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Abstract

Our research underscores the value of leveraging zeroth-order information for1

addressing sampling challenges, particularly when first-order data is unreliable or2

unavailable. In light of this, we have developed a novel parallel sampling method3

that incorporates a leader-guiding mechanism. This mechanism forges connections4

between multiple sampling instances via a selected leader, enhancing both the5

efficiency and effectiveness of the entire sampling process. Our experimental6

results demonstrate that our method markedly expedites the exploration of the7

target distribution and produces superior quality outcomes compared to traditional8

sampling techniques. Furthermore, our method also shows greater resilience against9

the detrimental impacts of corrupted gradients as intended.10

1 Introduction11

Score-based generative models [35, 26, 36, 20] introduce a novel approach to generative modeling12

that revolves around the estimation and sampling of the Stein score [26, 36]. The score represents13

the gradient of the log-density function ∇x log π(x) evaluated at the input data point x. This type14

of approach usually relies on effectively training a deep neural network to accurately estimate the15

score. The estimated score is then utilized to navigate the sampling process, ultimately resulting16

in the production of high-quality data samples that closely match the areas of high density in the17

original distribution.18

In our research, we investigate the sampling of a probability distribution given by π(x) ∝ e−U(x),19

where U(x) is the energy function. In the context of energy-based score-matching generative models,20

the objective often involves sampling the modes in areas of high probability density. An approach21

as suggested in [36, 20], is to smooth the original distribution by convolving π(x) with an isotropic22

Gaussian distribution of variance σ2, yielding πσ(x) =
∫
π(x′)N (x;x′, σ2I) dx′. By gradually23

decreasing the variance σ, πσ(x) recovers the original distribution π(x).24

Typically, the sampling of score-based approaches are integrated with numerical SDE solvers [38], for25

example, the Euler-Maruyama solver, as well as Monte Carlo Markov Chain (MCMC) techniques like26

Langevin Dynamics [30]. Furthermore, there is a notable similarity between score-based sampling27

algorithms and first-order optimization algorithms. Efforts have been made to merge these two28

methodologies, particularly from a perspective of sampling [42, 10, 28, 9, 44]. All these methods29

primarily concentrates on first-order information∇xU(x) to improve performance, while typically30

treating the zeroth-order information U(x) merely as a basis for rejecting samples [18, 32, 29].31

We argue that incorporating zeroth-order information can significantly enhance the algorithm’s overall32

effectiveness, particularly in instances where the first-order information is compromised. To address33

this, we draw inspiration from parallel tempering [39], a simulation method commonly used to34

identify the lowest energy state in systems of interacting particles. The fundamental principle of35
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parallel tempering involves operating multiple sampling replicas simultaneously, each at a different36

temperature level. These temperatures typically range from low, where the system is prone to being37

trapped in local minima, to high, which facilitates the system’s ability to surmount energy barriers38

and more thoroughly explore the energy landscape.39

Drawing inspiration from this concept, we extend the Hamiltonian Monte Carlo (HMC) framework40

[29] and introduce a novel algorithm that concurrently runs multiple replicas, sampling at both high41

and low Hamiltonian energy levels. Moreover, this methodology combines both zeroth and first42

order information from various chains, hence enhancing the effectiveness of sampling approaches.43

The experimental findings demonstrate the efficacy of our approach in scenarios where relying44

solely on first-order knowledge is insufficient. These findings illustrate the capacity of incorporating45

zeroth-order information to greatly enhance the efficiency and accuracy of sampling operations in46

energy-based score-matching algorithms.47

2 Background48

2.1 Hamiltonian Monte Carlo49

The primary purpose of MCMC is to construct a Markov chain that matches its equilibrium distribution50

to the target distribution. One of the most popular MCMC methods is Langevin Monte Carlo [17, 32],51

which proposes samples in a Metropolis-Hastings [18] framework for more efficient state space52

exploration. Another advanced method is HMC [29, 11, 2], which incorporates an auxiliary variable53

p and employs Hamiltonian dynamics to facilitate the sampling process. The Hamiltonian function is54

structured as a composite of potential energy U(x) and kinetic energy K(p), defined as follows:55

H(x, p) = U(x) +K(p), (1)
where x represents the position of a particle and p denotes its momentum. Kinetic energy K(p)56

is commonly formulated as K(p) = 1
2p
TM−1p, where M corresponds to the mass matrix. For57

simplicity, we assume in this paper that the mass matrix M is equal to the identity matrix I . The joint58

distribution of position and momentum conforms to the canonical distribution:59

π(x, p) = e−H(x,p)/Z, (2)

where Z =
∫∫

e−H(x,p) dxdp. Samples from π(x) can then be obtained by marginalizing p from60

π(x, p), which further requires
∫
p
π(x, p) dp = constant. In the HMC algorithm, proposals are61

generated by simulating Hamiltonian dynamics and then subjected to a Metropolis criterion to62

determine their acceptance or rejection. A commonly employed numerical method for solving these63

equations is the Leapfrog integrator [3].64

Recent progress in HMC techniques has focused on increasing their adaptability and applicability in a65

variety of contexts. Such developments include the NUTS sampler [21], which features an automatic66

mechanism for adjusting the number of simulation steps. The Riemann manifold HMC [15] leverages67

Riemannian geometry to modify the mass matrix M , making use of curvature information to improve68

sampling efficiency. Additionally, Stochastic Gradient Hamiltonian Monte Carlo [11, 27] investigates69

a stochastic gradient approach within the HMC framework. Our contribution is distinct from these70

methods and can be easily integrated with them.71

2.2 Energy-based score-matching model72

Probabilistic models often require normalization, which can become infeasible when dealing with73

high-dimensional data [25, 13]. Since the exact probabilities of less probable alternatives become74

less crucial as long as they remain relatively lower, rather than solely predicting the most probable75

outcome, models can be structured to interpret relationships between variables via an energy function.76

Within the context of generative models, these energy-based models (EBMs) are devised to assign77

higher energy values to regions of lower probability and lower energy values to regions of higher78

probability.79

Score matching [22, 36] is a method used in statistical modeling and machine learning to estimate a80

probability distribution or a probability density function from observed data. It is particularly useful81

when direct estimation of the probability distribution is challenging, especially in high-dimensional82

spaces. In score matching, the goal is to find an approximation to the probability density function83

(PDF) of a dataset by estimating the score function, also known as the gradient of the log-density.84
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The score function represents the derivative of the log PDF with respect to the data. By matching the85

estimated score function to the observed data, one can indirectly estimate the underlying probability86

distribution.87

A relationship between EBMs and score matching can be established by training EBMs through88

denoising score matching [37]. The training objective is described below:89

Eπ(x)N (ϵ;0,I)

[∥∥∥ ϵ
σ
−∇xUθ

(
x+ σϵ

)∥∥∥2
2
. (3)

Uθ is typically represented as a neural network, with θ denoting its parameters. Minimizing this90

objective ensures that∇xUθ(x) = −∇x log πσ(x) and thus e−Uθ(x) shall be proportional to πσ(x).91

3 Motivation92

Figure 1: A good anchor point could
help improve convergence even if the
gradient is unexpectedly disturbed from
original gradient to the disturbed gradi-
ent, getting closer to the optimal point.

In our work, we assume to have access to both the gradi-93

ent information ∇xU(x) as well as the energy information94

U(x). In certain scenarios, gradients may yield informa-95

tion that is either of limited or potentially detrimental. Our96

research examines situations where gradients are compro-97

mised, highlighting the importance of zeroth-order infor-98

mation, often associated with energy-based sampling.99

We concentrate on showcasing the strengths of our method100

in three types of challenging but common scenarios, sum-101

marized as instability, metastability and pseudo-stability.102

Instability refers to a state in which a system lacks equilibrium or steadiness, often leading to unpre-103

dictable or erratic behavior. Metastability describes a condition where a system appears stable over a104

short period but is not in its most stable state, and it can transition to a more stable state under certain105

conditions. Pseudo-stability, on the other hand, denotes a situation where a system seems stable but106

is actually in an incorrect, suboptimal, or misleadingly stable state.107

Figure 2: To enhance exploratory ca-
pabilities, it’s important to encourage
particle to explore the landscape.

Instability. In high-dimensional spaces, sampling algo-108

rithms may struggle to converge in the presence of a com-109

plex probability distribution. This instability can arise in110

situations where the local Hessian matrix is ill-conditioned111

or spectrum of the local Hessian matrix is exceptionally112

large. Such conditions often lead to inaccuracies or insta-113

bilities in numerical calculations, potentially causing the114

convergence process to fail. The samples generated could115

substantially diverge from the true mode, resulting in subpar sample quality. However, employing an116

anchor point can enhance the stability of convergence, as demonstrated in Figure 1.117

Metastability. Particles are prone to getting stuck in local minima when the gradients are not118

informative. For example, on the saddle point or a pleaute loss landscape. As a result, simulations119

frequently end up in a state of intermediate energy, which is different from the system’s lowest energy120

state. This scenario is illustrated in Figure 2.121

Figure 3: There is a potential for parti-
cles to unintentionally follow the gradi-
ent flow towards these regions of high
energy. A more comprehensive descrip-
tion could be found at Section 5.1.3.

Pseudo-Stability. Certain situations may present a diver-122

gence between the gradient information and the ground123

truth. This divergence can hinder algorithms from accu-124

rately converging to the appropriate modes. In these in-125

stances, it becomes essential to incorporate energy informa-126

tion to rectify inaccuracies that arise from solely depending127

on gradients. An example of misleading gradients could be128

observed in Figure 3.129

4 Algorithm130

Many sampling methods typically rely on independent131

Markov chains, which can lead to the issues mentioned132

in Section 3. Taking inspiration from [39], our approach133

involves the utilization of multiple replicas. This approach134

3



Algorithm 1 Elastic Leapfrog (eLeapfrog)

Input: A collection of positions {xi}ni=1 ∈ Rn×d, a collection of momenta {pi}ni=1 ∈ Rn×d,
learning rate η > 0, pulling strength λ ≥ 0, number of Leapfrog steps L.
for s = 1, · · · , L do

for i = 1, · · · , n do
Choose the leader xl and calculate ρi

gi ← ∇xU(xi) + ρi · (xi − xl); pi ← pi − η
2 · g

i ▷ Half step for momentum
xi ← xi + η · pi ▷ Full step for position
Choose the leader xl and calculate ρi

gi ← ∇xU(xi) + ρi · (xi − xl); pi ← pi − η
2 · g

i ▷ Half step for momentum
end for

end for
Output: x ∈ Rd, p ∈ Rd

enables us to implicitly encourage greater exploration among multiple particles while simultaneously135

preserving the optimal outcomes for exploitation purposes. We will elaborate on how our algorithm136

can be employed to tackle these challenges.137

Firstly, we introduce a modified version of the leapfrog method, called the Elastic Leapfrog138

(eLeapfrog). In this approach, additional elastic forces are applied between each particle and a139

leader, incorporating an extra elastic energy term into the traditional Hamiltonian function. This140

modification aims to prevent particles from straying significantly from each other, thereby promoting141

local exploitation. We then divide the particles into groups and designate the particle with the lowest142

energy as the leader. Moreover, when combined with the eLeapfrog method, this approach encourages143

other particles to explore around the leader, efficiently addressing the problem of instability.144

Due to the properties of HMC, introducing such an extra elastic energy term when pulling the particles145

towards the leader implicitly incorporates this energy into the momentum, thereby increasing the146

search ability of each particle. As a result, non-leading particles gain more energy for exploration,147

while the leading particle is more likely to concentrate on local exploitation. This approach helps148

mitigate the issue of metastability.149

Finally, we integrate these techniques to present our compplete Follow Hamiltonian Leader (FHL)150

algorithm. The FHL algorithm capitalizes on both first-order and zeroth-order information while151

significantly improving the efficiency of space sampling compared to traditional sequential sampling152

methods. This enhanced approach fosters convergence towards the lowest energy states and increases153

the likelihood of escaping states with pseudo stability.154

4.1 Elastic Leapfrog155

To improve the efficiency of sampling, we integrate an elastic force component into the conventional156

leapfrog technique. This enhancement aims to dynamically guide particles towards a leading particle,157

facilitating their movement and improve their exploration ability. The method could be treated like158

temporarily storing potential energy within an elastic spring, which is then converted into kinetic159

energy. By adding extra elastic force, we could define the energy of elastic HMC as:160

He(x, p; x̃) = Ue(x; x̃) +K(p) = [U(x) + E(x; x̃)]︸ ︷︷ ︸
Ue(x,x̃)

+K(p), (4)

161 where E(x; x̃) is the extra elastic energy imposed by Elastic Leapfrog and is defined as E(x; x̃) =162
ρ
2 ∥x− x̃∥

2
2. Our approach enables particles to efficiently navigate the sample space, guided by the163

leader. This local exploration strategy, though similar to concepts in [46, 7, 8, 40], is uniquely tailored164

for application in the realm of sampling.165

4.2 Leader Pulling166

Next, we introduce our leader pulling method. Initially, we represent the ith particle inside a group167

as xi and select a leader based on a their energies U(xi). The motivation is that we encourage each168
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particle xi to be guided towards a chosen leader. The leader is chosen as the one of minimum energy169

and thus its index is l = argmini U(xi). The objective function for a group of n particles is:170

Ue(x
1, · · · , xn;xl) =

n∑
i=1

U(xi) +
ρi

2
· ∥xi − xl∥22, (5)

171 where πi = exp
(
−U(xi)

)
/
∑
j exp

(
−U(xj)

)
and ρi = λ · (πl − πi)/(πl + πi). The specifics of172

the Elastic Leapfrog algorithm combined with leader pulling technique are detailed in Algorithm 1.173

4.3 Follow Hamiltonian Leader174

Incorporating zeroth-order information (i.e., function values rather than derivatives) serves two key175

purposes. Firstly, it provides a search direction that accelerates convergence and helps mitigate issues176

arising from corrupted first-order information (i.e., gradient inaccuracies), thereby speeding up the177

optimization process. Second, it helps ensure that we are sampling from the correct underlying178

distribution by properly accepting or rejecting the proposal.179

To ensure that the sampling method maintains detailed balance—a requirement for most sampling180

algorithms—we evaluate the joint distribution of a group of particles. This evaluation determines181

whether to accept or reject a proposed move for the whole group, thereby preserving the integrity182

of the sampling process. This adaptation results in the creation of our algorithm FHL, extensively183

elucidated in Algorithm 2.184

Algorithm 2 Follow Hamiltonian Leader

Input: A collection of positions {xi}ni=1 ∈ Rn×d, learning rate η > 0, pulling strength λ ≥ 0,
number of steps L.
for t = 1, 2, · · · , T do

# Run sampling in parallel
for i = 1, · · · , n do

Randomly sample the momentum pit−1 ∼ N (0, I)

xiprop, p
i
prop ← eLeapfrog (xit−1, p

i
t−1, η, λ, L)

end for
Sample a random variable u ∼ Uniform(0, 1)

if u <
∏n
i=1 exp

(
H(xiprop, p

i
prop)−H(xit−1, p

i
t−1)

)
then

for i = 1, · · · , n do xit ← xiprop, p
i
t ← piprop end for

else
for i = 1, · · · , n do xit ← xit−1, p

i
t ← pit−1 end for

end if
end for
Output: XT = {xiT }ni=1 ∈ Rn×d

5 Experiment185

In this section, we showcase the efficacy of incorporating zeroth-order information, specifically186

energy information, into our proposed method to improve the sampling process. We focus on187

demonstrating the advantages of our approach in addressing the benefits of our approach in handling188

three distinct adversarial gradient scenarios, as outlined in Section 3. To evaluate our method on the189

performance of the concerned questions, we conduct a comparative analysis against the following190

baseline algorithms:191

• LMC (Langevin Monte Carlo): An MCMC method as described in [17] that uses Langevin192

dynamics to sample from probability distributions. It is also known as the Metropolis-193

adjusted Langevin algorithm.194

• HMC (Hamiltonian Monte Carlo): An MCMC algorithm that employs Hamiltonian dynamics195

for more efficient traversal of the state space, leading to better exploration and sampling196

from complex distributions [29, 11, 2].197

• U-LMC (Unadjusted Langevin Dynamics): A variation of LMC without the Metropolis correc-198

tion, referred to [32, 1, 42].199
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• U-HMC (Unadjusted Hamiltonian Monte Carlo): A form of HMC that excludes the Metropolis200

correction step, as in [34, 14].201

5.1 Motivating Examples202

We report on results addressing the challenges identified as instability, metastability, and pseudo-203

stability. Our findings lead us to conclude that the FTH method consistently outperforms other204

approaches in all scenarios examined. Detailed discussions and further analyses of these findings will205

be presented in the following subsections.206

In our experiment, we simultaneously execute sampling with N particles, each completing a total of207

T sampling steps. For the FTH method, these particles are divided into N/n groups, with each group208

containing n particles. Throughout all experiments, we set n to 4. For hyperparameter search, we209

select step sizes η = {0.002, 0.0002, 0.005, 0.0005} for all methods and number of leapfrog steps210

L = {4, 8, 16} for HMC-type methods.211

5.1.1 Instability212

(a) Sampling from the original distribution in the form of e−U(x). T = 1000 in all experiments.

(b) Sampling from the approximated distribution in the form of e−Uθ(x). T = 2000 in all experiments.

Figure 4: Sample from a Gaussian distribution N (µ,Σ) where µ ∈ Rd corresponds to the clean
image. For each method, we plot the lowest-energy particle (in terms of U(x) among all particles in
XT ). The upper-left image represents a direct sample from the distribution N (µ,Σ); The lower-left
image is generated by performing HMC sampling for T steps on the function Uθ(x), with an initial
point set to x0 = µ.

In our sampling process, we focus on efficiently directing particles to high probability density regions,213

thereby avoiding unproductive exploration in regions with low probability. When sampling from a214

single image, our goal becomes attaining the global optima, aligning this objective with those found215

in optimization tasks.216

For our experiment, we chose an image resembling the GitHub logo (https://github.com/logos),217

converted it into a vector format, and use this as the mean of a multivariate Gaussian distribution.218

The covariance matrix for this distribution, represented by Σ, is diagonal. The variance for each219

dimension of the distribution is randomly determined by a uniform distribution within the range of220

(0.25, 1.25). We carry out two similar but different types of experiments:221

In the first experiment, we focus on sampling from the original distribution. This distribution222

is described mathematically as e−U(x) ∝ N (µ,Σ), with U(x) being the energy function that223

characterizes the system.224

For the energy-based score-matching model, we employ a ResNet [19] architecture with 6 layers225

of a hidden dimension of 256. The results of the sampling process are detailed in Figure 4, where226

the main objective is to assess the particles’ capacity for effective convergence to the mode of the227

distribution. In the first scenario, U(x) represents a convex function, whereas in the second scenario,228

Uθ(x) is presumed to be non-convex. The findings demonstrate that our approach, FHL, surpasses229

other baseline methods in both situations.230
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5.1.2 Metastability231

Figure 5: Plot of N = 256 particles of XT on d = 2 starting
from random initializationN (0, 4 ·I). The target distribution
isN ([1, 1], I). Energy State corresponds to the target density
π. The baseline methods U-LMC,LMC,U-HMC,HMC and
our proposed method FHL generate XT after T = 1000
steps. There are no gradient flows and the samplers are only
able to sample by the energy information.

Our research explores the concept of232

metastability, which arises in specific233

scenarios. Metastability refers to a234

state of intermediate energy in a dy-235

namic system, differing from its low-236

est energy state. We examine an ex-237

treme scenario where gradients are en-238

tirely absent, and sampling methods239

only get access to the energy informa-240

tion about the distribution.241

In Figure 5, it’s evident that in this par-242

ticular situation, we enforce the gra-243

dient to be near zero, resulting in all244

sampling methods, except FHL and245

LMC, behaving almost like random246

sampling. Nevertheless, owing to the247

leader pulling strategy, FHL retains its248

ability to locate the mode much faster.249

5.1.3 Pseudo-stability250

This section highlights the phenomenon showcased in Figure 3. Here, particles can become ensnared251

by gradient flows and be coerced into pseudo-stable regions. Despite the eventual recovery of the252

correct distribution by the sampling method, the convergence process can be exceptionally sluggish.253

To elaborate, we examine a scenario where the samplers solely depend on gradients from∇ logQ,254

while the energy function P remains deliberately undisclosed. The distributions P and Q are:255

• Q ∼ 1
4 [N (µ1, I) +N (µ2, I) +N (µ3, I) +N (µ4, I)]256

• P ∼ 1
2 [N (µ1, I) +N (µ2, I)]257

where µ1 = [−2, 0], µ2 = [2, 0], µ3 = [0, 2] and µ4 = [0,−2].258

Figure 6: Plot of N = 256 particles of XT for a 2-mode
Gaussian mixture model on d = 2 starting from random
initialization N (0, 4 · I). Energy State corresponds to the
target density π. The baseline methods U-LMC,LMC,U-
HMC,HMC and our proposed method FHL generate XT

after T = 200 steps.

From Figure 6 we can see that FTH259

does not only capture the modes more260

quickly compared to the other meth-261

ods but also successfully get out of the262

trap of the pseudo-stable regions.263

Our study addresses the challenges264

of instability, metastability, and265

pseudo-stability, demonstrating that266

the FTH method consistently outper-267

forms other approaches across various268

scenarios. Through illustrative experi-269

ments, we show that FTH rapidly cap-270

tures modes and effectively escapes271

pseudo-stable regions, even when gra-272

dients are entirely absent. This su-273

perior performance is attributed to274

FTH’s unique leader pulling strat-275

egy, which directs particles efficiently276

to high-probability density regions,277

thereby avoiding unproductive explo-278

ration in low-probability areas.279

In the following section, we will illustrate the advantages of FTH in more general applications,280

particularly for energy-based (score-matching) models.281
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5.2 Energy-Based Generative Model282

Energy-based models (EBMs) offer significant advantages for sampling because they naturally283

provide energy information that can be utilized to guide the sampling process. In an EBM, the energy284

function assigns lower energy values to more probable configurations, enabling the sampler to more285

effectively navigate the probability landscape and generate high-quality samples. This makes EBMs286

a powerful tool in scenarios where precise sampling is essential.287

We investigate a scenario where energy functions guide the sampling process. We use the generative288

model outlined in [16] and adopt a conditional generation method that leverages classifier-derived289

gradients for sampling. The classifier’s output is considered as the energy for guided sampling.290

The common classification tasks involving C classes are often solved by using a neural network291

fθ : Rd → RC , which maps each input data point x ∈ Rd to C-categorical outputs. The output are292

then used to define a categorical distribution of class y through a softmax function:293

pθ(y | x) =
exp(fθ(x)[y])∑
y′ exp(fθ(x)[y

′])
,

where fθ(x)[y] represents the y-th component of fθ(x), corresponding to the logit for class y. Once294

the classifier is trained, p′θ(y | x) = exp(fθ(x)[y]) could be used to sample for a specific class y.295

(a) Class of airplanes. (b) Class of birds.

(c) Class of frogs. (d) Class of dogs.

Figure 7: Sample from joint energy model by different classes (Left: HMC; Right: FTH).

We compare FTH with the standard HMC method using a limited number of sampling steps, con-296

sistently accepting new proposals based on the potential energy during sampling. It is evident that297

FTH produces higher-quality images than HMC. Additionally, our experiments reveal that FTH tends298

to generate sharper images compared to the other method. This can be attributed to the assumption299

that the classifier focuses on the object’s features rather than the entire image. As a result, when the300

prediction probability is high, the features that increase confidence become more prominent, while301

unrelated background elements are filtered out.302

5.3 Energy-Based Score-Matching Models303

As indicated in [12], when two diffusion models are combined into a product model qprod(x) ∝304

q1(x)q2(x), problems can arise if the model reversing the diffusion uses a score estimate derived305

by simply adding the score estimates of the two independent models. We use energy-based score-306

matching models to illustrate this issue. It is important to note that such inconsistencies typically307

involve the composition of two or more diffusion models.308
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5.3.1 Synthetic Dataset309

We first show an example of composing two distributions p1(x) and p2(x), as illustrated in the left310

column of Figure 8. The results show that FTH demonstrates a strong ability to converge to the311

correct composition, with less particles fall out of the high-density region compared to others.312

Figure 8: Compose sampling with DDPM.

5.3.2 CLEVR Dataset313

(a) Baseline (b) MALA (c) HMC (d) FTH

Figure 9: Generation of cube. The zoomed images
could be found at Figure 19.

(a) Baseline (b) MALA (c) HMC (d) FTH

Figure 10: Generation of sphere and cylinder. The
zoomed images could be found at Figure 20.

We use CLEVR dataset from [23] for our gen-314

eration and sampling tasks. The energy model315

is adopted from [12], and we employ different316

samplers for generation. The dataset includes317

three classes: cube, sphere, and cylinder. We318

explore scenarios where we first sample from319

only one category and then from two categories.320

In the first experiment, there is no composition321

of models. As depicted in Figure 9, it is evident322

that FTH effectively generates the desired image323

without any extraneous shapes, whereas both324

MALA and HMC generate additional shapes.325

In the second experiment, we combine two in-326

dependent diffusion models, each trained sepa-327

rately to generate sphere and cylinder. As shown328

in Figure 10, it is clear that FTH excels at pro-329

ducing high-quality images with almost no over-330

lapping between objects, accurately rendering the intended shapes in a pristine manner. In contrast,331

the other methods generate the undesired shape cube. Additionally, FTH exhibits less noise, indicating332

greater stability for sampling.333

6 Conclusion334

In this study, we first recognize the significance of incorporating zeroth-order information into the335

sampling process, highlighting the common limitations faced by conventional sampling methods.336

These limitations include unstable sampling outcomes frequently associated with energy-based337

score-matching models, the potential metastability arising from the multi-modal nature of the energy338

function, and errors in gradient computation stemming from the complex structure of the composi-339

tional distribution. Subsequently, we present an innovative approach that leverages parallel HMC340

sampling to address the issues. Building upon HMC, we incorporate energy modulation techniques341

to enhance the sampling process. Through this approach, our method is able to systematically reduce342

the potential energy, leading to substantial advantages in practical implementations of sampling.343
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466

Follow Hamiltonian Leader: An Efficient467

Energy-Guided Sampling Method468

(Supplementary Material)469

470

A Additional Discussion for Section 3471

A.1 Instability & Metastability472

We now approach this problem from an optimization perspective. There is a strong connection473

between optimization and sampling, particularly through the principle of simulated annealing [24],474

which demonstrates how sampling methods can be transformed into optimization techniques.475

With a slight abuse of notation, we consider the following objective function:476

U(x) = x[1]2 + 0.01 · x[2]2,

where x ∈ R2 and x[i] denotes the ith dimension of x. This is a 2-dimensional optimization problem477

with a condition number of 100, indicating it is somewhat ill-conditioned.478

For n particles, the objective function is:479

Ue(x
1, · · · , xn;xl) =

n∑
i=1

U(xi) +
ρ

2
· ∥xi − xl∥22,

where we set ρ = 0.1. We initialize x1 = (2, 2) and x2 = (−1,−3) respectively, and optimize the480

objective function using the gradient descent method. Note that when n = 1, this method reduces to481

vanilla gradient descent, while n = 2 incorporates our leader-pulling scheme.482

Figure 11: U(x1) with gradient descent method [6]. The learning rate is set to 0.1.
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Figure 12: U(x1) with heavy-ball method [31]. The learning rate and momentum are set to 0.02 and
0.9 respectively.

From Figure 11, we can see that incorporating the leader-pulling scheme helps improve convergence.483

This demonstrates that the leader-pulling scheme can address the issue of instability in optimization.484

However, we also observe that a carefully chosen leader is usually required for our method, which485

we will leave for future discussion.486

Furthermore, as shown in Figure 12, the particle using the leader-pulling scheme explores much487

further compared to the vanilla heavy-ball method. This outcome is expected, as we want the method488

to enhance exploration and thereby resolve the metastability issue.489

A.2 Pseudo Stability490

These challenges are commonly encountered when sampling from compositional models, particularly491

when one of the distributions is a piecewise-constant distribution with its gradients are zero almost492

everywhere in its domain. To illustrate this, consider the example π(x) ∝ π1(x) · π2(x). Here we493

consider ∂ log π2 equals to zero everywhere.494

It’s worth noting that while combining distributions in their logarithmic forms is straightforward,495

which leads to log π(x) = log π1(x) + log π2(x) + constant , omitting the constant log π(x) can496

be readily derived from the individual log π1(x) and log π2(x). However, the composition of their497

gradients becomes problematic, as the computation of the sub-gradient ∂x log π(x) ̸= ∇x log π1(x)+498

∂x log π2(x) in general due to the use of automatic differentiation in machine learning [4].499

In this section, we focus on the disparity between gradient and energy in the context of combining500

two distributions as indicated in Section 3.501

We analyze a composite probability distribution structured as π(x) ∝ π1(x) · π2(x), leading to the502

construction of two specific distributions:503

• The first distribution, π1(x), is given by:504

π1(x) =
1

|X|
∑
µ∈X
N (µ, σ2I),

505 where |X| represents the cardinality of the set X , indicating the total number of elements in506

X .507

• The second distribution π2(x), is defined as508

π2(x) =
1x∈ΩY

Vol(ΩY )
,

509 with ΩY being the set where ΩY = {x| d(x, Y ) < ϵ}. In this context, the distance metric d510

is specified by d(x, Y ) = argminy∈Y ∥x−y∥2, indicating the minimum Euclidean distance511

from x to any point in the set Y .512

Observe that π1 constitutes a smooth distribution, whereas π2 is a piecewise-constant distribution.513

Consequently, for π2, the gradients are zero almost everywhere. When we consider the expression514

∇x log π1(x) + ∂x log π2(x), it could be simplified to ∇x log π1(x), which is not equivalent to515

∂x log π(x) in general.516
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In the subsequent subsections, we present two motivating examples: one in a low-dimensional setting517

and the other in a high-dimensional context. Throughout these experiments, we set σ2 = 0.002 and518

ϵ = 0.2. In this section, the outcomes of U-LMC and U-HMC are omitted because both techniques519

succumb to the issue of misleading gradients by nature, causing worse performance.520

A.2.1 Low-dimensional Example521

We propose an example inspired from [12] but in a different setting. In this revision, we begin by
providing a more specific definition for two distributions. For the first distribution π1, we define:

X = {
(
cos (2πi/8) , sin (2πi/8)

)
| i = 1, 2, . . . , 8},

and for the second distribution π2, we specify:

Y = {
(
cos (2πi/8) , sin (2πi/8)

)
| i = 2, 4, 6, 8}.

It’s important to note that, by definition, Y is a subset of X .522

Figure 13: Plot of N = 512 particles of XT for a 4-mode compositional Gaussian mixture model
π ∝ π1 · π2 on d = 2. We sample by gradient ∇ log π1 and energy π1 · π2. The baseline methods
LMC, HMC and our proposed method FHL generate XT after T = 4000 steps, using the initial
particles X0 = {xi0} with xi0 sampled from a common distribution.

We perform a comparative study of our methods against established benchmarks, and the visual523

representations of this comparison can be found in Figure 13. Notably, among the compared methods,524

FTH distinguishes itself due to its outstanding performance, mainly attributed to its precise adjustment525

of particle positions. The comparative results highlight that the baseline methods often exhibit the526

tendency to erroneously converge towards incorrect modes due to the misleading gradients. Although527

rejection steps of HMC and LMC might mitigate incorrect sampling, particles initialized near528

high-energy modes struggle to escape this erroneous attraction by misleading gradients.529

A.2.2 High-dimensional Example530

We then present a case study in which we generate examples from a particular category within the531

Fashion MNIST dataset [43]. In this experiment, we select a total of 200 images, with 100 images532
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from the coat category and another 100 from trouser category. We denote the sets of data points from533

the coat and trouser categories as Xcoat and Xtrouser respectively. Furthermore, we define X as the534

union of Xcoat and Xtrouser, and Y is set to Xcoat in this case.535

Figure 14: Sample from a 100-mode compositional Gaussian mixture model π ∝ π1 · π2 on d = 784,
where each mode corresponds to a clean image from coat category. We sample by gradient∇ log π1
and energy π1 · π2. For each method, we plot the smallest-energy particle (in terms of U(x) among
all particles in XT ). The correct samples are displayed in the upper-left corner.

To increase the difficulty of the sampling task, we initially position each particle at the mean location536

of Xtrouser. The outcomes of the sampling are depicted in Figure 15.This setup showcases the FHL537

method’s ability to accurately target and sample from the specified coat category, in contrast to538

baseline methods that undesirably draw samples from the trouser category.539

B Supplementary Experiment540

B.1 Experiment Setup541

In Section 5.2, we utilize a pre-trained classifier available on the public GitHub repository at542

https://github.com/wgrathwohl/JEM. This classifier is a WideResNet model [45] with a depth543

of 28 and a width of 2.544

We use a technique called one-step HMC [5] and thus the momentum gets refreshed for each step.545

More specifically, for both FTH and HMC we set the momentum damping factor to 0.9 and the mass546

matrix as 0.0042 · I . We take step size as η = 0.2. Since the mass matrix is set to a relatively small547

value which easily causes the instability of training, we always accept the proposed states based on548

the potential energy and ignore the kinetic energy.549

In Section 5.3, we mainly adapted the codes and models from https://github.com/yilundu/550

reduce_reuse_recycle.551

For Section 5.3.1, we initially train a 4-layer ResNet as the energy-based score-matching model on p1552

and p2 independently. During the sampling process, we combine these models. We employ step sizes553

η = {0.002, 0.0002, 0.005, 0.0005} for all methods and the number of leapfrog steps L = {4, 8} for554

HMC-type methods.555

For Section 5.3.2, we utilize a U-net architecture [33] as the energy-based score-matching model.556

This architecture is directly obtained from a pre-trained model available at . For sampling, we use step557

sizes η = {0.01, 0.035, 0.05, 0.1, 0.2} for all methods and set the number of leapfrog steps L = 4558

for HMC-type methods.559
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B.2 Additional Results560

B.2.1 Additional Images for Section 5.2561

(a) Class of cats. (b) Class of horses.

Figure 15: Sample from joint energy model by different classes (Left: HMC; Right: FTH).

B.2.2 Additional Images for Section 5.3.2562

(a) Baseline (b) MALA (c) HMC (d) FTH

Figure 16: Generation of cylinder.

(a) Baseline (b) MALA (c) HMC (d) FTH

Figure 17: Generation of cube and cylinder.

(a) Baseline (b) MALA (c) HMC (d) FTH

Figure 18: Generation of cube and sphere.
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B.2.3 Zoomed Images for Section 5.3.2563

(a) Baseline (b) MALA (c) HMC (d) FTH

Figure 19: Generation of cube.

(a) Baseline (b) MALA (c) HMC (d) FTH

Figure 20: Generation of sphere and cylinder.

C Supplementary Theorem564

We now consider a scenario where the leader becomes corrupted, meaning the corrupted leader always565

reports an unreasonably low energy but it is not actually in the lowest-energy position. In this situation,566

the particles are optimizing a biased objective function. For simplicity, we consider a d-dimensional567

Gaussian distribution p ∼ e−U(x) and its modification q ∼ e−ψ(x) with ψ(x) = U(x) + λ
2 ∥x− z∥

2.568

We will analyze the Wasserstein distance between p and q for a fixed z ∈ Rd as a function of λ > 0.569

We will demonstrate that even though we sample from the distribution q instead of p, the bias of the570

sampler (i.e., the distance between p and q) can be controlled by λ and vanishes as λ→ 0.571

Assumption 1. U : Rd → R is M -Lipschitz-differentiable, i.e. ∀x, y ∈ Rd,572

U(y) ≤ U(x) +∇U(x)T (y − x) + M

2
∥y − x∥2,

and U is m-Strongly-convex, i.e. ∀x, y ∈ Rd,573

U(y) ≥ U(x) +∇U(x)T (y − x) + m

2
∥y − x∥2.

Theorem 1. Let U be the negative logarithmic probability density function of a d-dimensional
Gaussian distribution, which satisfies Assumption 1. Let us define the function ψ(x) as ψ(x) =
U(x) + λ

2 ∥x− z∥
2. Given this setup, the Wasserstein-2 distance between the modified Boltzmann

distribution q, characterized by q ∼ e−ψ(x), and the original Gaussian distribution p, denoted as
p ∼ e−U(x), can be bounded as:

W2(p, q)
2 ≤ λ2∥Σ∥

I + λ∥Σ∥
∥z − x∗∥2 + d∥Σ∥ ·

(
1− 1√

λ∥Σ∥+ 1

)2

where ∥ · ∥ represents the matrix norm. Obviously, W2(p, q)→ 0 when λ→ 0.574
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Proof. By definition, U is m-strongly convex since575

U(x) = − log

[
(2π)−k/2 det(Σ)−1/2 exp

(
−1

2
(x− x∗)TΣ−1(x− x∗)

)]
=
k

2
log(2π) +

1

2
log det(Σ) +

1

2
(x− x∗)TΣ−1(x− x∗).

The m corresponds to the smallest eigenvalue of Σ−1 which is therefore 1/∥Σ∥. Then576

ψ(x) =
k

2
log(2π) +

1

2
log det(Σ) +

1

2
(x− x∗)TΣ−1(x− x∗) + λ

2
(x− z)T (x− z)

=
1

2

[
xT (Σ−1 + λI)x− 2xT (Σ−1x∗ + λz)

]
+ constant

=
1

2

[
(x− (Σ−1 + λI)−1(Σ−1x∗ + λz))T (Σ−1 + λI)(x− (Σ−1 + λI)−1(Σ−1x∗ + λz))

]
+ constant

The last equation was done by completing the square. Thus the new distribution is still a Gaussian577

distribution, represented as578

q ∼ N
(
(Σ−1 + λI)−1(Σ−1x∗ + λz)), (Σ−1 + λI)−1

)
.

Consequently, the Wasserstein-2 distance can be determined as follows:579

W2(p, q)
2 = ∥µp − µq∥2 +Tr

(
Σp +Σq − 2(Σ1/2

p ΣqΣ
1/2
p )1/2

)
In our case µp = x∗, µq = (Σ−1 + λI)−1(Σ−1x∗ + λz),Σq = Σ,Σp = (Σ−1 + λI)−1. Since Σq
and Σp can be jointly diagonalized by some orthonormal basis T ,

ΣqΣp = TDqT
−1TDpT

−1 = TDpDqT
−1 = TDpT

−1TDqT
−1 = ΣpΣq,

thus Σq and Σp commute. We can simplify the Wasserstein distance to

W2(p, q)
2 = ∥µp − µq∥2 + ∥Σ1/2

p − Σ1/2
q ∥2F .

Then

W2(p, q)
2 = ∥(Σ−1 + λI)−1(Σ−1x∗ + λz)− x∗∥2 + ∥Σ1/2 − (Σ−1 + λI)−1/2∥2F .

Now we bound the first and second term independently. The first term is a direct conclusion from
Theorem 15 in [41],

∥(Σ−1 + λI)−1(Σ−1x∗ + λz)− x∗∥2 ≤ λ2

m(m+ λ)
∥z − x∗∥2, where m = ∥Σ−1∥,

For the second term. We denote ith eigenvalue of matrix Σ as σi, then ∥Σ∥ = maxi σ
i, such that580

∥Σ1/2 − (Σ−1 + λI)−1/2∥2F =
∑
i≤d

[σ
1/2
i − (σ−1

i + λ)−1/2]2

=
∑
i≤d

[
√
σi · (1−

1√
λσi + 1

)]2

≤ d∥Σ∥ ·

(
1− 1√

λ∥Σ∥+ 1

)2

Thus, by combing the two terms together, the total Wassertein distance is bounded by

W2(p, q)
2 ≤ λ2

m(m+ λ)
∥z − x∗∥2 + dM ·

(
1− 1√

λM + 1

)2

581
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image generators, or scraped datasets)?643

Answer: [NA]644

Justification: There is no such a risk.645

12. Licenses for existing assets646

Question: Are the creators or original owners of assets (e.g., code, data, models), used in647

the paper, properly credited and are the license and terms of use explicitly mentioned and648

properly respected?649

Answer: [NA]650

Justification: No we don’t have such a problem.651

13. New Assets652

Question: Are new assets introduced in the paper well documented and is the documentation653

provided alongside the assets?654

Answer: [NA]655

Justification: No we don’t have such a problem.656

14. Crowdsourcing and Research with Human Subjects657

Question: For crowdsourcing experiments and research with human subjects, does the paper658

include the full text of instructions given to participants and screenshots, if applicable, as659

well as details about compensation (if any)?660

Answer: [NA]661

Justification: No we don’t have such a problem.662

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human663

Subjects664

Question: Does the paper describe potential risks incurred by study participants, whether665

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)666

approvals (or an equivalent approval/review based on the requirements of your country or667

institution) were obtained?668

Answer: [NA]669

Justification: No we don’t have such a problem.670
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