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ABSTRACT

Recent long-tail classification methods generally adopt the two-stage pipeline and
focus on learning the classifier to tackle the imbalanced data in the second stage
via re-sampling or re-weighting, but the classifier is easily prone to overconfi-
dence in head classes. Data augmentation is a natural way to tackle this issue.
Existing augmentation methods either perform low-level transformations or apply
the same semantic transformation for all samples. However, meaningful augmen-
tations for different samples should be different. In this paper, we propose a novel
sample-specific and context-aware augmentation learning method for long-tail im-
age classification. We model the semantic within-class transformation range for
each sample by a specific Gaussian distribution and design a semantic transforma-
tion generator (STG) to predict the distribution from the sample itself. To encode
the context information accurately, STG is equipped with a memory-based struc-
ture. We train STG by constructing ground-truth distributions for samples of head
classes in the feature space. We apply STG to samples of tail classes for augmen-
tation in the classifier-tuning stage. Extensive experiments on four imbalanced
datasets show the effectiveness of our method.

1 INTRODUCTION

With the available of large-scale datasets such as ImageNet ILSVRC2012 (Russakovsky et al., 2015)
and MS COCO (Lin et al., 2014}, Convolutional Neural Networks(CNN) have achieved great suc-
cess in image classification. The numbers of labeled samples of different classes in these datasets
are balanced. However, data in the real-world often follows a long-tail distribution, i.e., a few dom-
inant classes occupy most of the samples, while much fewer examples are available for most other
classes. CNNs trained with such imbalanced data generalize well for head classes but easily overfit
tail classes, and hence obtain degraded performances on balanced test data.

It has been demonstrated in (Kang et al.| 2019; [Zhou et al., [2020) that directly tackling the long-
tail distribution by re-weighting or re-sampling techniques to train CNNs will hurt the capability
of the learned representation. To alleviate the dilemma, many studies (Kang et al 2019} [Zhong
et al., [2021)) split the long-tail classification pipeline into a feature learning stage and a classifier
learning stage. Solutions for adjusting the long-tail distribution are only applied to re-balance the
classifier in the second stage. Such methods can well exploit the good feature representation learned
from the original distribution. However, due to the imbalanced data, the classifier is still prone to
overconfidence toward head classes and overfit to the limited samples of tail classes.

A natural way to alleviate such overconfidence is to augmenting samples for tail classes. Low-level
image transformations such as random rotation, horizontal and color jittering are commonly used
for augmentation (Cubuk et al., 2018). Although being effective, these augmentation techniques
only slightly change the lighting, orientation, location, or color of samples, but are not capable of
performing semantic transformations, e.g., changing the background of an object or the shape and
texture of a foreground object. Therefore, the generated augmentations only distribute locally around
existing samples and cannot effectively recover the real distribution. In (Wang et al.| [2019), each
class is modeled by a Gaussian distribution and augmentations are sampled from the distribution
estimated in the feature space. It is difficult to reliably estimate the mean and covariance of a
tail class since they are directly calculated from the few training samples. In (Li et al.l 2021)), a
validation set is employed to calculate the mean and covariance in the way of meta learning. These
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methods treat each sample of the same class equally. However, different samples may locate in
different regions of the real distribution and hence their meaningful within-class transformations
are different. As is shown in Figure[T] (b), the within-class change ranges for the three samples are
quite different. Applying the same global semantic variance range to all samples may lead to illegal
augmentations that are out of the real distribution.

In this paper, we propose a novel three-stage method for long-tail image classification by exploring
an additional sample-specific augmentation learning stage. In the first stage, we follow effective
methods (Zhong et al.,[2021)) to learn the feature representation from the original imbalanced train-
ing samples. In the second stage, we propose a sample-specific and context-aware augmentation
generation module to learn semantic augmentations for each sample. Since the within-class vari-
ance ranges for different samples are different, we explicitly model the augmentation distribution
for each sample by an individual Gaussian distribution and use a Semantic Transformation Gener-
ator (STG) to estimate the distribution. We train STG from sufficient samples of head classes. To
estimate the sample-specific statistics accurately, STG adopts a dictionary-based memory mecha-
nism to preserve the context information. In the third stage, we apply STG to each sample of tail
classes and achieve semantic data augmentation for fine-tuning the classifier. For each tail class,
STG generates different meaningful and large-scale semantic distributions for augmenting different
samples, so the augmented distribution better approaches the real distribution from few samples as
shown in Figure[T] (¢). Our major contributions are summarized as:

1) We propose a novel STG network to generate different transformation distributions for different
samples. To train STG, we estimate the within-class variance distribution for each sample of the
head class as the ground-truth, so that STG obtains sample-specific meaningful semantic augmen-
tations and generalizes well to samples of tail classes.

2) To explore the relationship between other samples and encode the context information, we develop
a dictionary-based memory mechanism in STG to make the estimations of the sample-specific
mean and covariance more accurate.

3) We design a three-stage method for long-tail classification by learning data augmentations for
tail classes in the feature space. We conduct extensive experiments on the CIFAR-10-LT, CIFAR-
100-LT Krizhevsky et al.|(2009), ImageNet-LT, Places-LT Liu et al.|(2019)) datasets and the results
demonstrate the effectiveness of our method.

S

(a) Long-tail distribution (b) Class level augmentation (c) Sample level augmentation

Figure 1: Visualization of semantic data augmentation. (a) Example of the long-tail distribution,
where the distributions of the two head classes are shown in blue and green, respectively, while
the distribution of the tail class is shown in pink. Solid line denotes the original distribution. (b)
Class-level augmentation. Since the same transformation is applied to all samples indiscriminately,
the adjusted distribution contains illegal augmentations. Dotted line denotes the adjusted distribu-
tion. (c) The proposed Sample-specific augmentation. The semantic transformation is different for
different sample. The adjusted distribution better recovers the real distribution of the tail class.

2 RELATED WORK

Re-balancing strategies. Re-balancing strategies can be decomposed into re-sampling and re-
weighting. The basic idea of re-sampling is to extend the amount of samples in tail classes or reduce



Under review as a conference paper at ICLR 2022

the number of samples in head classes. These methods can be summarized as up-sampling (Buda
et al.,[2018} | Byrd & Lipton,|2019) and under-sampling (Drummond et al., [2003} |Buda et al., [2018]).
Up-sampling aims to repeat samples of tail classes while under-sampling focuses on removing a part
of samples in the head classes. Compared with up-sampling, under-sampling has a smaller risk of
overfitting, but it incurs the dilemma of removing important samples (Drummond et al.,|2003).

Re-weighting strategies aim to allocate larger weights for training samples of tail classes and smaller
weights for training samples of head classes in loss functions (Huang et al.,2016; Wang et al.,[2017).
Huang et al.| (2016) and [Mahajan et al.| (2018) assigns the weights by the inverse of class frequency
or the smooth version. In (Cui et al.} 2019)), a function is proposed to calculate the weights via the
number of samples for each class. In (Tan et al., |2020), the re-weighting strategy is realized from
another aspect and it randomly ignores discouraging losses for tail classes. Focal loss (Lin et al.,
2017) is a typical and effective method to associate the weight with respect to the probability of each
sample, where the gradient of high probability samples will be impaired heavily.

In (Zhou et al.l 2020; [Kang et al.l 2019), it is shown that distribution of features and the distri-
bution of category labels are inherently uncoupled. Therefore, many recent methods (Kang et al.|
2019) follow the two-stage framework by decoupling representation learning and classifier learning.
The re-balancing strategies are applied to turning the classifier rather than learning representations.
Compared with these conventional re-balancing methods, our method generates new semantic sam-
ples of tail classes from few samples after the representation learning stage. An additional stage
for learning to generate augmentations is performed before using augmented samples to learn the
classifier. From the perspective that viewing augmentation as up-sampling, our method can be seen
as an extension of traditional re-sampling strategy.

Augmentation-based methods. Augmentation-based methods aim to generate new samples based
on original training data. Such methods can be decomposed into data level augmentation and feature
level augmentation. Mixup (Zhang et al., 2017) generates synthetic data by interpolating pairs of
samples and their labels. In (Kim et al.,2020) new samples of tail classes are generated by adding
noises to samples of head classes to improve the generalization ability of the model. However, such
low-level augmentations only change samples in the color space, which not only cannot guarantee
to make sense in reality, but also cannot explore the uncovered spaces of the real distribution.

Differently, feature space augmentation (Chu et al. [2020) operates on the learned features. Its
feature-level augmentation is performed by sampling two samples and fuse their feature maps. The
shortcoming of such fusion-based method lies in the fact that it is easy to confuse the differences
of different classes. BBN (Zhou et al.l [2020) proposes a bilateral branch network and combines
different features from instance balanced sampler and reversed sampler, respectively. MetaSAug (Li
et al.| 2021) uses semantic augmentations with meta-learning to enlarge features for tail classes.

Recently, in (Upchurch et al., 2017) extensive human annotations are used to explicitly find semantic
transformation directions with additional manual consumption. ISDA (Wang et al., 2019) realizes
implicit semantic augmentation by calculating mean and covariance of samples for each class and
views samples of this distribution as available semantic directions. Since only few samples are
available for tail classes, it is difficult to estimate the mean and covariance accurately. Actually, our
method is also attributed as feature level augmentation. Different from other methods that apply the
same transformation (e.g., adding random noises) to all samples, we distinguish different samples
and model the transformation space of each samples as a separate Gaussian distribution. The statis-
tics of the distribution for each sample are generated by a network learned from head classes rather
than estimation from data. Sample-specific augmentation is achieved by sampling different trans-
formations from the corresponding spaces for different samples. Compared with other methods, our
method fully considers individual differences to generate semantically rational augmentations.

3 METHOD

3.1 PROBLEM DEFINITION AND NOTATIONS

We are given an imbalanced training dataset S = {(x;,y;)}, where y; € {1,---,C} is the label
of the i*" sample x;, C' is the number of classes, and n. denotes the number of samples belongs
to the c-th class. Without loss of generality, we assume that the classes are sorted by cardinality
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Figure 2: (a) The learning process of the proposed STG. (b) The estimation of p, 3. The Yellow dot
indicates the anchor feature, blue lines denote samples of semantic transformation and we calculate
1, 3 by estimating from such transformations. Every feature has its own specific semantic transfor-
mations. (¢) The memory-based dictionary. We push and pop features to refresh the dictionary.

in decreasing order, i.e., ny > ns > ... > ne. The data obeys the long tail distribution, i.e.,
most samples belong to only a few head classes, while each of the other tail classes only has a few
samples. In the test set, all classes have the same number of test samples, i.e., n; =~ ny--- = ne.
As a consequence, the model trained on imbalanced datasets performs poorly to recognize the tail
classes.

Previous works (Kang et al., [2019) have already demonstrated the effectiveness of the two-stage
strategy, which decouples the training process into the feature extraction learning stage and the
classifier learning stage. In the first stage, a feature vector a; is extracted from each sample x; by
the backbone network f(x;; @), where 0 is the set of parameters of the backbone. In the second
stage, the final classifier is denoted as g(a;; w), where w is the parameter set of the classifier.

3.2 OVERALL ARCHITECTURE

Different from the two-stage strategy, we add a semantic transformation learning stage and hence
split the total pipeline into three stages. The first stage remains the same, in which we learn fea-
ture representations by training the parameters in 8 of backbone f(x; @) from the imbalanced data.
Mixup (Zhang et al., 2017) and self-supervised learning (Yang & Xul [2020) have proved their ef-
fectiveness in tackling the long-tail problem. We choose mixup as the training strategy to learn the
backbone. In the second stage, we freeze parameters of the backbone learned in the first stage and
learn the proposed STG network from the features of the head classes, where details are described in
Section[3.3] In the third stage, we utilize the learned STG to generate semantic transformation dis-
tributions for samples of the tail classes. Sample-specific augmentations are generated by sampling
from the corresponding distribution and then used to fine-tune the final classifier g(a; w). Details
of the augmentation strategy are presented in Section 3.4}

3.3 SEMANTIC TRANSFORMATION GENERATOR

It has been shown in (Upchurch et al.| 2017)) that translations in the well-learned feature space can
produce meaningful semantic transformations, e.g., changing the color or posture of the object. In
(Wang et al., 2019), the Implicit Semantic Data Augmentation (ISDA) method models semantic
transformations for each class by a Gaussian distribution. By calculating class-wise covariances
3 = {X4, -, 3¢}, it defines the distribution of semantic augmentation transformations for each
feature vector a; as N (a;, AX,,), where X is a scale coefficient to rectify the vector length. Since
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only few samples are available for a tail class, it is hard to estimate the covariance and model the
distribution of semantic transformations directly. MetaSAug (Li et al.l 2021) utilizes a validation
set to obtain semantic transformations indirectly. However, this method still does not consider the
fact that semantic transformation ranges for different samples should be different. For instance, the
semantic transformation vector that aims to change the color from red to blue cannot be applied to
blue objects. On the contrary, our STG is proposed to learn semantic transformations at the instance
level. The training progress of STG is shown in Figure 2]

We also make a hypothesis that the semantic transformations for a sample follow a Gaussian dis-
tribution. Since only a few samples are available for tail classes, the distribution cannot be reliably
estimated from these samples. To tackle this problem, we train the STG network from head classes
and use it to generate distributions for samples of tail classes. Different from ISDA and MetaSAug
that estimate a single transformation covariance for all samples of the same class, STG aims to gen-
erate ad-hoc distribution for each sample in the feature space. Specifically, STG takes the feature of
a sample as input and outputs the mean p and covariance X of the transformation distribution of this
sample. We use two multilayer perceptrons with batch normalization (loffe & Szegedyl, [2015)) and
the Relu activation as two modules to constitute the STG model and predict ¢ and 3, respectively.

In the additional second stage of our three-stage pipeline, we train STG from head classes. Since
head classes have sufficient samples, the within-class variances for each sample can be directly es-
timated from other samples of the same class. Instead of estimating fixed statistics for each head
sample offline from all training samples, we dynamically update such estimations with batches on
the fly, which not only improves the efficiency but increases the diversity and randomness. More-
over, since each time a different local Gaussian is estimated, this also alleviates the limitation of
single Gaussian modeling. Given a feature a;, we collect samples with the same class of a; in
the mini-batch into a set {@1y,,- - - , @xy, }. The corresponding semantic transformation set of a; is
{a1y, — a;, - ,ar,, —a;}. We view elements in this set as samples of the Gaussian distribution
of semantic transformations of a;. As is shown in Figure [Z] (b), the mean p; and covariance 32; can
be estimated from these samples directly as follows:

k k
1 1
pi = Ezam —a; > = EZ(’” — (ajy, — ai))? (1)
j=1 j=1

In addition, we hold the assumption that each channel of feature is independent and only calculate
the diagonal of the covariance matrix for simplicity. The estimated p; and 32; serve as the ground-
truth statistics of s(a;; 0;) for the supervised learning of STG.

Although directly using a; as the input of STG is available, the difference between different classes
is not explicitly taken into consideration. Feasible semantic transformations for samples in the
same class may be similar. Therefore, we define learnable class-specific tokens {p1,--- ,pc} to
distinguish different classes explicitly. These tokens are initiated by the normal distribution and
participate in the updates by back-propagation. During the training phase, the corresponding class
token p,, is added to a;, thus STG takes the input of a; + p,, and regress fi; and ﬁli directly. This
process can be formulated as:

i, 3 = s(a; + py,; 0s) (2)
where 6 denotes the parameter set of the STG network s, fi; and 32; are the estimations of the mean
and covariance, respectively.

Actually, the more abundant the samples, the more accurate the estimated statistics. In the STG
learning stage, we only collect samples from the mini-batch and thus the number of samples is
small. A plain strategy is to expand the size of the mini-batch, but it is limited by cuda memory.
Inspired by MoCo (He et al., [2020), we add an external dictionary to store features of previous
iterations. Our dictionary pushes in features of the recent mini-batch and pops out old features,
as shown in Figure [2[ (c). Therefore, features in our dictionary are dynamically updated to supply
samples in each mini-batch to better estimate the statistics. Moreover, the make the predictions more
stable, we smoothly update the estimated statistics for the same sample.

3.4 SEMANTIC TRANSFORMATION AUGMENTATION

In the third stage, we use the trained STG to generate augmentations for tail classes. Because the
tail classes have not participated in the learning stage of STG, no class-specific tokens with respect
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to these classes are learned. Therefore, we use the token of the most similar head class for each
sample of tail classes. Given each sample feature a; of the ¢-th tail class, we obtain its semantic
transformation distribution with p;, 33; predicted by STG. Then we employ the reparameteric trick
(Kingma & Welling| 2013)) to generate augmentation samples as follows:

a?ug:aiJr(\/Eiierrm)X)\Xﬂym ®)

where € ~ N (0,1) and (v/X; X € + p;) is a sampled semantic transformation vector. The hyper-
parameter A controls the strengthen of augmentations globally. 3,, is another knob to control the

strengthen at the class level, which is calculated as 3, = (%)1/ 2. n,, is the number of samples
Yi “

belonging to class y; and 1, = min(nq,--- ,n¢). Considering the number of samples in differ-
ent classes also differs, we need to distinguish samples in different tail classes. The effect of this
function is to inhibit the strengthen of classes with more samples than other tail classes.

Finally, we combine the augmented feature a;"“? with the original feature a; to obtain the enhanced

representation. Since our augmentation is random and illegal features can be generated, we pre-
serve part of the original feature to alleviate such illegal situation. We randomly sample a vector
m ~ U(0,1) which has the same dimension as a;. We use a threshold ¢ € (0, 1) to control the
augmentation rate. The final augmentation feature for a; is defined by Eq. (d):

&’i = 1[m>t] X a; + 1[m<t] X a?ug (4)
Empirically, we set ¢ = 0.5, which means that we preserve 50% of the original features.

The loss function by using the augmented representation to train the classes is presented in Eq.(3):

1 N 69(&1‘7“’7/1)
Kang et al.|(2019) propose different classifier re-training strategies such as cRT, LWS, 7-normalized,
etc. [Zhong et al.| (2021) propose the generalized classifier for long-tail distribution. Experiments
show that cRT is more proper for small scale datasets while LWS and the generalized classifier are
more adaptable for large scale datasets. Therefore, we use cRT to re-train the classifier for common
situations while adopt the generalization classifier on large scale datasets.

4 EXPERIMENT

4.1 DATASETS AND EXPERIMENTAL SETUP

We evaluate our method on the CIFAR-10-LT dataset, the CIFAR-100-LT dataset, the ImageNet-LT
dataset, and the Places365-LT dataset. To verify that our method can be applied to multiple backbone
models, deep residual networks (ResNets) (He et al.,|2016) with various depths are applied as the
feature extraction backbone.

Datasets. CIFAR-10-LT and CIFAR-100-LT are simulated from balanced datasets. There are 10
classes and 100 classes in the two datasets, respectively. For both classes, on the test set, every
class has an equal number of samples. We conduct experiments with different imbalance factor
(IM), which is defined as Nynaz/Nmin. Nmaz and Ny, denote the volumes of the most frequent
class and the least frequent class, respectively. We follow the same protocol in (Cao et al.,|2019) to
generate training datasets with imbalance factors of 10, 50, and 100, respectively. ImageNet-LT is
generated from the ImageNet dataset (Russakovsky et al., 2015) and contains 115.8k images. The
imbalance factor is 256, and the number of images per class ranges from 1280 to 5. Places365-LT
is constructed from the Places-2 dataset and contains 6.5k images from 365 categories. Compared
with the CIFAR-LT datasets, it suffers from extreme imbalance. The largest class contains 4980
images while the smallest one has only 5 images (IM = 996).

Experimental Setup. For CIFAR-10-LT and CIFAR-100-LT, we use ResNet-32 as our backbone
following (Cao et al.,2019). In the first stage, we use the SGD optimizer and set the initial learning
rate to 0.1. The first five epochs are trained with the linear warm-up (Goyal et al.|[2017) learning rate
schedule. The learning rate drops by 0.1 at epoch 160 and epoch 180, respectively. We follow the
most popular setting to set the momentum and the weight decay to 0.9 and 2 x 10~4, respectively. In
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the STG learning stage, we use the ADAM optimizer and set the learning rate to 0.001. In the third
stage, we also use ADAM as the optimizer and set the learning rate to 0.0001 and 0.001 for CIFAR-
100-LT and CIFAR-10-LT, respectively. For ImageNet-LT, we use ResNet-50 as the backbone and
adopt the cosine learning rate schedule that gradually decays from 0.1 to O in the first stage. For
Places365-LT, we use ResNet-152 as the backbone and the ImageNet pretrained parameters for
initiation. Following OLTR (Liu et al.| [2019), we set the initial learning rate to 0.01 and drop by 0.1
every 10 epochs. In the STG learning stage, we follow previous CIFAR-LT training strategies using
the ADAM optimizer. In the classifier learning stage, we use the cosine learning rate that decays
from 0.001 to O.

Table 1: Performance on CIFAR-10-LT. Table 2: Performance on CIFAR-100-LT.
Method 100 50 10 Method 100 50 10
CE 704 748 864 CE 384 439 558
Mixup 73.1 77.8 87.1 Mixup 39.6 45.0 582
LDAM-DRW 77.1 81.1 884 LDAM-DRW 42.1 46.7 58.8
BBN 799 822 884 BBN 426 471 592
Remix-DRW 798 - 89.1 Remix-DRW  46.8 - 61.3
MetaSAug 80.7 843 89.7 MetaSAug 48.0 523 61.3
cRT+mixup 79.1 842 89.8 cRT+mixup 45.1 509 62.1
LWS+mixup 763 82.6 89.6 LWS+mixup 442 50.7 623
MiSLAS 82.1 857 90.0 MiSLAS 47.0 523 632
Ours 83.1 859 904 Ours 48.6 539 63.3

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Results on CIFAR-LT. To demonstrate
the effectiveness of our method, we
compare our method with mixup (Zhang
et al., [2017), LDAM-DRW (Cao et al.,
2019), BBN (Zhou et al), [2020),
Remix-DRW (Chou et all [2020),
MetaSAug (Li et all [2021), cRT,

LWS (Kang et al), 2019) and MiS- ¥ 3

LAS (Zhong et al) [2021). The 3 X &@
performances on CIFAR-10-LT and ’ '
CIFAR-100-LT are shown in Table (a) w/o augmentation (b) w augmentation

and Table [2| respectively. Compared

with other methods, our method gen- Figure 3: The T-SNE (Van der Maaten & Hinton, 2008)
erally achieves better performances on visualizations of training samples on CIFAR-10-LT with
both datasets. The improvement made IM=100. (a) Feature distribution of training samples.
by our method is larger with the im- (b) Semantic augmentation samples. Some augmenta-
balanced factor of 100 and weaker with tion features are split into two parts since the most similar
the imbalanced factor of 10. Especially, head classes for different features are different.

our method outperforms other methods

by a margin of 1% with the imbalanced

factor 100 on both datasets. The inner reason is that the more extreme imbalanced distribution
suffers from more severe overfitting, and our semantic augmentations can alleviate such overfitting
better by exploring more accurate within-class covariances.

To better understand how our method influences classification, we visualize the decision boundary
of our method and compared it with CE and cRT. As shown in Figure [3|and Figure {] our method
obtains better decision boundaries compared with other methods. This further supports our point
that our method can alleviate the overfitting of tail classes and has better generalization ability.

Results on ImageNet-LT/Places365-LT. Our method can well scale to large scale datasets such
as ImageNet-LT and Places365-LT. On ImageNet-LT, we add focal loss (Lin et al., 2017) and CE-
DRW (Cao et al., 2019) for comparison. On Places365, we add OLTR (Liu et al., 2019), OLTR-
LMFE (Xiang et al., [2020), and FeatureAug (Chu et al.| 2020) for comparison. Results on the two
datasets are shown on Table [3|and Table ] respectively.
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(a) Truth (b) CE (c) cRT (d) Ours

Figure 4: The T-SNE visualizations of different strategies and their decision boundaries on CIFAR-
10-LT with IM=100. (a) The truth boundary of distributions on the validation set. Samples from the
same class are shown in the same color. (b) The decision boundary by using the Cross Entropy loss.
The yellow class (tail class) is easy to be decided as the purple class (head class). (c¢) The decision
boundary of cRT. The misclassification phenomenon is alleviated but still exists. (d) The decision
boundary of our method, which is more similar to the truth boundary compared with other methods.

Our method achieves better performance compared with other methods in ImageNet-LT. However,
we obtain comparable performance with MiSLAS on Places365-LT. Specifically, we split Places-LT
into “many”, "medium”, and "few” classes according to the number of samples per class, where the
detailed principle follows OLTR. As shown in Table ] MiSLAS boosts the accuracy of the whole
dataset by dropping performances on head classes heavily. In contrast, our method can achieve the

same overall accuracy while preserving performances on head classes.

Table 3: Performance on ImageNet-LT. Table 4: Performance on Places365-LT.
Method Method all many medium few
CE 44.6 CE 272 459 224 0.36
Mixup 45.5 Mixup 292 - - -
LDAM-DRW  48.8 OLTR 359 447 37 253
CE-DRW 48.5 OLTR-LMFE 36.2 - - -
Focal-DRW 479 FeatureAug 364 428 375 22.7
MetaSAug 52.6 cRT+mixup 383 44.1 38.5 27.1
cRT+mixup 51.7 LWS+mixup 39.7 41.7 413 33.1
LWS+mixup  52.0 MiSLAS 404 396 433 36.1
MiSLAS 52.7 Ours 404 435 419 31.6
Ours 53.2

Table 5: The KL divergence between semantic transformations. The numerical values show the
differences of transformations for different samples. The KL divergence of the 4-th and 5-th samples
are the most similar since their most similar head classes are the same.

Samplel Sample2 Sample3 Sample4 Sample5

Samplel 0 43.1 33.1 38.6 29.2
Sample2 37.2 0 41.2 62.8 54.5
Sample3 42.1 59.1 0 69.5 57.1
Sample4 28.2 55.8 459 0 22.2
Sample5 28.1 61.1 45.2 27.4 0
The most similar class 15 9 18 16 16

4.3 ABLATION STUDIES

What is learned from STG. To better understand what STG has learned, we randomly choose five
samples of the same tail class from CIFAR-100-LT with imbalanced factor 100 and obtain their
semantic transformations. As shown in Table [3} the most similar head classes for the 4-th and 5-
th samples are the same, but are different for all other samples. Such differences determine that
these samples use different knowledge, even if they come from the same tail class. Specifically, we
calculate the KL divergence to estimate the difference between semantic transformations of different
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samples. We observe that the transformations differ greatly. The transformations for the 4-th and
5-th samples are similar because they both utilize the knowledge transferred from the same header
class. For all other sample pairs, the divergence increases significantly. These results indicate the
necessity of constructing instance-level semantic transformations and verify that our method can
indeed generate sample-specific augmentations by taking the context information into consideration.

Effect of the dictionary-based

memory.  Precise estimations Taple 6: Ablation study about the memory size of the dictionary
of the mean and covariance as  on ImageNet-LT and CIFAR-100-LT with IM=100.

ground-truth for samples of head
classes are important since they ImageNet-LT _ CIFAR-100-LT

directly influence the training of m=0 52.6 48.3
STG and hence the final perfor- m=600  52.9 48.4
mance. We estimate the statis- m=1200 53.2 48.6

tics within mini-batches for effi-

ciency and diversity, and employ

the dictionary-based memory to tackle the problem of limited samples within mini-batches. We
explore the influence of the dictionary by conducting experiments on the memory size with m=0,
m=600, and m=1200. As shown in Table [6] a larger size of memory leads to better performances.
Compared with CIFAR-100-LT, the performance on ImageNet-LT is more sensitive to the mem-
ory size. The reason is that ImageNet-LT has 1000 classes and there are more head classes. Since
the number of head classes is large, the average samples per class in each mini-batch is smaller.
Increasing the memory size can alleviate this issue effectively.

Different strategies against

overfitting. One of the most Taple 7: Ablation study about the hyper-parameter X on CIFAR-
important hyper-parameter in  10-LT and CIFAR-100-LT with IM=100. Comparisons with

our method is A controlling the  other methods against overfitting like dropout and adding Gaus-
strengthen of augmentations. gjan noises.

There are also other strategies
such as dropout (Srivastava

CIFAR-10-LT CIFAR-100-LT

et al) 2014) and adding Gaus- Gaussian noisy-std=0.1 ~ 79.7 47.7
sian noises to features. We Gaussian noisy-std=0.5  80.0 47.6
perform experiments to demon- Gauss?an noisy—stdzl.O 80.8 47.5
strate the effectiveness of our Gaussian noisy-std=1.5  81.4 47.0
method compared with such ~ Dropout-p=0.1 81.4 47.6
strategies. ~ We set up three Dropout-p=0.2 81.8 47.8
experiments of dropout , i.e., Dropout-p=0.3 82.0 47.9
randomly setting zeros with Ours-A=0.5 81.0 48.1
probabilities p=0.1, p=0.2, and  Ours-A=1 82.3 48.3
p=0.3, respectively, and four _Ours-A=1.5 83.1 48.6

experiments of Gaussian noises

with standard deviations std=0.1,

std=0.5, std=1.0, and std=1.5, respectively. For our method, we also conduct three experiments
with A=0.5, A\=1.0, and A\=1.5, respectively. As shown in Table [/, our method achieves the best
performance with A=1.5. Compared with modifying features directly, our STG can capture better
transformation directions to tackle overfitting.

5 CONCLUSION

In this paper, we have presented a novel instance-level and context-aware augmentation method for
long tail image classification. Different from other augmentation methods that apply the same pre-
defined or learned augmentation strategy, our method is able to generate customized transformations
by STG for different samples of the tail classes. STG employs a dictionary-based memory mech-
anism to encode sample-specific context information. We estimate the transformation distributions
for sufficient samples of head classes as ground-truth to train STG. Extensive experiments on four
datasets show the effectiveness of our method. In the future, we intend to expand our method to
other tasks such as long tail object detection and segmentation.
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