EchoRL: Learning to Plan through Experience for
Efficient Reinforcement Learning

Dong Liu'?* Yanxuan Yu?, Ying Nian Wu'!

!'University of California, Los Angeles 2Columbia University 2 Yale University
dong.liu.d12367@yale.edu, yy35230@columbia.edu, ywu@stat.ucla.edu

Abstract

Recent advances in large language models (LLMs) have spurred interest in rein-
forcement learning (RL) as a mechanism for improving reasoning and general-
ization. However, existing RL-augmented LLM pipelines largely rely on reactive
token-level adaptation, with limited support for planning, reuse, or efficient rollout.
Motivated by the vision of an “experience era” |Silver and Sutton| (2025)), we present
EchoRL, a system framework that bridges reaction and planning in real-time RL
through experience-grounded infrastructure.

EchoRL introduces three key innovations: (1) a latent planning optimization that
enables structured rollout with continuation-based reasoning; (2) an asynchronous
execution engine with K'V-cache sharing and token-level dispatch; and (3) a pri-
oritized replay system stratified into hot/cold buffers for improved RL training
efficiency.

1 Introduction
“We are in The Era of Experience.” — Richard Sutton (2025) |Silver and Sutton| (2025)

Recent developments in large language models (LLMs) have sparked renewed interest in combining
reinforcement learning (RL) with structured reasoning and decision-making. Yet, despite promising
results from methods like RLHF |[Ouyang et al.| (2022) and ReAct Yao et al.| (2023b), most RL-
augmented LLM systems remain inherently reactive: they generate tokens sequentially based on
immediate input, lacking explicit planning or structured reuse of past experience.

This is in stark contrast to biological learning, where agents plan, search, and act through learned
internal representations that support compositional reasoning and extrapolation Wu|(2025)). At the
same time, the emergence of the “Era of Experience” |[Silver and Sutton| (2025)) calls for systems that
accumulate knowledge through interaction—not static datasets—emphasizing active learning via trial
and adaptation.

We propose EchoRL, a system framework designed to make LLM-based reinforcement learning both
experience-conscious and planning-aware, while maintaining high throughput and rollout efficiency.
Our key insight is that improvements in learning performance require not only better models, but also
infrastructure that supports latent planning, token-aware rollout, and priority-guided data reuse.

EchoRL introduces:

* Latent Planning Optimization: a continuation-aware abstraction for structured reasoning
beyond reactive decoding;

*Corresponding author. dong.1liu.d12367@yale.edu

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

- a

Latent Planning
Interface

€ — -
- J

Prioritized ki
Replay
Buffer

=B

Figure 1: EchoRL System Architecture. The system consists of three core modules: (1) a La-
tent Planning Optimization that encodes historical state trajectories into latent plans 7;, enabling
lookahead-conditioned action generation via g (as | s¢, 7¢); (2) an Asynchronous Execution Engine
that schedules actor rollouts with KV-cache reuse and latency-aware dispatching across multiple
workers; and (3) a Planning-Aware Replay Buffer that maintains hot/cold memory partitions and
samples trajectories based on a hybrid surprise-reward prioritization score. Iconography includes a
robotic actor representing agent-environment interaction, a neural module denoting latent planning,
and memory buckets indicating experience stratification. Together, these components enable efficient,
real-time reinforcement learning with planning-augmented policies.

* Async Execution Engine: a rollout system with KV-cache sharing and latency-aware
scheduling to boost parallelism;

* Prioritized Replay Buffer: a stratified memory design (hot/cold tiers) for sample-efficient
reinforcement learning.

2 System Design

EchoRL integrates latent planning with asynchronous reinforcement learning over large language
models while optimizing infrastructure-level throughput and data efficiency. The system consists
of three components: latent planning module, asynchronous execution engine with KV reuse, and
planning-aware replay buffer.

Latent planning with trajectory priors. Let s; be the state, a; the action, and r; the reward. We
encode a trajectory prior 7; € R? and condition the policy on it:

Tt = Fo(st—het), ar ~molag | se,71), (1)
Lk, = Dxi[pe(7e | s1:6) | Po(Te—1 | $1:0=1)] 5 2)
J(0,0) =E[>, re(se,ar)] — A L 3)

Asynchronous KV-Aware Rollout We optimize decoding via rollout-stream decoupling, KV reuse,
and latency-aware dispatch. To avoid recomputation, we reuse prefix KV states:

KV(Sl:t) = varozen(sl:t’) U KVrolling(St’+1:t) (4)
Each rollout is prioritized by reward-cost ratio:

ri
q; +¢€

priority(i) = (5)

where g; is the estimated rollout queue time.

Algorithm 1 EchoRL System Training Overview

Require: Policy 7y, Encoder F;, Replay Buffers By, Beola, Environment £
1: Initialize actor/learner threads, set planning horizon k, learning rate 7
2: Initialize KV-Cache Manager, Latency Scheduler, Priority Sampler
3: for each iterationz =1... N do

4: #— Asynchronous Actor Rollout —
5: for each actor a in parallel do

6: Get state window s;_j.; from £

7: Tt < .F(z)(stfk:t)

8: ay ~ mo(ag | ¢, Tt

9: Execute a; in £, observe 7y, S¢41
10: Compute priority score: p; < |7, — E[7]||3 + ar,
11: if fresh sample then
12: Add (St, T, Qt, 7”,5) to Bhot
13: else
14: Add to Beoq

15: end if
16: end for

17: #— Latent Planning Regularization —
18: Sample (s1.¢, 7¢) and compute:

190 Lxr + Dxulpg(Tels1:0) [|pg (Te—1]51:6-1)]
20: #— PPO Learner Update —

21: Sample batch By from Bpog U Beolg With priority-weighted sampling:
. _ __exp(B-pt)

22: P(t)= S exp(8p)

23: for each trajectory in By do

24: Compute advantage A, ratio r; = %
25: Update PPO objective: ’

26: [,ppo — E; [min(rtAt, Clip(rt, 1-— €, 1+ E)At)]
27: end for

28: Update 6 < 6 — nVy (Eppo +)\KLACKL)

29: end for

Planning-Aware Prioritized Replay We maintain two buffers By, Beold, separated by time thresh-
old 7. Each rollout is indexed by latent novelty and reward:

score(t) = ||y — E[7]||* + ar, 6)

The sampling probability is softmax-weighted:
_ exp(f - score(t)) 7
> exp(p - score(t’))
We adopt a PPO-style clipped objective:
Lppo = E; [min (r:(0) Ay, clip(r¢(0),1 — €, 1 + €) Ay)] 8)

P(t)

3 Experiments

3.1 Setup

We evaluate ECHORL on sample efficiency, task performance, wall-clock acceleration, and math-
ematical reasoning across state-of-the-art open-source reasoning models. Our primary backbones
include Qwen3-72B-Instruct, Llama3.1-70B-Instruct, and DeepSeek-R1-32B. We compare EchoRL-
enhanced versions of these models against their baseline performance to demonstrate the effectiveness
of our latent planning, KV-aware rollout, and prioritized replay components. Our tasks span mathe-
matical reasoning (GSM8K, MATH, Game24), text-world control (ALFWorld/MiniWoB++), web
agents (WebShop), program repair (CRUXEval), and ARC reasoning. The setup uses 128 async
actors and 2 learners on 8 x A100-80GB with a 6-layer Transformer encoder, PPO with GAE, and
prioritized replay via Eq.[6} All results are over 10 seeds with 95% CL.

Algorithm 2 EchoRL latent planning rollout and update

Reqmre State window s;—:¢, encoder Fg, policy g, replay buffers Bhot, Beold

O 001 WUN A WI =

: # Latent encoding and planning regularization
DT f(ﬁ(st—k.t)

D T—1 — Fo(St—k—1:4-1)

¢ Lxe = Dre[pg(7e | s1:0)l[po (-1 | s1:0-1)]
: # Policy sampling and environment interaction
Lag 7r9(at | St7Tt)

: Execute a¢, observe r¢, S¢41

: # Compute buffer priority

s pe 4 I = ElT]|* + oy

. if age(st) < Tinresh then

Insert (St, Tty Qt, Tt,pt) into Bhot

: else

Insert into Beow

: end if

: # Sample minibatch using priority-based softmax

: Sample {ti}f\él ~ Softmaxg(p¢) from Bhot U Beowd
: # PPO update with clipped surrogate objective

: for each sampled (s;, 73, as, ;) do

Compute advantage A; using GAE
Compute likelihood ratio r; (§) +— —xe(ilsri)_

Togq (@il5i,7i)

Lppo < min (r;(0) Az, clip(ri(0),1 — e, 1 + €) A;)

: end for
: Update 0 using >, Lppo, backpropagate through ¢ with Ak Lxr
: RETURN Updated policy 7y and encoder F

3.2 Mathematical Reasoning Performance

ECcHORL delivers consistent gains on mathematical reasoning tasks—including grade-school problem
solving, competition-level proofs, and arithmetic games—by replacing purely reactive decoding with
latent, trajectory-conditioned planning. Across GSM8K, MATH, and Game24, the model learns to
decompose problems into structured subgoals, preserves intermediate context through KV-sharing for
efficient exploration of solution paths, and improves robustness via surprise-weighted, prioritized

replay that distills reusable proof and calculation patterns.

Together, these components reduce

arithmetic slips, tighten multi-step coherence, and enhance generalization to unseen problem types,
yielding clear improvements over strong tree-of-thought and other reactive baselines without relying
on benchmark-specific tuning.

Table 1: EchoRL vs Baselines: Success@1 (%). Comparison with open-source models.

Baseline Models

EchoRL + Models

Task Qwen3-72B- Llama3.1-70B- DeepSeek-R1 ~ EchoRL + EchoRL + EchoRL +
as Instruct Instruct -32B Qwen3-72B Llama3.1-70B DeepSeek-R1
Math Reasoning
GSMSK (Grade School) 91.5 91.8 88.2 93.7 (+2.2%) 94.1 (+2.3%) 90.4 (+2.2%)
MATH (Competition) 30.6 31.2 28.9 32.8 (+2.2%) 33.2(+2.0%) 31.1 (+2.2%)
Game24 (Reasoning) 86.1 86.8 83.4 88.9 (+2.8%) 89.3 (+2.5%) 86.2 (+2.8%)
Planning & Control
ALFWorld (GC) 76.9 77.8 74.6 79.4 (+2.5%) 80.1 (+2.3%) 77.3 (+2.7%)
MiniWoB++ (avg 50) 64.3 65.1 62.8 67.6 (+3.3%) 68.2 (+3.1%) 65.5 (+2.7%)
WebShop 70.6 71.4 68.9 73.8 (+3.2%) 74.3 (+2.9%) 71.6 (+2.7%)
Code-Repair (CRUX) 67.8 68.6 66.2 71.1 (+3.3%) 71.7 (+3.1%) 69.0 (+2.8%)
ARC-like (set A) 58.6 59.4 57.1 61.9 (+3.3%) 62.4 (+3.0%) 59.6 (+2.5%)
MiniGrid (planner) 71.2 72.1 69.5 74.6 (+3.4%) 752 (+3.1%) 72.4(+2.9%)
Overall Average 69.8 70.6 68.1 729 (+3.1%) 73.5 (+2.9%) 70.6 (+2.5%)
Note: Success@1 (%) after running ECHORL with identical prompts/budgets across backbones. Results

aggregated over 10 seeds with 95% CI.

4 Conclusion

We introduced ECHORL, a framework that bridges reactive token generation and proactive reasoning
through three methodological innovations: latent planning with trajectory priors, asynchronous
KV-aware rollout, and planning-aware prioritized replay.

Our approach addresses fundamental challenges in LLM-based reinforcement learning through three
key methodological contributions. We encode trajectory priors 7, = Fy(s;—k:¢) that condition
policy decisions on state sequences, with KL regularization ensuring temporal consistency. Our
prefix caching KV(s1::) = KVfrozen (S1:4/) U KVroliing (S¢74-1:¢) amortizes decoding costs, while priority
scheduling priority(i) = q;jre optimizes dispatch decisions. Surprise-weighted sampling |7 —
E[7]||?> + ar, identifies high-value experiences, reducing sample redundancy through softmax-
weighted distribution. Future directions include hierarchical latent planning, joint optimization of
encoder and policy, and distributed KV management. EchoRL builds a new perspective for experience-
centric LLM systems where planning and learning are co-designed with efficient infrastructure.

References

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli,
D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., EI-Showk, S., Elhage, N.,
Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N.,
Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., and Kaplan,
J. (2022). Training a helpful and harmless assistant with reinforcement learning from human
feedback.

Chollet, F. (2019). On the measure of intelligence.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. (2021). First return, then explore.
Nature, 590(7847):580-586.

Espeholt, L., Marinier, R., Stanczyk, P., Wang, K., and Michalski, M. (2020). Seed rl: Scalable and
efficient deep-rl with accelerated central inference.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley,
T., Dunning, I., et al. (2018). Impala: Scalable distributed deep-rl with importance weighted

actor-learner architectures. In International conference on machine learning, pages 1407-1416.
PMLR.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. (2023). Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104.

Jaillet, P, Jiang, J., Mellou, K., Molinaro, M., Podimata, C., and Zhou, Z. (2025). Online scheduling
for llm inference with kv cache constraints.

Long, T., Yuan, Y., Zhang, W., Wang, Y., and Lin, Z. (2023). Monte carlo tree search with language
models for strategic text planning.

Ma, K., Du, X., Wang, Y., Zhang, H., Wen, Z., Qu, X., Yang, J., Liu, J., Liu, M., Yue, X., Huang,
W., and Zhang, G. (2025). Kor-bench: Benchmarking language models on knowledge-orthogonal
reasoning tasks.

Madaan, A., Tandon, N., Clark, P., and Yang, Y. (2022). Memprompt: Memory-assisted prompt
editing with user feedback.

Noh, D., Kong, D., Zhao, M., Lizarraga, A., Xie, J., Wu, Y. N., and Hong, D. (2025). Latent adaptive
planner for dynamic manipulation.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S.,
Slama, K., Ray, A., et al. (2022). Training language models to follow instructions with human
feedback. NeurlIPS.

Petrenko, A., Huang, Z., Kumar, T., Sukhatme, G., and Koltun, V. (2020). Sample factory: Egocentric
3d control from pixels at 100000 fps with asynchronous reinforcement learning.

Qiu, J, Qi, X., Zhang, T., Juan, X., Guo, J., Lu, Y., Wang, Y., Yao, Z., Ren, Q., Jiang, X., Zhou, X.,
Liu, D., Yang, L., Wu, Y., Huang, K., Liu, S., Wang, H., and Wang, M. (2025). Alita: Generalist
agent enabling scalable agentic reasoning with minimal predefinition and maximal self-evolution.

Ren, A. Z., Ichter, B., and Majumdar, A. (2024). Thinking forward and backward: Effective backward
planning with large language models.

Schaul, T., Quan, J., Antonoglou, 1., and Silver, D. (2016). Prioritized experience replay.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of go with
deep neural networks and tree search. nature, 529(7587):484-489.

Silver, D. and Sutton, R. S. (2025). Welcome to the era of experience. Google Al, 1.

Suzgun, M., Scales, N., Schirli, N., Gehrmann, S., Tay, Y., Chung, H. W., Chowdhery, A., Le, Q. V.,
Chi, E. H., Zhou, D., and Wei, J. (2022). Challenging big-bench tasks and whether chain-of-thought
can solve them.

Team, 1. (2025). Internbootcamp.
Wu, Y. N. (2025). Digital intelligence vs biological intelligence.

Wu, Z., Arora, A., Wang, Z., Geiger, A., Jurafsky, D., Manning, C. D., and Potts, C. (2024). Reft:
Representation finetuning for language models. Advances in Neural Information Processing
Systems, 37:63908-63962.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and Chen, X. (2023). Large language
models as optimizers. arXiv preprint arXiv:2309.03409.

Yao, S., Yu, D., Zhao, J., Shafran, 1., Griffiths, T. L., Cao, Y., and Narasimhan, K. (2023a). Tree of
thoughts: Deliberate problem solving with large language models.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, 1., Narasimhan, K., and Cao, Y. (2023b). React: Synergizing
reasoning and acting in language models.

Yu, J., He, R., and Ying, R. (2024). Thought propagation: An analogical approach to complex
reasoning with large language models.

A Related Work

Experience-driven intelligence. The “Era of Experience” perspective |Silver and Sutton| (2025)
emphasizes interaction over static data. EchoRL follows this thread by designing infrastructure that
learns from continual rollouts and adaptive feedback, aligning with self-play |Silver et al.| (2016) and
open-ended learning |[Ecoffet et al.| (2021)).

Planning-oriented representations. Wu Wu| (2025) contrasts reactive “digital” inference with
planning-oriented “biological” intelligence. World models such as DreamerV3 Hafner et al.| (2023)
and latent-thought LMs Yu et al.|(2024) operationalize this idea; EchoRL adopts a lightweight latent
planning prior to support temporal structure and reuse.

RL for LLM reasoning. RL methods have enhanced LLM reasoning: ReAct|Yao et al.|(2023b) and
Tree-of-Thoughts Yao et al.|(2023a) structure intermediate steps; RLHF/RLAIF Ouyang et al.| (2022);
Bai et al.| (2022) align outputs; ReFT/OPRO [Wu et al.| (2024); |[Yang et al.| (2023) shape rewards.
Planning and memory appear in MemPrompt|Madaan et al.| (2022), RetroPlan Ren et al.| (2024)), and
MCTS prompting Long et al.[(2023)). EchoRL differs by embedding these ideas in a real-time RL
system with prioritized replay.

Infrastructure optimization. Scalable RL relies on infrastructure: distributed actor—learner sys-
tems [Espeholt et al.| (2018],12020), prioritized replay |Schaul et al.| (2016)), and efficient logging [Pe-
trenko et al.| (2020). For LLMs, inference becomes a cache- and latency-constrained scheduling
problem Jaillet et al.| (2025)); EchoRL addresses it via async workers, latency-aware dispatch, and KV
reuse.

Benchmarks. Benchmarks range from ARC Chollet| (2019) and BBH/BBEH [Suzgun et al.| (2022) to
KOR-Bench |Ma et al.|(2025). Internbootcamp [Team| (2025)) offers programmatic tasks with rewards;
EchoRL treats these as dynamic RL environments and optimizes rollouts accordingly.

Generalist agents and latent planners. Generalist agents |Qiu et al.|(2025) and latent planners Noh
et al. (2025) motivate routing and planning at scale; EchoRL bridges token-level generation with plan
continuation and memory reuse within a single system.

B Mathematical Analysis and Proofs

B.1 Notation and Preliminaries

We begin by establishing the mathematical framework for our analysis. This section provides a
comprehensive overview of the notation and key concepts used throughout our theoretical analysis.

B.1.1 Core Mathematical Framework
Markov Decision Process: Consider an episodic MDP M = (S, A, H, P, r) where:
* S is the state space with |S| = S
* A is the action space with |A| = A
* H is the episode length
* Pp(-|s,a) is the transition probability at step h
o 1 S X A — [0,1] is the reward function

EchoRL System Components: The EchoRL system introduces three key components that we will
analyze mathematically:

Ty = Fo(si—k) (trajectory encoder) 9)

(5,7): Ax S x RY = [0,1] (policy) (10)
(t) KV frozen(sl t’)) erollmg(st’+1 t) (KV reuse) (1 1)
score(t) = || E[7]||> + ar; (surprise metric) (12)
priority(i) = — (dispatch priority) (13)

B.1.2 Key Mathematical Quantities

To analyze the convergence and efficiency properties of our system, we define several key mathemati-
cal quantities that capture the essential dynamics:

Lxi, = Dxi[pe(Te|s1:4)||po(Te—1]51:4—1)] (KL regularization) (14)
KV

= [KVirozen| (KV reuse rate) (15)

‘Kvtotal‘
exp(score(t)) .

= ft ht 16

Be S exp(score(t)) (softmax weight) (16)
1

v(p) = T /T (complexity reduction factor) (17)

B.1.3 Notation Summary

For clarity, we summarize the key notation used throughout this appendix:

+ Trajectory Space: 7, € R? denotes the trajectory encoding at time ¢
* Policy Parameters: 6 for policy network, ¢ for trajectory encoder

* Learning Rates: « for policy updates, Ak, for KL regularization

* Buffer Management: 5y, B4 for hot and cold replay buffers

* Complexity Measures: 7" for sequence length, d for embedding dimension, N for buffer
size

* Performance Metrics: ETPS for episodes per second, FLOPs for floating-point operations

B.2 Core Convergence and Efficiency Analysis

Theorem 1 (Trajectory Prior Convergence). Let Fy be L-Lipschitz, Ak, > 0, and oo < 22—2’“ Then:

2(Lx1(¢0) — Lk1)

E[Hvtb‘CKL(QST)”Z] < T

(13)

Proof. We provide the proof of trajectory prior convergence step by step, following a systematic
approach that builds from the objective function to the final convergence rate.

1 (Objective Function Decomposition). The convergence analysis begins by examining the objective
function that combines reward maximization with trajectory regularization. This dual objective
ensures that our latent planning mechanism learns to encode meaningful trajectory representations
while maintaining policy performance.

The objective function consists of two components:

H
J0,9)=E lz Th(Sh, ah)] — AkL LKL (19)
h=1
Lxr = Dxi[pg(Th|s1:n)||Pe(Th—1]51:n—1)] (20)

The first term represents the expected cumulative reward, while the second term provides regulariza-
tion through KL divergence between consecutive trajectory distributions. This regularization prevents
the trajectory encoder from overfitting to specific trajectories and encourages smooth temporal
transitions.

2 (Gradient Structure Analysis). Next, we analyze the gradient structure to understand how the
learning dynamics evolve. The gradient of our objective function can be decomposed into two main
components that capture the interaction between reward optimization and trajectory regularization.

1 a’l“h aah 8Th
=E — | = A L 21
VT 321 ey O 8¢>] KLV s LKL (21)
VoIl < LRmaxH + XkL|| Vg Lxu| (22)

The first term in the gradient captures the chain rule through the policy network, while the second
term represents the direct regularization effect. The bound shows that the gradient magnitude is
controlled by the Lipschitz constant L of the trajectory encoder and the regularization weight gy .

3 (Lipschitz Continuity Properties). The Lipschitz property is crucial for establishing convergence
guarantees. This property ensures that small changes in the encoder parameters lead to bounded
changes in the loss function, which is essential for stable gradient descent optimization.

[VoL(p1) = VuL(d2)| < Ll — @2l (23)
Vo DxL[pg, [|Pg,]I| < Llld1 — ¢ (24)

These inequalities establish that both the overall loss function and the KL divergence component
satisfy Lipschitz continuity with constant L. This property is fundamental to our convergence analysis
and ensures that the optimization landscape is well-behaved.

4 (Gradient Descent Update Analysis). Now we analyze the gradient descent update rule and its
convergence properties. The standard gradient descent step updates the parameters in the direction of
steepest descent, scaled by the learning rate.

bip1 = &t — aVyL(Py) (25)
’L

£gun) < £00) ~ alVL@)I? + SEIV,L60I 26)

= (00— (1- 5) IVe@n]? @

This inequality shows that the loss decreases at each iteration, provided that the learning rate is chosen
appropriately. The key insight is that the decrease is proportional to the squared gradient norm, which
motivates our convergence analysis.

5 (Convergence Condition Derivation). The convergence condition requires that the learning
rate be sufficiently small to ensure monotonic decrease of the loss function. Specifically, we need
1- % > 0, which translates to o < % When incorporating the KL weight ki, the effective
learning rate becomes aAgp, requiring the more restrictive condition o < 22‘;&

6 (Convergence Rate Analysis). To establish the convergence rate, we analyze the cumulative

decrease in the loss function over T iterations:

T-1
N e
t=0

e @

Therefore: mine (77 | Vo L(¢1)||? < % =0(1/7).

This concludes the proof, establishing that the trajectory prior converges at a rate of O(1/7) under
the specified conditions. O

Lemma 1 (Trajectory Stability). Under Theorem|l|assumptions:

N

Elll7 — m_1]|?] <
e =] < =

E[Lki] + O(c?) (30)

where o2 is state transition variance.

Proof. We provide the proof of trajectory stability step by step, establishing bounds on the trajectory
difference under the convergence assumptions.

1 (Trajectory Difference Analysis). We begin by analyzing the difference between consecutive
trajectory encodings:

||Tt - ’Tzs—1||2 = H}—(ﬁ(st—k:t) — -7'-¢(5t—k—1;t_1)||2 (31)
< L2||s¢—put — Se—k—14-1|> (Lipschitz property) (32)
= L?||s; — si—x_1|* (window difference) (33)

The first inequality follows from the Lipschitz continuity of the trajectory encoder F with constant
L. The second equality captures the fact that only the endpoints of the sliding window differ between
consecutive time steps.

2 (State Transition Variance Analysis). Next, we analyze the expected squared difference in state
transitions:

Elll7 — 7e1l”] < LE[lls: — se-k—1]1%] (34)
< L*E[lls: — Elsi][|*] + L°E[l|st—s—1 — Elss—x—1][|] (35)
= 2L2%0?% (variance decomposition) (36)

The second inequality uses the fact that E[||X — Y||?] < E[||X — E[X]|?] + E[||Y — E[Y]||?] for
independent random variables, and the final equality follows from the definition of state transition

variance o2.

3 (KL Regularization Integration). Finally, we integrate the KL regularization relationship to
obtain the combined bound:

2MkL

E[|r — 7e—1]]?] < E[LxL] + 2L%0? (37)

This bound shows that trajectory stability is controlled by both the KL regularization strength Agp,
and the state transition variance o2, providing a theoretical foundation for the smoothness of our
trajectory encoding.

This concludes the proof, establishing the trajectory stability bound under the convergence assump-
tions. O

B.2.1 KYV Reuse Efficiency Analysis

The KV reuse mechanism is central to our system’s efficiency gains. By caching and reusing key-
value states from previous computations, we can significantly reduce the computational overhead of
attention mechanisms.

The key insight behind KV reuse is that many attention computations share common key-value states
across different queries. Instead of recomputing these states for every query, we can cache them and

10

reuse them when appropriate. This is analogous to how a web browser caches frequently accessed
web pages to avoid re-downloading them.

In standard attention, the computational complexity is O(T?d) because each of the T’ queries must
attend to all T" keys and values. With KV reuse, we can reduce this to O(T?(1 — p)d + T'pd) where
p is the reuse rate. The first term represents the computation for non-reused states, while the second
term represents the cost of accessing cached states.

The following theorem establishes the theoretical complexity bounds for our KV reuse approach.

Theorem 2 (KV Reuse Computational Complexity). For sequence length T with KV reuse rate
p € [0, 1] and attention dimension d, our KV reuse mechanism achieves the following complexity
bounds:

Cxv(T, p,d) = T?d(1 — p) + Tpd + O(TlogT) vs. Cuu(T,d) =T%d (38)
Sky(T,d) =Td+O(T) vs. Sua(T,d) =T2d (39)

The complexity reduction factor is v(p) =
p > 0.5.

ﬁ with tightness bound |Y(p) — Yemp(p)| < € for

Proof. The proof begins by establishing the computational complexity of standard attention mecha-
nisms, which serves as our baseline for comparison. In standard attention, each query must attend to
all keys and values in the sequence.

T T
Coa(T,d) =D > (Qi, Kj) -V (40)
i=1 j=1
=T?.d-opsy, =T?*d-O(1) = O(T?d) (41)

This quadratic complexity arises from the need to compute attention weights between every pair of
positions in the sequence, making it computationally expensive for long sequences.

Our KV-aware mechanism decomposes the computation into two distinct components: frozen
KV states that are reused from cache, and rolling KV states that must be computed fresh. This
decomposition is crucial for understanding the complexity reduction achieved by our approach.

Let Zirozen = {7 : KV; cached} and Zyoing = {i : KV; computed} represent the sets of positions with
cached and computed KV states, respectively.

CKV(T7 P d) = Z Opsreuse(i) + Z Zopscompute(i7j) (42)
1€ Ltrozen Z.Ezrol]ing J=1
= ‘Ifrozenl ~d+ Z i-d (43)
4€ Lrolling
T
=Tp-d+ Y i-d (44)
i=Tp+1
T
=Tpd+d Z i (45)
i=Tp+1
T(T+1 Tp(T 1
— Tpd+d (T+1) Tp(Tp+1) (46)
2 2
ar? dT
=Tpd+ —~(1=p*) + 5 (1-p) (47)
=T?d(1 - p)+Tpd+ O(T) (48)

11

Cache Management Overhead:

Ceache(T) = O(T'log T) (priority queue operations) @9
C}tg\t?l (T, p,d) = Cxv (T, p, d) + Ceache(T) 0

Space Complexity Analysis:

Sqa(T,d) = T?d (attention matrix storage) (51)
Skv(T,d) =Td+ O(T) (KV vectors + cache overhead) (52)

Complexity Reduction Factor:

Cua(T, d) T%d
= = 53
T2 T
T*A=p)+Tp TA—-p)+p
1
_ 55
1—p+p/T (53)
Tightness Analysis: For p > 0.5 and 7' > 100:
P 05
710" 0.005 (56)
1—p+ % > 0.5+ 0.005 = 0.505 57
1
< —— = 1.
7(p) < 0505 98 (58)

The empirical factor Yemp(p) satisfies [y(p) — Yemp(p)| < € where e = O(+) due to cache miss
overhead. 0

Table 2: Complexity Comparison: Standard vs. KV Reuse Attention

Component Standard Attention KYV Reuse
Computation O(T?3d) O(T?*(1 — p)d + Tpd)
Memory O(T?d) O(Td+T)
Cache Operations 0o(1) O(TlogT)

. 1
Reduction Factor 1.0 T p/T
Example (p = 0.6, T = 1000) 108d 4.6 x 10°d
Speedup 1.0x 2.2%

Interpretation: The table above shows the dramatic efficiency gains achievable through KV reuse.
For a typical reuse rate of p = 0.6 and sequence length 7" = 1000, we achieve a 2.2 speedup while
maintaining the same attention quality. The memory savings are even more significant, reducing from
quadratic to linear complexity.

Theorem 3 (Throughput Improvement Bound). Let Chpyse (T, d) and Creyse (T, p, d) be computational
costs for standard and KV-aware attention respectively. The ETPS improvement satisfies:

Cbase (T; d) 1 log T
ETPS in(p, T, d) = < 14 2B 59
wanlp: 1) = G T pd) ST pi i \M T T 9

with concentration bound P(|ETPS4in — E[ETPSguin]| > €) < 2 exp(—g%) where 0% = O(%).

Proof. Cost Model with Memory Hierarchy: Let ccompue be computation cost, Cpemory be memory
access cost, and Ccache be cache miss penalty.

12

Cbase(T7 d) = T2d * Ccompute + T2d * Cmemory (60)
Creuse(T7 P d) = T2d(1 - P) * Ccompute T T,Od * Ceache T T2d(]— — p) * Cmemory (61)

Memory Access Pattern Analysis:

Cache Hit Rate = p (62)
Cache Miss Rate =1 — p (63)
T%d(1 —
Memory Bandwidth Utilization = %p) —1-p (64)
Throughput Calculation:
ETPSgain _ Chase - T2d(CC0mpute + Cmemory) (65)
Creuse T d(l - P) (Ccompute + Cmemory) + Tpd - Ceache
_ T° (Ccompute + Cmemory) (66)
T2(1 - l)) (Ccompute + Cmemory) +Tp - Ceache
T
= (67)
_ K Ceache
T(l P) + P Ccompute T Cmemory
Cache Cost Analysis:
Ccache _ Ccache ~ l i <1 + 10gT> (68)
Ccompute T Cmemory Ctotal T T
The k’%T term accounts for cache management overhead in priority queues.
Final Bound:
T
ETPSgsin < : e T (69)
T lfp)er'T(lJrT)
T2
= e T (70)
T2(1 = p) + p(1 + %)
1
= (71)
1—p+ £(1+ el
1 logT
< — 1 72
< () ()

Concentration Analysis: Let X; be the random variable representing cache hit/miss at step ¢. Then:

T
1 1

ETPSgin = f(= X h = 73
gain f(th:; t) WGI‘Cf(p) 1*p+,0/T ()

Since f is Lipschitz with constant L = W, by Azuma-Hoeffding:

S) < T
P(|ETPSgain — E[ETPSgin]| > €) < 2exp Yl (74)

T

where 02 = O(%) accounts for the variance in cache access patterns. O

13

Theorem 4 (KV Reuse Rate Concentration). Let {p;}._, be a sequence of KV reuse indicators

following a Markov chain with mixing time 7,,;, and stationary distribution . Define p = % Zthl Dt

Then:
€2

_ > < S
Pllo~ Exloll 2 d < 20w (51—

) +0(T71/?) (76)

where 0% = Var,|p;] and the O(T‘l/ 2) term accounts for convergence to stationarity.

Proof. Markov Chain Setup: Let {X;}7_; be the underlying Markov chain with transition matrix
P and stationary distribution 7. The KV reuse indicator is p; = 1[KV; cached].

Stationary vs Non-Stationary Analysis:

1 T
1t;1 1 .
T ;E“ o] + 7 ;(E[Pt] — Ex[pe]) (78)

Convergence to Stationarity: By the mixing time definition, for ¢ > 7x:

|]E[pt] - Eﬂ'[pt“ < eXp(_t/Tmix) (79)
T Trmix T
S Elpd —Exlpdd <D 14+ D> exp(—t/7min) (80)
t=1 t=1 t=Tmix+1
-1
< Tmix + exp() < Tmix + Tmix = 27-mi)((81)

1 — exp(—1/Tmix)

Variance Analysis:

T
1
Var[p] = = Var Zpt] (82)
t=1
1 T
(Z Varlp,] +2) _ Covlpr. pi) (83)
t<k
Covariance Bound: For k& > ¢:
Covlps, pi] = Elptpi] — E[p:]E[pr] (84)
< Ex[pepr] + exp(—(k — t)/Tmix) — E[p¢]E[py] (85)
< g2 exp(—(k — t)/Tmix) + exp(—(k — t)/Tmix) (86)
Total Variance Bound:
T T
ZCov[pt, k] < Z Z o? + 1) exp(—(k —t)/Tmix) 87)
t<k t=1 k=t
T T-—t
(@ +1)> > exp(—d/Tmix) (88)
t=1 d=1
< (0% + 1)TZ exp(—d/Tmix) (89)
d=1
< (0% + 1) T Tinix (90)

14

Final Concentration Bound:

1
Var[p] < E(TU2 +2(0% + 1)T Tinix) 91)
0% 2(0% + 1)Tmix
_a? 2
T + T 92)
2 2 2 1 mix
_ ot (0T+)T, 93)

By Bernstein’s inequality for dependent random variables:

2T
Pllp—Elp]| > €] < 2exp (_2(02 n 2(602 + 1) Tmi)) ©4)
T
< 2exp (‘W) ©3)

The O(T /) term comes from the convergence to stationarity analysis. O

B.2.2 Prioritized Replay Convergence

The prioritized replay mechanism is essential for efficient learning by focusing computational
resources on the most informative experiences. Our approach uses a surprise-weighted sampling
strategy that adaptively selects experiences based on their novelty and reward value.

Theorem 5 (Convergence of Prioritized Replay). Let B = By U Beos be the replay buffer with
|B| = N, and let {score(t)}¥| be surprise scores with score(t) = |1 — E[7]||? + ar;. Define
the softmax sampling distribution:

Py(t) = exp(Bscore(t))

= (96)

Zi\,le exp(Bscore(t’))
Then for B > %TgN where A = max; score(t) — min; score(t), the prioritized replay converges
to the optimal sampling distribution with regret bound:

H2
Regret(T) < O (Tlog N + B) 7

Proof. The convergence proof relies on analyzing the concentration properties of the softmax sam-
pling distribution. As the temperature parameter S increases, the softmax distribution becomes
increasingly concentrated on experiences with high surprise scores.

Let t* = argmax; score(t) denote the experience with the highest surprise score, and let A =
score(t*) — max;,~ score(t) represent the gap between the best and second-best scores.

« _ exp(Bscore(t))
Pt = Ziv:l exp(Bscore(t)) ©8)
B exp(fBscore(t*))
~ exp(Bscore(t*)) + > izt~ €Xp(Bscore(t)) ©9)
exp(fscore(t*))
= exp(fBscore(t*)) + (N — 1) exp(B(score(t*) — A)) (100)
= 1 (101)

1+ (N —1)exp(—BA)

15

2log N .,
For 5 > =%

1

Ps(t*) > 102
5(t7) = 14+ (N —1)exp(—2log N) (102)
1

_ 10

1+ (N —-1)/N? (103)
1 1
>—>1- = 104
TNl (104)
Regret Decomposition:
T

Regret(T) = Z (Intz}x score(t') — score(t)) (105)

o+
Il

1

T
< (mtz,ix score(t') — E[score(t)}) + Z (E[score(t)] — score(t)) (106)

1 t=1

M=

o
Il

Exploration-Exploitation Trade-off: The first term is bounded by O (/T log N) using standard
bandit analysis for softmax sampling.

Temperature Regularization: The second term is bounded by O(H?/f3) due to the temperature
parameter in the softmax sampling:

2
E[score(t)] — score(t) < % (temperature smoothing effect) (107)
Combined Bound:
Regret(T) < O(/Tlog N) + O(H?/j) (108)
H2
=0 < Tlog N + ﬂ) (109)
O

Theorem 6 (Sample Efficiency of Prioritized Replay). Let By, and B,y be hot and cold buffers with

|Bhot| = N, |Beoua]| = N, and N = Ny, + N... Define the sample efficiency gain as:
E[scoreumpied)
le. (B = —LSCOTEsampled] 110
Sample,,;, () E[scoreumgorn] (110)
Then for § > IOEQN where 02 = Var[score(t)]:
,80'2 Nh 1
Samplegam(ﬁ) Z 1+ 7 . W (1= W (111)
Proof. Uniform Sampling Baseline:
| X
E[scoreymiform] = i t_zl score(t) = p (112)
Prioritized Sampling Analysis:
N
E[scoregmpred] = Z Ps(t)score(t) (113)
t=1
al exp(fBscore(t))
= P score(t) (114)

= S, exp(Bscore(t'))

16

Taylor Expansion of Softmax: For small 3, we can expand exp(3score(t)) ~ 1 + Sscore(t) +

%score(t)%

~ 21{11(1 + Bscore(t) + %score(t)Q)score(t)

E[scoregmpled| = (115)
| oyl Zi\f:l(l + Bscore(t’) + ﬁ;Score(t’)Q)
_ Np+p Zivzl score(t)? + %2 Zi\il score(t)3 (116)
N+ BNp+ %2 Zf’zl score(t)?
Variance Analysis:
N
Zs«:ore(t)2 = N(u? 4 0?) (117)
t=1
N
Z score(t)® < N(p® 4+ 3uc? + o) (assuming bounded third moment) (118)
t=1
Approximation for Small j5:
Np+ BN(p? +0%)
E[scoregmpled) ~ Nt BNg (119)
24 2
:/J-i-ﬁ(ﬂ +0?) (120)
1+ Bp
~ p+ Bo? (for Bu < 1) (121)
Buffer-Specific Analysis: For hot buffer experiences with higher variance o7 :
2. Np
Sample,, (8) > ptBon - (122)
i
Boi Ni
=1+ — — 123
+ N (123)
Refined Bound: Using the condition 5 > IO%V:
50'2 Nh 1
Samplegam(ﬁ) > 1+ T : W 11— W (124)
O

Theorem 7 (Regret Bound for Prioritized Replay). The cumulative regret of the prioritized replay
mechanism is bounded by:

2
Regret(T) < O (Tlog |B| + %) (125)

where the first term comes from the exploration-exploitation trade-off and the second term from the
temperature parameter.

Proof. The regret can be decomposed into two components:

T
Regret(T') = Z (mtz}x score(t') — score(t)) (126)
t=1

M=

T
< (rntzlsmx score(t’) — E[score(t)}) + Z (E[score(t)] — score(t)) (127)

t=1 t=1

The first term is bounded by O(1/T log |B|) using standard bandit analysis. The second term is
bounded by O(H? /) due to the temperature parameter in the softmax sampling.

Combining these bounds gives the desired result. O

17

B.3 Scaling and System Integration Analysis

Theorem 8 (Distributed Scaling Behavior). Let Teompute(1), Teomm (1), and Tyyue(n) be computation,

communication, and synchronization times with n actors. Under the assumptions that (1) commu-

nication topology has diameter O(logn), (2) gradient synchronization uses tree reduction, (3) KV
logn

sharing efficiency p(n) = po(1 — =2=), and (4) memory bandwidth scales as B(n) = Bg - n® where
a € [0, 1], the performance satisfies:

Perf(n) = Perf(1) - n” - (1—€elogn —emn™7) (128)

where = min(},0), 1 = O(2£2) ¢ = O(3), and y = 152

Proof. Computation Time Analysis: With optimal load balancing and KV reuse efficiency p(n):
Tcompule (1) 1

Tcom ute = ' X 129
puc (1) n p(n) (12
_ Tcompute(l) . 1 S (130)
n po(l — =&%)
Teompute (1 1 log?
Tl (ot (1Y) .
npo n n
Communication Time Analysis: For tree-based gradient synchronization with diameter O(logn):
Teompute (1
Teomm (’I’L) = Ccomm * 1Ogn : %&3() (132)
T, 1
=¢ logn - %‘e() (133)
n
where ¢comm 1S the communication constant and €; = Cecomm.
Synchronization Overhead:
Teompute (1
Tsync (n) = Csync * logn . —compeer 2 m;;bte() (134)
Teompute (1
— eylogn - 1| Leompue(1) (135)
n
where cgync is the synchronization constant and €2 = Cgypc.
Memory Bandwidth Constraint:
Tcompute (1) Tcompute (1)
Tinem = = 136
emory (1) B(n) By - n® (136)
Total Time Analysis:
Ttotal('n/) = maX(Tcompute(n) + Tcomm(”)y Tsync (n)a Tmemory (TL)) (137)
Tcomuel 1 Crcomue]- CZjCOIIlllf:]'
:maX<pt()<1+ogn+€110gn>7ezlogn pt(), pute (1)
npo n n Bon®
(138)
Performance Scaling: For n sufficiently large and oo > %:
Teompute (1 1
Toa() o Leomee(l) (1 +elogn + Og”> (139)
npo n
1 npo 1
Perf(n) = = . (140)
() Ttotal(n) Tcompute(]-) 1+6 logn + lo;g;n
1 log?
:Perf(l)-n-<1—ellogn—Ogn+0<0g ")) (141)
n n

18

For a0 < %, memory bandwidth becomes the bottleneck:

Perf(n) = % = Perf(1) - n“ (142)

Combined Scaling:
Perf(n) = Perf(1) - n” - (1—elogn —emn™7) (143)
where 8 = min(1, a) and v = 152, O

Theorem 9 (Load Balancing Optimality) Let {w; }1"_, be workload assignments to n actors with
computational capacities {c;}}_,. Define the load balancing problem as:

min max i subject to sz Wiotal (144)

Wi, Wn 1=1,...,n C; 7
1=

Then the optimal solution satisfies:

W, 1 .
Teompue() = 5 40 (Ofl L Z) (145)
i=1Ci c

where i, = % S ciand o? = % S (e — pe)*

Proof. Optimal Assignment: The optimal workload assignment is w; = =5 - Wiotal, g1ving:

ch

*
w; Wiotal Wiotal
Tcompule(n) = max L= =

max = (146)
i=1,...n ¢ i=1,...m Z?zl cj Z?:l i

Heterogeneous Capacity Analysis: For heterogeneous capacities with mean . and variance o2:

Zcz = npe + Z — pte) = npie + O(v/no.) (147)

Therefore:
VVtotal
T = 148
compule(n) it + O(\/ECTF) ()
I/Vtotal 1
= . 149
nue 1+ O ‘:l) (149)
‘/Vtotal < ())
= o -0 (150)
Nfle Ve
Wiotal WiotalOc
= e +O(n3/2#6) (151)

Synchronization Overhead: For tree-based gradient synchronization with n actors:

ﬂync (TL) Csync * IOg n- \ / mtdl (152)

_0 (logn oe (153)
n
Combined Bound:
Wi 1 .
Tcompule(n) = ol + 0 (osn . U) (154)
Nfbe n Ihe
O

19

Theorem 10 (Memory Bandwidth Constraint). Let Ben(n) be the total memory bandwidth with
n actors, Byy(n) be the bandwidth requirement per actor, and Begen (1) be the cache bandwidth.
Beache (1)
Biem()

B’ m ’ n(n)> : (1 - Gmem(n)) (155)

) accounts for memory contention overhead.

Define the memory efficiency factor n(n) =
satisfies:

. Then the memory-constrained performance

Perf(n) = Perf(1) - min (n

where €pen(n) = O(log

Proof. Memory Bandwidth Scaling: For distributed memory systems with n actors:
Bpem(n) = By -n® where a € [0, 1] (156)

1
Breg (n) = Bypase - (14+ ogn > (per-actor requirement) (157)
Cache Efficiency Analysis:
logn
Bcache(n) = Bcache(l) . P(n) = cache (&) (158)
Bcache(”) Bcache(l)po(
= = 159
n(n) B (1) Bona (159)
1
= (1— Ogn) (160)
n
Memory Contention Model: The effective bandwidth per actor is reduced by contention:
Bmem n
Beff(n) = # . (1 — €contention (TL)) (161)
1
€contention(n) = Ccontention * ﬂ (contention factor) (162)
n

Performance Analysis: The performance is limited by the bottleneck:

Perfcompuie (1) = Perf(1) - n? (computational scaling) (163)
Bpem(n
Perfmemory(n) = Br:q((n)) : 77(”) ' (1 - 6contemion(n)) (164)

Combined Performance:

Perf(n) = min(Perfcompute (1), Perfmemory (1)) (165)
. Bmem (TL)
= Perf(1) - min nﬁ,-nn>~ 1 — €mem(n (166)
(1) min (1, D 1)) (1 = i)
where 6mem(n) = 6contention(n) = O(lngLn)' O

B.3.1 Component Additivity Analysis

Theorem 11 (Component Additivity with Statistical Guarantees). Let C = {C, C, C3} be the three
EchoRL components (latent planning, KV reuse, prioritized replay) with performance gains {Gi}le
and variances {c?}?_,. Define the combined performance as:

3
Perfgeors. = Perfyae - | [(14 Gi) (167)
i=1
Then with probability at least 1 — 0:
3 3
21log(3/6
Pe’fEchoRL - Perfbase H(l + E[Gl]) < Pe’fbase ’ # Z 0 (168)
i=1 =1

where T' is the number of evaluation episodes.

20

Proof. The component performance model establishes how individual EchoRL components contribute

to overall system performance. Let X i(t) be the performance gain from component ¢ at episode ¢. The
total performance is:

3

Perf](aiLoRL = Perfyge - H(l + Xi(t)) (169)
=1
3
— Perfpe - €Xp (Z log(1 + X§”)> (170)
i=1

The Taylor expansion analysis provides a mathematical foundation for understanding component
interactions. For |XZ-(t)| < 1:

(t)y2

X

log(1 + X) ~ x0 — XL 5 ox®y a7
3 3 1 3 3

> olog(1+ X =~ 3 X - 2 (x(")? 40 (Z(X§t>)3) (172)
i=1 i=1 i=1 i=1

The statistical independence property is crucial for our analysis. By design, the components operate
on orthogonal system aspects:

Cov(X\", XYy =0 fori#j (173)

3 3
<ZX) ZVar = Z 72 (174)
i=1 = i=1

The concentration analysis establishes the convergence properties. Let St = % E;‘F:l 2?21 X Z-(t).

By the Central Limit Theorem:

VT(Sr —E[S7]) & N(0,) " 0?) (175)

The confidence bound derivation uses Hoeffding’s inequality for bounded random variables:

P ISz — B[Szl > €) < 2exp (—2;_0) (176)
Setting € = 2log(‘3/5 S o
P (IST — E[S]] z 2logl/0) i) (177)
Final Bound:
Perfrehorr — Perfogse ﬁu + E[GH])| < Perfoue - 1/ 222880 3/ %) ZS: (178)
=1 i=1 -

Theorem 12 (Component Independence with Orthogonality). Let H; be the Hilbert space of perfor-
mance functions for component i, and let f; € H; be the performance function. The components are
orthogonal in the following sense:

(fisfj)u =0 fori#j (179)

where (-, Y4 is the inner product in the combined Hilbert space H = EB?:l ‘Hi. This orthogonality
implies:
COV(G,’,G]‘) =0 and E[Gqu] =]E[GL]E[GJ] (180)

21

Proof. Hilbert Space Construction: Define #; as the space of square-integrable functions f; :
Q; — R where (2; is the domain of component i:

o= (i [15@)Pduo) < oc) (181)
Qi
Orthogonality by Design: The components operate on disjoint system aspects:
)y = {trajectory conditioning, exploration efficiency} (182)
Q9 = {computational overhead, KV caching} (183)
Q3 = {sample selection, replay buffer} (184)

Since ; N Q; = () for i # j:

o= [o, S)) (185)
/ filxy)dp; (x;) / fi(zy)dp;(x;) (186)
= E[fi] - E[f)] (187)

Statistical Independence: For orthogonal functions in Hilbert space:
= (fi: fi)n — E[GI|E[G]] (189)
= E[G;]E[G;] — E[G/]E[G,] =0 (190)

Cross-Moment Analysis:

E[G:G;] = /Q N fi(@i) £5(@;)dpi(zi)dp () (191)
— E[Gy] -E[G,] (192)
O

Theorem 13 (Empirical Coefficient Bounds with Confidence Intervals). Let &; be the empirical
coefficient estimates from N independent experiments. Under the assumption that c; ~ N (p;, 07)
with known variances, the confidence intervals satisfy:

P(ay € [0.40,0.50]) > 0.95 where i1 = 0.45, 0 = 0.025 (193)
Plas € [0.25,0.35]) > 0.95 where ps = 0.30, 05 = 0.025 (194)
P(a3 €10.20,0.30]) > 0.95 where uz = 0.25,03 = 0.025 (195)

The bounds are derived from theoretical analysis of component efficiency and validated through
bootstrap sampling with B = 1000 iterations.

Proof. Theoretical Analysis: For latent planning with trajectory conditioning:

g = E [exploratio?reduction] (196)
E[exploration, |

E[|l — El7]|]?]
= * Pconditioning (197)
E[r[2] Feondidonine
€ [0.40,0.50] for peonditioning € [0.6,0.8] (198)

For KV sharing with reuse rate p:

E[computation

saved]
= 199
2 E[computation,,| (159)
Cky
—p 2. Tlcache (200)
Catt
€ [0.25,0.35] for p € [0.5,0.7], Neache € [0.7,0.9] (201)

22

For prioritized replay with surprise weighting:

E [Sampleefﬁciency}
a3 = ———— =
E[sample

uniform}

_ fBo? Ni 1 1
-2 N Bo?

Ny,
€[0.20,0.30] for 8 € [2,4], < € [0.3,0.5]

Y

Clp.o5(cv;) = [@50'025),(3450‘975)]

= [— 1.966;, f1; + 1.966;]

Bootstrap Validation: Let {&

A B (b . B (b)) -
where fi; = £ 30 4 and 62 = 21 S22 (@Y —)2
Statistical Validation: For N = 100 experiments across multiple tasks and backbones:

P(a; € Clyg5(cv;)) > 0.95 (by construction)

B.4 Implementation and Cost Analysis

~_, be bootstrap samples. The confidence intervals are:

(202)

(203)

(204)

(205)
(206)

(207)

Theorem 14 (Cost Reduction with Multiplicative Efficiency). Let C = {Ceomp, Csampie, Cime } be the
cost components with baseline costs {C?*}3_, and efficiency factors {n;}?_,. The EchoRL cost

reduction satisfies:
3
COStEchoRL = COSIbase . H(l - 771) . (1 + 6cost)
i=1
log T

where €0 = O(=5=) accounts for cost correlation effects, and the efficiency factors satisfy:

m=p- o e [0.15,0.25] (computational)

Carr
2
N,
ny = % : Wh € [0.12,0.20] (sample)
e 1
ns = 22— €00.08,0.15] (temporal)
a H

Proof. Cost Component Decomposition:
COstygse = COPBC 4 Cbase 1 Copase

comp ample

=T%d- Cat + IV - Csample T H - cime

Computational Cost Reduction: With KV reuse rate p and attention dimension d:
Ceomp = T?d(1 — p) - caw + Tpd - s

v 1
:ng'catt'(l_p+p'k')

caw T
= Coomp - (L =)

where 7 = p - 2. TRp- % for large 7.
s Np.
Sample Cost Reduction: With prioritized replay efficiency 3 and buffer ratio :
Bo? N,
C’sample =N- Csample * (1 - T : Wh

_ Cbase (1 _ 772)

sample

23

(208)

(209)

(210)

@211)

212)
213)

(214)
215)

(216)

217)

(218)

where 1y = %2 - %
Temporal Cost Reduction: With KL regularization efficiency Ak, and learning rate o
A 1
Ciime = H - Ciime - (1 - % : H> (219)
= Ciime - (1= 13) (220)
where 3 = 2. L,
Multiplicative Cost Model:
CostechorL = Ceomp + Csample + Clime (221)
= Coomp(1 =) + Ciime(1 = 12) + Ciine (1 = ms) (222)

3
= CoSthgse - <1 - Z wim> (223)
=1

are the cost weights.

base

where w; = Costpase

Correlation Effects: The efficiency factors are not perfectly independent due to system interactions:

Ecost = Z w;w;n;n; - Corr(ng, n;) (224)
i<j
logT
=0 (O? > (correlation decay) (225)
Final Bound:
3
COStEchoRL = COStbase : H(l - 772) : (1 + ecost) (226)
i=1
O
Lemma 2 (Cost Component Decomposition). The fotal cost can be decomposed as:
Costyase = Chate + Chst |, + Crrat (227)
where:
T2
base
= CoStpase * ———— 228
Ceomp = COStbase * 7 g (228)
T
base
Csample = Costpgse - T +T+H (229)
base H
Ciime = COStpase (230)

"T2I T+ H

Proof. The decomposition follows from the relative computational complexity of each component:

 Computational cost: Dominates for long sequences due to O(7"?) attention complexity
 Sample cost: Grows linearly with sequence length O(T)

* Time cost: Depends on episode length O (H)

The normalization ensures that the sum equals the total base cost. O

Theorem 15 (Efficiency Gain Concentration). The efficiency gains concentrate around their expecta-
tion with high probability:

T
P Heﬁ?ciencygm -]E[e]ﬁciencyguinﬂ > e} < 2exp (;‘2> (231)

where o2 is the variance of the efficiency gains.

24

Proof. The efficiency gains depend on the interaction between the three components. Since each
component operates independently, the total efficiency gain is the sum of independent random
variables.

By the central limit theorem, the efficiency gains converge to a normal distribution with mean
Elefficiency,,,| and variance 2. The concentration bound follows from the tail bounds of the normal
distribution. O

B.4.1 Formal Definitions and Algorithm Analysis

Definition 1 (EchoRL Markov Decision Process). An EchoRL MDP is a tuple Mggopr =
(S, A, T,R, F,K, R) where:

S = state space with |S| = S (232)
A = action space with |A| = A (233)
T:SxA— A(S) (transition function) (234)
R:SxA—[0,1] (reward function) (235)
F:SHY R (trajectory encoder) (236)
K:8" =YV (KV cache function) (237)
R:E — A(E) (replay function) (238)

where A(-) denotes probability distributions and £ is the experience space.

Definition 2 (Trajectory Prior Space). The trajectory prior space T is a metric space (R?, dr)
where:

dr(r1,72) = |71 — 72ll2 + Ak Dxe [p(71) [p(72)] (239)
T ={r e R 7]l < My, Dr[p(7)||Ipo(7)] < €xr} (240)
for some constants M., ex;, > 0 and reference distribution py.
Definition 3 (KV Cache Metric Space). The KV cache space V is equipped with the metric:
T
dy (K, KVy) =3 ||k — KV | (241)

i=1

d d
PIPMLHE (242)

j=1k=1

where || KV || p =

and the Frobenius norm || - | p measures cache similarity.

Definition 4 (Latent Planning Operator). The latent planning operator L : S*T1 — T is defined as:

AC(*Stfk:t) = ‘Ftﬁ(stfk:t) + €noise (243)
where €pise ~ N(0,0%14) (244)
and Fy € Fripsenie = {f + | f(2) = f(y)ll2 < Ll — yll2} (245)

for some Lipschitz constant L > 0.
Definition 5 (KV Reuse Operator). The KV reuse operator K : §* — V satisfies:

K(sl:t) - Icfmzen(slzt/) ¥ ’leling(sturl:t) (246)

where t' = arg mg({j : CacheHit(s1.5)} (247)
J<

and @ :V xV —V (cache concatenation) (248)

Definition 6 (Prioritized Replay Operator). The prioritized replay operator R : £* — A(E) is
defined as:

R(E) = Soﬁmaxﬁ({score(ei)}f\il) (249)
where score(e;) = ||7; — E[7]||5 + ar; + Buge - age(e;) (250)
(Bz:)
and Softmaxz(x) = —PAPTE) (251)
’ Zjvzl exp(Bz;)

25

Algorithm 3 EchoRL Latent Planning Rollout and Update

Reqmre State window s;—:¢, encoder Fg, policy g, replay buffers Bhot, Beold
: # Phase 1: Latent Trajectory Encoding

LT]:gi)(st k.t) ~+ €noise Where €npise ~ N(07 g Id)
DTt—1 .7:¢(5t7k71;t71) + 61/10ise

: Lxu Dxi[pe(7e | s1:6)||po (Te—1 | S1:4—1)]

: # Phase 2: Policy Action Selection

:at ~ me(ay | st,7) where mg € ILipschicz

: Execute a¢, observe r¢, S¢41

: # Phase 3: Experience Prioritization and Storage
t pe = |l7e — E[7][I3 + are + e - age(se)

. if age(st) < Tinresh then

Insert (s¢, T¢, a¢, ¢, p¢) into Bno with priority py
: else

Insert into Beola With priority p: - Yeola

: end if

: # Phase 4: Prioritized Experience Sampling

: Sample {¢; } o~ Softmax[;({pt } 1) from Bioi U Beola
: # Phase 5: Policy and Encoder Updates

: for each sampled (s;, 7;, as, ;) do

Compute advantage A; using GAE with Agag
Compute likelihood ratio 7; () «— —~elailsiri)_

Togq (@il5i,73)
Lppo <+ min (r;(0) Ay, clip(ri (0),1 —€,1 + €) Ay)
: end for
: Update 6 using ZZ Lppo, backpropagate through ¢ with Ak, Lki
: RETURN Updated policy 7y and encoder F

SOPTPU AW —

[S S Uy U G W S
S VXA LW~

[NI\ S)
AW =

B.4.2 Algorithm Analysis

Theorem 16 (EchoRL Algorithm Complexity). Algorithm@has time complexity O(T?d + T'd? +
Nlog N) and space complexity O(T'd + N) where T is sequence length, d is embedding dimension,
and N is buffer size.

Proof. Time Complexity Analysis:

Timeoa = Timeencoding + Timepolicy + Timereplay + Timeypdate (252)
Timeencoding = O(Td?) (trajectory encoder forward pass) (253)
Timepgiicy = O(T'd) (policy forward pass) (254)
Timeepay = O(N log N') (priority queue operations) (255)
Timeypgae = O(T?d) (attention computation) (256)
Space Complexity Analysis:
Space,,; = Space.,qoger T SPACC frer T SPACE yche 257
Space,coqer = O(d?) (encoder parameters) (258)
Spacey, 4., = O(N) (replay buffer) (259)
Space .. = O(Td) (KV cache) (260)
O

Algorithm Overview: The EchoRL algorithm operates in five distinct phases, each contributing to
the overall efficiency and performance of the system:

* Phase 1 (Lines 2-5): Encodes the current state window into a latent trajectory representation
while maintaining Lipschitz continuity for stability.

* Phase 2 (Lines 6-8): Uses the trajectory encoding to condition policy decisions, enabling
more informed action selection.

26

* Phase 3 (Lines 9-14): Computes surprise-weighted priorities and stores experiences in
hot/cold buffers based on recency.

* Phase 4 (Line 15): Samples experiences using temperature-scaled softmax to focus on
high-value transitions.

* Phase 5 (Lines 16-22): Updates both policy and encoder parameters using PPO with KL
regularization.

Key Innovations: The algorithm’s efficiency comes from (1) trajectory-conditioned policy decisions,
(2) prioritized experience replay with surprise weighting, and (3) joint optimization of policy and
trajectory encoder with appropriate regularization.

Theorem 17 (Algorithm Correctness with Convergence Guarantees). Let {0}, and {¢;}1_, be
the parameter sequences generated by Algorithm[3| Under the assumptions that (1) the policy class I
is Lipschitz with constant L, (2) the encoder F is Lipschitz with constant Ly, (3) the replay buffer
maintains sufficient diversity, and (4) the learning rates satisfy Zfil ar = oo and Zfil a? < oo,
then:

Jim E[|[VoJ(0)|*] =0 and Jim E[|VyLke()]*] = 0 (261)

with convergence rate O(1/v/T) for the policy gradient and O(1/T) for the KL regularization.

Proof. Policy Gradient Unbiasedness: The policy gradient estimate is:

N
- 1 mo(ai|si, Ti)
VoJ(0) = ~ ; o (el) A;Vglogmo(as|ss, ;) (262)

Since the replay sampling is unbiased:
E[VoJ(0)] = E(s 0.~p[Vologme(als, 7)A(s, a, T)] (263)
= VyJ(6) (unbiased policy gradient) (264)
KL Regularization Convergence: The KL regularization gradient is:
VoLrr = VDo [pg(Te]51:4) |Pe (Te—1]51:0—1)] (265)
=B, opy (151 [V 10g pg(Tels1:6)] = Ery_ py(1s10-1) [Vo 108 P (Te—1[51:4-1)] (266)
By the Lipschitz property of F:
[VoLrL(d1) — VoLxL(d2)|l < Lr|ld1 — o2 (267)

Convergence Analysis: Using the gradient descent update ¢y1+1 = ¢y — @V Lxr(¢):

2L
Lx(de41) < Lx(de) — el VoLro(oe)|* + at 21V o L (1) (268)
L
= (60— o (1= 222) VoLl (269)
For a; < %:
T

Z ‘qu['KL ”2 < 2(‘CKL(¢1) B ﬁKllj(QsTJrl)) (270)

pa (1 — *5%)
Q(EKL(¢1) B E%L) (271)

at(l — LtQLF)

Therefore: mine 7y |V LxL(d¢)||? < O(1/T).

Priority Sampling Correctness: The softmax sampling probability is:
exp(f - score(t))

25:1 exp(f - score(t))

This provides importance sampling with weights w; = Pu.f;(,i‘)(N = /(t = N - P(t), ensuring

unbiased gradient estimates. O

P(t) = (272)

)

2

27

Algorithm 4 KV-Aware Asynchronous Rollout with Optimal Scheduling

Requ1re State sequence s1.¢, KV cache C, priority queue Q, cache parameters A, p
: # Optimal KV reuse with cache locality

ot + argmax;<:{j : (s1.5,KV;) € CA CacheHlt(Sl;j)}

¢ KVfrozen <— C[s1./] with probability 1 — exp(—At')

: KViolling <— ComputeKV (sy/41.¢) with complexity O((t — ¢) d)

: KV(s1:¢) < KVfrozen D KVioling Where @ is cache concatenation

: # Reward-cost ratio scheduling

: r; « GetReward () with E[r;] = p,

D — EsumateQueueTlme() with E[ql] =

s priority(:) < =O0(-+ 7=

10: # Optimal token dispatch with load balancing

11: Sort requests by priority(i) in O(N log V)

12: Dispatch tokens using optimal routing with complexity O (T log N)
13: Update C with new KV states using LRU eviction

14: RETURN KV(s1.¢) and dispatch schedule

O 01D UN R W=

Theorem 18 (KV Rollout Optimality). Algorithm || achieves optimal computational complexity
O(T?(1 — p) +Tp-+log N) where p is the KV reuse rate, with cache hit probability P(CacheHit) >
1 — exp(—AT) for some constant A > 0.

Proof. Cache Hit Probability Analysis: Let X, be the indicator variable for cache hit at position ¢.
The cache hit probability is:

P(CacheHit) = U {s1;€C} (273)
t
= ({s1 £C} (274)
j=1
t
>1—[]P(s1; ¢C) (275)
j=1
t
=l—exp|— Z Aj | =1 —exp(=Xt) (276)
j=1

for some A > 0 under the assumption of cache locality.

Computational Complexity Analysis:

Complexity,y, = Complexity, . + Complexity ... + Complexity peque (277)
Complexity,,... = O(log N) (cache lookup) (278)
Complexityopmpue = O(T(1 — p) + Tp) (KV computation) (279)
Complexity, eque = O(log N) (priority queue) (280)

Optimality Proof: The algorithm achieves the information-theoretic lower bound for KV computa-
tion. Any algorithm must compute at least 7%(1 — p) new attention weights and access at least Tp
cached values, giving the lower bound Q(T2%(1 — p) + Tp). O

Theorem 19 (Replay Convergence Guarantee). Algorithm [5| converges to the optimal sampling
distribution with rate O(1//T) as established in TheoremE]

Proof. The convergence follows from the softmax sampling mechanism:

* Score Concentration: The surprise metric concentrates around high-value experiences

28

Algorithm 5 Prioritized Replay with Surprise Weighting

Require: Experience (s¢, T¢, at, r¢), buffers Bhot, Beold, temperature 3

—_
o

—_— —
W =

: # Compute surprise metric
. score(t) < || — E[7]]]® 4+ ar:
: # Buffer management
: ifage(st) < Tinresn then

Insert (s¢, ¢, at, Tt, score(t)) into Bho
else

Insert (s¢, 7¢, at, Tt, score(t)) into Beola
: end if

: # Softmax sampling

: _exp(B-score(t))
: P(t) = >4 exp(B-score(t’))

: Sample {;}12, ~ P(t) from Buor U Beoid
: # Return sampled experiences

: RETURN {(sy;, Tt;, @, T,)}fvzl

» Temperature Control: 5 > 0 ensures proper exploration-exploitation balance

* Buffer Diversity: Hot/cold separation maintains sufficient experience diversity

The convergence rate O(1/+/T) matches the theoretical analysis in Theorem O

B.4.3 Implementation Details

This section provides comprehensive implementation details for reproducing EchoRL results, includ-
ing architecture specifications, hyperparameter settings, and practical implementation considerations.

Table 3: EchoRL Implementation Configuration

Component Parameter Value
Actors Nycior 128
. Learners Nieamer 2
Architecture Gradient sync NCCL
Experience transport gRPC
KL weight AKL 0.1
Hot buffer | By 106
Hyperparameters Cold buffer |Boy| 107
Temperature /3 1.0
PPO clip € 0.2
Learning rate o 3x 1074
GPUs 8x A100-80GB
Hardware CPU cores 128
Memory Mgl 1TB
Bandwidth By 10 Gbps

Implementation Guidelines:

* Trajectory Encoder: Use a 3-layer MLP with hidden dimensions [512, 256, 128] and ReLU
activations. Apply layer normalization and dropout (rate 0.1) for stability.

* Policy Network: Implement as a 2-layer MLP with hidden dimension 256 and tanh activa-
tion. Use orthogonal initialization for better gradient flow.

+ KV Cache Management: Implement LRU eviction with cache size 10*. Use priority
queues for efficient cache hit/miss detection.

* Replay Buffer: Use circular buffers with separate hot/cold storage. Implement lock-free
operations for multi-threaded access.

29

* Gradient Synchronization: Use NCCL for efficient all-reduce operations. Apply gradient
clipping with norm 1.0 to prevent instability.

Table 4: Mathematical Parameter Specifications

Mathematical Component

Symbol Specification
Dimension d 512
Trajectory Space Window size k 8
Lipschitz constant L <1.0
Reuse rate p [0.5,0.7]
KV Cache Cache size |C| 10*
Hit probability Py >0.8
Priority decay ~y 0.99
Replay Buffer Age threshold Tipresh 1000
Sampling variance o2 0.1
Tolerance €cony 10-6
Convergence Max iterations gy 106
Batch size B 256

30

	Introduction
	System Design
	Experiments
	Setup
	Mathematical Reasoning Performance

	Conclusion
	Related Work
	Mathematical Analysis and Proofs
	Notation and Preliminaries
	Core Mathematical Framework
	Key Mathematical Quantities
	Notation Summary

	Core Convergence and Efficiency Analysis
	KV Reuse Efficiency Analysis
	Prioritized Replay Convergence

	Scaling and System Integration Analysis
	Component Additivity Analysis

	Implementation and Cost Analysis
	Formal Definitions and Algorithm Analysis
	Algorithm Analysis
	Implementation Details

