisfying the span condition equation 1 and any choice of real numbers
{ai}ki=0 such that

∑k
i=0 ai = 1.

If we set ai = 1
k+1 for all i = 0, . . . , k in Theorem 4, we get

∥∥∥V k+1−V 0

k+1 − g⋆
∥∥∥
∞

≥
2

k+1

∥∥V 0 − h⋆
∥∥
∞. This lower bound exactly matches the 2

k+1

∥∥V 0 − h⋆
∥∥
∞ upper bound of Fact 1,

and we therefore conclude exact optimality of standard VI in terms of the normalized iterates.

Discussion. To clarify, the unichain MDP construction of Theorem 3 is a multichain MDP, so
Theorem 3 and Fact 1 together already establish optimality up to a constant factor of 2. However, the
multichain construction of Theorem 3 improves the lower bound by a constant factor of 2, and this
factor of 2 leads to the exact match.

The span condition used in Theorems 3 and 4 are arguably very natural and is satisfied by Standard VI,
Rx-VI, and Anc-VI. The span condition is commonly used in the construction of complexity lower
bounds for first-order optimization methods (Nesterov, 2018; Drori, 2017; Drori & Taylor, 2022;
Carmon et al., 2020; 2021; Park & Ryu, 2022) and has been used in the lower bound for standard VI
and Anc-VI (Goyal & Grand-Clément, 2022; Lee & Ryu, 2023). However, designing an algorithm
that breaks the lower bound of Theorem 3 and 4 by violating the span condition remains a possibility.
In optimization theory, there is precedence of lower bounds being broken by violating seemingly
natural and minute conditions (Hannah et al., 2018; Golowich et al., 2020; Yoon & Ryu, 2021).

6 RELAXED AND ANCHORED RELATIVE VALUE ITERATION

The iterates of standard VI, Rx-VI, and Anc-VI diverge. For example, the iterates of standard VI
asymptotically behave as V k ∼ kg⋆ as k → ∞ by Fact 1. Of course, the normalized iterates do
converge, but if we want the iterates themselves to converge, the algorithm must be modified.

The Relative Value Iteration (RVI) subtracts some uniform constant vector at each iteration:

hk = Thk−1 − f(hk−1)1

for k = 1, 2, . . . , where T is the bellman optimality operator, h0 ∈ Rn is a starting point, 1 ∈ Rn is
the uniform constant vector with all entries 1, and f : Rn → R is a continuous function satisfying
f(x+ c1) = f(x) + c for any c ∈ R. Following is one of known convergence results of RVI.
Fact 4 (Classical result, (Bertsekas, 2012, Theorem 4.3.2)). Consider a unichain MDP. Assume that
the transition matrices corresponding to every average-optimal deterministic policy are aperiodic,
and f(h) = (Th)i for some fixed 1 ≤ i ≤ n. Then, for some solution of modified Bellman equations
(g⋆, h⋆), the iterates of standard RVI converge to h⋆ and (Thk)i1 converges to g⋆.

Like standard VI, iterates of Rx-VI and Anc-VI also diverge as we show in the Theorems 7 and 9 of
the Appendix. To ensure convergence of the iterates, we can also subtract uniform constant vectors
from the iterate. The Relaxed Relative Value Iteration is

hk = λk−1h
k−1 + (1− λk−1)(Th

k−1 − f(hk−1)1) (Rx-RVI)

for k = 1, 2, . . . , where 0 ≤ λk < 1 and h0 is starting point. πk is a greedy policy satisfying
Tπkhk = Thk for k = 0, 1, . . . . The Anchored Relative Value Iteration is

hk = λk−1h
0 + (1− λk−1)(Th

k−1 − f(hk−1)1) (Anc-RVI)

for k = 1, 2, . . . , where 0 ≤ λk < 1 and h0 is starting point. πk is a greedy policy satisfying
Tπkhk = Thk for k = 0, 1, . . . .

Now we present our non-asymptotic convergence rates of Rx-RVI and Anc-RVI in terms of Bellman
and policy errors while deferring the proofs to Section I in Appendix.
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Theorem 5. Consider a weakly communicating MDP. Let (g⋆, h⋆) be a solution of modified Bellman
equations. For k ≥ 1 and , the Bellman and policy errors of Rx-RVI with λk = 1/2 exhibits the rate

∥g⋆ − gπk∥∞ ≤
∥∥Thk − hk − g⋆

∥∥
∞ ≤ 4√

3.14k

∥∥h0 − h⋆
∥∥
∞ .

Furthermore, hk → h∞ and f(hk)1 → g⋆ for some solution of modified Bellman equations
(g⋆, h∞).
Theorem 6. Consider a weakly communicating MDP. Let (g⋆, h⋆) be a solution of modified Bellman
equations. For k ≥ 1, the Bellman and policy errors of Anc-RVI with λk = 2

k+2 exhibits the rate

∥g⋆ − gπk∥∞ ≤
∥∥Thk − hk − g⋆

∥∥
∞ ≤ 8

k + 1

∥∥h0 − h⋆
∥∥
∞ .

Furthermore, if MDP is unichain, hk → h∞ and f(hk)1 → g⋆ for some solution of modified Bellman
equations (g⋆, h∞).

Since Rx-RVI and Anc-RVI generate same policy as Rx-VI and Anc-VI, respectively, the rates of
Bellman errors of Rx-RVI and Anc-RVI in Theorem 5 and 6 are immediately implied by the rates of
Rx-VI and Anc-VI in Corollary 1 and 2, respectively. Therefore, the main substance of Corollary 1
and 2 are the convergence results (hk, f(hk)1) → (h∞, g⋆). Section D of Appendix presents more
general results establishing convergence rates for arbitrary λk in terms of the Bellman error and
convergence of iterates. Lastly, we briefly note that for weakly communicating MDP, non-asymptotic
rate on Bellman error can be obtained from results in Bravo & Contreras (2024); Bravo & Cominetti
(2024) by leveraging their convergence analysis with uniform constant g⋆ in unichain MDP.

7 CONCLUSION

In this work, we present the first non-asymptotic convergence rates for multichain MDPs in terms of
the Bellman error. We also provide complexity lower bounds matching the upper bound of Anc-VI in
terms of the Bellman error up to a constant factor of 8 for weakly communicating and unichain MDPs.
Finally, we also showed that standard VI is exactly optimal in terms of the normalized iterates for
multichain MDPs. Our results and proof techniques open the door to future work on non-asymptotic,
sublinear, and optimal rates for average-reward MDPs.

One future direction is to fully characterize the optimal non-asymptotic complexity on Bellman error
for multichain MDPs, as our current upper bound of Theorem 2, with its dependence on K, does not
exactly match the lower bound of Theorem 4. We aim to achieve this goal by enhancing our lower
bound through the consideration of more delicate worst-case multichain MDPs.

Finally, we highlight an observation implied by our results: the “correct” rates for (undiscounted)
average-reward MDPs are sublinear, i.e., something like O(1/k). This contrasts with the classical
γ-discounted cumulative-reward MDP setup, where we are accustomed to O(γk)-rates. We expect
future work analyzing other average-reward MDP setups and algorithms to similarly discover optimal
sublinear rates.
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A COMPARISON WITH PRIOR CONVERGENCE RESULTS IN TERMS OF
PERFORMANCE MEASURES

In this section, we present asymptotic and non-asymptotic convergence results of prior works and our
work in terms of Bellman error, policy error, span seminorm, and normalized iterates. We denote
the correspondence between numbers and prior works as follows. [1: Federgruen et al. (1978), 2:
Van Der Wal (1981), 3: Schweitzer & Federgruen (1977), 4: Schweitzer & Federgruen (1979), 5:
Bertsekas (1998), 6: Puterman (2014), 7: Bravo & Cominetti (2024), 8: Bravo & Contreras (2024), 9:
Bertsekas (2012)]

A.1 BELLMAN ERROR

Prior works Non-asym
multi MDP

Asym
multi MDP

Non-asym
w.c. MDP

Asym
w.c. MDP

Non-asym
uni MDP

Asym
uni MDP

[1, 2] ✗ ✗ ✗ ✗ ✓ ✓
[3, 4] ✗ ✓ ✗ ✓ ✓ ✓
[5] ✗ ✗ ✗ ✗ ✓ ✓

Rx-VI ✓ ✓ ✓ ✓ ✓ ✓
Anc-VI ✓ ✓ ✓ ✓ ✓ ✓

A.2 POLICY ERROR

Prior works Non-asym
multi MDP

Asym
multi MDP

Non-asym
w.c. MDP

Asym
w.c. MDP

Non-asym
uni MDP

Asym
uni MDP

[1, 2] ✗ ✗ ✗ ✗ ✓ ✓
[3, 4] ✗ ✓ ✗ ✓ ✓ ✓
[5] ✗ ✗ ✗ ✗ ✓ ✓

Rx-VI ✓ ✓ ✓ ✓ ✓ ✓
Anc-VI ✓ ✓ ✓ ✓ ✓ ✓

A.3 SPAN SEMINORM

Prior works Non-asym
multi MDP

Asym
multi MDP

Non-asym
w.c. MDP

Asym
w.c. MDP

Non-asym
uni MDP

Asym
uni MDP

[1, 2] N/A N/A ✗ ✗ ✓ ✓
[3, 4] N/A N/A ✗ ✓ ✓ ✓
[5] N/A N/A ✗ ✗ ✓ ✓

Rx-VI N/A N/A ✓ ✓ ✓ ✓
Anc-VI N/A N/A ✓ ✓ ✓ ✓

A.4 NORMALIZED ITERATES

Prior works Non-asym
multi MDP

Asym
multi MDP

Non-asym
w.c. MDP

Asym
w.c. MDP

Non-asym
uni MDP

Asym
uni MDP

[6] ✓ ✓ ✓ ✓ ✓ ✓
Rx-VI ✓ ✓ ✓ ✓ ✓ ✓
Anc-VI ✓ ✓ ✓ ✓ ✓ ✓

A.5 BELLMAN ERROR (RVI)

Prior works Non-asym
multi MDP

Asym
multi MDP

Non-asym
w.c. MDP

Asym
w.c. MDP

Non-asym
uni MDP

Asym
uni MDP

[7] N/A N/A ✗ ✗ ✓ ✓
[8] N/A N/A ✗ ✗ ✓ ✓
[9] N/A N/A ✗ ✗ ✓ ✓

Rx-RVI N/A N/A ✓ ✓ ✓ ✓
Anc-RVI N/A N/A ✓ ✓ ✓ ✓
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A.6 POLICY ERROR (RVI)

Prior works Non-asym
multi MDP

Asym
multi MDP

Non-asym
w.c. MDP

Asym
w.c. MDP

Non-asym
uni MDP

Asym
uni MDP

[7] N/A N/A ✗ ✗ ✓ ✓
[8] N/A N/A ✗ ✗ ✓ ✓
[9] N/A N/A ✗ ✗ ✓ ✓

Rx-RVI N/A N/A ✓ ✓ ✓ ✓
Anc-RVI N/A N/A ✓ ✓ ✓ ✓

A.7 SPAN SEMINORM (RVI)

Prior works Non-asym
multi MDP

Asym
multi MDP

Non-asym
w.c. MDP

Asym
w.c. MDP

Non-asym
uni MDP

Asym
uni MDP

[7] N/A N/A ✗ ✗ ✓ ✓
[8] N/A N/A ✗ ✗ ✓ ✓
[9] N/A N/A ✗ ✗ ✓ ✓

Rx-RVI N/A N/A ✓ ✓ ✓ ✓
Anc-RVI N/A N/A ✓ ✓ ✓ ✓

B CONVERGENCE RATES OF RX-VI WITH ARBITRARY λk

In this section, we present the convergence rates of Rx-VI for arbitrary λk in terms of both the
Bellman error and the normalized iterates.
Theorem 7. Consider a general (multichain) MDP. Let (g⋆, h⋆) be a solution of the modified Bellman
equations. For k > K, the normalized iterates of Rx-VI with αk =

∑k
i=1(1− λi) exhibits the rate∥∥∥∥∥ V k − V 0∑k

i=1(1− λi)
− g⋆

∥∥∥∥∥
∞

≤ 2(1−Πk
i=1λi)∑k

i=1(1− λi)

∥∥V 0 − h⋆
∥∥
∞ .

Theorem 8. Consider a general (multichain) MDP. Let (g⋆, h⋆) be a solution of the modified Bellman
equations. Let 0 < λj for 1 ≤ j and lim supλj < 1. Then, there exist 0 < K such that for K < k,
the Bellman and policy errors of Rx-VI exhibit the rates

∥g⋆ − gπk∥∞ ≤
∥∥TV k − V k − g⋆

∥∥
∞ ≤

2
∥∥V 0 − h⋆

∥∥
∞√

3.14
∑k

i=K+1 λi(1− λi)

Specifically, K is the minimum iteration number satisfying if K ≤ k, πk generated by Rx-VI satisfies
Pπkg⋆ = g⋆, first modified Bellman equation.

We defer the proofs to Appendix F. Note that Theorems 7 and 8 imply the convergence of normalized
iterate and Bellman error to g⋆ respectively when

∑∞
i=1(1− λi) = ∞ and

∑∞
i=1 λi(1− λi) = ∞.

Interestingly, for normalized iterate, Theorem 1 recovers rate of standard VI in Fact 1.
Corollary 3. Consider a general (multichain) MDP. Let (g⋆, h⋆) be a solution of the modified
Bellman equations. The normalized iterate of Rx-VI in Theorem 7 is optimized when λk = 0 with∥∥∥∥V k − V 0

k
− g⋆

∥∥∥∥
∞

≤ 2

k

∥∥V 0 − h⋆
∥∥
∞ .

Proof. By AM-GM inequality, we have Πk
i=1λi ≤ (Πk

i=1λi)
1/k ≤

∑k
i=1 λi

k since λi ≤ 1. This

implies 1
k ≤ 1−Πk

i=1λi∑k
i=1(1−λi)

and if λi = 0 for all i, equality holds. Therefore, by plugging λi = 0 in
Theorem 7, we get the desired result.

Lastly, we present the non-asymptotic rate of Rx-VI with arbitrary λk in specific class of MDPs
which includes weakly communicating.
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Corollary 4. Consider a a general (multichain) MDP satsifying Pπg⋆ = g⋆ for any policy π. Let
(g⋆, h⋆) be a solution of the modified Bellman equations. Let 0 < λj < 1 for 1 ≤ j. Then, for 1 ≤ k,
the Bellman error of Rx-VI exhibit the rates

∥g⋆ − gπk∥∞ ≤
∥∥TV k − V k − g⋆

∥∥
∞ ≤

2
∥∥V 0 − h⋆

∥∥
∞√

3.14
∑k

j=1 λi(1− λi)

Proof. We apply Theorem 8. By assumption on MDP, S/{π | Pπg⋆ = g⋆} = ∅. So ϵ =
infπ∈∅ ∥Pπg⋆ − g⋆∥∞ = ∞ and K = 0. Finally, we plug K = 0 into Theorem 8

C CONVERGENCE RATES OF ANC-VI WITH ARBITRARY λk

In this section, we present the convergence rates of Anc-VI for arbitrary λk in terms of both the
Bellman error and the normalized iterates.

Theorem 9. Consider a general (multichain) MDP. Let (g⋆, h⋆) be a solution of the modified Bellman
equations. The normalized iterates of Anc-VI with αk =

∑k
i=1 Π

k
j=i(1− λj) exhibits the rates∥∥∥∥∥ V k − V 0∑k

i=1 Π
k
j=i(1− λj)

− g⋆

∥∥∥∥∥
∞

≤ 2(1− λk)∑k
i=1 Π

k
j=i(1− λj)

∥∥V 0 − h⋆
∥∥
∞ .

Theorem 10. Consider a general (multichain) MDP. Let (g⋆, h⋆) be a solution of the modified
Bellman equations. Let λk+1 ≤ λk < 1 for 1 ≤ k and limλk = 0. Then, there exist 0 < K such
that for K < k, the Bellman and policy errors of Anc-VI exhibit the rates

∥g⋆ − gπk∥∞ ≤
∥∥TV k − V k − g⋆

∥∥
∞ ≤ 2

(
1−

k∑
i=1

λiΠ
k
j=i(1− λj)

)∥∥V 0 − h⋆
∥∥
∞

+ 2Πk
j=K(1− λj) ∥g⋆∥∞

Specifically, K is the minimum iteration number satisfying if K ≤ k, πk generated by Anc-VI satisfies
Pπkg⋆ = g⋆, first modified Bellman equation.

We defer the proofs to Appendix G. Note that Theorems 3 and 4 imply the convergence of nor-
malized iterate and Bellman error to g respectively when limk→∞

∑k
i=0 Π

k
j=i(1 − λj) = ∞ and

limk→∞
∑k

i=1 λiΠ
k
j=i(1 − λj) = 1. We briefly mention that like Rx-VI, convergence rate of

normalized iterate of Anc-VI is optimized when λk = 0 and recover rate of standard VI in Fact 1.

Lastly, we present the non-asymptotic rate of Anc-VI with arbitrary λk in specific class of MDPs
which includes weakly communicating.

Corollary 5. Consider a a general (multichain) MDP satsifying Pπg⋆ = g⋆ for any policy π. Let
(g⋆, h⋆) be a solution of the modified Bellman equations. Let λk+1 ≤ λk < 1 for 1 ≤ k. Then, there
exist 0 < K such that for K < k, the Bellman and policy errors of Anc-VI exhibit the rates

∥g⋆ − gπk∥∞ ≤
∥∥TV k − V k − g⋆

∥∥
∞ ≤ 2

(
k∑

i=0

Πk
j=i+1(1− λj)λ

2
i

)∥∥V 0 − h⋆
∥∥
∞ .

Proof. We apply Theorem 10. By assumption on MDP, S/{π | Pπg⋆ = g⋆} = ∅. So ϵ =
infπ∈∅ ∥Pπg⋆ − g⋆∥∞ = ∞ and K = 0. Finally, we plug K = 0 into Theorem 10
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D CONVERGENCE RATES OF RX-RVI AND ANC-RVI WITH ARBITRARY λk

In this section, we present the convergence rates of Rx-RVI and Anc-RVI for arbitrary λk in terms of
both the Bellman error.

Theorem 11. Consider a weakly communicating MDP. Let (g⋆, h⋆) be a solution of the modified
Bellman equations. Let 0 < λj < 1 for 1 ≤ j. Then, for 1 ≤ k, Rx-RVI exhibit the rates

∥g⋆ − gπk∥∞ ≤
∥∥Thk − hk − g⋆

∥∥
∞ ≤

2
∥∥h0 − h⋆

∥∥
∞√

3.14
∑k

j=1 λi(1− λi)

and if lim supλj < 1, hk converges to h⋆ and f(hk)1 converges to g⋆ for some solution of modified
Bellman equations (g⋆, h∞). .

Theorem 12. Consider a weakly communicating MDP. Let (g⋆, h⋆) be a solution of the modified
Bellman equations. Let λk+1 ≤ λk < 1 for 1 ≤ k. Then, Anc-RVI exhibit the rates

∥g⋆ − gπk∥∞ ≤
∥∥Thk − hk − g⋆

∥∥
∞ ≤ 2

(
k∑

i=0

Πk
j=i+1(1− λj)λ

2
i

)∥∥h0 − h⋆
∥∥
∞

and if limλk = 0 and MDP is unichain, hk converges to h⋆ and f(hk)1 converges to g⋆ for some
solution of modified Bellman equations (g⋆, h∞).

We defer the proofs to Appendix I. We note that rates of Bellman errors of Rx-RVI and Anc-RVI
in Theorem 11 and 12 are exactly match to the rates of Rx-VI and Anc-VI in Corollary 4 and 5,
respectively.

E PRELIMINARIES

In this section, we define some notations and introduce elementary propositions used in proofs.

E.1 NOTATIONS

We denote V ≤ Ṽ if V (s) ≤ Ṽ (s) for all s ∈ S and V, Ṽ ∈ Rn.

We denote Πk
i=jAi = AjAj+1 . . . Ak (ascending order) and Πj

i=kAi = AkAk−1 . . . Aj (descending
order) where 0 ≤ j ≤ k and Ai ∈ Rn×n for j ≤ i ≤ k. We define Πk

i=jAi = 1 and
∑k

i=j Ai = 0 if
0 ≤ k < j.

We denote P ⋆ = limk→∞
1
k

∑k
i=0 P

i for Cesaro limit of stochastic matrix P (Cesaro limit of
stochastic matrix always exist (Puterman, 2014, Theorem A.6)).

E.2 PROPOSITIONS

Proposition 1. B1 ≤ A ≤ B2 implies ∥A∥∞ ≤ max{∥B1∥∞ , ∥B2∥∞}

Proof. By definition of ∥·∥∞, we get the desired result.

Proposition 2. If P1, P2 are stochastic matrices and 0 < a, b, there exist stochastic matrix P such
that aP1 + bP2 = (a+ b)P .

Proof. Define P (i, j) = (a+ b)−1(aP1(i, j) + bP2(i, j)). Then, by simple calculation, we get the
desired result.

Proposition 3. (Bertsekas, 2012, Lemma 1.1.1) If V ≤ Ṽ , then TπU ≤ TπṼ , T ⋆V ≤ T ⋆Ṽ .

Proposition 4. For any policy π, Pπ is a nonexpansive linear operator such that if V ≤ Ṽ ,
PπV ≤ PπṼ .
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Proof. If r(s, a) = 0 for all s ∈ S and a ∈ A, Tπ = Pπ . Then by Proposition 3, we have the desired
result.

Proposition 5. For a stochastic matrix P , P ⋆P = PP ⋆ = P ⋆.

Proof. By definition of P ⋆, we get the desired result.

Proposition 6. If PπV g⋆ = g⋆, ∥g⋆ − gπV ∥∞ ≤ ∥TV − V − g⋆∥∞ where TV = TπV V .

Proof. Since PπV g⋆ = g⋆, (PπV )
⋆
g⋆ = g⋆. Then gπV −g⋆ = (PπV )

⋆
(rπV −g⋆) = (PπV )

⋆
(rπV +

PπV V −V −g⋆) = (PπV )
⋆
(TV −V −g⋆), where second equality is from Proposition 5. Therefore,

we have ∥g⋆ − gπk∥∞ ≤ ∥TV − V − g⋆∥∞.

F OMITTED PROOFS OF THEOREMS FOR SECTION 3 AND B

In this section, we present omitted proofs convergence theorems of Rx-VI. We prove Theorems 7, 8,
and 1 in turn.

F.1 PROOF OF THEOREM 7

First, we prove the following lemma by induction.

Lemma 1. For the iterates {V k}k=1,2,... of Rx-VI,

V k = Π0
i=k−1(λi+1I+(1−λi+1)Pπi)V 0+

k−1∑
j=0

(
Πj+1

i=k−1(λi+1I + (1− λi+1)Pπi)
)
(1−λj+1)r

πj .

Proof. If k = 1, V 1 = λ1V
0 + (1− λ1)TV

0 = (λ1I + (1− λ1)Pπ0)V 0 + (1− λ1)r
π0 .

By induction,

V k+1

= λk+1

(
Π0

i=k−1(λi+1I + (1− λi+1)Pπi)V 0

+

k−1∑
j=0

(
Πj+1

i=k−1(λi+1I + (1− λi+1)Pπi)
)
(1− λj+1)r

πj

)

+ (1− λk+1)

(
Pπk

(
Π0

i=k−1(λi+1I + (1− λi+1)Pπi)V 0

+

k−1∑
j=0

(
Πj+1

i=k−1(λi+1I + (1− λi+1)Pπi)
)
(1− λj+1)r

πj

)
+ rπk

)

= Π0
i=k(λi+1I + (1− λi+1)Pπi)V 0 +

k∑
j=0

(
Πj+1

i=k(λi+1I + (1− λi+1)Pπi)
)
(1− λj+1)r

πj .

Now, we prove following key lemma.
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Lemma 2. For the iterates {V k}k=0,1,2,... of Rx-VI,

V k −
k∑

j=1

(1− λj)g
⋆ ≤ Π0

i=k−1(λi+1I + (1− λi+1)Pπi)(V 0 − h⋆) + h⋆

h⋆ +Π0
i=k−1(λi+1I + (1− λi+1)Pπ⋆)(V0 − h⋆) ≤ V k −

k∑
j=1

(1− λj)g
⋆.

Proof. For the first inequality, we have

V k

= Π0
i=k−1(λi+1I + (1− λi+1)Pπi)V 0 +

k−1∑
j=0

(
Πj+1

i=k−1(λi+1I + (1− λi+1)Pπi)
)
(1− λj+1)r

πj

≤ Π0
i=k−1(λi+1I + (1− λi+1)Pπi)V 0

+
k−1∑
j=0

(
Πj+1

i=k−1(λi+1I + (1− λi+1)Pπi)
)
(1− λj+1)(g

⋆ + (I − Pπj )h⋆)

≤ Π0
i=k−1(λi+1I + (1− λi+1)Pπi)V 0

+

k−1∑
j=0

Πj+1
i=k−1(λi+1I + (1− λi+1)Pπi)(I − λj+1I − (1− λj+1)Pπj ) +

k∑
j=1

(1− λj)g
⋆

= Π0
i=k−1(λi+1I + (1− λi+1)Pπi)V 0 + (I −Π0

i=k−1(λi+1I + (1− λi+1)Pπi))h⋆

+

k∑
j=1

(1− λi)g
⋆

= Π0
i=k−1(λi+1I + (1− λi+1)Pπi)(V 0 − h⋆) + h⋆ +

k∑
j=1

(1− λi)g
⋆,

where first equality comes form Lemma 1, first inequality follows from second Bellman equation,
second inequality follows from first Bellman equation, and second equality is from telescoping-sum
argument.

We now prove the second inequality.

V k

= Π0
i=k−1(λi+1I + (1− λi+1)Pπi)V 0 +

k−1∑
j=0

(
Πj+1

i=k−1(λi+1I + (1− λi+1)Pπi)
)
(1− λj+1)r

πj

≥ Π0
i=k−1(λi+1I + (1− λi+1)Pπ⋆)V 0 +

k−1∑
j=0

Πj+1
i=k−1(λi+1I + (1− λi+1)Pπ⋆)(1− λj+1)r

π⋆

= Π0
i=k−1(λi+1I + (1− λi+1)Pπ⋆)V 0

+

k−1∑
j=0

Πj+1
i=k−1(λi+1I + (1− λi+1)Pπ⋆)(1− λj+1)(g

⋆ + (I − Pπ⋆)h⋆)

=

k∑
j=1

(1− λi)g
⋆ + h⋆ +Π0

i=k−1(λi+1 + (1− λi+1)Pπ⋆)(V0 − h⋆)

where first inequality follows from Lemma 3 and the fact that {πl}l=0,1,...,k are greedy policies,
first equality comes from second Bellman equation, and second equality is from first Bellman
equation.

We are now ready to prove Theorem 7 .
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Proof of Theorem 7 . By Lemma 2, we have

V k − V 0 −
k∑

j=1

(1− λj)g
⋆ ≤ Π0

i=k−1(λi+1I + (1− λi+1)Pπi)(V 0 − h⋆) + h⋆ − V 0

=
(
Π0

i=k−1(λi+1I + (1− λi+1)Pπi)− (Π0
i=k−1λi+1)I

)
(V 0 − h⋆)

− (1−Π0
i=k−1λi+1)I(V

0 − h⋆),

and

V k − V 0 −
k∑

j=1

(1− λj)g
⋆ ≥ Π0

i=k−1(λi+1 + (1− λi+1)Pπ⋆)(V0 − h⋆) + h⋆ − V 0

=
(
Π0

i=k−1(λi+1I + (1− λi+1)Pπ⋆)− (Π0
i=k−1λi+1)I

)
(V 0 − h⋆)

− (1−Π0
i=k−1λi+1)I(V

0 − h⋆).

By Proposition 1, this implies

∥∥∥∥∥∥V k − V 0 −
k∑

j=1

(1− λj)g
⋆

∥∥∥∥∥∥
∞

≤ 2(1−Πk
i=1λi)

∥∥V 0 − h⋆
∥∥
∞ .

Hence, we conclude

∥∥∥∥∥ V k − V 0∑k
j=1(1− λj)

− g⋆

∥∥∥∥∥
∞

≤ 2(1−Πk
i=1λi)∑k

j=1(1− λj)

∥∥V 0 − h⋆
∥∥
∞ .

F.2 PROOF OF THEOREM 8

First, define akj =
(
Πk

i=j+1λi

)
(1 − λj) for 0 ≤ j ≤ k and a00 = 1, where {λk}k∈N ∈ [0, 1]. Let

λ0 = 0 for computational conciseness. Following lemma will simplify calculation in later proof.

Lemma 3. For 0 ≤ k2 < k1 ,

l∑
j=i

akj = Πk
s=l+1λs −Πk

s=iλs, ak1
i − ak2

i = −
k1∑

j=k2+1

ak1
j ak2

i ,

k1∑
i=k2+1

k2∑
j=0

ak2
j ak1

i

i−1∑
l=j

(1− λl)

 =

k1∑
i=k2+1

(1− λl).
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Proof. First and second equality can be proved by simple calculation. With first and second equality,
we prove third equality as follows.

k1∑
i=k2+1

k2∑
j=0

ak2
j ak1

i

i−1∑
l=j

(1− λl)

 =

k1∑
i=k2+1

k2∑
l=0

ak1
i (1− λl)

 l∑
j=0

ak2
j


+

k1∑
i=k2+2

i−1∑
l=k2+1

ak1
i (1− λl)

 k2∑
j=0

ak2
j


=

k1∑
i=k2+1

k2∑
l=0

ak1
i ak2

l +

k1∑
i=k2+2

i−1∑
l=k2+1

ak1
i (1− λl)

=

k1∑
i=k2+1

ak1
i +

k1−1∑
l=k2+1

k1∑
i=l+1

(1− λl)a
k1
i

= 1−Πk1

l=k2+1λl +

k1−1∑
l=k2+1

(1− λl)(1−Πk1

j=l+1λj)

=

k1−1∑
l=k2+1

(1− λl) + 1−Πk1

l=k2+1λl −
k1−1∑

l=k2+1

ak1

l

=

k1∑
l=k2+1

(1− λl).

By simple calculation, for the iterates {V k}k=0,1,2,... of Rx-VI,

V k =

k∑
j=0

(
Πk

i=j+1λi

)
(1− λj)TV

j−1,

where TV −1 = V 0, and we have following lemma.
Lemma 4. For the iterates {V k}k=0,1,2,... of Rx-VI,

V k1 − V k2 =

k2∑
j=0

k1∑
i=k2+1

ak2
j ak1

i (TV i−1 − TV j−1)

for 0 ≤ k2 ≤ k1.

Proof. By definition, we have

V k1 − V k2 =

k1∑
i=0

ak1
i TV i−1 −

k2∑
i=0

ak2
i TV i−1

=

k1∑
i=k2+1

ak1
i TV i−1 +

k2∑
i=0

(ak1
i − ak2

i )TV i−1

=

k2∑
j=0

k1∑
i=k2+1

ak2
j ak1

i TV i−1 −
k2∑
i=0

k1∑
j=k2+1

ak1
j ak2

i TV i−1

=

k2∑
j=0

k1∑
i=k2+1

ak2
j ak1

i (TV i−1 − TV j−1).

where third equality is from Lemma 3.
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Following lemma will be used in proof in later proof.
Lemma 5. For the iterates {V k}k=0,1,2,... of Rx-VI,

TV k − V 0 ≤
k∑

j=0

(1− λj)g
⋆ + h⋆ − V 0 + Pπk

(
Π0

i=k−1(λi+1I + (1− λi+1)Pπi)(V 0 − h⋆)
)
,

TV k − V 0 ≥
k∑

j=0

(1− λj)g
⋆ + h⋆ − V 0 + Pπ⋆

(
Π0

i=k−1(λi+1I + (1− λi+1)Pπ⋆)(V 0 − h⋆)
)
.

Proof. We have

TV k ≤ Pπk

 k∑
j=1

(1− λj)g
⋆ + h⋆ +Π0

i=k−1(λi+1I + (1− λi+1)Pπi)(V 0 − h⋆)

+ rπk

≤
k∑

j=1

(1− λj)g
⋆ + Pπk

(
Π0

i=k−1(λi+1I + (1− λi+1)Pπi)(V 0 − h⋆)
)

+ Pπkh⋆ + g⋆ + (I − Pπk)h⋆

=

k∑
j=0

(1− λj)g
⋆ + Pπk

(
Π0

i=k−1(λi+1I + (1− λi+1)Pπi)(V 0 − h⋆)
)
+ h⋆,

where first inequality is from Lemma 3 and 2, second inequality comes from second Bellman equation,
and last equality follows from first Bellman equation.

Also, we have

TV k ≥ Pπ⋆

 k∑
j=1

(1− λj)g
⋆ + h⋆ +Π0

i=k−1(λi+1I + (1− λi+1)Pπ⋆)(V 0 − h⋆)

+ rπ⋆

=

k∑
j=1

(1− λj)g
⋆ + Pπ⋆

(
Π0

i=k−1(λi+1I + (1− λi+1)Pπ⋆)(V 0 − h⋆)
)

+ Pπ⋆h⋆ + g⋆ + (I − Pπ⋆)h⋆

=

k∑
j=0

(1− λj)g
⋆ + Pπ⋆

(
Π0

i=k−1(λi+1I + (1− λi+1)Pπ⋆)(V 0 − h⋆)
)
+ h⋆,

where first inequality is from Lemma 3 and 2 and the fact that {πl}l=0,1,...,k are greedy policies,
first equality comes from second Bellman equation, and last equality follows from first Bellman
equation.

We now prove one of key lemmas for Theorem 8. For that, define

ck1,k2
=

k2∑
j=0

k1∑
i=k2+1

ak2
j ak1

i ci−1,j−1

for 0 ≤ k2 < k1 and cn,−1 = 1, ck,k = 0 for all 0 ≤ k. Note that akj =
(
Πk

i=j+1λi

)
(1 − λj) and

a00 = 1 for 0 ≤ j ≤ k. Then, we have following lemma.
Lemma 6. For the iterates {V k}k=0,1,2,... of Rx-VI and 0 ≤ k2 ≤ k1,

V k1 − V k2 ≤
k1∑

i=k2+1

(1− λi)g
⋆ + ck1,k2

(Sk1,k2

1 − Sk1,k2

2 )(V 0 − h⋆),

where Sk1,k2

1 , Sk1,k2

2 are stochastic matrices.
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Proof. We use induction on k2. Let k2 = 0. Then, ck,0 =
∑k

i=1 a
k
i = 1 − Πk

i=1λi (a
0
0 = 1) by

Lemma 3. Also, by Lemma 2, we have

V k − V 0 −
k∑

j=1

(1− λj)g
⋆

≤ h⋆ − V 0 +Π0
i=k−1(λi+1I + (1− λi+1)Pπi)(V 0 − h⋆)

= (1−Π0
i=k−1λi+1)I(V

0 − h⋆) + (Π0
i=k−1(λi+1I + (1− λi+1)Pπi)− (Π0

i=k−1λi+1)I)(V
0 − h⋆)

= ck,0(S
k,0
1 − Sk,0

2 )(V 0 − h⋆)

where Sk,0
1 = I and Sk,0

2 = (1−Π0
i=k−1λi+1)

−1
(
Π0

i=k−1(λi+1I + (1− λi+1)Pπi)− (Π0
i=k−1λi+1)I

)
.

By induction,

V k1 − V k2

=

k1∑
i=k2+1

k2∑
j=0

ak2
j ak1

i (TV i−1 − TV j−1)

=

k1∑
i=k2+1

k2∑
j=1

ak2
j ak1

i (TV i−1 − TV j−1) +

k1∑
i=k2+1

ak2
0 ak1

i (TV i−1 − V 0)

≤
k1∑

i=k2+1

k2∑
j=1

ak2
j ak1

i (Pπi−1V i−1 + rπi−1 − Pπi−1V j−1 − rπi−1) +

k1∑
i=k2+1

ak2
0 ak1

i (TV i−1 − V 0)

=

k1∑
i=k2+1

k2∑
j=1

ak2
j ak1

i Pπi−1(V i−1 − V j−1) +

k1∑
i=k2+1

ak2
0 ak1

i (TV i−1 − V 0)

≤
k1∑

i=k2+1

k2∑
j=1

ak2
j ak1

i Pπi−1

i−1∑
l=j

(1− λl)g
⋆ + ci−1,j−1(S

i−1,j−1
1 − Si−1,j−1

2 )(V 0 − h⋆)


+

k1∑
i=k2+1

ak2
0 ak1

i

(
i−1∑
l=0

(1− λl)g
⋆ +

(
Pπi−1

(
Π0

l=i−2(λl+1I + (1− λl+1)Pπl)− I
)
(V 0 − h⋆)

))

=

k1∑
i=k2+1

k2∑
j=0

ak2
j ak1

i ci−1,j−1(S
i,j
x − Si,j

y )(V 0 − h⋆) +

k1∑
i=k2+1

k2∑
j=0

ak2
j ak1

i

i−1∑
l=j

(1− λl)g
⋆


= ck1,k2(S

k1,k2

1 − Sk1,k2

2 )(V 0 − h⋆) +

k1∑
i=k2+1

(1− λi)g
⋆.

where first equality is from Lemma 4, first inequality comes from the fact that {πl}l=0,1,...,k1 are
greedy policies, second inequality follows from induction and Lemma 5, last equality is from Lemma
3, and

Si,j
x =

{
Pπi−1Π0

l=i−2(λl+1I + (1− λl+1)Pπl) j = 0,

Pπi−1Si−1,j−1
1 else,

Si,j
y =

{
I j = 0,

Pπi−1Si−1,j−1
2 else,

and Sk1,k2

1 = c−1
k1,k2

∑k1

i=k2+1

∑k2

j=0 a
k2
j ak1

i ci−1,j−1S
i,j
x , and Sk1,k2

2 =

c−1
k1,k2

∑k1

i=k2+1

∑k2

j=0 a
k2
j ak1

i ci−1,j−1S
i,j
y .

To obtain lower bound of V k1 − V k2 , we need more sophisticated consideration, and following
lemma is necessary for later argument.
Lemma 7. Let {V k}k=0,1,2,... be the iterates of Rx-VI. Let lim supλk < 1. Let E = {π : Pπg⋆ =
g⋆}. Then there exist K such that if K ≤ k,

TV k = max
π∈E

TπV k.
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Proof. Suppose π is infinitely often repeated deterministic policy among {πk}k=0,1,2,.... Then there
exist increasing sequence kn such that πkn

= π and λkn
converge to some λ < 1. Then, since

V kK+1 = λkn+1V
nk + (1− λkn+1)TV

kn , we have

V kn+1∑kn+1
i=1 (1− λi)

= λkn+1
V kn∑kn+1

i=1 (1− λi)
+ (1− λkn+1)Pπ V kn∑kn+1

i=1 (1− λi)

+ (1− λkn+1)
rπ∑kn+1

i=1 (1− λi)
.

If kn → ∞, lim supλk < 1 implies
∑∞

j=1(1− λj) = ∞. Then, by Theorem 7, we have

g⋆ = λg⋆ + (1− λ)Pπg⋆.

Thus g⋆ = Pπg⋆ and this implies π ∈ E. By finiteness of action and state space, number of
infinitely repeated policy π is also finite. Therefore there exist K such that TV k = maxπ∈E TπV k

for K ≤ k.

We are now ready to prove left key lemma. To obtain proper lower bound of V k1 − V k2 , roughly
speaking, we need to consider V K as initial point where N is iteration number in Lemma 13. For
that, define {λ′

k}K≤k such that λ′
k = λk for K +1 ≤ k and λ′

K = 0, bkj =
(
Πk

i=j+1λ
′
i

)
(1− λ′

j) for
K ≤ j ≤ k, and bKK = 1. Also, define

cKk1,k2
=

k2∑
j=N

k1∑
i=k2+1

bk2
j bk1

i cKi−1,j−1

for 0 ≤ k2 < k1 and cKk,K−1 = 1 for all K ≤ k. Note that if K = 0, λ′
k = λk, bkj = akj , and

cKk1,k2
= ck1,k2

for all 0 ≤ k1, k2, k, j, k.

Lemma 8. Let {V k}k=0,1,2,... be the iterates of Rx-VI. Suppose there exist K such that if K ≤ k,
TV k = maxπ∈E TπV k where E = {π : Pπg⋆ = g⋆}. Then, for K ≤ k′2 ≤ k′1,

k1∑
i=k2+1

(1− λ′
i)g

⋆ + cKk1,k2
(Sk1,k2

1′ − Sk1,k2

2′ )(V 0 − h⋆) ≤ V k′
1 − V k′

2

where Sk1,k2

1′ , Sk1,k2

2′ are stochastic matrices.

Proof. For K ≤ k, by simple calculation, we have

V k = ΠK
i=k−1(λ

′
i+1I +(1−λ′

i+1)Pπi)V K +

k−1∑
j=K

Πj+1
i=k−1(λ

′
i+1I +(1−λ′

i+1)Pπi)(1−λ′
j+1)r

πj

and

V k = ΠK
i=k−1(λ

′
i+1I + (1− λ′

i+1)Pπi)V K +

k−1∑
j=K

Πj+1
i=k−1(λ

′
i+1I + (1− λ′

i+1)Pπi)(1− λ′
j+1)r

πj

≥ ΠK
i=k−1(λ

′
i+1I + (1− λ′

i+1)Pπ⋆)V K +

k−1∑
j=K

Πj+1
i=k−1(λ

′
i+1I + (1− λ′

i+1)Pπ⋆)(1− λ′
j+1)r

π⋆

= ΠK
i=k−1(λ

′
i+1I + (1− λ′

i+1)Pπ⋆)V K

+

k−1∑
j=K

Πj+1
i=k−1(λ

′
i+1I + (1− λ′

i+1)Pπ⋆)(1− λ′
j+1)(g

⋆ + (I − Pπ⋆)h⋆)

=

k∑
j=K+1

(1− λ′
j)g

⋆ + h⋆ +ΠK
i=k−1(λ

′
i+1I + (1− λ′

i+1)Pπ⋆)(V K − h⋆)
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where first equality comes from previous equality, first inequality follows the fact that
{πl}l=K,K+1,...,k are greedy policies, second equality comes from second Bellman equation, and
last equality is from first Bellman equation.

Now, we use induction on k2. If k2 = K, by previous inequality,

V k1 − V K −
k1∑

j=K+1

(1− λ′
j)g

⋆

≥ h⋆ − V K +ΠK
i=k1−1(λ

′
i+1I + (1− λ′

i+1)Pπ⋆)(V K − h⋆)

= (ΠK
i=k1−1(λ

′
i+1I + (1− λ′

i+1)Pπ⋆)− (ΠK
i=k1−1λ

′
i+1)I)(V

K − h⋆)− (1−ΠK
i=k1−1λ

′
i+1)(V

K − h⋆)

≥ (ΠK
i=k1−1(λ

′
i+1I + (1− λ′

i+1)Pπ⋆)− (ΠK
i=k1−1λ

′
i+1)I)(Π

0
i=K−1(λi+1I + (1− λi+1)Pπ⋆)(V 0 − h⋆)

− (1−ΠK
i=k1−1λ

′
i+1)(Π

0
i=K−1(λi+1I + (1− λi+1)Pπi)(V0 − h⋆)

= cKk1,K(Sk1,K
1′ − Sk1,K

2′ )(V 0 − h⋆)

where second inequality comes from Lemma 2 and first Bellman equation (note that g⋆ terms cancel
out), and

Sk1,K
1′ = (1−ΠK

i=k1−1λ
′
i+1)

−1
(
ΠK

i=k1−1(λ
′
i+1I + (1− λ′

i+1)Pπ⋆)− (ΠK
i=k1−1λ

′
i+1)I

)
× (Π0

i=K−1(λi+1I + (1− λi+1)Pπ⋆),

Sk1,K
2′ = Π0

i=K−1(λi+1I + (1− λi+1)Pπi),

cKk1,K
= 1−ΠK

i=k1−1λ
′
i+1.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

By induction,
V k1 − V k2

=

k1∑
i=k2+1

k2∑
j=K

bk2
j bk1

i (TV i−1 − TV j−1)

=

k1∑
i=k2+1

k2∑
j=K+1

bk2
j bk1

i (TV i−1 − TV j−1) +

k1∑
i=k2+1

bk2

K bk1
i (TV i−1 − V K)

≥
k1∑

i=k2+1

k2∑
j=K+1

bk2
j bk1

i (Pπj−1V i−1 + rπj−1 − Pπj−1V j−1 − rπj−1) +

k1∑
i=k2+1

bk2

K bk1
i (TV i−1 − V K)

=

k1∑
i=k2+1

k2∑
j=K+1

bk2
j bk1

i Pπj−1(V i−1 − V j−1) +

k1∑
i=k2+1

bk2

K bk1
i (TV i−1 − V K)

≥
k1∑

i=k2+1

k2∑
j=K+1

bk2
j bk1

i Pπj−1

i−1∑
l=j

(1− λ′
l)g

⋆ + ci−1,j−1(S
i−1,j−1
1′ − Si−1,j−1

2′ )(V 0 − h⋆)


+

k1∑
i=k2+1

bk2

K bk1
i

(
i−1∑
l=K

(1− λ′
l)g

⋆ +
(
Pπ⋆

(
ΠK

l=i−2(λ
′
l+1I + (1− λ′

l+1)Pπ⋆)− I
)
(V K − h⋆)

))

≥
k1∑

i=k2+1

k2∑
j=K+1

bk2
j bk1

i Pπj−1

i−1∑
l=j

(1− λ′
l)g

⋆ + ci−1,j−1(S
i−1,j−1
1′ − Si−1,j−1

2′ )(V 0 − h⋆)


+

k1∑
i=k2+1

bk2

K bk1
i

(
i−1∑
l=K

(1− λ′
l)g

⋆ +

(
Pπ⋆

(
ΠK

l=i−2(λ
′
l+1I + (1− λ′

l+1)Pπ⋆)

× (Π0
i=K−1(λi+1I + (1− λi+1)Pπ⋆)

)
− (Π0

i=K−1(λi+1I + (1− λi+1)Pπi)

)
(V 0 − h⋆)

)

=

k1∑
i=k2+1

k2∑
j=K

bk2
j bk1

i cKi−1,j−1(S
i,j
x′ − Si,j

y′ )(V
0 − h⋆) +

k1∑
i=k2+1

k2∑
j=K

bk2
j bk1

i

i−1∑
l=j

(1− λ′
l)g

⋆


= cKk1,k2

(Sk1,k2

1′ − Sk1,k2

2′ )(V 0 − h⋆) +

k1∑
i=k2+1

(1− λi)g
⋆.

where first equality is from similar argument in the proof of Lemma 4, first inequality comes from the
fact that {πl}l=K,K+1,...,k1 are greedy policies, second inequality follows from induction and simlilar
argument in the proof of Lemma 5, last inequality is from Lemma 2 and first Bellman equation (note
that g⋆ terms cancel out), second from the last equality is from same argument in the proof of Lemma
3, and

Si,j
x′ =

 Pπ⋆ΠK
l=i−2(λ

′
l+1I + (1− λ′

l+1)Pπ⋆)(Π0
i=K−1(λi+1I + (1− λi+1)Pπ⋆)

)
j = K,

Pπj−1Si−1,j−1
1′ else,

Si,j
y′ =

{
Π0

i=K−1(λi+1I + (1− λi+1)Pπi) j = K,

Pπj−1Si−1,j−1
2′ else,

Sk1,k2

1′ = (cKk1,k2
)−1

k1∑
i=k2+1

k2∑
j=K

bk2
j bk1

i cKi−1,j−1S
i,j
x′ ,

Sk1,k2

2 = (cKk1,k2
)−1

k1∑
i=k2+1

k2∑
j=0

bk2
j bk1

i cKi−1,j−1S
i,j
y′ .
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For the explicit convergence rate of Theorem 8, we will use the following Fact.

Fact 5. (Cominetti et al., 2014, Section 2.3) For 0 < k and K ≤ k′,

(1− λk+1)
−1ck+1,k ≤ 2√

π
∑k

i=1 λi(1− λi)
,

(1− λ′
k′+1)

−1cKk′+1,k′ ≤
2√

π
∑k′

i=K+1 λ
′
i(1− λ′

i)
.

Now, we are ready to prove Theorem 8.

Proof of Theorem 8. First, by Lemma 6, we have

TV k − V k − g⋆

= (1− λk+1)
−1(V k+1 − V k)− g⋆

≤ (1− λk+1)
−1(ck+1,k(S

k+1,k
1 − Sk+1,k

2 )(V 0 − h⋆) + (1− λk+1)g
⋆)− g⋆

= (1− λk+1)
−1(ck+1,k(S

k+1,k
1 − Sk+1,k

2 )(V 0 − h⋆).

Similarly, by Lemma 8, we have

TV k − V k − g⋆

= (1− λk+1)
−1(V k+1 − V k)− g⋆

≥ (1− λk+1)
−1cKk+1,k(S

k+1,k
1′ − Sk+1,k

2′ )(V 0 − h⋆).

Thus, this two inequality implies that

∥∥TV k − V k − g⋆
∥∥
∞ ≤

∥∥V 0 − h⋆
∥∥
∞√∑k

i=K+1 λi(1− λi)

by Fact 5 and λk = λ′
k for K+1 ≤ k. Finally, by applying the Proposition 6, we conclude proof.

F.3 PROOF OF THEOREM 1

Let S be set of all deterministic policies and ϵ = infπ∈S/{π | Pπg⋆=g⋆} ∥Pπg⋆ − g⋆∥∞ (note that if
S/{π | Pπg⋆ = g⋆} = ∅ , ϵ = ∞). By definition of Bellman optimality operator, there exist deter-
ministic policy πk such that. By definition of Bellman optimality operator, there exist deterministic π
such that

V k+1 =
1

2
V k +

1

2
PπV k +

1

2
rπ.

for all k. By simple calculation, this is equivalent to

−rπ

k
2

+
2V 0

k
− 2PπV 0

k
= Pπ

(
V k − V 0

k
2

)
− 2

k + 1

k

(
V k+1 − V 0

k+1
2

)
+

(
V k − V 0

k
2

)

Let V k−V 0

k/2 = g⋆ + ϵk. By Theorem 7 with λk = 1
2 , we have∥∥∥∥V k − V 0

k/2
− g⋆

∥∥∥∥
∞

≤
∥∥V 0 − h⋆

∥∥
∞

k/4
,

and this implies

∥ϵk∥∞ ≤
∥∥V 0 − h⋆

∥∥
∞

k/4
.
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Then, we have

Pπ

(
V k − V 0

k
2

)
− 2

k + 1

k

(
V k+1 − V 0

k+1
2

)
+

(
V k − V 0

k
2

)

= Pπ (g⋆ + ϵk)−
2(k + 1)

k
(g⋆ + ϵk+1) + (g⋆ + ϵk)

= Pπg⋆ − g⋆ + Pπϵk − 2

k
g⋆ − 2(k + 1)

k
ϵk+1 + ϵk.

This implies

Pπg⋆ − g⋆ = −rπ

k
2

+
2V 0

k
− 2PπV 0

k
− Pπϵk +

2

k
g⋆ − 2(k + 1)

k
ϵk+1 − ϵk.

Then, if we take ∥·∥∞ in both sides of previous equality,

∥ϵ∥∞ ≤ 1

k

(
2 ∥r∥∞ + 4

∥∥V 0
∥∥
∞ + 16

∥∥V 0 − h⋆
∥∥
∞ + 2 ∥g⋆∥∞

)
Thus, if k ≥

(
2 ∥r∥∞ + 4

∥∥V 0
∥∥
∞ + 16

∥∥V 0 − h⋆
∥∥
∞ + 2 ∥g⋆∥∞

)
ϵ−1, Pπkg⋆ = g⋆.

Thus, if we set K =
(
2 ∥r∥∞ + 4

∥∥V 0
∥∥
∞ + 16

∥∥V 0 − h⋆
∥∥
∞ + 2 ∥g⋆∥∞

)
ϵ−1, K satisfied condi-

tions of Theorem 8. Therefore, by Theorem 8 with λi = 1/2 for all i, we obtain desired rate of
Bellman and policy errors.

G OMITTED PROOFS OF SECTION 4 AND C

In this section, we present omitted proofs convergence theorems of Anc-VI. We prove Theorem 9, 10,
and 2 in turn.

G.1 PROOF OF THEOREM 9

Define λ0 = 1 as coefficient of Anc-VI for computational conciseness.

First, we prove the following lemma by induction.
Lemma 9. For the iterates {V k}k=0,1,... of Anc-VI,

V k =

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπl
)
V 0 +

k−1∑
i=0

(Πk
j=i+1(1− λj))

(
Πi+1

l=k−1P
πl
)
rπi ,

Proof. If k = 0, V 0 = V 0.

By induction,

V k+1 = (1− λk+1)TV
k + λk+1V

0

= (1− λk+1)

(
Pπk

(
k∑

i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπl
)
V 0

+

k−1∑
i=0

(
Πk

j=i+1(1− λj)
) (

Πi+1
l=k−1P

πl
)
rπi

)
+ rπk

)
+ λk+1V

0

=

k+1∑
i=0

(Πk+1
j=i+1(1− λj))λi

(
Πi

l=kPπl
)
V 0 +

k∑
i=0

Πk+1
j=i+1(1− λj)

(
Πi+1

l=kP
πl
)
rπi .

Now, we prove following key lemma.
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Lemma 10. For the iterates {V k}k=0,1,... of Anc-VI,

V k −
k−1∑
i=0

Πk
j=i+1(1− λj)g

⋆ ≤ h⋆ +

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπl
)
(V 0 − h⋆),

h⋆ +

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπ⋆
)
(V 0 − h⋆) ≤ V k −

k−1∑
i=0

Πk
j=i+1(1− λj)g

⋆.

Proof. For the first inequality, we have

V k =

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπl
)
V 0 +

k−1∑
i=0

(
Πk

j=i+1(1− λj)
) (

Πi+1
l=k−1P

πl
)
rπi

≤
k∑

i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπl
)
V 0

+

k−1∑
i=0

(
Πk

j=i+1(1− λj)
) (

Πi+1
l=k−1P

πl
)
(g⋆ + (I − Pπi)h⋆)

≤
k−1∑
i=0

Πk
j=i+1(1− λj)g

⋆ + h⋆ +

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπl
)
(V 0 − h⋆)

where first equality follows from Lemma 9, first inequality comes from second Bellman equation,
and second inequality is from first Bellman equation and telescoping-sum argument.

We now prove second inequality.

V k ≥
k∑

i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπ⋆
)
V 0 +

k−1∑
i=0

Πk
j=i+1(1− λj)

(
Πi+1

l=k−1P
π⋆
)
rπi

=

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπ⋆
)
V 0

+

k−1∑
i=0

Πk
j=i+1(1− λj)

(
Πi+1

l=k−1P
π⋆
)
(g⋆ + (I − Pπ⋆)h⋆)

=

k−1∑
i=0

Πk
j=i+1(1− λj)g

⋆ + h⋆ +

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπ⋆
)
(V 0 − h⋆)

where first inequality follows from the Lemma 3 and fact that {πl}l=0,1,...,k are greedy policies,
first equality comes from second Bellman equation, and second equality is from first Bellman
equation.

We now prove Theorem 9.

Proof of Theorem 9 . By Lemma 10, we have

V k − V 0 −
k−1∑
i=0

Πk
j=i+1(1− λj)g

⋆

≤ (1− λk)(h
⋆ − V 0) +

k−1∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπl
)
(V 0 − h⋆),

V k − V 0 −
k−1∑
i=0

Πk
j=i+1(1− λj)g

⋆

≥ (1− λk)(h
⋆ − V 0) +

k−1∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπ⋆
)
(V 0 − h⋆).
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If we take ∥·∥∞ right side of first and second inequality, we have∥∥∥∥∥(1− λk)(h
⋆ − V 0) +

k−1∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπl
)
(V 0 − h⋆)

∥∥∥∥∥
∞

≤ 2(1− λk)
∥∥V 0 − h⋆

∥∥
∞ ,∥∥∥∥∥(1− λk)(h

⋆ − V 0) +

k−1∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπ⋆
)
(V 0 − h⋆)

∥∥∥∥∥
∞

≤ 2(1− λk)
∥∥V 0 − h⋆

∥∥
∞ ,

and this implies∥∥∥∥∥ V k − V 0∑k
i=1 Π

k
j=i(1− λj)

− g⋆

∥∥∥∥∥
∞

≤ 2(1− λk)∑k
i=1 Π

k
j=i(1− λj)

∥∥V 0 − h⋆
∥∥
∞ .

G.2 PROOF OF THEOREM 10

Following lemma will be used in proof in later proof.
Lemma 11. For the iterates {V k}k=0,1,... of Anc-VI,

TV k − V 0 ≤
k+1∑
i=1

Πk
j=i(1− λj)g

⋆ +

(
k∑

i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπl
)
− I

)
(V 0 − h⋆)

TV k − V 0 ≥
k+1∑
i=1

Πk
j=i(1− λj)g

⋆ +

(
k∑

i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπ⋆
)
− I

)
(V 0 − h⋆)

Proof. For the first inequality, We have

TV k

≤ Pπk

(
k−1∑
i=0

Πk
j=i+1(1− λj)g

⋆ + h⋆ +

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπl
)
(V 0 − h⋆)

)
+ rπk

≤
k∑

i=1

Πk
j=i(1− λj)g

⋆ +

(
k∑

i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπl
)
(V 0 − h⋆)

)
+ Pπkh⋆ + g⋆ + (I − Pπk)h⋆

=

k+1∑
i=1

Πk
j=i(1− λj)g

⋆ +

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπl
)
(V 0 − h⋆) + h⋆,

where first inequality is from Lemma 10 and second inequality comes from Bellman equations.

Now, we prove the second inequality.

TV k

≥ Pπ⋆

(
k−1∑
i=0

Πk
j=i+1(1− λj)g

⋆ + h⋆ +

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=k−1Pπ⋆
)
(V 0 − h⋆)

)
+ rπ⋆

=

k∑
i=1

Πk
j=i(1− λj)g

⋆ +

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπ⋆
)
(V 0 − h⋆)

+ Pπ⋆h⋆ + g⋆ + (I − Pπ⋆)h⋆

=

k+1∑
i=1

Πk
j=i(1− λj)g

⋆ +

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπ⋆
)
(V 0 − h⋆) + h⋆
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where first inequality is from Lemma 10 and the fact that πk is greedy policy and first equality comes
from Bellman equations.

We now prove one of key lemmas.

Lemma 12. For the iterates {V k}k=1,2,... of Anc-VI,

V k − V k−1 ≤

(
1−

k∑
i=1

λkΠ
k−1
j=i (1− λj)

)
g⋆ +

(
1−

k∑
i=1

λiΠ
k−1
j=i (1− λj)

)
(Sk

1 − Sk
2 )(V

0 − h⋆)

where Sk
1 , S

k
2 are stochastic matrices.

Proof. We use induction. If k = 1,

V 1 − V 0 = (1− λ1)Pπ0V 0 + (1− λ1)r
π0 − (1− λ1)V

0

≤ (1− λ1)g
⋆ + (1− λ1)(Pπ0 − I)(V 0 − h⋆)

where inequality follows from second Bellman equation.

By induction,

V k+1 − V k

= λk+1V
0 + (1− λk+1)TV

k − λkV
0 − (1− λk)TV

k−1

= (λk − λk+1)(TV
k − V 0) + (1− λk)(TV

k − TV k−1)

≤ (λk − λk+1)(TV
k − V 0) + (1− λk)Pπk(V k − V k−1)

≤ (λk − λk+1)

(
k+1∑
i=1

Πk
j=i(1− λj)g

⋆ +

(
k∑

i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπl
)
− I

)
(V 0 − h⋆)

)

+ (1− λk)Pπk

((
1−

k∑
i=1

λkΠ
k−1
j=i (1− λj)

)
g⋆

+

(
1−

k∑
i=1

λiΠ
k−1
j=i (1− λj)

)
(Sk

1 − Sk
2 )(V

0 − h⋆)

)

≤

(
λk +

k∑
i=1

λkΠ
k
j=i(1− λj)

)
g⋆ −

k+1∑
i=1

λk+1Π
k
j=i(1− λj)g

⋆

+

(
1− λk −

k∑
i=1

λkΠ
k
j=i(1− λj)

)
g⋆ +

(
(λk − λk+1)

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπl
)

+

(
1− λk −

k∑
i=1

λiΠ
k
j=i(1− λj)

)
PπkSk

1

)
(V 0 − h⋆)

−

(
(λk − λk+1)I +

(
1− λk −

k∑
i=1

Πk
j=i(1− λj)λi

)
PπkSk

2

)
(V 0 − h⋆)

=

(
1−

k+1∑
i=1

λk+1Π
k
j=i(1− λj)

)
g⋆ +

(
1−

k+1∑
i=1

λiΠ
k
j=i(1− λj)

)
(Sk+1

1 − Sk+1
2 )(V 0 − h⋆)
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where first inequality comes from the fact that πk, πk−1 are greedy policies, second inequality follows
from induction and Lemma 11, last inequality is from the second Bellman equation, and

Sk+1
1 =

(
1−

k+1∑
i=1

λiΠ
k
j=i(1− λj)

)−1(
(λk − λk+1)

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπl
)

+

(
1− λk −

k∑
i=1

Πk
j=i(1− λj)λi

)
PπkSk

)
,

Sk+1
2 =

(
1−

k+1∑
i=1

λiΠ
k
j=i(1− λj)

)−1(
(λk − λk+1)I +

(
1− λk −

k∑
i=1

Πk
j=i(1− λj)λi

)
PπkSk

2

)
.

Note that condition of leading coefficients positive.

To obtain lower bound of V k − V k−1, we need more sophisticated consideration, and following
lemma is necessary for later argument.

Lemma 13. Let {V k}k=0,1,2,... be the iterates of Anc-VI. Let λk ≤ λk−1 for 1 ≤ k and limλk = 0.
Let E = {π : Pπg⋆ = g⋆}. Then there exist K such that if K ≤ k,

TV K = max
π∈E

TπV K .

Proof. Suppose π is infinitely often repeated deterministic policy among {πk}k=0,1,2,.... Then there
exist increasing sequence kn such that πkn = π. Then, since V kn+1 = λkn+1V

0+(1−λkn+1)TV
kn ,

we have

V kn+1∑kn+1
i=1 Πkn

j=i(1− λj)
= λnk+1

V 0∑kK+1
i=1 Πkn

j=i(1− λj)
+ (1− λnk+1)Pπ′ V kn∑kn+1

i=1 Πkn
j=i(1− λj)

+ (1− λnk+1)
rπ∑kn+1

i=1 Πkn
j=i(1− λj)

.

If kn → ∞, limλk = 0 implies limk→∞
∑k

i=0 Π
k
j=i(1−λj) = ∞ by Lemma 14. Then, by Theorem

7, we have g⋆ = Pπg⋆, and this implies π ∈ E. By finiteness of action and state space, number of
infinitely repeated policy π is also finite. Therefore there exist K such that TV k = maxπ∈E TπV k

for K ≤ k.

Lemma 14. If limλk = 0, then limk→∞
∑k

i=0 Π
k
j=i(1− λj).

Proof. By condition, for any ϵ > 0, there exist Kϵ such that 1 − λk > 1 − ϵ if Kϵ ≤ k. Hence,
lim infk→∞

∑k
i=0 Π

k
j=i(1− λj) ≥ 1/ϵ− 1. This concludes lemma.

The following lemma will be used in the proof of key lemma.

Lemma 15. Let {V k}k=1,2,... be the iterates of Anc-VI. For k ≤ K + 1,

V k − V k−1 ≥

(
1−

k∑
i=1

λk−1Π
k−1
j=i (1− λj)

)
Sk
3′g

⋆ + (λk−1 − λk)

k∑
i=1

Πk−1
j=i (1− λj)g

⋆

+

(
1−

k∑
i=1

λiΠ
k−1
j=i (1− λj)

)
(Sk

1′ − Sk
2′)(V

0 − h⋆),

where Sk
1′ , S

k
2′ , S

k
3′ are stochastic matrices.

Proof. We use induction. If k = 1, V 1−V 0 = (1−λ1)(TV
0−V 0) ≥ (1−λ1)g

⋆+(1−λ1)(Pπ⋆ −
I)(V 0 − h⋆).
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By induction,

V k+1 − V k

≥ (λk − λk+1)(TV
k − V 0) + (1− λk)Pπk−1(V k − V k−1)

≥ (λk − λk+1)

(
k+1∑
i=1

Πk
j=i(1− λj)g

⋆ +

(
k∑

i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπ⋆
)
− I

)
(V 0 − h⋆)

)

+ (1− λk)Pπk−1

((
1−

k∑
i=1

λk−1Π
k−1
j=i (1− λj)

)
Sk
3′g

⋆ + (λk−1 − λk)

k∑
i=1

Πk−1
j=i (1− λj)g

⋆

+

(
1−

k∑
i=1

λiΠ
k−1
j=i (1− λj)

)
(Sk

1′ − Sk
2′)(V

0 − h⋆)

)

= (λk − λk+1)

(
k+1∑
i=1

Πk
j=i(1− λj)

)
g⋆ +

(
1− λk −

k∑
i=1

λk−1Π
k
j=i(1− λj)

)
Pπk−1Sk

3′g
⋆

+ (λk−1 − λk)

k∑
i=1

Πk
j=i(1− λj)Pπk−1g⋆ +

(
(λk − λk+1)

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπl
)

+

(
1− λk −

k∑
i=1

λiΠ
k
j=i(1− λj)

)
Pπk−1Sk

1′

)
(V 0 − h⋆)

−

(
(λk − λk+1)I +

(
1− λk −

k∑
i=1

Πk
j=i(1− λj)λi

)
Pπk−1Sk

2′

)
(V 0 − h⋆)

= (λk − λk+1)

(
k+1∑
i=1

Πk
j=i(1− λj)

)
g⋆ +

(
1−

k+1∑
i=1

λkΠ
k
j=i(1− λj)

)
Sk+1
3′ g⋆

+

(
1−

k+1∑
i=1

λiΠ
k
j=i(1− λj)

)
(Sk+1

1′ − Sk+1
2′ )(V 0 − h⋆)

where first inequality comes from the fact that πk, πk−1 are greedy policies, second inequality follows
from induction and Lemma 11, and

Sk+1
1′ =

(
1−

k+1∑
i=1

λiΠ
k
j=i(1− λj)

)−1(
(λk − λk+1)

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπl
)

+

(
1− λk −

k∑
i=1

Πk
j=i(1− λj)λi

)
Pπk−1Sk

1′

)

Sk+1
2′ =

(
1−

k+1∑
i=1

λiΠ
k
j=i(1− λj)

)−1(
(λk − λk+1)I +

(
1− λk −

k∑
i=1

Πk
j=i(1− λj)λi

)
Pπk−1Sk

2′

)
,

Sk+1
3′ =

(
1−

k+1∑
i=1

λkΠ
k
j=i(1− λj)

)−1(
(λk−1 − λk)

k∑
i=1

Πk
j=i(1− λj)Pπk−1

+

(
1− λk −

k∑
i=1

λk−1Π
k
j=i(1− λj)

)
Pπk−1Sk

3′

)
.

(Note that λk − λk+1 ≥ 0 implies 1− λk −
∑k

i=1 Π
k
j=i(1− λj)λi ≥ 0. )

Now, we prove left key lemma.
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Lemma 16. Let {V k}k=0,1,2,... be the iterates of Anc-VI. Suppose there exist K such that if K ≤ k,
TV k = maxπ∈E TπV k where E = {π : Pπg⋆ = g⋆}. Then, for K + 1 ≤ k, For the iterates
{V k}k=K+1,K+2,... of Anc-VI,

V k − V k−1

≥

(
1−

k∑
i=1

λkΠ
k−1
j=i (1− λj)

)
g⋆ +

(
1−

k∑
i=1

(
Πk−1

j=i (1− λj)
)
λi

)
(Sk

1′ − Sk
2′)(V

0 − h⋆)

+
(
Πk−1

j=K+1(1− λj)
)(

1−
K+1∑
i=1

λKΠK
j=i(1− λj)

)
(Sk

3′ − Sk
4′)g

⋆

where Sk
1′ , S

k
2′ , S

k
3′ , S

k
4′ are stochastic matrices.

Proof. We use induction. If k = K + 1, by Lemma 15, we have

V K+1 − V K

≥

(
1−

K+1∑
i=1

λKΠK
j=i(1− λj)

)
SK+1
3′ g⋆ + (λK − λK+1)

K+1∑
i=1

ΠK
j=i(1− λj)g

⋆

+

(
1−

K+1∑
i=1

λiΠ
K
j=i(1− λj)

)
(SK+1

1′ − SK+1
2′ )(V 0 − h⋆)

=

(
1−

K+1∑
i=1

λK+1Π
K
j=i(1− λj)

)
g⋆ +

(
1−

K+1∑
i=1

λiΠ
K
j=i(1− λj)

)
(SK+1

1′ − SK+1
2′ )(V 0 − h⋆)(

1−
K+1∑
i=1

λKΠK
j=i(1− λj)

)(
SK+1
3′ − SK+1

4′

)
g⋆.

where SK+1
4′ = I .
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By induction, for k ≥ K + 2,

V k+1 − V k

= (λk − λk+1)(TV
k − V 0) + (1− λk)(TV

k − TV k−1)

≥ (λk − λk+1)(TV
k − V 0) + (1− λk)Pπk−1(V k − V k−1)

≥ (λk − λk+1)

(
k+1∑
i=1

Πk
j=i(1− λj)g

⋆ +

(
k∑

i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπ⋆
)
− I

)
(V 0 − h⋆)

)

+ (1− λk)Pπk−1

((
1−

k∑
i=1

λkΠ
k−1
j=i (1− λj)

)
g⋆

+

(
1−

k∑
i=1

(
Πk−1

j=i (1− λj)
)
λi

)
(Sk

1′ − Sk
2′)(V

0 − h⋆)

+ Πk−1
j=K+1(1− λj)

(
1−

K+1∑
i=1

λKΠK
j=i(1− λj)

)
(Sk

3′ − Sk
4′)g

⋆

)

≥ (λk − λk+1)

(
k+1∑
i=1

Πk
j=i(1− λj)

)
g⋆ +

(
1− λk −

k∑
i=1

λkΠ
k
j=i(1− λj)

)
g⋆

+Πk
j=K+1(1− λj)

(
1−

K+1∑
i=1

λKΠK
j=i(1− λj)

)
(Pπk−1Sk

3′ − Pπk−1Sk
4′)g

⋆

+

(
(λk − λk+1)

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπ⋆
)

+

(
1− λk −

k∑
i=1

Πk
j=i(1− λj)λi

)
Pπk−1Sk

1′

)
(V 0 − h⋆)

−

(
(λk − λk+1)I +

(
1− λk −

k∑
i=1

Πk
j=i(1− λj)λi

)
Pπk−1Sk

2′

)
(V 0 − h⋆)

=

(
1−

k+1∑
i=1

λk+1Π
k
j=i(1− λj)

)
g⋆ +

(
1−

k+1∑
i=1

λiΠ
k
j=i(1− λj)

)
(Sk+1

1′ − Sk+1
2′ )(V 0 − h⋆)

+ Πk
j=K+1(1− λj)

(
1−

K+1∑
i=1

λKΠK
j=i(1− λj)

)
(Sk

3′ − Sk
4′)g

⋆

where first inequality comes from the fact that πk, πk−1 are greedy policies, second inequality follows
from Lemma 11 and induction, last equality is from first Bellman equation, and

Sk+1
1′ =

(
1−

k+1∑
i=1

λiΠ
k
j=i(1− λj)

)−1(
(λk − λk+1)

k∑
i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπ⋆
)

+

(
1− λk −

k∑
i=1

Πk
j=i(1− λj)λi

)
Pπk−1Sk

1′

)

Sk+1
2′ =

(
1−

k+1∑
i=1

λiΠ
k
j=i(1− λj)

)−1(
(λk − λk+1)I +

(
1− λk −

k∑
i=1

Πk
j=i(1− λj)λi

)
Pπk−1Sk

2′

)
Sk+1
3′ = Pπk−1Sk

3′

Sk+1
4′ = Pπk−1Sk

4′ .

Now, we prove Theorem 10.
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Proof of Theorem 10. First, we have

TV k − V k − g⋆

≤ λk(TV
k − V 0) + (1− λk)Pπk(V k − V k−1)− g⋆

≤ λk

k+1∑
i=1

Πk
j=i(1− λj)g

⋆ + λk

(
k∑

i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπl
)
− I

)
(V 0 − h⋆)

+ (1− λk)Pπk

((
1−

k∑
i=1

λkΠ
k−1
j=i (1− λj)

)
g⋆

+

(
1−

k∑
i=1

λiΠ
k−1
j=i (1− λj)

)
(Sk

1 − Sk
2 )(V

0 − h⋆)

)
− g⋆

=

(
λk

(
k∑

i=0

(Πk
j=i+1(1− λj))λi

)
Πi

l=kPπl +

(
1− λk −

k∑
i=1

λiΠ
k
j=i(1− λj)

)
PπkSk

1

)
(V 0 − h⋆)

−

(
λkI +

(
1− λk −

k∑
i=1

λiΠ
k
j=i(1− λj)

)
PπkSk

2

)
(V 0 − h⋆)

where first inequality comes from the fact that πk, πk−1 are greedy policies, second inequality follows
from induction and Lemma 11 and 12, and last equality is from the second Bellman equation.

Similarly,

TV k − V k − g⋆

≥ λk(TV
k − V 0) + (1− λk)Pπk−1(V k − V k−1)− g⋆

≥ λk

k+1∑
i=1

Πk
j=i(1− λj)g

⋆ + λk

(
k∑

i=0

(Πk
j=i+1(1− λj))λi

(
Πi

l=kPπ⋆
)
− I

)
(V 0 − h⋆)

+ (1− λk)Pπk−1

((
1−

k∑
i=1

λkΠ
k−1
j=i (1− λj)

)
g⋆

+

(
1−

k∑
i=1

λiΠ
k−1
j=i (1− λj)

)
(Sk

1′ − Sk
2′)(V

0 − h⋆)

+ Πk−1
j=K+1(1− λj)

(
1−

K+1∑
i=1

λKΠK
j=i(1− λj)

)
(Sk

3′ − Sk
4′)g

⋆

)
− g⋆

)
− g⋆

=

(
λk

(
k∑

i=0

(Πk
j=i+1(1− λj))λi

)
Πi

l=kPπ⋆ +

(
1− λk −

k∑
i=1

λiΠ
k
j=i(1− λj)

)
Pπk−1Sk

1′

)
(V 0 − h⋆)

−

(
λkI +

(
1− λk −

k∑
i=1

λiΠ
k
j=i(1− λj)

)
Pπk−1Sk

2′

)
(V 0 − h⋆)

+ Πk
j=K+1(1− λj)

(
1−

K+1∑
i=1

λKΠK
j=i(1− λj)

)
(Pπk−1Sk

3′ − Pπk−1Sk
4′)g

⋆

)
where first inequality comes from the fact that πk, πk−1 are greedy policies, second inequality follows
from Lemma 11 and 16, and last equality is from the second Bellman equation.

If we take ∥·∥∞ right side of first and second inequality, we have

2

(
1−

k∑
i=1

λiΠ
k
j=i(1− λj)

)∥∥V 0 − h⋆
∥∥
∞ ,

2

(
1−

k∑
i=1

λiΠ
k
j=i(1− λj)

)∥∥V 0 − h⋆
∥∥
∞ + 2Πk

j=K+1(1− λj)

(
1−

K+1∑
i=1

λKΠK
j=i(1− λj)

)
∥g⋆∥∞ ,
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respectively. Therefore, we get

∥∥TV k − V k − g⋆
∥∥
∞ ≤ 2

(
1−

k∑
i=1

λiΠ
k
j=i(1− λj)

)∥∥V 0 − h⋆
∥∥
∞ + 2Πk

j=K(1− λj) ∥g⋆∥∞ .

since Πk
j=K+1(1− λj)

(
1−

∑K+1
i=1 λKΠK

j=i(1− λj)
)
≤ Πk

j=K(1− λj). Finally, by applying the
Proposition 6, we conclude proof.

G.3 PROOF OF THEOREM 2

Let S be set of all deterministic policies and ϵ = infπ∈S/{π | Pπg⋆=g⋆} ∥Pπg⋆ − g⋆∥∞ (note that
if S/{π | Pπg⋆ = g⋆} = ∅ , ϵ = ∞). By definition of Bellman optimality operator, there exist
deterministic policy πk such that

V k+1 =
2

k + 3
V 0 +

k + 1

k + 3
PπkV k +

k + 1

k + 3
rπk .

for all k. By simple calculation, this is equivalent to

−k + 1

k + 3

rπk

k/3
=

k + 1

k + 3
Pπk

(
V k − V 0

k
3

)
− k + 1

k

(
V k+1 − V 0

k+1
3

)

Let V k−V 0

k/3 = g⋆ + ϵk. By Theorem 9 with λk = 2
k+2 , we have∥∥∥∥V k − V 0

k/3
− g⋆

∥∥∥∥
∞

≤
∥∥V 0 − h⋆

∥∥
∞

k/6
,

and this implies

∥ϵk∥∞ ≤
∥∥V 0 − h⋆

∥∥
∞

k/6
.

Then, we have

k + 1

k + 3
Pπk

(
V k − V 0

k
3

)
− k + 1

k

(
V k+1 − V 0

k+1
3

)

=
k + 1

k + 3
Pπk (g⋆ + ϵk)−

k + 1

k
(g⋆ + ϵk+1)

= Pπkg⋆ − g⋆ − 2

k + 3
Pπkg⋆ − 1

k
g⋆ +

k + 1

k + 3
ϵk − k + 1

k
ϵk+1.

This implies

Pπkg⋆ − g⋆ = −k + 1

k + 3

rπk

k/3
+

2

k + 3
Pπkg⋆ +

1

k
g⋆ − k + 1

k + 3
ϵk +

k + 1

k
ϵk+1.

Then, if we take ∥·∥∞ in both sides of previous equality,

0 < ϵ ≤ 1

k

(
3 ∥r∥∞ + 12

∥∥V 0 − h⋆
∥∥
∞ + 3 ∥g⋆∥∞

)
Thus, if k ≥

(
3 ∥r∥∞ + 12

∥∥V 0 − h⋆
∥∥
∞ + 3 ∥g⋆∥∞

)
ϵ−1, Pπkg⋆ = g⋆.

Thus, if we set K =
(
3 ∥r∥∞ + 12

∥∥V 0 − h⋆
∥∥
∞ + 3 ∥g⋆∥∞

)
ϵ−1, K satisfied conditions of Theo-

rem 8. Therefore, by Theorem 8 with λi =
2

i+2 for all i, we have desired rate of Bellman and policy
errors.
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H OMITTED PROOFS IN SECTION 5

H.1 PROOF OF THEOREM 3

First, we prove the case V 0 = 0 for n ≥ k + 2. Consider the MDP (S,A, P, r) such that

S = {s1, . . . , sn}, A = {a1}, P (si | sj , a1) = 1{(i,j)=(n−1,1), j=i+1}, r(si, a1) = 1{i=1},

where {s1, . . . , sn−1} is closed irreducible set and {sn} is transient set. Thus, given MDP is
unichain. Moreover, T = PπU + [1, 0, . . . , 0]⊺, and since (Pπ)m = (Pπ)m+n for 1 ≤ m ≤ n− 1,

g⋆ = limk→∞

∑k
i=0(P

π)i

k rπ = [1/(n − 1), . . . , 1/(n − 1)]⊺ and h⋆ = [(n − 1)/(2n − 2), (n −
3)/(2n − 2), . . . ,−(n − 3)/(2n − 2),−(n − 1)/(2n − 2)]⊺ satisfy modified Bellman equation.
Therefore,

∥∥V 0 − h⋆
∥∥
∞ = 1/2, and under the span condition, we can show following lemma.

Lemma 17. Let T : Rn → Rn be defined as before. Then, under span condition, (V i)j = 0 for
0 ≤ i ≤ k, i+ 1 ≤ j ≤ n.

Proof. We use induction. Case i = 0 is obvious. By induction,
(
V l
)
j
= 0 for 0 ≤ l ≤ i − 1,

l + 1 ≤ j ≤ n. Then
(
TV l

)
j
= 0 for 0 ≤ l ≤ i − 1, l + 2 ≤ j ≤ n and this implies that(

TV l − V l
)
j
= 0 for 0 ≤ l ≤ i− 1, l + 2 ≤ j ≤ n. Therefore,

(
V i
)
j
= 0 for i+ 1 ≤ j ≤ n.

Thus, under the span condition, for i ≤ k, we get

TV i − V i = (1− (V i)1, (V
i)1 − (V i)2, . . . , (V

i)i−1 − (V i)i, (V
i)i, 0, . . . , 0︸ ︷︷ ︸

n−i−1

)

and this implies that
(TV i − V i)1 + · · ·+ (TV i − V i)n = 1.

Then

ai

n∑
l=1

(TV i − V i)l = ai

for 0 ≤ i ≤ k. If
∑k

i=0 ai = 1, we have
k∑

i=0

ai

n∑
l=1

(TV i − V i)l = 1

and taking the absolute value on both sides,
n∑

l=1

∣∣∣∣∣
k∑

i=0

ai(TV
i − V i)l

∣∣∣∣∣ ≥ 1.

Since (TV i − V i)l = 0 for k + 2 ≤ l, we have

(k + 1) max
1≤l≤n

∣∣∣∣∣
k∑

i=0

ai(TV
i − V i)l

∣∣∣∣∣ ≥ 1.

Therefore, this implies ∥∥∥∥∥
k∑

i=0

ai(TV
i − V i)

∥∥∥∥∥
∞

≥ 1

k + 1
.

Since g⋆ = [1/(n− 1), 1/(n− 1), . . . , 1/(n− 1)]. we conclude∥∥∥∥∥
k∑

i=0

ai(TV
i − V i)− g⋆

∥∥∥∥∥
∞

≥ max

{
1

k + 1
− 1

n− 1
,

1

n− 1

}
≥ 1

k + 1

∥∥V 0 − h⋆
∥∥
∞ .

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Now, we show that for any initial point V 0 ∈ Rn, there exists an MDP which exhibits same lower
bound with the case V 0 = 0. Denote by MDP(0) and T0 the worst-case MDP and Bellman optimality
operator constructed for V 0 = 0. Define an MDP(V 0) (S,A, P, r) for V 0 ̸= 0 as

S = {s1, . . . , sn}, A = {a1}, P (si | sj , a1) = 1{(i,j)=(n−1,1), j=i+1}

r(si, a1) =
(
V 0 − PπV 0

)
i
+ 1{i=1}.

Then, Bellman optimality operator T satisfies

TV = T0(V − V 0) + V 0.

Let g̃⋆ be average reward of T0 and h̃⋆ solution of optimlaity equation. Then, since
limk→∞

∑k
i=0(P

π)i

k (I − Pπ) = 0, g⋆ = g̃⋆ is average reward of T and h⋆ = V 0 + h̃⋆ is also
solution of Bellman equation. Furthermore, if {V i}ki=0 satisfies span condition

V i ∈ V 0 + span{TV 0 − V 0, TV 1 − V 1, . . . , TV i−1 − V i−1}, i = 1, . . . , k,

Ṽ i = V i − V 0 is a sequence satisfying

Ṽ i ∈ Ṽ 0︸︷︷︸
=0

+span{T0Ṽ
0 − Ṽ 0, T0Ṽ

1 − Ṽ 1, . . . , T0Ṽ
i−1 − Ṽ i−1}, i = 1, . . . , k,

which is the same span condition in Theorem 4 with respect to T0. This is because

TV i − V i = T0(V
i − V 0)− (V i − V 0) = T Ṽ i − Ṽ i

for i = 0, . . . , k. Thus, {Ũ i}ki=0 is a sequence starting from 0 and satisfy the span condition for T0.
This implies that ∥∥∥∥∥

k∑
i=0

ai(TV
i − V i)− h⋆

∥∥∥∥∥
∞

=

∥∥∥∥∥
k∑

i=0

ai(T Ṽ
i − Ṽ i)− h⋆

∥∥∥∥∥
∞

≥ 1

k + 1

∥∥∥Ṽ 0 − h̃⋆
∥∥∥
∞

=
1

k + 1

∥∥V 0 − h⋆
∥∥
∞ .

Hence, MDP(V 0) is indeed our desired worst-case instance.

H.2 PROOF OF THEOREM 4

We now present the proof of Theorem 4.

Proof of Theorem 4. First, we prove the case V 0 = 0 for n ≥ k + 3. Consider the MDP (S,A, P, r)
such that

S = {s1, . . . , sn}, A = {a1}, P (si | sj , a1) = 1{i=j=1, j=i+1≤n−1, i=j=n}, r(si, a1) = 1{i=2,i=n}.

where {s1}, {sn} are closed irreducible sets and {s2, . . . , sn−1} is transient set. Thus, given MDP is
multichain. Morevoer, T = PπU + [0, 1, 0, . . . , 0, 1]⊺, and since (Pπ)m = (Pπ)k+1 for m ≥ k+1,

g⋆ = limk→∞

∑k
i=0(P

π)i

k rπ = [0, . . . , 0, 1]⊺ and h⋆ = [−1/2, 1/2, 1/2, . . . , 1/2, 0]⊺ which satisfy
Bellman equation. Thus,

∥∥V 0 − h⋆
∥∥
∞ = 1/2. Under the span condition, we can show following

lemma.

Lemma 18. Let T : Rn → Rn be defined as before. Then, under span condition,
(
V i
)
1
= 0 for

0 ≤ i ≤ k, and
(
V i
)
j
= 0 for 0 ≤ i ≤ k and i+ 2 ≤ j ≤ n− 1.

Proof. We use induction. Case i = 0 is obvious. By induction,
(
V l
)
1
= 0 for 0 ≤ l ≤ i− 1. Then(

TV l
)
1
= 0 for 0 ≤ l ≤ i − 1. This implies that

(
TV l − V l

)
1
= 0 for 0 ≤ l ≤ i − 1. Hence(

V i
)
1
= 0. Again, by induction,

(
V l
)
j
= 0 for 0 ≤ l ≤ i−1, l+2 ≤ j ≤ n−1. Then

(
TV l

)
j
= 0

for 0 ≤ l ≤ i − 1, l + 3 ≤ j ≤ n − 1 and this implies that
(
TV l − V l

)
j
= 0 for 0 ≤ l ≤ i − 1,

l + 3 ≤ j ≤ n− 1. Therefore,
(
V i
)
j
= 0 for i+ 2 ≤ j ≤ n− 1.
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Thus, under the span condition, for 0 ≤ i ≤ k, we get

TV i − V i =
(
0, 1−

(
V i
)
2
,
(
V i
)
2
−
(
V i
)
3
, . . . ,

(
V i
)
i
−
(
V i
)
i+1

,
(
V i
)
i+1

, 0, . . . , 0︸ ︷︷ ︸
n−i−3

, 1
)
,

and this implies that

(TV i − V i − g⋆)1 + · · ·+ (TV i − V i − g⋆)n = 1,

where g⋆ = en. Then,

ai

n∑
l=1

(TV i − V i − g⋆)l = ai

for 0 ≤ i ≤ k. If
∑k

i=0 ai = 1, we have

k∑
i=0

ai

n∑
l=1

(TV i − V i − g⋆)l = 1

and taking the absolute value on both sides,
n∑

l=1

∣∣∣∣∣
k∑

i=0

ai(TV
i − V i − g⋆)l

∣∣∣∣∣ ≥ 1.

Since (TV i − V i − g⋆)l = 0 for l = 1 and k + 3 ≤ l, we have

(k + 1) max
1≤l≤n

∣∣∣∣∣
(

k∑
i=0

ai(TV
i − V i)− g⋆

)
l

∣∣∣∣∣ ≥ 1.

Therefore, we conclude∥∥∥∥∥
k∑

i=0

ai(TV
i − V i)− g⋆

∥∥∥∥∥
∞

≥ 2

k + 1

∥∥V 0 − h⋆
∥∥
∞ .

With the same argument in proof of Theorem 3, we can extend this result to arbitrary V 0.

I OMITTED PROOFS IN SECTION 6 AND D

I.1 PROOF OF THEOREM 11

Consider Rx-VI and V 0 = h0. Let {V k}k=0,1,2,... be the iterates of Rx-VI. Then, since T (v+ c1) =
c1 + T (v) for arbitrary v ∈ Rn and c ∈ R, V k = hk + ck1 for some ck ∈ R . This implies
TVk − Vk = Thk − hk and by Corollary 4, we have

∥g⋆ − gπk∥∞ ≤
∥∥Thk − hk − g⋆

∥∥
∞ ≤

2
∥∥h0 − h⋆

∥∥
∞√

π
∑k

j=1 λi(1− λi)
.

Now, consider following iteration

V k
g = λkV

k−1
g + (1− λk)(TV

k−1
g − g⋆)

for 1 ≤ k where g⋆ is average reward of T and V 0
g = h0. Then,

∥∥V k
g − h⋆

∥∥
∞ ≤

∥∥V k−1
g − h⋆

∥∥
∞

for 1 ≤ k where h⋆ is solution of Bellman equation. This is because∥∥V k
g − h⋆

∥∥
∞ =

∥∥λk(V
k−1
g − h⋆) + (1− λk)(TV

k−1
g − g⋆ − h⋆)

∥∥
∞

≤ λk

∥∥V k−1
g − h⋆

∥∥
∞ + (1− λk)

∥∥TV k−1
g − g⋆ − h⋆

∥∥
∞

≤ λk

∥∥V k−1
g − h⋆

∥∥
∞ + (1− λk)

∥∥V k−1
g − h⋆

∥∥
∞

≤
∥∥V k−1

g − h⋆
∥∥
∞
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where second inequality is from the fact that h⋆ is fixed point of nonexpansive operator T (·) + g⋆.
This implies that V k

g is bounded. Then, there exist convergent subsequence V kn
g which converges to

some Vg ∈ Rd. Since g is uniform constant vector, using previous argument and Theorem 8, we have∥∥TV k
g − V k

g − g⋆
∥∥
∞ ≤ 2√

π
∑k

j=1 λi(1−λi)

∥∥V 0
g − h⋆

∥∥
∞ by condition of λk. This implies that Vg is

solution of Bellman equation, and since
∥∥V k

g − Vg

∥∥
∞ ≤

∥∥V k−1
g − Vg

∥∥
∞, we have V k

g → Vg .

By previous argument, there exist ck ∈ R such that V k
g = hk + ck1 for 0 ≤ k where c0 = 0. Also,

we have

V k
g − hk = λk(V

k−1
g − hk−1) + (1− λk)(TV

k−1
g − g − Thk−1 + f(hk−1)1)

= λkck−11+ (1− λk)(ck−11− g + f(hk−1)1)

= λkck−11+ (1− λk)(f(V
k−1
g )1− g).

where last equality comes from the property of f . This implies ck = λkck−1 + (1− λk)(f(V
k−1
g )−

ĝ) =
∑k

j=1(Π
k
i=j+1λi)(1 − λj)(f(V

j−1
g ) − ĝ) where g⋆ = ĝ1. We now prove ck → f(Vg) − ĝ.

Since f is a continuous function and V k
g → Vg ,

∣∣f(V k
g )− ĝ

∣∣ ≤ M for some 0 < M , and there exist
K such that |f(Vg)− g − (f(V k

g )− ĝ)| < ϵ for any 0 < ϵ and all K ≤ k. For K + 1 ≤ k, we have

|f(Vg)− ĝ − ck| =
(
Πk

i=1λi

)
|f(Vg)− ĝ|+

∣∣∣∣∣∣
k∑

j=1

(Πk
i=j+1λi)(1− λj)

(
f(Vg)− ĝ − (f(V j−1

g )− ĝ)
)∣∣∣∣∣∣

≤
(
Πk

i=1λi

)
|f(Vg)− ĝ|+

k∑
j=K+1

(Πk
i=j+1λi)(1− λj)

∣∣f(Vg)− ĝ − (f(V j−1
g )− ĝ)

∣∣
+

K∑
j=1

(Πk
i=j+1λi)(1− λj)

∣∣f(Vg)− ĝ − (f(V j−1
g )− ĝ)

∣∣
≤
(
Πk

i=1λi

)
M + ϵ+

 K∑
j=1

(Πk
i=j+1λi)(1− λj)

 2M.

Thus, as k → ∞, ck → f(Vg) − ĝ if lim supλj < 1. This implies hk converges to h⋆ solution of
Bellman equations, and we have h⋆ = Th⋆ − f(h)1. By uniqueness of g⋆, f(h⋆)1 = g⋆.

I.2 PROOF OF THEOREM 5

If λi = 1/2 for all i, it satisfies condition of Theorem 11. Then, by Theorem 11 with λi = 1/2, we
get the desired result.

I.3 PROOF OF THEOREM 12

Consider Anc-VI and V 0 = h0. Let {V k}k=0,1,2,... be the iterates of Anc-VI. Then, since T (v +
c1) = c1+ T (v) for arbitrary v ∈ Rn and c ∈ R, V k = hk + ck1 for some ck ∈ R . This implies
TVk − Vk = Thk − hk and by Corollary 5, we have

∥g⋆ − gπk∥∞ ≤
∥∥Thk − hk − g⋆

∥∥
∞ ≤ 2

(
k∑

i=0

Πk
j=i+1(1− λj)λ

2
i

)∥∥h0 − h⋆
∥∥
∞ .

Consider following iteration

V k
g = λkV

0
g + (1− λk)(TV

k−1
g − g)
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for 1 ≤ k where g⋆ is average reward of T and V 0
g = h0. Then,

∥∥V k
g − h⋆

∥∥
∞ ≤

∥∥V 0
g − h⋆

∥∥
∞. By

induction, we have∥∥V k
g − h⋆

∥∥
∞ =

∥∥λk(V
0
g − h⋆) + (1− λk)(TV

k−1
g − g⋆ − h⋆)

∥∥
∞

≤ λk

∥∥V 0
g − h⋆

∥∥
∞ + (1− λk)

∥∥TV k−1
g − g⋆ − h⋆

∥∥
∞

≤ λk

∥∥V 0
g − h⋆

∥∥
∞ + (1− λk)

∥∥V k−1
g − h⋆

∥∥
∞

≤
∥∥V 0

g − h⋆
∥∥
∞ ,

where second inequality is from the fact that h⋆ is fixed point of nonexpansive operator of T (·)− g⋆

and last inequality comes from induction. This implies that V k
g is bounded.

By previous argument, there exist ck ∈ R such that V k
g = hk + ck1 for 0 ≤ k since g⋆ is uniform

constant vector. Also, we have

V k
g − hk = (1− λk)(TV

k−1
g − g⋆ − Thk−1 + f(hk−1)1)

= (1− λk)(ck−1 − g⋆ + f(hk−1)1)

= (1− λk)(f(V
k−1
g )− g⋆).

where last equality comes from the property of f . This implies ck = (1 − λk)(f(V
k−1
g ) − g⋆).

Since f is a continuous function, the boundedness of V k
g implies the boundedness of ck and this also

implies boundedness of hk.

Now for convergence of hk, we use folloiwng fact.
Fact 6 (Classical result, (Schweitzer & Federgruen, 1978, Remark 3)). If MDP is unichain and h is
solution of modified Bellman equations, h = h⋆ + c1 for arbitary c ∈ R and some fixed solution of
modified Bellman equations h⋆.

Suppose there exist convergent subsequence hkn of hk. Then, there also exist subsequence hk′
n−1 of

hkn−1 which converges to some h. By the previous convergence result, h must be solution of modified
Bellman equation, and by Fact 6, h = h⋆ + c1 for some constant c ∈ R and h⋆ a fixed solution of
modified Bellman equation. This implies λk′

n−1(h
k′
n−1) + (1− λk′

n−1)(Th
k′
n−1 − f(hk′

n−1)1) →
Th⋆ + f(h⋆)1. Since Th⋆ + f(h⋆)1 is fixed, hk is converge to h where h = Th − f(h)1. By
uniqueness of g⋆, f(h⋆)1 = g⋆.

I.4 PROOF OF THEOREM 6

If λi = 2/(i + 2) for all i, it satisfies condition of Theorem 12. Then, by Theorem 12 with
λi = 2/(i+ 2), we get the desired result.
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