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Abstract

While probabilistic models are an important tool
for studying causality, doing so suffers from the in-
tractability of inference. As a step towards tractable
causal models, we consider the problem of learning
interventional distributions using sum-product net-
works (SPNs) that are over-parameterized by gate
functions, e.g., neural networks. Providing an arbi-
trarily intervened causal graph as input, effectively
subsuming Pearl’s do-operator, the gate function
predicts the parameters of the SPN. The resulting
interventional SPNs are motivated and illustrated
by a structural causal model themed around per-
sonal health. Our empirical evaluation against com-
peting methods from both generative and causal
modelling demonstrates that interventional SPNs
indeed are both expressive and causally adequate.

1 INTRODUCTION

Identifying causal relationships between variables in obser-
vational data is one of the fundamental and well-studied
problem in machine learning. There have been several great
strides in causality [Granger, 1969, Pearl, 2009, Bareinboim
and Pearl, 2016] over the years characterized by efforts that
focused on reasoning about interventions [Hagmayer et al.,
2007, Dasgupta et al., 2019] and counterfactuals [Morgan
and Winship, 2015, Oberst and Sontag, 2019].

The notion of causality has long been explored in the realm
of probabilistic models [Oaksford and Chater, 2017, Beck-
ers and Halpern, 2019] with a special focus on graphical
models, called causal Bayesian networks (CBNs) [Hecker-
man et al., 1995, Neapolitan, 2004, Pearl, 1995, Acharya
et al., 2018]. CBNs have widely been applied to infer causal
relationships in high-impact diverse applications such as
disease progression [Koch et al., 2017], ecological risk as-
sessment [Carriger and Barron, 2020] and more recently
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Figure 1: Capturing interventional distributions using
iSPN. The interventional distributions for the ASIA data set
using a causal Bayesian network (CBN, small-scale gold
standard, gray bars) as well as an interventional SPN (iSPN)
by intervening on lung. iSPN are sensible to the influences
of the given intervention onto the system i.e., subsequent
effects in the causal hierachy. (Best viewed in color.)

Covid-19 [Fenton et al., 2020, Feroze, 2020] to name a
few. Although successful, classical CBN models are diffi-
cult to scale and also suffer from the problem of intractable
inference. Recently, tractable probabilistic models such as
probabilistic sentential decision diagrams [Kisa et al., 2014]
and sum-product networks [Poon and Domingos, 2011] have
emerged, which guarantee that conditional marginals can
be computed in time linear in the size of the model. While
weaving in the notion of interpretability, the computational
view on prob. models allows one to exploit ideas from deep
learning thereby being useful for complex problems.
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Recently, there has been an effort to take advantage of this
tractability to reason for causality. Zhao et al. [2015] showed
how to compile back and forth between sum-product net-
works (SPNs) and Bayesian networks (BNs). Although this
opened up a whole range of possibilities for tractable causal
models, Papantonis and Belle [2020] argued that such con-
version leads to degenerated BNs thereby rendering it inef-
fective for causal reasoning. For the considered compilation
of SPNs to BNs, this is indeed the case since a bipartite
graph between the hidden and observed variables loses the
relationships between the actual variables. Thus, either a
new compilation method for transforming between tractable
and causal model or alternatively a method to condition the
probabilistic models directly on the do-operator to obtain
interventional distributions, P (y| do(x)), is being required.

Here, we consider the latter strategy and extend the idea of
conditionally parameterizing SPNs [Shao et al., 2019] by
conditioning on the do-operator while predicting the com-
plete set of observed variables therefore capturing the effect
of intervention(s). The resulting interventional sum-product
networks (iSPNs) take advantage of both the expressivity,
due to the neural network, and the tractability, due to the
SPN in order to capture the interventional distributions faith-
fully. This shows that the dream of tractable causal models
is not insurmountable, since iSPNs are causal. Pearl [2019]
defined a three-level causal hierarchy that separates asso-
ciation (purely statistical level 1) from intervention (level
2) and counterfactuals (level 3), and argued that the latter
two levels involve causal inference. iSPNs are a modelling
scheme for arbitrary interventional distributions. They just
belong to level 2 and, in turn, are causal. So, while SPNs
are not universal function approximators and the use of
gate functions turns them into universal approximators, we
go one step ahead and make the first effort towards intro-
ducing causality to SPNs without the need for compilation
to Bayesian networks, as the functional approximator sub-
sumes the do-operator. Fig. 1 shows an example of the effec-
tiveness of iSPNs to capture interventional distributions on
the ASIA data set. Our extensive experiments against strong
baselines demonstrate that our method is able to capture
ideal interventional distributions.

To summarize, we make the following contributions:

1. We introduce iSPNs, the first method that applies the
idea of tractable probabilistic models to causality with-
out the need for compilation while accordingly gener-
ating interv. distributions w.r.t. the causal structure.

2. We formulate the inductive bias necessary for turn-
ing conditional SPN into iSPN while taking advantage
of the neural network modelling capacities within the
gating nodes for for modelling interventional distribu-
tions while capturing all influences within the given
intervention (i.e., consequences propagated through
the structural hierarchy).

3. We show that by construction iSPNs can identify any
interventional distribution permitted by the underlying
structural causal model due to the inducted bias on
the interface modalities in junction with the universal
function approximation of the underlying gated SPN.

We proceed as follows. We start by reviewing the basic
concepts required and related work. Then we introduce
iSPNs and prove that by construction they are capable of
approximating any do-query (given corresponding data).
Before concluding, we present our experimental evaluation.

2 BACKGROUND AND RELATED WORK

Let us briefly review the background on tractable probabilis-
tic models and causal models used in subsequent sections for
developing our new model class based on CSPNs that allow
for identifying causal quantities i.e., interv. distributions.

Notation. We denote indices by lower-case letters, func-
tions by the general form g(·), scalars or random variables
interchangeably by upper-case letters, vectors, matrices and
tensors with different boldface font v,V,V respectively,
and probabilities of a set of random variables X as p(X).

Sum-Product Networks (SPNs). Members of the family of
probabilistic circuits [Van den Broeck et al., 2019] that sat-
isfy certain properties such as decomposability and smooth-
ness are known as sum-product networks1. Introduced by
Poon and Domingos [2011], SPNs represent a special type
of probabilistic model that allows for a variety of exact and
efficient inference routines. Generally, SPNs are considered
as directed acyclic graphs (DAG) consisting of product, sum
and leaf (or distribution) nodes whose structure and parame-
terization can be efficiently learned from data to allow for
efficient modelling of joint probability distributions p(X).
Since their introduction, SPNs have been heavily studied
such as by [Trapp et al., 2019] that present a way to learn
SPNs in a Bayesian realm whereas [Kalra et al., 2018] learn
SPNs in an online setting. Several different types of SPNs
have also been studied such as Random SPN [Peharz et al.,
2020b], Credal SPNs [Levray and Belle, 2020] and Sum-
Product-Quotient Networks [Sharir and Shashua, 2018]) to
name a few. For more details readers are referred to the
survey of París, Sánchez-Cauce, and Díez [2020].

Gated SPNs. Conditional SPNs (CSPNs) are deep tractable
models for estimating multivariate, conditional probability
distributions p(Y|X) over mixed variables Y [Shao et al.,
2019]. They introduce functional gate nodes gi(X) that act
as a functional parameterization of the SPN’s information
flow and leaf distributions given the provided evidence X.

Causal Models. A Structural Causal Model (SCM) as de-
fined by Peters et al. [2017] is specified as C := (S, PN)

1For decomposability and smoothness we refer to [Peharz
et al., 2020a].



where PN is a product distribution over noise variables and
S is defined to be a set of d structural equations

Xi := fi(pa(Xi), Ni), where i = 1, . . . , d (1)

with pa(Xi) representing the parents of Xi in graph G(C).
An intervention on a SCM C as defined in (1) occurs when
(multiple) structural equations are being replaced through
new non-parametric functions f̂(p̂a(Xi), N̂i) thus effec-
tively creating an alternate SCM Ĉ. Interventions are re-
ferred to as imperfect if p̂a(Xi) = pa(Xi) and as atomic if
f̂ = a for a ∈ R. An important property of interventions
often referred to as "modularity" or "autonomy"2 states that
interventions are fundamentally of local nature, formally

pC(Xi | pa(Xi)) = pĈ(Xi | pa(Xi)) , (2)

where the intervention of Ĉ occured on variableXk opposed
to Xi. This suggests that mechanisms remain invariant to
changes in other mechanisms which implies that only infor-
mation about the effective changes induced by the interven-
tion need to be compensated for. An important consequence
of autonomy is the truncated factorization

p(V ) =
∏

i/∈S
p(Xi | pa(Xi)) (3)

derived by Pearl [2009], which suggests that an intervention
S introduces an independence of an intervened node Xi to
its causal parents. Another important assumption in causality
is that causal mechanisms do not change through interven-
tion suggesting a notion of invariance to the cause-effect
relations of variables which further implies an invariance to
the origin of the mechanism i.e., whether it occurs naturally
or through means of intervention [Pearl et al., 2016].

A SCM C is capable of emitting various mathematical ob-
jects such as graph structure, statistical and causal quantities
placing it at the heart of causal inference, rendering it appli-
cable to machine learning applications in marketing [Hair Jr
and Sarstedt, 2021]), healthcare [Bica et al., 2020]) and ed-
ucation [Hoiles and Schaar, 2016]. A SCM induces a causal
graph G, an observational/associational distribution pC, can
be intervened upon using the do-operator and thus generate
interventional distributions pC;do(...) and given some obser-
vations v can also be queried for interventions within a
system with fixed noise terms amounting to counterfactual
distributions pC|V=v;do(...). To query for samples of a given
SCM, the structural equations are being simulated sequen-
tially following the underlying causal structure starting from
independent, exogenous variables and then moving along
the causal hierarchy of endogenous variables (i.e., following
the causal descendants).

The work closest to our work is by Brouillard et al. [2020]
although it solves the different problem of causal discovery.

2See Section 6.6 in [Peters et al., 2017].

Causality for machine learning has recently gained a lot of
traction [Schölkopf, 2019] with the study of both interven-
tions [Shanmugam et al., 2015] and counterfactuals [Kusner
et al., 2017] gaining speed. For more details the readers are
referred to [Zhang et al., 2018].

3 INTERVENTIONAL SPNS

Now we are ready to develop interventional SPNs (iSPNs).
To this end, we re-introduce the importance of adaptability
of models to interventional queries and present a newly
curated synthetic data set to both motivate and validate the
formalism of iSPNs that, through over-parametric extension
of SPNs, allows them to adhere to causal quantities.

3.1 ADAPTATION TO CAUSAL CHANGE

Peters et al. [2017] motivated the necessity of causality via
the adequate generalizability of predictive models. Specifi-
cally, consider a simple regression problem f(a) = b with
data vectors a,b ∈ Rk that are strongly positively correlated
in some given region, e.g. (1 < a <∞, 1 < b <∞). Now
a query is posed outside the data support, e.g. (0, f(0)).
As argued by Peters et al., the underlying data generat-
ing processes can be an ambiguous causal process i.e., the
data at hand can be explained by two different causal struc-
tures being either A → B or a common confounder with
A← C → B.

Assuming the wrong causal structure or ignoring it alto-
gether could be fatal, therefore, any form of generalization
out of data support requires assumptions to be made about
the underlying causal structure. We adopt this point of view
and further argue that ignoring causal change(s) in a sys-
tem, i.e., the change of structural equation(s) underlying the
system, can lead to a significant performance decrease and
safety hazards3. Therefore, it is important to account for dis-
tributional changes present in the data due to experimental
(thus interventional) settings.

Consequently, we consider the learning problem, where
the given data samples have been generated by different
interventions do(Uj = uj) in a common SCM C while
the induced mutilated causal graphs G(C, do(Uj = uj))
are assumed to be known, such that the trained model is
capable of at least inferring all involved causal distributions
p(V (C) | do(Uj = uj)) with V being the variables.

3.2 DATA GENERATING PROCESS

To both validate and demonstrate the expressivity of inter-
ventional SPNs in modelling arbitrary interventional distri-
butions, we curate a new causal data set based on the SCM

3This extended notion of performance degeneration through
ignorance to the underlying causality is prioritized in this paper.
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Figure 2: An Overview of iSPN. (a) The hidden process underlying the observable reality is modelled via a SCM that
can be modified through interventions. The given SCM induces a causal graph and can generate data. An intervention can
significantly alter the resulting data. (b) An over-parameterized density estimation framework using SPN is presented. The
universal function approximator (here neural network) conditions on the mutilated causal graph and provides parameters to
the SPN such that the given data’s density can be modelled accordingly. The FA subsumes the do-operator. (c) Different
causal queries are being presented. Furthermore, iSPN adapts to intervention-consequences.

C presented in Fig. 2(a), which we subsequently refer to
as Causal Health data set. The SCM encompasses four dif-
ferent structural equations of the form Vi = f(pa(Vi), Ni),
where pa(Vi) are the parents of variable Vi and Ni are the
respective noise terms that form a factor distribution PN1:N

i.e., the Ni are jointly independent. Now, the SCM C de-
scribes the causal relations of an individual’s health and
mobility attributes with respect to their age and nutrition.

Note that the Causal Health data set does not impose as-
sumptions over the type of random variables or functional
domains of the structural equations4, which additionally
constraints a learned model to adapt flexibly. While we gen-
erally do not restrict our method to any particular type of
intervention, the following mainly considers perfect inter-
ventions as introduced in Sec. 2.

Perfect interventions fully remove the causal mechanism of
the parents of a given node, which is consistent with the idea
behind that of randomized controlled trials (RCTs) where
the given intervention randomizes the given specific node,
often referred to as gold standard in causality related litera-
ture. We consider the special case of uniform randomization,
i.e., uniform across the domain of the given variable5. An
intervention performed on one node immediately changes
the population and, thus, has a major effect on the gener-

4Assumptions on the func. form of structural eq. are crucial
for identification (Tab. 7.1 [Peters et al., 2017])

5Note that for binary variables this amounts to Bernoulli B( 1
2
).

ating processes of subsequent causal mechanisms in the
respective causal sequence of events.

To provide the reader with a concrete example of interven-
tions within the causal health data set, consider the fol-
lowing: In concern of a virus infection the individuals of
the Causal Health study should be vaccinated. The vac-
cine is expected to have side-effect(s), however, it has been
poorly designed and has reached the population with the
capability of completely changing the individual’s health
state. The observed changes do not show any form of pat-
tern and are therefore assumed to be random. A young fit
person could thus become sick, while an old person might
feel better health wise. This sudden change will have an
effect on the individual’s mobility and also be independent
of their age and nutrition because the vaccination has an
immediate restructuring of the SCM as consequence (i.e.,
the causal edges to the intervened descendant are being cut
while the descendant’s generation mechanism is altered and
influences in the causal hierarchy continue to propogate).
Such a scenario is mathematically being captured through
do(H = U(H)) where U(·) is the uniform distribution over
a given domain and do is Pearl’s intervention operator.

3.3 INTRODUCING INTERVENTIONAL SPNS

After motivating both the importance and the occurrences
of interventions within relevant systems, we now start intro-



ducing interventional SPNs (iSPNs).

Definition of iSPN. As motivated in Sec. 1, the usage of the
compilation method from [Zhao et al., 2015] for causal infer-
ence within SPN is arguably of degenerate6 nature given the
properties of the compilation method [Papantonis and Belle,
2020]. While the results of Papantonis and Belle [2020] are
arguably negative, there exists yet no proof of non-existence
of such a compilation method and as the authors point out
in their argument for future lines of research in this direc-
tion, a model class extension poses a viable candidate for
overcoming the problems of using SPN for causal inference.

While agreeing on the latter aspect, we do not go the “com-
pilation road” but extend the idea of conditional parame-
terization for SPN [Shao et al., 2019] by conditioning on a
modified form of the do-operator introduced by Pearl [2009]
while predicting the complete set of observed variables.

Mathematically, we estimate p(Vi | do(Uj = uj)) by learn-
ing a non-parametric function approximator f(G;θθθ) (e.g.
neural network), which takes as input the (mutilated) causal
graph G ∈ {0, 1}N×N encoded as an adjacency matrix, to
predict the parameters ψψψ of a SPN g(D;ψψψ) that estimates
the density of the given data matrix {Vk}Kk = D ∈ RK×N .
With this, iSPNs are defined as follows:

Definition 1 (Interventional Sum-Product Network). An in-
terventional sum-product network (iSPN) is the joint model
m(G,D) = g(D;ψψψ = f(G;θθθ)), where g(·) is a SPN, f(·)
a non-parametric function approximator and ψψψ = f(G)
are shared parameters.

They are called interventional because we consider it to be
a causal model given its capability of answering queries
from the second level of the causal hierarchy [Pearl, 2019],
namely, that of interventions7. The shared parameters ψψψ
allow for information flow during learning between the con-
ditions and the estimated densities. Setting the conditions
such that they contain information about the interventions,
in the form of the mutilated graphs G, effectively renders
f to subsume a sort of do-calculus in the spirit of truncated
factorization shown in Eq.(3) i.e., the gate model acts as
an estimand selector. Generally, we note that our formu-
lation allows for different function and density estimators
f, g. We choose f to be a neural network for two reasons
(1) their empirically established capability to act as causal
sub-modules (e.g. Ke et al. [2019] use a cohort of neural
nets to mimic a set of structural equations, thus, a SCM) and
(2) their model capacity being a universal function approx-
imator, while we choose g to be a SPN for its tractability
properties for inference.

We have argued the importance of adaptability to interven-
6A bipartite graph in which the actual variables of interest are

not connected is called degenerate.
7The first level of the causal hierarchy —association— is con-

sidered to be purely statistical.

tional changes within the causal system and intend now to
prove that iSPN are capable of approximating these different
causal quantities by construction.

Proposition 1 (Expressivity). Assuming autonomy and in-
variance, an iSPN m(G,D) is able to identify any interven-
tional distribution pG(Vi = vi | do(Uj = uj)), permitted
by a SCM C through interventions, with knowledge of the
mutilated causal graph Ĝ and data D generated from the
intervened SCMs by modelling the conditional distribution
pĜ(Vi = vi | Uj = uj).

Proof. It follows directly from the definition of the do-
calculus [Pearl, 2009] that pG(Vi = vi | do(Uj = uj)) =

pĜ(Vi = vi | Uj = uj) where Ĝ is the mutilated causal
graph according to the intervention do(Uj = uj) i.e., ob-
servations in the intervened system are akin to observations
made when intervening on the system. Given the mutilated
causal graph Ĝ (as adjacency matrix), the only remaining
aspect to show is that the density estimating SPN can ap-
proximate a joint probability p(X) using D. This naturally
follows from [Poon and Domingos, 2011].

The expressivity of iSPN stems from both the capacities
of gate function and the knowledge of intervention as well
as availability of respective data. As an important remark,
causal inference is often interested in estimating interven-
tional distributions, i.e, causal quantities from purely obser-
vational models. Therefore, an alternative formulation to
Prop. 1 would be to replace the knowledge of the intervened
causal structure G with knowledge on a valid adjustment
set. In the following, we only consider the direct setting
where actual interventional data from the system is assumed
to be captured8 thereby freeing the investigation of iSPN
from the independent research around hidden confounding.

Universal Function Approximation (UFA). The gating
nodes of CSPNs extend SPNs in a way that allows them to
also induce functions which are universal approximators.
For instance, using threshold gates xi ≤ c ∈ R, one can
realize testing arithmetic circuits [Choi and Darwiche, 2018]
which have been proven to be universal approximators -
rendering iSPN to be UFA by construction.

Learning of iSPN. An interventional sum-product network
is being learned using a set of mixed-distribution samples
generated from simulating the Causal Health SCM for differ-
ent interventions, where the observational case is considered
to be equivalent to an intervention on the empty set. The
parameters θθθ,ψψψ of the iSPN describe the weights of the gate
nodes and the distributions at the leaf nodes. The full model
m is differentiable if the provided gate function f and each
of the leaf models of g are differentiable. Therefore, to train
an iSPN, as depicted in Fig. 2(b), it is sufficient to optimize

8For details on the remarked alternative formulation consider
the Supplement.



V1 V2 V3 V4

.001± .00 .007± .01 .003± .00 .013± .01

.588± .59 .108± .16 .015± .02 .105± .12

.178± .14 .263± .14 .184± .12 .079± .01

Table 1: Jensen-Shannon-Divergence Evaluation of Esti-
mated Interventional Distributions. Numerical pendant
to Fig.4, mean and standard deviation per p(Vj\i | do(Vi =
U(Vi))) where U is the uniform distribution across all data
sets. Lower is better. From top: iSPN, MADE, MDN.

the conditional log-likelihood end-to-end using gradient
based optimization techniques. We assess the performance
of our learned model through inspection of the adaptation
of the model to the different interventions manifesting in
the resulting marginals p(Vi | do(Uj)).

As can be observed in Fig. 2(c) or alternatively in Fig. 4
(top row), the learned iSPN successfully adapts to both the
interventions as well as its consequences. Considering for
instance the intervention p(Vi | do(F = B( 12 ))) which
removes the edge A → F and thus renders Age (A) and
Food Habits (F ) independent. Given the drastic population
change in F and the fact that the Health (H) of an individual
is causally dependent on both A and F a significant change
in H is being expected. Indeed, both H and Mobility (M ),
being a causal child of H , broaden distribution wise and
also these subsequent changes are captured correctly.

Discussion. To reconsider and answer the general question
of why the modelling of a conditional distribution via an
over-parameterized architecture is a sensible idea consider
the following. One can represent a conditional distribution
p(Y | X) by applying Bayes Rule to a joint distribution
density model (e.g. a regular SPN) p(Y | X) = p(Y,X)

p(X) .
However, this assumes non-empty support i.e., p(X) > 0.
Furthermore, the joint distribution p(Y,X) optimizes all
possibly derivable distributions, diminishing single distr. ex-
pressivity. Therefore, our considered formulation of a gate
model allows for effectively subsuming the do-operator i.e.,
the gate model orchestrates the do queries such that the
density estimator can easily switch between different in-
terventional distributions. While not introducing specific
limitations to this model specification, general CSPN limita-
tion regarding OOD generalization are being inherited.

4 EXPERIMENTAL RESULTS

The assumptions made in causality usually require control
over the data generating process which is almost never read-
ily available in the real world. This amounts to scarcity of
the available public data sets and also their implications for
transfers to the real world and even when available, they are
usually artificially generated as some causal extension of a
known, pre-existing data set (e.g. MorphoMNIST data set

iSPN

MADE

MDN

0 300 500

Figure 3: Mean Running Times in seconds till conver-
gence (Causal Health) for 50 full data set passes, black
bars are s.d. (more detailled results in supplementary).

introduced by Castro et al. [2019]). While it is difficult to
consider real-world-esque experimental settings for causal
models, we do not restrict our investigations of iSPN to
rather specific problem settings like certain noise or deci-
sion variable instances (which is common in causal infer-
ence). The evaluation is performed on data sets with varying
number of variables and in both continuous and discrete
domains. For the introduced causal health data set, we even
consider arbitrary underlying noise distributions. We have
made our code repository publicly available9.

Data Sets. We evaluate iSPNs on four data sets. Three
benchmarks: ASIA (A) [Lauritzen and Spiegelhalter, 1988]
with 8 variables, Earthquake (E) with 5 variables and Cancer
(C) [Korb and Nicholson, 2010] with 5 variables. One newly
curated synthetic causal health (H) data set with 4 variables.
(See supplement for more details.)

Baselines. For generative capacities, we compare our
method against Mixture Density Networks (MDN) [Bishop,
1994] and Masked Autoencoder for Density Estimation
(MADE) [Germain et al., 2015]. Both methods are expres-
sive, parametric neural network based approaches for den-
sity estimation. Generally, the causality for machine learn-
ing literature suggests a strong favor for neural based func-
tion approximators for modelling causal mechanisms [Ke
et al., 2019]. For causal capacities, we compare our method
against the renown causal baselines from CausalML [Chen
et al., 2020] and DoWhy [Sharma and Kiciman, 2020] for
the modelling of average treatment effects (ATE) [Pearl,
2009, Peters et al., 2017] considered to be a gold standard
task within causal inference.

Protocol and Parameters. To account for reproducibility
and stability of the presented results, we used learned mod-
els for five different random seeds per configuration. For
means of visual clarity, the competing baselines MDN and
MADE only present the best performing seed while iSPN is
being presented with a mean plot and the standard deviation.
The CBN, which performs exact inference according to the
do-calculus (while best performing) has to be considered as
gold standard and is therefore not part of the visualization.

9https://anonymous.4open.science/r/
8a12a810-3343-4950-a5de-bd0721f4e914/

https://anonymous.4open.science/r/8a12a810-3343-4950-a5de-bd0721f4e914/
https://anonymous.4open.science/r/8a12a810-3343-4950-a5de-bd0721f4e914/
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Figure 4: Generative Baselines. A comparison to the ground-truth (via underlying SCM) and competing estimated
distributions. Each row represents a data set and each column represents a variable for a given causal query. ( Best in color.)

Furthermore, as it cannot compare in terms of feasibility.
The considered interventions were of uniform nature. Each
block of four columns represents a variable being random-
ized uniformly. We deployed a RAT-SPN [Peharz et al.,
2020b] selecting the leaf node distributions to be Gaussian
distributions. For further experimental details consider the
corresponding Supplement section.

Our empirical analysis investigates iSPN for the follow-
ing questions: Q1: How is the estimation quality for interv.
distributions? Q2: How important is the model’s capacity?
Q3/4: How is the performance relative to S.o.t.A. generative
and causal models? Q5: How is the runtime performance?

(Q1. Precise Estimation of do-influenced variables) The
density functions learned by iSPN (see Fig. 4) fit with a high
degree of precision as visualized by the difference in the
peak of the modes of the learned distribution and that of the
ground truth. While our visual analysis is arguably the supe-
rior method of evaluation as it conveys information about
how the distributions of interest compare (which is feasible
due to marginal inference and the locality of interventions
within a SCM), we have also considered numerical evalua-
tion criteria like the Jenson-Shannon-Divergence on which
(as visually confirmed) iSPN outperforms the baselines (see
Tab.1). For more detailled observation and interpretation
consider the Supplement.

(Q2. Capacity Ablation Study) We test the robustness of
iSPN as the size of the associated SPN g(D;ψψψ) is varied.
We obtain 5 different iSPNs for each of the 4 data sets
by using 5 different numbers of sum node weights, 600,
1200, 1800, 2400, 3200, effectively changing the capacity of
the parameter-sharing neural network f(G;θθθ). We observe

iSPNs to be robust to varying hyper-parameters that control
the size of the SPN g(·) and effectively the complexity of
the associated function approximator f(·). More details and
figures are in the Supplement.

(Q3. Comparison to Generative models) We compare the
performances in terms of precision of fit of the learned
distributions as well as the flexibility of the models. iSPN
outperforms the baselines across all 4 data sets both in
precision of the fit of the learned density functions and
flexibility of adaptation to the different interventions as
seen in figure 4. In our experiments, MDN had the worst
performance with estimated densities being consistently and
significantly different from the ground truth, as the model
settled for an average distribution across all interventions.
MADE is able to estimate to high precisions but showed to
be generally inconsistent across the experimental settings.

(Q4. Comparison to Causal models) We compare the nu-
merical results as seen in figure 5 and observe that iSPN
matches the performance of the causal baselines. The simple
regressor employed by CausalML fails in the confounding
case as it estimates wrongly the conditional, both DoWhy
and iSPN can handle even the more difficult Simpson’s para-
dox [Simpson, 1951] scenario. An analytical derivation for
the ATE is exampled in the Supplement.

(Q5. Comparison of running times) SPNs are tractable
by design as long the networks size is polynomial in the
input size. The superiority in running time also becomes
apparent during training on the same (Causal Health) data
set where we observe the mean run times over 50 passes of
the whole data set to be significantly faster for iSPN than
for the competing methods (see Fig.3).
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Figure 5: Causal Baselines. Different causal structures and corresponding causal effect estimation methods (CausalML,
DoWhy) are being compared against iSPN. When confounding is present, then conditioning becomes different from
intervening p(Y | X) ̸= p(Y | do(X)) and iSPN correctly captures all evaluated cases. (* are analytical solutions, 1 differences of means for actual
interventional distributions, Best viewed in color.)

5 CONCLUSIONS

We presented a way to connect causality with tractable prob-
abilistic models by using sum-product networks parameter-
ized by universal function approximators in the form of neu-
ral networks. We show that our proposed method can adapt
to the underlying causal changes in a given domain and gen-
erate near perfect interventional distributions irrespective
of the data distribution and the intervention type thereby
exhibiting flexibility. Our empirical evaluation shows that
our method is able to precisely estimate the conditioned
variables and outperform generative baselines.

Finding a different compilation method for SPNs such as
by making use of tree CBNs is important for learning pure
causal probabilistic models. Testing our method on larger
real world causal data sets is an interesting direction. Fi-
nally, using rich expert domain knowledge in addition to
observational data is essential for causality and extending
our method to incorporate such knowledge is essential.
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6 SUPPLEMENTARY MATERIAL

We make further use of this supplementary section following
the main paper to introduce some additional insights and
results we deem important for the reader and for what has
been examined in the main paper.

7 ABLATION STUDY ON ARBITRARY
INTERVENTION REALIZATIONS

In the main paper we have mostly considered perfect inter-
ventions i.e., interventions that render the intervened vari-
ables and its causal parents independent, and especially
uniformly randomization as interventions which are con-
sistent in their nature with the idea behind RCTs that are
often argued to be the gold standard in causality. However,
as already suggested, our model is not restricted to any
specific intervention type or instantiation. Fig. 6 (a) illus-
trates the performance of iSPN on the Causal Health data
set for different intervention types (perfect, atomic), noise
terms (Gaussian, Gamma, Beta) and instantiations (Indi-
cator Functions, Modifications). As can be observed, the
model successfully manages to model most interventional
distributions and consequences adequately. Furthermore, we
observe that the training curves remained consistent among
different intervention types further advocating the adaptabil-
ity of the model to interventions of more arbitrary nature.
Nonetheless, it can be observed that some interventions
are being modelled more precisely than others, e.g. con-
sider the relatively better performance of the model on the
non-standard Beta intervention do(H = 100B(2, 2)) that
creates a wide and symmetric distribution opposed to the in-
dicator intervention do(H = 1[25,75]) that creates two heaps
on 25 and 75. A possible explanation for this observation
might lie in the fact that the model still learns other variants
of distributions for a given variable, i.e. the different distri-
butions the model adapts to on e.g. the Health H variable
are p(H), p(H | do(F = f)), p(H | do(M = m)) etc.
and it can be argued that the non-standard Beta intervention
is more consistent (that is, more similar) with these other
marginal distributions of H than it is with the unconven-
tional distribution it learns for the indicator intervention. To
summarize, the optimization problem becomes easier for
the former.

8 DATA SETS FOR GENERATIVE AND
CAUSAL INFERENCE TASKS

Additional details on the four data sets considered for em-
prical evaluation of the generative and causal capabilities of
iSPN in comparison to SotA methods:



Data # of variables # of samples # of edges
Causal Health 4 100,000 4

ASIA 8 10,000 8
Earthquake 5 10,000 4

Cancer 5 10,000 4

Table 2: Dimensions of the used data sets. Edges refer to
the edges in the causal graph associated with each data set.
The benchmarks stem from: https://www.bnlearn.com/
bnrepository/discrete-small.html

9 EXPERIMENTAL DETAILS

Legend for Figure 3 (main paper), data sets from top to
bottom: H,A, E, C, variables from left to right: H: Age,
Food Habits, Health, Mobility; A: Xray, Tub, Lung, Ei-
ther; E: Burg., Earth., Alarm; C: Smoker, Poll., Cancer,
Xray. We trained iSPNs on 10,000 samples for each of the
3 public data sets and on 100,000 samples for the synthetic
Causal Health data set. We chose the non-parametric func-
tion approximators f(·) for each iSPN to be a multi-layer
perceptron (MLP). The inputs to the MLPs were mutilated
causal graphs Ĝ. The MLPs had 2 hidden layers consisting
of 10 units each and used ReLU as their activation func-
tions. The outputs were 2400 (600) weights corresponding
to the sum nodes and 96 (12) weights corresponding to the
leaf nodes of the SPN g(D;ψψψ) for ASIA, Cancer and Earth-
quake (Causal Health) data sets. The MLPs were trained
for 20 (130) epochs with a batch size of 100 (1000) and 5
seeds.

Also, the learned distributions are similar across different
seeds, with exception of some distributions, such as the
marginal p(V4| do(V2 = U(V2))) in the Cancer data set. A
possible explanation for the observed higher variance is that
the optimization trajectories during training for the different
random seeds deviate with similar variance, stemming from
the fact that different seeds select different initializations
of the neural network parameters θθθ leading to different op-
timization steps and possibly local optima. A hint to this
deviation of optimization trajectories might also be the ob-
served discrepancy between the single best seed of a given
model configuration and its mean performance across multi-
ple random seeds.

All of the experiments have been conducted on a MacBook
Pro (13-inch, 2020, Four Thunderbolt 3 ports) laptop run-
ning a 2,3 GHz Quad-Core Intel Core i7 CPU with a 16 GB
3733 MHz LPDDR4X RAM on time scales ranging from
seconds to (a few) hours with incr. size of the experiments.

10 ALTERNATIVE FORMULATION
WITH AN ADJUSTMENT SET

The following is an alternative to Prop.1 (main paper) such
that one exchanges the necessity of intervention with the

knowledge on confounders if available.

Proposition 2 (Adjustment for Observational Models). As-
suming autonomy and invariance, any interventional distri-
bution pG(Vi = vi | do(Uj = uj)) permitted by a SCM C
that induces a causal graph G can be identified by adjust-
ing for the confounders w within the observational model∑

w p(Vi = vi | Uj = uj ,W = w)p(W = w).

Proof. Assume W ∩ {V,U} = ∅. Furthermore, G, Ĝ are
again the original and intervened causal graph and p = pG.
Now, p(Vi = vi | do(Uj = uj)) = pĜ(Vi = vi | Uj =
uj)

=
∑

w
pĜ(Vi = vi,W = w | Uj = uj)

=
∑

w
pĜ(Vi = vi | Uj = uj ,W = w)pĜ(W = w)

=
∑

w
p(Vi = vi | Uj = uj ,W = w)p(W = w) .

The first equality follows, by definition, from do-calculus
as argued in Prop. 1, i.e., the intervention amounts to the
observation in the intervened system. The second and third
equality are transformations according to the rules of prob-
ability theory: the second step follows the sum rule and
the third step follows the chain rule. The last line follows
from the assumptions of autonomy and invariance i.e., that
interventions are local and invariant to whether they occur
naturally or artificially.

The set of variables W is called (valid) adjustment set
(see Def. 6.38 of Peters et al. 2017) if it adjusts the ob-
servational setting such that the causal effect captured by
the intervention becomes unconfounded10. For the Causal
Health SCM C which induces the simple causal graph
A → F, {A,F} → H,H → M , the equivalence of
Props. 1 and 2 depends on the inference query. While an
intervention on A is trivially unconfounded p(H = h |
do(A = a)) = p(H = h | A = a), an intervention on F
would require adjustment via e.g. {A}, that is, p(H = h |
do(F = f)) =

∑
a p(H = h | F = f,A = a)p(A = a).

10.1 EXAMPLE OF AN ANALYTICAL
DERIVATION FOR ATE

Consider the non-confounding case of the ATE or causal
effect of a Burglary (B) on an Alarm (A) (where Q is
Earthquake) from the Earthquake data set. From the law of
iterated expectations, it follows:

ATE(Treatment=B,Effect=A)
= E[A | do(B = 1)]− E[A | do(B = 0)]

= EQ[E[A | do(B = 1), Q]− E[A | do(B = 0), Q]]

= 0.99322− 0.0598 = 0.93342

10Mathematically, the causal effect from X to Y is confounded
if p(Y | do(X)) ̸= p(Y | X)

https://www.bnlearn.com/bnrepository/discrete-small.html
https://www.bnlearn.com/bnrepository/discrete-small.html


with

EQ[E[A | do(B = 1), Q]]

=
∑
e

E[A | do(B = 1), Q = e]p(Q = e)

=
∑
e

p(A = 1 | do(B = 1), Q = e)p(Q = e)

=
∑
e

p(A = 1 | B = 1, Q = e)p(Q = e)

= 0.71 ∗ 0.02 + 0.999 ∗ 0.98 = 0.99322

and analogously for EQ[E[A | do(B = 0), Q]].

The ATE tells us that a burglary has a strong effect on the
alarm to be triggered which is consistent with our human
intuition as the alarm is specifically designed to trigger in
an event of theft.

11 FURTHER NUMERICAL
EVALUATION

More numerical evaluation, using Jensen-Shannon-
Divergence as the discrepancy measure for the simulated
ground truth distribution against the estimates of iSPN and
the generative competition. A lower score suggests a better
approximation. We consider a cycle permuted experimental
setup in which each experiment considers a different
uniform intervention of the currently selected variable of
choice. Generally, iSPN outperforms the baselines in its
estimate precision under fair (i.e., similar neural capacities,
same amount of data passes, same amount of random seeds
under consideration):

QueryMethod iSPN MADE MDN
x-ray 0.002 1.262 0.398
tub 0.009 0.004 0.176
lung 0.002 0.003 0.285
either 0.009 0.022 0.089

QueryMethod iSPN MADE MDN
Burglary 0.000 1.083 0.182

Earthquake 0.000 0.005 0.465
Alarm 0.001 0.048 0.312

MaryCalls 0.005 0.033 0.084
QueryMethod iSPN MADE MDN

Smoker 0.003 0.002 0.064
Pollution 0.005 0.385 0.305
Cancer 0.003 0.002 0.064
Xray 0.001 0.305 0.066

QueryMethod iSPN MADE MDN
Age 0.000 0.003 0.069

Food Habits 0.013 0.037 0.108
Health 0.006 0.007 0.073

Mobility 0.037 0.060 0.079

Age Food Habits Health Mobility
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Figure 6: Ablation Study on Different Intervention Types,
Noise Terms and Instantiations. Training results for dif-
ferent kinds of interventions on the continuous Causal
Health data set are being presented, with (a) presenting the
learned (mean) density functions for a given intervention
on H , where we consider different noise distributions nor-
mal N (µ, σ2), Gamma Γ(p, q), and Beta B(a, b) but also
different modifications, e.g. the non-standard Beta distribu-
tion (k − l)B(a, b) + l and intervention types, e.g. perfect
interventions do(H = a), a ∈ R. Below (b) shows the re-
spective mean objective curves (log-likelihood), indicating
consistent training and convergence on the continuous data
set for all 3 seeds per configuration.
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