BLUR IS AN ENSEMBLE: SPATIAL SMOOTHINGS TO IMPROVE ACCURACY, UNCERTAINTY, AND ROBUSTNESS

Anonymous authors

Paper under double-blind review

ABSTRACT

Bayesian neural networks (BNNs) have shown success in the areas of uncertainty 1 2 estimation and robustness. However, a crucial challenge prohibits their use in practice. Bayesian NNs require a large number of predictions to produce reliable 3 results, leading to a significant increase in computational cost. To alleviate this 4 issue, we propose *spatial smoothing*, a method that ensembles neighboring feature 5 map points of CNNs. By simply adding a few blur layers to the models, we 6 empirically show that spatial smoothing improves accuracy, uncertainty estimation, 7 and robustness of BNNs across a whole range of ensemble sizes. In particular, 8 BNNs incorporating spatial smoothing achieve high predictive performance merely 9 10 with a handful of ensembles. Moreover, this method also can be applied to canonical deterministic neural networks to improve the performances. A number of evidences 11 suggest that the improvements can be attributed to the stabilized feature maps 12 and the flattening of the loss landscape. In addition, we provide a fundamental 13 explanation for prior works-namely, global average pooling, pre-activation, and 14 ReLU6-by addressing them as special cases of spatial smoothing. These not 15 only enhance accuracy, but also improve uncertainty estimation and robustness by 16 making the loss landscape smoother in the same manner as spatial smoothing. 17

18 1 INTRODUCTION

In a real-world environment where many unexpected 19 events occur, machine learning systems cannot be guar-20 anteed to always produce accurate predictions. In or-21 der to handle this issue, we make system decisions 22 more reliable by considering estimated uncertainties, 23 24 in addition to predictions. Uncertainty quantification is 25 particularly crucial in building a trustworthy system in the field of safety-critical applications, including med-26 ical analysis and autonomous vehicle control. However, 27 canonical deep neural networks (NNs)-or determinis-28 tic NNs-cannot produce reliable estimations of uncer-29 tainties (Guo et al., 2017), and their accuracy is often 30 severely compromised by natural data corruptions from 31 noise, blur, and weather changes (Engstrom et al., 2019; 32 Azulay & Weiss, 2019). 33

Bayesian neural networks (BNNs), such as Monte Carlo (MC) dropout (Gal & Ghahramani, 2016), provide a probabilistic representation of NN weights. They combine a number of models selected based on weight probability to make predictions of desired results. Thanks to this facture, PNNs have hear widely used in the areas of

Figure 1: Spatial smoothing improves both accuracy and uncertainty (NLL). Smooth means spatial smoothing. Downward from left to the right (\searrow) means better accuracy and uncertainty.

- this feature, BNNs have been widely used in the areas of uncertainty estimation (Kendall & Gal, 2017)
- 40 and robustness (Ovadia et al., 2019). They are also promising in other fields like out-of-distribution
- detection (Malinin & Gales, 2018) and meta-learning (Yoon et al., 2018).

Figure 2: Comparison of three different Bayesian neural network inferences: canonical BNN inference, temporal smoothing (Park et al., 2021), and spatial smoothing (*ours*). In this figure, \boldsymbol{x}_0 is observed data, p_i is predictions $p(\boldsymbol{y}|\boldsymbol{x}_0, \boldsymbol{w}_i)$ or $p(\boldsymbol{y}|\boldsymbol{x}_i, \boldsymbol{w}_i)$, π_i is importances $\pi(\boldsymbol{x}_i|\boldsymbol{x}_0)$, and N is ensemble size.

42 Nevertheless, there remains a significant challenge that prohibits their use in practice. BNNs require 43 an ensemble size of up to fifty to achieve high predictive performance, which results in a fiftyfold 44 increase in computational cost (Kendall & Gal, 2017; Loquercio et al., 2020). Therefore, if BNNs 45 can achieve high predictive performance merely with a handful of ensembles, they could be applied 46 to a much wider range of areas.

47 1.1 PRELIMINARY

We would first like to discuss BNN inference in detail, then move on to Vector-Quantized BNN
(VQ-BNN) inference (Park et al., 2021), an efficient approximated BNN inference.

BNN inference. Suppose we have access to posterior probability of NN weight p(w|D) for training dataset D. The predictive result of BNN is given by the following predictive distribution:

$$p(\boldsymbol{y}|\boldsymbol{x}_0, \mathcal{D}) = \int p(\boldsymbol{y}|\boldsymbol{x}_0, \boldsymbol{w}) \, p(\boldsymbol{w}|\mathcal{D}) \, d\boldsymbol{w}$$
(1)

where x_0 is observed input data vector, y is output vector, and p(y|x, w) is the probabilistic prediction parameterized by the result of NN for an input x and weight w. In most cases, the integral cannot be solved analytically. Thus, we use the MC estimator to approximate it as follows:

$$p(\boldsymbol{y}|\boldsymbol{x}_0, \mathcal{D}) \simeq \sum_{i=0}^{N-1} \frac{1}{N} p(\boldsymbol{y}|\boldsymbol{x}_0, \boldsymbol{w}_i)$$
(2)

where $w_i \sim p(w|\mathcal{D})$ and N is the number of the samples. The equation indicates that BNN inference

51 is ensemble average of NN predictions for one observed data point as shown on the left of Fig. 2.

52 Using N neural networks in the ensemble would requires N times more computational complexity

53 than one NN execution.

Figure 3: Spatial smoothing improves both accuracy and uncertainty across a whole range of ensemble sizes. We report the predictive performance of ResNet-18 on CIFAR-100.

Data-complemented BNN inference. To reduce the computational cost of BNN inference, VQ-BNN (Park et al., 2021) executes NN for an observed data only once and complements the result with previously calculated predictions for other data. If we have access to previous predictions, the computational performance of VQ-BNN becomes comparable to that of one NN execution. To be specific, VQ-BNN inference is:

$$p(\boldsymbol{y}|\boldsymbol{x}_0, \mathcal{D}) \simeq \sum_{i=0}^{N-1} \pi(\boldsymbol{x}_i|\boldsymbol{x}_0) \, p(\boldsymbol{y}|\boldsymbol{x}_i, \boldsymbol{w}_i)$$
(3)

where $\pi(x_i|x_0)$ is the importance of data x_i with respect to the observed data x_0 , and it is defined as a

similarity between x_i and x_0 . $p(y|x_0, w_0)$ is the newly calculated prediction, and $\{p(y|x_1, w_1), \dots\}$ are previously calculated predictions. To accurately infer the results, *the previous predictions should*

57 consist of predictions for "data similar to the observed data".

Thanks to the temporal consistency of real-world data streams, aggregating predictions for similar data in data streams is straightforward. Since temporally proximate data sequences tend to be similar, we can memorize recent predictions and calculates their average using exponentially decreasing importance. In other words, *VQ-BNN inference for data streams is simply temporal smoothing of recent predictions* as shown in the middle of Fig. 2.

VQ-BNN has two limitations, although it may be a promising approach to obtain reliable results
in an efficient way. First, it was only applicable to data streams such as video sequences. Applying
VQ-BNN to images is challenging because it is impossible to memorize all similar images in advance.
Second, Park et al. (2021) used VQ-BNN only in the testing phase, not in the training phase. We find
that ensembling predictions for similar data helps in NN training by smoothing the loss landscape.

68 1.2 MAIN CONTRIBUTION

Spatially neighboring points in visual imagery tend to be similar, as do feature maps of convolutional neural networks (CNNs). By exploiting this spatial consistency, we propose spatial smoothing as a method of ensembling nearby feature maps to improve the efficiency of ensemble size in BNN inference. The right side of Fig. 2 visualizes spatial smoothing aggregating neighboring feature maps.

2 We empirically demonstrate that spatial smoothing improves the efficiency in vision tasks, such 73 as image classification on CIFAR (Krizhevsky et al., 2009) and ImageNet (Russakovsky et al., 2015), 74 without any additional training parameters. Figure 3 shows that negative log-likelihood (NLL) of 75 "MC dropout + spatial smoothing" with an ensemble size of two is comparable to that of vanilla MC 76 dropout with an ensemble size of fifty. We also demonstrate that spatial smoothing improves accuracy, 77 uncertainty, and robustness all at the same time. Figure 1 shows that spatial smoothing improves both 78 the accuracy and uncertainty of various deterministic and Bayesian NNs with an ensemble size of 79 fifty on CIFAR-100. 80

Global average pooling (GAP) (Lin et al., 2014; Zhou et al., 2016), pre-activation (He et al., 2016b), and ReLU6 (Krizhevsky & Hinton, 2010; Sandler et al., 2018) have been widely used in vision
tasks. However, their motives are largely justified by the experiments. We provide an explanation for
these methods by addressing them as special cases of spatial smoothing. Experiments support the
claim by showing that the methods improve not only accuracy but also uncertainty and robustness.

86 2 PROBABILISTIC SPATIAL SMOOTHING

Figure 4: Stages of CNNs such as ResNet (*left*) and the stages incorporating spatial smoothing layer (*right*).

time-independent proximate data, e.g. images, is more difficult because they lack such consistency.

102 2.1 MODULE ARCHITECTURE FOR ENSEMBLING NEIGHBORING FEATURE MAP POINTS

So instead of temporal consistency, we use spatial consistency—where neighboring pixels of images
 are similar—for real-world images. Under this hypothesis, we take the feature maps as predictions
 and aggregate neighboring feature maps.

and aggregate nerghboring reature maps.

be aggregated using temporal consis-

tency. On the other hand, gathering

99

100

Most CNN architectures, including ResNet, consist of multiple stages that begin with increasing the number of channels while reducing the spatial dimension of the input volume. We decompose an entire BNN inference into several steps by rewriting each stage in a recurrence relation as follows:

$$p(\boldsymbol{z}_{i+1}|\boldsymbol{z}_i, \mathcal{D}) = \int p(\boldsymbol{z}_{i+1}|\boldsymbol{z}_i, \boldsymbol{w}_i) \, p(\boldsymbol{w}_i|\mathcal{D}) \, d\boldsymbol{w}_i \tag{4}$$

where z_i is input volume of the *i*-th stage, and the first and the last volume are input data and output. w_i and $p(w_i|\mathcal{D})$ are NN weight in the *i*-th stage and its probability. $p(z_{i+1}|z_i, w_i)$ is output probability of z_{i+1} with respect to the input volume z_i . To derive the probability from the output feature map, we transform each point of the feature map into a Bernoulli distribution. To do so, a composition of tanh and ReLU, a function from value of range $[-\infty, \infty]$ into probability, is added after each stage. Put shortly, we use neural networks for *point-wise binary feature classification*.

Since Eq. (4) is a kind of BNN inference, it can be approximated using Eq. (3). In other words, each stage predicts feature map points only once and complements predictions with similar feature maps. Under spatial consistency, it averages probabilities of spatially neighboring feature map points, which is well known as *blur* operation in image processing. For the sake of implementation simplicity, average pooling with a kernel size of 2 and a stride of 1 is used as a box blur. This operation ensembles four neighboring probabilities with the same importances.

In summary, as shown in Fig. 4, we propose the following *probabilistic spatial smoothing* layer:

$$Smooth(z) = Blur \circ Prob(z)$$
(5)

where $Prob(\cdot)$ is a point-wise function from a feature map to probability, and $Blur(\cdot)$ is importance-

weighted average for ensembling spatially neighboring probabilities from feature maps. Smooth layer
 is added after each stage. Prob and Blur are further elaborated below.

Prob: Feature map to probability. Prob is a function that transforms a real-valued feature map into probability. We use tanh-ReLU composition for this purpose. However, tanh is commonly known to suffer from the vanishing gradient problem. To alleviate this issue, we propose the following temperature-scaled tanh:

$$\tanh_{\tau}(\boldsymbol{z}) = \tau \tanh\left(\boldsymbol{z}/\tau\right) \tag{6}$$

where τ is a hyperparameter called temperature. τ is 1 in conventional tanh and ∞ in identity

function. $tanh_{\tau}$ imposes an upper bound on a value, but does not limit the upper bound to 1.

Figure 5: **Spatial smoothing layers reduce feature map variances**, suggesting that they ensemble feature map points. We provide standard deviation of feature maps by block depth with ResNet-50 on CIFAR-100. c1 to c4 and s1 to s4 each stand for stages and spatial smoothing layers, respectively. Model uncertainty is represented by the average standard deviation of several feature maps obtained from multiple NN executions. Data uncertainty is represented by the standard deviation of feature map points obtained from one NN execution.

An unnormalized probability, ranging from 0 to τ , is allowed as the output of Prob. Then, thanks to the linearity of integration, we obtain an unnormalized predictive distribution accordingly. Taking this into account, we propose the following Prob:

$$Prob(\boldsymbol{z}) = \text{ReLU} \circ \tanh_{\tau}(\boldsymbol{z}) \tag{7}$$

where $\tau > 1$. We empirically determine τ to minimize NLL, a metric that measures both accuracy and uncertainty. See Fig. B.3 for more detailed ablation studies. In addition, we expect upper-bounded functions, e.g., ReLU6(z) = ReLU $\circ \min(z, 6)$ and feature map scaling z/τ with $\tau > 1$ which is BatchNorm, to be able to replace $tanh_{\tau}$ in Prob; and as expected, these alternatives improve uncertainty estimation in addition to accuracy. See Appendix C.2 and Appendix C.3 for detailed discussions on activation (ReLU \circ BatchNorm) and ReLU6 as Prob.

Blur: Averaging neighboring probabilities. Blur averages the probabilities from feature maps. We primarily use the average pool with a kernel size of 2 and a stride of 1 as the implementation of Blur for the sake of simplicity. Nevertheless, we could generalize Blur by using the following depth-wise convolution, which acts on each input channel separately, with non-trainable kernel

$$\boldsymbol{K} = \frac{1}{||\boldsymbol{k}||_1^2} \, \boldsymbol{k} \otimes \boldsymbol{k}^\top \tag{8}$$

where k is a 1D matrix, e.g., $k \in \{(1), (1, 1), (1, 2, 1), (1, 4, 6, 4, 1)\}$. Different ks derive different importances for neighboring feature maps. We empirically show that most Blurs improve the predictive performance and that optimal K varies by model. For more ablation studies, see Table B.2.

132 2.2 How Does Spatial Smoothing Help Optimization?

133 We present theoretical and empirical aspects to show that *spatial smoothing ensembles feature maps*.

Feature map variance. BNNs have two types of uncertainties: One is model uncertainty and the other is data uncertainty (Park et al., 2021). These randomnesses increase the variance of the feature

maps. To demonstrate that spatial smoothing is an ensemble, we use the following proposition:

Proposition 1. Ensembles reduce the variance of predictions.

We omit the proof since it is straightforward. In our context, predictions are output feature maps of a stage. We investigate model and data uncertainties of the predictions along NN layers to show that spatial smoothing reduces the randomnesses and ensembles feature maps. Figure 5 shows the model uncertainty and data uncertainty of Bayesian ResNet including MC dropout layers. In this figure, the

Figure 6: MC dropout adds high-frequency noises, and spatial smoothing filters high-frequency signals. In these experiments, we use ResNet-50 for ImageNet. *Left:* Frequency mask M_f with $w = 0.1\pi$. *Middle:* Diagonal components of Fourier transformed feature maps at the end of the stage 1. *Right:* The accuracy against frequency-based random noise. ResNets are vulnerable to high-frequency noises. Spatial smoothing improves the robustness against high-frequency noises.

uncertainty of MC dropout's feature map only accumulates, and almost monotonically increases in 142 every NN layer. In contrast, the uncertainty of "MC dropout + spatial smoothing"'s feature map is 143 significantly decreases at the end of stages, suggesting that the smoothing layers ensemble the feature 144 map. In other words, they make the feature map more accurate and stabilized input volumes for the 145 next stages. In addition, consistently, the spatial smoothing layer close to the last layer significantly 146 147 improves performance because it reduces the uncertainty of predictions largely. See Fig. B.5 for more detailed results. Deterministic NNs do not have model uncertainty but data uncertainty. Therefore, 148 spatial smoothing improves the performance of deterministic NNs as well as Bayesian NNs. 149

Fourier analysis. We also analyze spatial smoothing through the lens of Fourier transform:

Proposition 2. Ensembles filter high-frequency signals.

The proof is provided in Eqs. (16) to (17). Figure 6b shows the 2D Fourier transformed output feature map at the end of the stage 1. This figure reveals that MC dropout almost does not affect low-frequency ($< 0.3\pi$) ranges, and it adds high-frequency ($\ge 0.3\pi$) noises. Since spatial smoothing is a low-pass filter, it effectively filters high-frequency signals, including the noises caused by MC dropout.

We also find that CNNs are particularly vulnerable to high-frequency noises. To demonstrate this claim, following Shao et al. (2021), we measure accuracy with respect to data with frequency-based random noise $\mathbf{x}_{noise} = \mathbf{x}_0 + \mathcal{F}^{-1} (\mathcal{F}(\delta) \odot \mathbf{M}_f)$, where \mathbf{x}_0 is clean data, $\mathcal{F}(\cdot)$ and $\mathcal{F}^{-1}(\cdot)$ are Fourier transform and inverse Fourier transform, δ is random noise, and \mathbf{M}_f is frequency mask as shown in Fig. 6a. Figure 6c exhibits the results. In sum, high-frequency noises, including those caused by MC dropout, significantly impair accuracy. Spatial smoothing improves the robustness by effectively removing high-frequency noises.

164 **Loss landscape.** Lastly, we show that the randomness hinders NN training as follows:

Proposition 3. Randomness of predictions sharpens the loss landscape, and ensembles flatten it.

The proof is provided in Eqs. (18) to (25). Since a sharp loss function disturbs NN optimization (Keskar et al., 2017; Santurkar et al., 2018; Foret et al., 2020), reducing the uncertainty helps NN learn strong representations. For example, training phase NN ensemble averages out the randomness, and it flattens the loss function. In consequence, *an ensemble of BNN outputs in training phase significantly improves the predictive performance*. See Fig. D.4 for numerical results. However, we do not use training phase ensemble because it significantly increases the training time. Instead, we

use spatial smoothing as a method that ensembles feature maps without sacrificing training time.

173 We visualizes the loss landscapes (Li et al., 2018), the contours of NLL on training dataset. Figure 8b

shows that the loss landscapes of MC dropout fluctuate and have irregular surfaces due to the

(a) MLP classifier

(c) GAP classifier + Smooth

Figure 8: Both GAP and spatial smoothing smoothen the loss landscapes. To demonstrate this, we present the loss landscape visualizations of ResNet-18 models with MC dropout on CIFAR-100.

randomness. As Li et al. (2018); Foret et al. (2020) pointed out, 175

this may lead to poor generalization and predictive performance. 176

Spatial smoothing reduces randomness as discussed above, and 177

spatial smoothing aids in optimization by stabilizing and flattening 178

the loss landscape of BNN as shown in Fig. 8c. 179

Furthermore, we use Hessian to quantitatively represent the sharp-180 ness of the loss landscapes. Figure 7 shows the Hessian max eigen-181 value spectra of the models in Fig. 8 with a batch size of 128, which 182 reveals that spatial smoothing reduces the magnitude of Hessian 183 eigenvalues and suppresses outliers. Since large Hessian eigenval-184 ues disturb NN training (Ghorbani et al., 2019), we come to the 185 same conclusion that spatial smoothing helps NN optimization. See 186 Appendix C.1 for a more detailed description of the configurations 187 of the Hessian max eigenvalue spectra. In addition, from these 188 observations, we propose the conjecture that the flatter the loss 189 landscape, the better the uncertainty estimation, and vice versa. 190

2.3 **REVISITING GLOBAL AVERAGE POOLING** 191

The success of GAP classifier in image classification is 192 indisputable. The initial motivation and the most widely 193 accepted explanation for this success is that GAP prevents 194 overfitting by using far fewer parameters than multi-layer 195 perceptron (MLP) (Lin et al., 2014). However, we discover 196 that the explanation is poorly supported. We compares 197 GAP with other classifiers including MLP. Contrary to 198 popular belief, Table 1 suggests that MLP does not overfit 199 the training dataset. MLP underfits or gives comparable 200 performance to GAP on the training dataset. On the test 201

Figure 7: Both GAP and spatial smoothing suppress large Hessian eigenvalue outliers, i.e., they flatten the loss landscapes. Compare with Fig. 8.

Table 1:	MLP doe	s not	t overfi	t the
training	dataset.	We	report	train-
ing NLL	(NLL _{train})	and	testing	NLL
(NLL _{test})	of ResNet-	50 on	CIFAR	-100.

CLASSIFIER	NLL _{train}	NLL _{test}
GAP	0.0061	0.822
MLP	0.0071	1.029

dataset, GAP provides better results compared with MLP. See Table C.1 for more detailed results. 202

Our argument is that GAP is an extreme case of spatial smoothing. In other words, GAP is successful 203 because it ensembles feature maps and smoothens the loss landscape to help optimization. To support 204 this claim, we visualizes the loss landscape of MLP as shown in Fig. 8a. It is chaotic compared to 205 that of GAP as shown in Fig. 8b. Hessian shows the consistent results as demonstrated by Fig. 7. 206

3 EXPERIMENTS 207

This section presents two experiments. The first experiment is image classification through which 208 we show that spatial smoothing not only improves the ensemble efficiency, but also the accuracy, 209 uncertainty, and robustness of both deterministic NN and MC dropout. The second experiment is 210 semantic segmentation on data streams through which we show that spatial smoothing and temporal 211 smoothing (Park et al., 2021) are complementary. See Appendix A for more detailed configurations. 212

Figure 9: **Spatial smoothing also improves predictive performance on large datasets.** We report predictive performance of ResNet-50 on ImageNet.

Three metrics are measured in these experiments: NLL (\downarrow^1), accuracy (\uparrow), and expected calibration

error (ECE, \downarrow) (Guo et al., 2017). NLL represents both accuracy and uncertainty, and is the most

widely used as a proper scoring rule. ECE measures discrepancy between accuracy and confidence.

216 3.1 IMAGE CLASSIFICATION

This section mainly discuss ResNet (He et al., 2016a). Table E.1 also discuss other settings that show the same trend: e.g., VGG (Simonyan & Zisserman, 2015), ResNeXt (Xie et al., 2017), and pre-activation models (He et al., 2016a). Spatial smoothing also improves deep ensemble (Lakshminarayanan et al., 2017), another non-Bayesian probabilistic NN method. See Fig. E.1.

Performance. Fig. 3 and Fig. 9 show the predictive performances of ResNet-18 on CIFAR-100 221 and ResNet-50 on ImageNet, respectively. The results indicate that spatial smoothing improves both 222 accuracy and uncertainty in many respects. Let us be more specific. First, spatial smoothing improves 223 the efficiency of ensemble size. In these examples, the NLL of "MC dropout + spatial smoothing" 224 225 with an ensemble size of 2 is comparable to or even better than that of MC dropout with an ensemble size of 50. In other words, "MC dropout + spatial smoothing" is $25 \times$ faster than MC dropout with 226 a similar predictive performance. Second, the predictive performance of "MC dropout + spatial 227 smoothing" is better than that of MC dropout, at an ensemble size of 50. Third, spatial smoothing 228 improves the predictive performance of deterministic NN, as well as MC dropout. 229

Robustness. To evaluate robustness against data corruption, we 230 measure predictive performance of ResNet-18 on CIFAR-100-231 C (Hendrycks & Dietterich, 2019). This dataset consists of data 232 corrupted by 15 different types, each with 5 levels of intensity 233 each. We use mean corruption NLL (mCNLL, \downarrow), the averages 234 of NLL over intensities and corruption types, to summarize the 235 performance of corrupted data in a single value. See Eq. (32) for 236 a more rigorous definition. Figure 10 shows that spatial smoothing 237 not only improves the efficiency but also corruption robustness 238 across a whole range of ensemble size. See Fig. E.3 for more 239 details. Spatial smoothing also improves adversarial robustness 240 and perturbation consistency (\uparrow) (Hendrycks & Dietterich, 2019; 241 Zhang, 2019a), shift-transformation invariance. See Table E.2, 242 Table E.3, and Fig. E.4 for more details. 243

244 3.2 SEMANTIC SEGMENTATION

Table 2 summarizes the result of semantic segmentation on CamVid dataset (Brostow et al., 2008) that consists of real-world 360×480 pixels videos. The table shows that spatial smoothing improves predictive performance, which is consistent with the image classification experiment. Moreover, the result reveals that *spatial smoothing and temporal smoothing (Park et al., 2021) are complementary*. See Table E.4 for more results.

¹We use arrows to indicate which direction is better.

Spat	Темр	NLL	ACC (%)	ECE (%)	Cons (%)
		0.298 (-0.000)	92.5 (+0.0)	4.20 (-0.00)	95.4 (+0.0)
\checkmark		0.284 (-0.014)	92.6 (+0.1)	3.96 (-0.24)	95.6 (+0.2)
	\checkmark	0.273 (-0.025)	92.6 (+0.1)	3.23 (-0.97)	96.4 (+1.0)
\checkmark	\checkmark	0.260 (-0.038)	92.6 (+0.1)	2.71 (-1.49)	96.5 (+1.1)

Table 2: **Spatial smoothing and temporal smoothing are complementary.** We provide predictive performance of MC dropout in semantic segmentation. SPAT and TEMP each stand for spatial smoothing and temporal smoothing. ACC and CONS stand for accuracy and consistency. The numbers in brackets denote the performance improvements over the baseline.

250 4 RELATED WORK

²⁵¹ Spatial smoothing can be compared with prior works in the following areas.

Anti-aliased CNNs. Local means (Zhang, 2019a; Zou et al., 2020; Vasconcelos et al., 2020; Sinha 252 et al., 2020) were introduced for the shift-invariance of deterministic CNNs in image classification. 253 They were motivated to prevent the aliasing effect of subsampling. Although the local filtering can 254 result in a loss of information, Zhang (2019a) experimentally observed an increase in accuracy that 255 was beyond expectation. We provide a fundamental explanation for this phenomenon: Local means 256 are a spatial ensemble. An ensemble not only improves accuracy, but also uncertainty and robustness 257 of deterministic and Bayesian NNs. In Fig. F.1, we also show that the predictive performance 258 improvement is not due to anti-aliasing of local mean. See Appendix F for more discussion on local 259 means. For a discussion on non-local means (Wang et al., 2018) and self-attention (Dosovitskiy et al., 260 261 2021), see Section 5.

Sampling-free BNNs. Sampling-free BNNs (Hernández-Lobato & Adams, 2015; Wang et al., 2016; Wu et al., 2019) predict results based on a single or couple of NN executions. To this end, it is assumed that posterior and feature maps follow Gaussian distributions. However, the discrepancy between reality and assumption accumulates in every NN layer. Consequently, to the best of our knowledge, most of the sampling-free BNNs could only be applied to shallow models, such as LeNet, and were tested on small datasets. Postels et al. (2019) applied sampling-free BNNs to SegNet; nonetheless, Park et al. (2021) argued that they do not predict well-calibrated results.

Efficient deep ensembles. Deep ensemble (Lakshminarayanan et al., 2017; Fort et al., 2019) is
another probabilistic NN approach for predicting reliable results. BatchEnsemble (Wen et al., 2020;
Dusenberry et al., 2020) ensembles over a low-rank subspace to make deep ensemble more efficient.
Depth uncertainty network (Antoran et al., 2020) aggregates feature maps from different depths of
a single NN to predict results efficiently. Despite being robust against data corruption, it provides
weaker predictive performance compared to deterministic NN and MC dropout.

275 5 DISCUSSION

We propose spatial smoothing, a simple yet efficient module to improve BNN. Three different per-276 spectives, namely, feature map variance, Fourier analysis, and loss landscape, suggest that spatial 277 smoothing ensembles feature maps. The limitation of spatial smoothing is that designing its compo-278 nents requires inductive bias. In other words, the optimal shape of the blur kernel is model-dependent. 279 We believe this problem can be solved by introducing self-attention (Vaswani et al., 2017). Self-280 attentions for computer vision (Dosovitskiy et al., 2021; Touvron et al., 2021; Carion et al., 2020) 281 can be deemed as trainable importance-weighted ensembles of feature maps. The observation that 282 Transformers are more robust than expected (Bhojanapalli et al., 2021; Shao et al., 2021) supports this 283 claim. Therefore, using self-attentions to generalize spatial smoothing would be a promising future 284 work because it not only expands our work, but also helps deepen our understanding of self-attention. 285

286 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide comprehensive resources, such as code and experimental details. The codebase will be released as open source under the Apache License 2.0. See the supplemental material for the code. Appendix A provides the specifications of all models used in this work. Detailed experimental setup including hyperparameters and ablation study are also available in Appendix A and Appendix B. De-facto image datasets are used for all experiments as described in Appendix A.

292 **REFERENCES**

Javier Antoran, James Allingham, and José Miguel Hernández-Lobato. Depth uncertainty in neural networks. *Advances in Neural Information Processing Systems*, 2020.

Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so poorly to small image transformations? *Journal of Machine Learning Research*, 2019.

Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and
 Andreas Veit. Understanding robustness of transformers for image classification. In *Proceedings* of the IEEE/CVF International Conference on Computer Vision, 2021.

Gabriel J Brostow, Jamie Shotton, Julien Fauqueur, and Roberto Cipolla. Segmentation and recog nition using structure from motion point clouds. In *European Conference on Computer Vision*.
 Springer, 2008.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
 Zagoruyko. End-to-end object detection with transformers. In *European Conference on Computer Vision*. Springer, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
 is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, 2021.

Michael Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek, Katherine Heller, Balaji
 Lakshminarayanan, and Dustin Tran. Efficient and scalable bayesian neural nets with rank-1
 factors. In *International Conference on Machine Learning*. PMLR, 2020.

factors. In *International Conference on Machine Learning*. PMLR, 2020.

Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. Exploring
 the landscape of spatial robustness. In *International Conference on Machine Learning*. PMLR,
 2019.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
 for efficiently improving generalization. In *International Conference on Learning Representations*,
 2020.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape perspective. *arXiv preprint arXiv:1912.02757*, 2019.

Jonathan Frankle, David J Schwab, and Ari S Morcos. Training batchnorm and only batchnorm: On the expressive power of random features in cnns. In *International Conference on Learning Representations*, 2021.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In *International Conference on Machine Learning*. PMLR, 2016.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
 Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves
 accuracy and robustness. In *International Conference on Learning Representations*, 2019.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization via hessian eigenvalue density. In *International Conference on Machine Learning*. PMLR, 2019.

- Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 examples. *International Conference on Learning Representations*, 2015.
- Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
 Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
 in 1 hour. arXiv preprint arXiv:1706.02677, 2017.
- Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In *International Conference on Machine Learning*. PMLR, 2017.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*,
 2016a.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
 networks. In *European Conference on Computer Vision*. Springer, 2016b.
- ³⁴³ Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common ³⁴⁴ corruptions and perturbations. In *International Conference on Learning Representations*, 2019.
- José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learning of bayesian neural networks. In *International Conference on Machine Learning*. PMLR, 2015.
- Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, and Daniel Soudry. Augment
 your batch: Improving generalization through instance repetition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2020.
- A Kendall, V Badrinarayanan, and R Cipolla. Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. In *BMVC*, 2017.
- Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer vision? *Advances in Neural Information Processing Systems*, 2017.
- Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
 Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
 International Conference on Learning Representations, 2017.
- Alex Krizhevsky and Geoff Hinton. Convolutional deep belief networks on cifar-10. Unpublished
 manuscript, 2010.
- Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
- Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
 uncertainty estimation using deep ensembles. In *Advances in Neural Information Processing Systems*, 2017.
- Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
 of neural nets. In *Advances in Neural Information Processing Systems*, 2018.
- Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. In *International Conference on Learning Representations*, 2014.
- Antonio Loquercio, Mattia Segu, and Davide Scaramuzza. A general framework for uncertainty
 estimation in deep learning. *IEEE Robotics and Automation Letters*, 2020.
- Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 Towards deep learning models resistant to adversarial attacks. In *International Conference on Learning Representations*, 2018.
- A Malinin and M Gales. Predictive uncertainty estimation via prior networks. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc., 2018.
- Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
 Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model's uncertainty?
 evaluating predictive uncertainty under dataset shift. In *Advances in Neural Information Processing*
- *Systems*, 2019.

Namuk Park, Taekyu Lee, and Songkuk Kim. Vector quantized bayesian neural network inference
 for data streams. In *AAAI Conference on Artificial Intelligence*, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 high-performance deep learning library. *Advances in Neural Information Processing Systems*,
 2019.

Janis Postels, Francesco Ferroni, Huseyin Coskun, Nassir Navab, and Federico Tombari. Sampling free epistemic uncertainty estimation using approximated variance propagation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 image segmentation. In *International Conference on Medical image computing and computer- assisted intervention*. Springer, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
 Large Scale Visual Recognition Challenge. *International Journal of Computer Vision*, pp. 211–252,
 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo bilenetv2: Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2018.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal ization help optimization? *Advances in Neural Information Processing Systems*, 2018.

Rulin Shao, Zhouxing Shi, Jinfeng Yi, Pin-Yu Chen, and Cho-Jui Hsieh. On the adversarial robustness
 of visual transformers. *arXiv preprint arXiv:2103.15670*, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 recognition. In *International Conference on Learning Representations*, 2015.

Samarth Sinha, Animesh Garg, and Hugo Larochelle. Curriculum by smoothing. *Advances in Neural Information Processing Systems*, 2020.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
 Jégou. Training data-efficient image transformers & distillation through attention. In *International Conference on Machine Learning*. PMLR, 2021.

Cristina Vasconcelos, Hugo Larochelle, Vincent Dumoulin, Nicolas Le Roux, and Ross Goroshin.
 An effective anti-aliasing approach for residual networks. *arXiv preprint arXiv:2011.10675*, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems*, 2017.

Hao Wang, Xingjian Shi, and Dit-Yan Yeung. Natural-parameter networks: A class of probabilistic
 neural networks. *Advances in Neural Information Processing Systems*, 2016.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

⁴¹⁷ Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient ⁴¹⁸ ensemble and lifelong learning. In *International Conference on Learning Representations*, 2020.

Anqi Wu, Sebastian Nowozin, Edward Meeds, Richard E Turner, José Miguel Hernández-Lobato,
 and Alexander L Gaunt. Deterministic variational inference for robust bayesian neural networks.
 In *International Conference on Learning Representations*, 2019.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
 transformations for deep neural networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2017.

- Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
 through the lens of the hessian. In *2020 IEEE International Conference on Big Data (Big Data)*.
 IEEE, 2020.
- Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
 Bayesian model-agnostic meta-learning. In *Advances in Neural Information Processing Systems*, 2018.
- 431 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In *BMVC*, 2016.
- Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
 Theoretically principled trade-off between robustness and accuracy. In *International Conference*
- 434 on Machine Learning. PMLR, 2019.
- Richard Zhang. Making convolutional networks shift-invariant again. In *International Conference on Machine Learning*. PMLR, 2019a.
- Richard Zhang. Official meta-review of making convolutional networks shift-invariant again, 2019b.
 URL https://openreview.net/forum?id=SklVEnR5K7¬eId=rklZnFS-gN.
- 439 Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
- features for discriminative localization. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2016.
- Xueyan Zou, Fanyi Xiao, Zhiding Yu, and Yong Jae Lee. Delving deeper into anti-aliasing in convnets.
 In *BMVC*, 2020.

Figure A.1: **Spatial smoothing improves predictive performance at all dropout rates**. As the dropout rate increases, both accuracy and ECE decrease. The performance is optimized when accuracy and uncertainty are balanced.

444 A EXPERIMENTAL SETUP AND DATASETS

We obtain the main experimental results with the Intel Xeon W-2123 Processor, 32GB memory, and
a single GeForce RTX 2080 Ti for CIFAR (Krizhevsky et al., 2009) and CamVid (Brostow et al.,
2008). For ImageNet (Russakovsky et al., 2015), we use AMD Ryzen Threadripper 3960X 24-Core
Processor, 256GB memory, and four GeForce RTX 2080 Ti. We conduct ablation studies with four
Intel Intel Broadwell CPUs, 15GB memory, and a single NVIDIA T4. Models are implemented
in PyTorch(Paszke et al., 2019). The detailed configurations of image classification and semantic
segmentation are as follows.

452 A.1 IMAGE CLASSIFICATION

We use VGG (Simonyan & Zisserman, 2015), ResNet (He et al., 2016a), pre-activation ResNet (He
et al., 2016a), and ResNeXt (Xie et al., 2017) in image classification. According to the structure
suggested by Zagoruyko & Komodakis (2016), each block of Bayesian NNs contains one MC dropout
layer.

NNs are trained using categorical cross-entropy loss and SGD optimizer with initial learning rate of 457 0.1, momentum of 0.9, and weight decay of 5×10^{-4} . We also use multi-step learning rate scheduler 458 with milestones at 60, 130, and 160, and gamma of 0.2 on CIFAR, and with milestones at 30, 60, 459 and 80, and gamma of 0.2 on ImageNet. We train NNs for 200 epochs with batch size of 128 on 460 CIFAR, and for 90 epochs with batch size of 256 on ImageNet. We start training with gradual warmup 461 (Goyal et al., 2017) for 1 epoch on CIFAR. Basic data augmentations, namely random cropping and 462 horizontal flipping, are used. One exception is the training of ResNeXt on ImageNet. In this case, we 463 use the batch size of 128 and learning rate of 0.05 because of memory limitation. 464

We use hyperparameters that minimizes NLL of ResNet. Table A.1 provides hyperparameters for deterministic and Bayesian NNs. For fair comparison, models with and without spatial smoothing share hyperparameters such as MC dropout rate. However, Fig. A.1 shows that spatial smoothing improves predictive performance of ResNet-18 at all dropout rates on CIFAR-100. The default ensemble size of MC dropout is 50. We report averages of three evaluations, and error bars in figures represent min and max values. Standard deviations are omitted from tables for better visualization. See the source code released on GitHub for other details.

472 A.2 SEMANTIC SEGMENTATION

We use U-Net (Ronneberger et al., 2015) in semantic segmentation. Following Bayesian SegNet (Kendall et al., 2017), Bayesian U-Net contains six MC dropout layers. We add spatial smoothing before each subsampling layer in U-Net encoder. We use 5 previous predictions and decay rate of $e^{-0.8}$ for temporal smoothing.

DATASET	Model	MC dropout rate (%)	$ m{k} $	Temperature
			•	
	VCC	30	•	•
	VGG		2	10
		30	2	10
		•	•	•
	ResNet	30	٠	•
	Resider	•	2	10
CIFAR-10		30	2	10
& CIFAR-100	Preact-ResNet	•	٠	•
		30	•	•
			2	10
		30	2	10
	DogNaVt	•	•	•
		30	•	•
	RESIDEAL	•	2	10
		30	2	10
		•	•	•
	ResNet	5	•	•
ImagaNat	Restret		2	10
		5	2	10
magervet		•	•	•
	ResNeXt	5	•	•
	1105110211		2	10
		5	2	10

Table A.1: Hyperparameters of models for image classification.

477 CamVid consists of 720×960 pixels road scene video sequences. We resize the image bilinearly to 478 360×480 pixels. We use a list reduced to 11 labels by following previous works, e.g. (Kendall & Gal, 479 2017).

⁴⁸⁰ NNs are trained using categorical cross-entropy loss and Adam optimizer with initial learning rate of ⁴⁸¹ 0.001 and β_1 of 0.9, and β_2 of 0.999. We train NN for 130 epoch with batch size of 3. The learning ⁴⁸² rate decreases to 0.0002 at the 100 epoch. Random cropping and horizontal flipping are used for ⁴⁸³ data augmentation. Median frequency balancing is used to mitigate dataset imbalance. Other details ⁴⁸⁴ follow Park et al. (2021).

485 B ABLATION STUDY

The probabilistic spatial smoothing proposed in this
paper consists of two components: Prob and Blur. This
section explores several candidates for each component
and their properties.

490 B.1 PROB: FEATURE MAPS TO PROBABILITIES

We define Prob as a composition of an upperbounded function and ReLU, a function that imposes the lower bound of zero. Fig. B.1 shows widely used upper-bounded functions: $tanh_{\tau}(x) = \tau tanh(x/\tau)$, ReLU6(x) = min(max(x, 6), 0), and constant scaling which is x/τ .

Table B.1 shows the predictive performance improvement by Prob with various upper-bounded functions on

Figure B.1: **Upper-bounded functions** as a candidates of Prob.

Model	Smooth	NLL	Acc (%)	ECE (%)
		1.133 (-0.000)	68.8 (+0.0)	3.66 (+0.00)
	$\texttt{ReLU} \circ \underline{\texttt{tanh}}$	1.064 (-0.069)	70.4 (+1.6)	2.99 (-0.67)
	ReLU \circ ReLU6	1.093 (-0.040)	69.8 (+1.0)	4.26 (+0.60)
	$\texttt{ReLU} \circ \underline{\texttt{Constant}}$	0.995 (-0.138)	72.5 (+3.7)	2.11 (-1.55)
VGG-16	Blur	0.985 (-0.000)	72.4 (+0.0)	1.77 (+0.00)
	$\texttt{Blur} \circ \texttt{ReLU} \circ \underline{\texttt{tanh}}$	0.984 (-0.001)	72.7 (+0.3)	2.07 (+0.30)
	$\texttt{Blur} \circ \texttt{ReLU} \circ \underline{\texttt{ReLU6}}$	0.982 (-0.003)	72.5 (+0.1)	1.84 (+0.07)
	$\texttt{Blur} \circ \texttt{ReLU} \circ \underline{\texttt{Constant}}$	0.991 (+0.005)	72.9 (+0.5)	1.03 (-0.74)
		1.215 (-0.000)	67.3 (+0.0)	6.37 (+0.00)
	$\texttt{ReLU} \circ \underline{\texttt{tanh}}$	1.131 (-0.084)	69.2 (+1.9)	5.23 (-1.14)
	ReLU o ReLU6	1.166 (-0.049)	68.3 (+1.0)	6.44 (-0.06)
	$\texttt{ReLU} \circ \underline{\texttt{Constant}}$	0.997 (-0.218)	72.5 (+5.2)	1.09 (-5.29)
VGG-19	Blur	1.039 (-0.000)	71.1 (+0.0)	3.12 (+0.00)
	$\texttt{Blur} \circ \texttt{ReLU} \circ \underline{\texttt{tanh}}$	1.034 (-0.005)	71.3 (+0.2)	3.31 (+0.19)
	$\texttt{Blur} \circ \texttt{ReLU} \circ \underline{\texttt{ReLU6}}$	1.038 (-0.002)	71.3 (+0.2)	3.84 (+0.72)
	$\texttt{Blur} \circ \texttt{ReLU} \circ \underline{\texttt{Constant}}$	0.995 (-0.045)	72.3 (+1.2)	1.41 (-1.71)
		0.848 (-0.000)	77.3 (+0.0)	3.01 (+0.00)
	$\texttt{ReLU} \circ \underline{\texttt{tanh}}$	0.838 (-0.010)	77.7 (+ 0.4)	2.92 (-0.08)
	$\texttt{ReLU} \circ \underline{\texttt{ReLU6}}$	0.844 (-0.004)	77.4 (+0.1)	2.74 (-0.27)
	$\texttt{ReLU} \circ \underline{\texttt{Constant}}$	0.825 (-0.023)	77.7 (+0.4)	1.87 (-1.14)
ResNet-18	Blur	0.806 (-0.000)	78.6 (+0.0)	2.56 (+0.00)
	$\texttt{Blur} \circ \texttt{ReLU} \circ \underline{\texttt{tanh}}$	0.801 (-0.005)	78.9 (+0.3)	2.56 (-0.01)
	$\texttt{Blur} \circ \texttt{ReLU} \circ \underline{\texttt{ReLU6}}$	0.805 (-0.001)	78.9 (+0.2)	2.59 (+0.03)
	$\texttt{Blur} \circ \texttt{ReLU} \circ \underline{\texttt{Constant}}$	0.811 (+0.005)	78.5 (-0.2)	1.84 (-0.72)
		0.822 (-0.000)	79.1 (+0.0)	6.63 (+0.00)
	$\texttt{ReLU} \circ \underline{\texttt{tanh}}$	0.812 (-0.010)	79.3 (+0.2)	6.74 (+0 .11)
	ReLU \circ <u>ReLU6</u>	0.799 (-0.023)	79.4 (+0.3)	6.71 (+0.08)
	$\texttt{ReLU} \circ \underline{\texttt{Constant}}$	0.788 (-0.034)	79.6 (+ 0.5)	5.22 (-1.41)
ResNet-50	Blur	0.798 (-0.000)	80.0 (+0.0)	7.21 (+0.00)
	$\texttt{Blur} \circ \texttt{ReLU} \circ \underline{\texttt{tanh}}$	0.800 (+0.002)	80.1 (+0.1)	7.25 (+0.04)
	$\texttt{Blur} \circ \texttt{ReLU} \circ \underline{\texttt{ReLU6}}$	0.800 (+0.002)	80.2 (+0.2)	7.30 (+0.09)
	$\texttt{Blur} \circ \texttt{ReLU} \circ \underline{\texttt{Constant}}$	0.779 (-0.019)	80.4 (+0.4)	5.81 (-1.40)

Table B.1: We use tanh as the default for Prob based on the predictive performance of MC dropout for CIFAR-100 with various Probs.

Figure B.2: Temperature-scaled tanhs (left) and their first derivatives (right) for different temperatures.

Figure B.3: The temperature controls the trade-off between accuracy and uncertainty. The accuracy increases as the temperature increases, but predictions become more overconfident.

CIFAR-100. In this experiment, we use models with MC dropout, and $\tau = 5$ for constant scaling. The 499 results indicate that upper-bounded functions with ReLU tend to improve accuracy and uncertainty 500 at the same time. In addition, they show that Prob and Blur are complementary. The best results 501 are obtained when using both Prob and Blur. For the main experiments, we use the composition 502 of tanh_{τ} and ReLU as Prob, because the hyperparameter of constant scaling is highly dependent on 503 dataset and model. 504

Temperature. The characteristics of temperature-scaled tanh depends on τ . Figure B.2 plots 505 $tanh_{\tau}$ and their first derivatives with various temperatures. As shown in this figure, $tanh_{\tau}$ has a 506 couple of useful properties. First, tanh_{τ} has an upper bound of τ . Second, the first derivative of 507 $tanh_{\tau}$ at x = 0 does not depend on τ . 508

Fig. B.3 shows the predictive performance of ResNet-18 with MC dropout and spatial smoothing for 509 the temperature on CIFAR-100. In this figure, the accuracy increases as the temperature increases. In 510 terms of ECE, NN predicts more underconfident results as τ decreases. It is a misinterpretation that 511 the result is overconfident at low τ because ECE is high. By definition, ECE relies on the absolute 512 value of the difference between confidence and accuracy. In this example, at low τ , the accuracy is 513 greater than the confidence, which leads to a high ECE. Moreover, at $\tau = 0.2$, ECE with N = 50 is 514 greater than that with N = 1, which means that the result is severely underconfident. NLL, a metric 515 representing both accuracy and uncertainty, is minimized when the accuracy and the uncertainty are 516 517

Figure B.4: Kernels for Blur. Brighter background indicates higher importance.

Model	$ m{k} $	NLL	ACC (%)	ECE (%)
	1	1.087 (-0.000)	69.8 (+0.0)	3.43 (-0.00)
VGG-16	2	1.034 (-0.053)	71.4 (+1.6)	1.06 (-2.37)
VGG-10	3	0.986 (-0.101)	72.7 (+2.9)	1.03 (-2.40)
	5	1.018 (-0.069)	72.0 (+2.2)	1.32 (-2.11)
	1	1.096 (-0.000)	69.8 (+0.0)	4.74 (-0.00)
VGC 10	2	1.071 (-0.025)	70.4 (+0.6)	2.15 (-2.59)
VUU-19	3	1.026 (-0.070)	71.9 (+2.1)	2.56 (-2.18)
	5	1.032 (-0.064)	71.6 (+1.8)	2.16 (-2.58)
	1	0.840 (-0.000)	77.6 (+0.0)	2.63 (-0.00)
RecNet_18	2	0.801 (-0.039)	78.9 (+1.4)	2.56 (-0.07)
Residet-18	3	0.822 (-0.018)	78.7 (+1.1)	2.86 (-0.23)
	5	0.837 (-0.003)	78.4 (+0.8)	3.05 (-0.42)
PagNat 50	1	0.814 (-0.000)	79.5 (+0.0)	6.56 (-0.00)
	2	0.806 (-0.008)	80.0 (+0.5)	7.35 (+0.79)
Residet-50	3	0.796 (-0.019)	79.9 (+0.4)	7.38 (+0.82)
	5	0.816 (+0.001)	79.4 (-0.1)	7.38 (+0.82)

Table B.2: **The optimal shape of the blur kernel is model-dependent**. We measure the predictive performance of MC dropout using spatial smoothing with various size of Blur kernels on CIFAR-100.

Figure B.5: Spatial smoothing close to the last layer (s3) significantly improves performance. We report predictive performance of ResNet-18 with *one* spatial smoothing after each stage on CIFAR-100. None indicates vanilla MC dropout.

518 B.2 BLUR: AVERAGING NEIGHBORING PROBABILITIES

- ⁵¹⁹ Blur is a depth-wise convolution with a kernel. The kernel given by Eq. (8) is derived from various
- 520 **k**s such as $\mathbf{k} \in \{(1), (1, 1), (1, 2, 1), (1, 4, 6, 4, 1)\}$. In these examples, if $|\mathbf{k}|$ is 1, Blur is identity.
- ⁵²¹ If $|\mathbf{k}|$ is 2, Blur is a box blur, which is used in the main experiments. If $|\mathbf{k}|$ is 3 or 5, Blur is an approximated Gaussian blur
- ⁵²² approximated Gaussian blur.

Table B.2 shows predictive performance of models using spatial smoothing with the kernels on CIFAR-100. This results show that *most kernels improve both accuracy and uncertainty*. However, the most effective kernel size depends on the model.

526 B.3 POSITION OF SPATIAL SMOOTHING.

As shown in Fig. 5, the magnitude of uncertainty tends to increase as the depth increases. Therefore, we expect that spatial smoothing close to the output layer will mainly drive performance improvement.

We investigate the predictive performance of models with MC dropout using only *one* spatial smoothing layer. Figure B.5 shows the predictive performance of ResNet-18 with one spatial smoothing after each stage on CIFAR-100. The results suggest that spatial smoothing after s3 is the most important for improving performance. Surprisingly, spatial smoothing after s4 is the least important. This is because GAP, the most extreme case of spatial smoothing, already exists there.

534 C REVISITING PRIOR WORKS

As mentioned in Section 2, prior works—namely, GAP, pre-activation, and ReLU6—are spacial cases of spatial smoothing. This section discusses them in detail.

537 C.1 GLOBAL AVERAGE POOLING

The composition of GAP and a fully connected layer is the most popular classifier in classification tasks. The original motivation and the most widely accepted explanation for the success is that *GAP classifier prevents overfitting because it uses significantly fewer parameters than MLP* (Lin et al., 2014). To verify this claim, we measure the predictive performance of MLP, GAP, and global max pooling (GMaxP), a classifier that uses the same number of parameters as GAP, on training dataset.

Predictive performance. Table C.1 shows the experimental results on the training and the test dataset of CIFAR-100, suggesting that the explanation is poorly supported. On *both* the training and the test dataset, most predictive performance of MLP is worse than that of GAP. It is a counterintuitive result meaning that *MLP do not overfit the training dataset*. In addition, the performance improvement by GAP is remarkable in VGG, which has irregular loss landscape. The predictive

			TRAIN			Test		
Model	CLASSIFIER	NLL	Err (%)	ECE (%)	NLL	NLL ACC (%)	ECE (%)	
	GAP	0.0852	0.461	6.75	1.030	72.3	3.24	
VCC 16	MLP	0.5492	13.1	13.8	1.133	68.8	3.66	
V00-10	GMaxP	0.0846	0.470	6.67	1.050	72.2	3.60	
	GMedP	0.0867	0.501	6.80	1.042	72.2	3.35	
	GAP	0.1825	2.50	10.4	1.035	71.9	1.46	
VCC 10	MLP	0.7144	17.7	14.8	1.215	67.3	6.37	
100-19	GMaxP	0.1939	2.85	10.6	1.063	71.5	2.10	
	GMedP	0.1938	2.80	10.6	1.051	71.7	1.70	
	GAP	0.0124	0.0287	1.19	0.841	77.5	2.92	
ResNet-18	MLP	0.0076	0.0347	7.22	1.040	74.8	9.55	
Resider-18	GMaxP	0.0113	0.0233	1.41	0.905	76.3	5.23	
	GMedP	0.0156	0.0347	1.46	0.889	76.4	5.03	
DN-4 50	GAP	0.0061	0.0220	0.48	0.822	79.1	6.63	
	MLP	0.0071	0.0370	8.53	1.029	76.9	11.8	
Kesivel-30	GMaxP	0.0074	0.0313	1.09	0.887	77.2	5.67	
	GMedP	0.0053	0.0287	0.47	0.849	78.5	6.29	

Table C.1: MLP classifier does not overfit training dataset, i.e., GAP does not regularize NNs. We
provide predictive performance of MC dropout with various classifiers on CIFAR-100. ERR is error.

Figure C.1: **GAP classifier improves not only the predictive performance on clean dataset but also the robustness**. We measure the predictive performance of ResNet-18 using MC dropout with classifiers on CIFAR-100-C.

(c) GAP classifier + Smooth

Figure C.2: **GAP and spatial smoothing flatten the loss landscapes**. We visualize the loss landscape sequences of ResNet-18 with MC dropout on CIFAR-100. Although each sequence shares the bases, it fluctuates due to the randomness of the MC dropout.

performance of GMaxP is better than that of MLP, but worse than that of GAP. This shows that using fewer parameters partially helps to improve predictive performance; however, it is insufficient to explain the predictive performance improvement by GAP. Finally, global median pooling (GMedP)

provides better predictive performance than GMaxP. It implies that using other noise reduction

methods instead of average pooling helps to improve predictive performance.

Robustness. To evaluate the robustness of the classifiers, we measure the predictive performance of ResNet-18 using MC dropout with the classifiers on CIFAR-100-C. Figure C.1 shows the experimental results. This figure suggests that MLP is not robust against data corruption, as we would expect. In terms of accuracy, the robustness of GMaxP and GMedP is relatively comparable to that of GAP; however, in terms of uncertainty, *GAP is the most robust*. These are consistent results with other spatial smoothing experiments.

Loss landscape visualization. To understand the mechanism of GAP performance improvement, 559 560 we investigate the loss landscape. Figure C.2 shows the loss landscape sequences of ResNet with MC dropout. In this figure, each sequence shares the bases, but they fluctuate due to the randomness 561 of the MC dropout. Figure C.2a is the loss landscape of the model using MLP classifier instead of 562 GAP classifier. The loss landscape is chaotic and irregular, resulting in hindering and destabilizing 563 NN optimization. Fig. C.2b is loss landscape sequence of ResNet with GAP classifier. Since GAP 564 ensembles all of the feature map points at the last stage, it flattens and stabilizes the loss landscape. 565 Likewise, as shown in Fig. C.2c, spatial smoothing layers at the end of all stages also flattens and 566 stabilizes the loss landscape. 567

Hessian eigenvalue spectra. To evaluate the smoothness of the loss landscapes quantitatively, we also investigate their Hessians at the optimized weights. In particular, we calculate Hessian eigenvalue spectra (Ghorbani et al., 2019), distributions of Hessian eigenvalues, to show how spatial smoothing helps NN optimization. To this end, we try to use stochastic Lanczos quadrature algorithm

⁵⁷² implemented by Yao et al. (2020). However, the problem is that the model with MLP classifier ⁵⁷³ requires a lot of memory while the algorithm is memory inefficient.

In the training phase, we calculate the mean gradients with respect to mini-batches, rather than the 574 entire dataset. Therefore, it may be reasonable to investigate the properties of the Hessian "mini-575 batch-wisely". For that purpose, we propose a method, *Hessian max eigenvalue spectra*, that evaluates 576 the distribution of "Hessian's maximum eigenvalues for one mini-batch". We use power iteration to 577 produce only the greatest eigenvalue of the Hessian. This algorithm is easy to implement and requires 578 significantly less memory and computational cost, compared with stochastic Lanczos quadrature 579 with respect to entire dataset. With this method, we can investigate the Hessian of NNs with MLP 580 classifiers, which would require a lot of GPU memory. 581

Figure 7 shows the Hessian max eigenvalue spectra of GAP classi-582 fier models with and without spatial smoothing layers. As Li et al. 583 (2018); Foret et al. (2020) and Appendix D.3 pointed out, Hessian 584 eigenvalue outliers disturb NN training. This figure explicitly show 585 that the GAP and spatial smoothing reduce the magnitude of the 586 Hessian eigenvalues and suppress the outliers, which leads to the 587 same result as the previous visualizations: GAP as well as spatial 588 smoothing smoothen the loss landscape. In conclusion, averag-589 ing feature map points tends to help neural network optimization 590 by smoothing, flattening, and stabilizing the loss landscape. We 591 observe a similar phenomenon for deterministic NNs. We also 592 evaluate the Hesse eigenvalue spectrum as shown in Fig. C.3, and 593 it leads to the same conclusion. 594

In these experiments, we use MLP incorporating dropout layers with a rate of 50% as the classifier. Since the dropout is one of the factors that makes MLP underfit the training dataset, we also evaluate MLP using dropouts with a rate of 0%. Nevertheless, the results still shows that the predictive performance of MLP is worse

Figure C.3: **Spatial smoothing suppress eigenvalue outliers**. We provide Hessian eigenvalue spectra of ResNet-18 with MC dropout on CIFAR-100. See also Fig. 7.

than that of GAP on the training dataset. Moreover, it severely degrades predictive performance of
 ResNet on the test dataset.

602 C.2 PRE-ACTIVATION

603 He et al. (2016b) experimentally showed that the pre-activation arrangement, in which the activation 604 ReLU \circ BatchNorm is placed before the convolution, improves the accuracy of ResNet. Since γ s of most BatchNorms in CNNs are near-zero (Frankle et al., 2021), BatchNorms reduce the magnitude 605 of feature maps. As shown in Fig. B.1, constant scaling is a non-trainable BatchNorm with no 606 bias, and it also reduces the magnitude of feature map. In Table B.1, we show that constant scaling 607 improves predictive performance. Considering the similarity between Prob with constant scaling and 608 conventional activation, i.e., the similarity between ReLUoConstantScaling and ReLUoBatchNorm, 609 we find that the pre-activation arrangement improves uncertainty as well as accuracy, because 610 convolutions act as a Blur. 611

To show this, we change the post-activation of all layers to pre-activation, and measure the predictive performance. For ResNet, we follow the original paper by He et al. (2016b). Table C.2 shows the predictive performance of models with pre-activation. The results suggests that pre-activation improves both accuracy and uncertainty in most cases. For deterministic VGG-19, pre-activation significantly degrades accuracy but improves NLL. In conclusion, they imply that pre-activation is a special case of spatial smoothing.

Santurkar et al. (2018) argued that BatchNorm helps in optimization by flattening the loss landscape.
 We show that spatial smoothing flattens and smoothens the loss landscape, which is a consistent
 explanation. It will be interesting to investigate if BatchNorm helps in ensembling feature maps.

621 C.3 RELU6

ReLU6 was experimentally introduced to improve predictive performance (Krizhevsky & Hinton, 2010). Sandler et al. (2018) used "ReLU6 as the non linearity because of its robustness when used

Model	MC DROPOUT	Pre-act	NLL	ACC (%)	ECE (%)
		•	2.047 (-0.000)	71.6 (+0.0)	19.2 (-0.0)
VGG-16		\checkmark	1.827 (-0.219)	72.5 (+0.9)	19.8 (+0.6)
V00-10	\checkmark		1.133 (-0.000)	68.8 (+0.0)	3.66 (-0.00)
	\checkmark	\checkmark	1.036 (-0.096)	71.7 (+2.9)	3.55 (-0.11)
			2.016 (-0.000)	67.6 (+0.0)	21.2 (-0.0)
NGG 10		\checkmark	1.799 (-0.217)	64.4 (-3.2)	17.2 (-4.0)
100-19	\checkmark	•	1.215 (-0.000)	67.3 (+0.0)	6.37 (-0.00)
	\checkmark	\checkmark	1.084 (-0.131)	70.1 (+3.7)	4.23 (-2.14)
			0.983 (-0.000)	77.1 (+0.0)	7.75 (-0.00)
DecNet 18		\checkmark	0.934 (-0.049)	77.6 (+0.5)	8.04 (+0.29)
Residet-18	\checkmark		0.937 (-0.000)	76.9 (+0.0)	5.11 (-0.00)
	\checkmark	\checkmark	0.872 (-0.065)	77.6 (+0.7)	5.53 (+0.42)
D N-+ 50			0.880 (-0.000)	79.0 (+0.0)	8.35 (-0.00)
		\checkmark	0.870 (-0.010)	79.4 (+0.4)	8.27 (-0.08)
Resider-30	\checkmark	•	0.831 (-0.000)	78.6 (+0.0)	6.06 (-0.00)
	\checkmark	\checkmark	0.819 (-0.012)	79.5 (+0.9)	6.29 (+0.23)

Table C.2: **Pre-activation arrangement improves uncertainty as well as accuracy.** We measure the predictive performance of models with pre-activation arrangement on CIFAR-100.

with low-precision computation". In Table B.1, we show that ReLU6s at the end of stages helps to ensemble spatial information by transforming the feature map to Bernoulli distributions. Since spatial smoothing improves robustness against data corruption, it seems reasonable that ReLU6 is robust to low-precision computation. A more abundant investigation into this topic is promising future works.

⁶²⁸ We measure the predictive performance of NNs using all activations as ReLU6 instead of ReLU.

However, in contrast to the results in Table B.1, the results are not consistent. We speculate that the reason is that a lot of ReLU6s overly regularize NNs.

631 D EXTENDED ANALYSIS OF HOW SPATIAL SMOOTHING WORKS

⁶³² This section provides further explanation of the analysis in Section 2.2.

633 D.1 NEIGHBORING FEATURE MAPS IN CNNS ARE SIMILAR

This work exploits the spatial consistency of feature maps, i.e., *neighboring feature maps in CNNs are similar*. Below, we theoretically and empirically prove the spatial consistency. Moreover, this

spatial consistency of feature maps holds even if the input data is spatially inconsistent.

Consider a single-layer convolutional neural network with one channel:

$$y_i = [\boldsymbol{w} * \boldsymbol{x}]_i \tag{9}$$

$$=\sum_{l=1}^{k} w_l x_{i-l+1}$$
(10)

(b) five-layer CNN with ReLU

Figure D.1: Neighboring feature map points in CNNs are similar, even if input values are *iid*. We provide covariances of feature map points with respect to the center feature map (in the red square). Input values are Gaussian random noise. Left: A single convolutional layer correlates the target feature map with another feature map that is 3 pixels away, since the kernel size is 3×3 . *Right:* A deep CNN more strongly correlates neighboring feature maps.

where * is convolution operator with a kernel of size k, y is feature map output, w is kernel weight, and x is input *random variable*. Then, the covariance of two neighboring feature maps is:

$$\operatorname{Cov}(y_i, y_{i+1}) = \operatorname{Cov}(\sum_{l=1}^k w_l x_{i-l+1}, \sum_{m=1}^k w_m x_{i-m+2})$$
(11)

$$= \sum_{l=1}^{k} \sum_{m=1}^{k} w_l w_m \operatorname{Cov}(x_{i-l+1}, x_{i-m+2})$$
(12)

$$=\sum_{l=1}^{k-1} w_l w_{l+1} \, \sigma^2(x_{i-l+2}) + \cdots$$
(13)

where $\sigma^2(x_{i-l+1})$ is the variance of x_{i-l+1} . Therefore, $Cov(y_i, y_{i+1})$ is non-zero for randomly 637 initialized weights. If x is *iid*, i.e., $Cov(x_i, x_j) = \delta_{ij}\sigma^2(x_i)$ where δ_{ij} is the Kronecker delta, the 638 remainders in Eq. (13) vanish. 639

For example, the covariance of two neighboring feature map points in a CNN with a kernel size of 3 is:

$$Cov(y_1, y_2) = w_1 w_1 Cov(x_1, x_2) + w_1 w_2 Cov(x_1, x_3) + w_1 w_3 Cov(x_1, x_4) + w_2 w_1 Cov(x_2, x_2) + w_2 w_2 Cov(x_2, x_3) + w_2 w_3 Cov(x_2, x_4) + w_3 w_1 Cov(x_3, x_2) + w_3 w_2 Cov(x_3, x_3) + w_3 w_3 Cov(x_3, x_4)$$
(14)

When x_i is *iid*, the covariance is:

$$\operatorname{Cov}(y_1, y_2) = w_1 w_2 \,\sigma^2(x_2) + w_2 w_3 \,\sigma^2(x_3) \tag{15}$$

Since it is non-zero, the neighboring feature maps y_1 and y_2 are correlated. 640

Experiment. To demonstrate the spatial consistency of feature maps empirically, we provide 641 feature map covariances of randomly initialized single-layer CNN and five-layer CNN with ReLU 642 non-linearity. In this experiment, the input values are Gaussian random noises. As shown in Fig. D.1a, 643 one convolutional layer correlates neighboring feature map points. Fig. D.1b shows that multiple 644 convolutional layers correlate one feature map with distant feature maps. Moreover, the feature maps 645 in deep CNNs have a stronger relationship with neighboring feature maps. 646

D.2 ENSEMBLE FILTERS HIGH-FREQUENCY SIGNALS 647

Following the notation of Eq. (3), the ensemble is convolution of importance π and prediction p:

$$\boldsymbol{\pi} * \boldsymbol{p} \tag{16}$$

where $\pi_{i,j} = \pi(x_i|x_j)$ and $p_i = p(y|x_i, w_i)$. To show that this ensemble is low-pass filter, we apply the convolution N times:

$$\underbrace{\pi \ast \cdots \ast \pi}_{N \text{ times}} \ast p \tag{17}$$

Since π is probability, i.e., $\sum_{i} \pi_{i,j} = 1, \pi * \cdots * \pi$ is the probability for the sum of N random variables from π , i.e., $\phi + \cdots + \phi \sim \pi * \cdots * \pi$ where $\phi \sim \pi$. By definition, an operator is low-pass filter if and only if the high frequency component vanishes when the operator is applied infinitely. Therefore, ensemble with π is low-pass filter because $\operatorname{Var}(\phi + \cdots + \phi) = N \operatorname{Var}(\phi)$ and $\mathcal{F}[\pi * \cdots * \pi * p] = \mathcal{F}[\pi * \cdots * \pi] \mathcal{F}[p]$ where \mathcal{F} is Fourier transform.

Experiment. Since blur filter is low-pass filter, probabilistic spatial smoothing is also low-pass filter. In Section 2.2, at the end of the stage 1, we show that MC dropout adds high-frequency noise to feature maps, and spatial smoothing effectively removes it. As shown in Fig. D.2, we observe the same phenomena at other stages.

In addition, Fig. 6c shows that CNNs are vulnerable to high-frequency random noise. Interestingly, it also shows that CNNs are robust against noise with frequencies from 0.6π to 0.8π , corresponding to approximately 3 pixel periods. Since the receptive fields of convolutions are 3×3 , the noise with a period smaller than the size is averaged out by convolutions. For the same reason, convolutions are particularly vulnerable against the noise with a frequency of 0.3π , corresponding to a period of 6 pixel.

663 D.3 RANDOMNESS SHARPENS LOSS LANDSCAPE, AND ENSEMBLE SMOOTHENS IT

Ws show that the randomness of BNNs hinder and destabilize NN training because it causes the loss landscape and its gradient to fluctuate from moment to moment. In other words, the randomness, such as dropout, sharpens the loss landscape.

To show the claim theoretically, we use Foret et al. (2020)'s definition of sharpness with respect to training dataset D:

sharpness_{$$\rho$$} = $\max_{\delta \boldsymbol{w} \le \rho} \mathcal{L}_{\mathcal{D}}(\boldsymbol{w} + \delta \boldsymbol{w}) - \mathcal{L}_{\mathcal{D}}(\boldsymbol{w})$ (18)

where $\mathcal{L}_{\mathcal{D}}$ is NLL loss, w is NN weight, δw is small weight perturbation, and ρ is neighborhood radius. Therefore, as dropout rate—and the magnitude of δw —increases, the sharpness increases.

We next calculate the sharpness more rigorously. Let $p_i \in (0, 1]$ be a confidence of one NN prediction, and $\bar{p}^{(N)}$ be a confidence of N ensemble, i.e., $\bar{p}^{(N)} = \frac{1}{N} \sum_{i=1}^{N} p_i$. Then, the variance of the NLL loss is:

$$\mathbb{V}\left[\mathcal{L}\right] = \mathbb{V}\left[\frac{1}{|\mathcal{D}|}\sum_{\mathcal{D}} -\log\bar{p}^{(N)}\right]$$
(19)

$$= \frac{1}{|\mathcal{D}|} \mathbb{V}\left[-\log \bar{p}^{(N)}\right] \tag{20}$$

$$\simeq \frac{1}{|\mathcal{D}|} \mathbb{V} \left[-\log \mu + \left(1 - \frac{\bar{p}^{(N)}}{\mu} \right) \right]$$
(21)

$$= \frac{1}{|\mathcal{D}|} \mathbb{V} \left[-\frac{\bar{p}^{(N)}}{\mu} \right]$$
(22)

$$=\frac{1}{N}\frac{\mathbb{V}\left[p_{i}\right]}{\mu^{2}|\mathcal{D}|}\tag{23}$$

$$=\frac{1}{N}\frac{\sigma_{\text{pred}}^2}{\mu^2|\mathcal{D}|}\tag{24}$$

where $\mu = \bar{p}^{(\infty)}$ and σ_{pred}^2 is predictive variance of confidence. We use the formula $\mathbb{V}\left[\frac{1}{N}\sum_{i=1}^N \xi\right] = \frac{1}{N}\mathbb{V}[\xi]$ for arbitrary random variable ξ , and we take the first-order Taylor expansion with an assump-

=

Figure D.2: **Spatial smoothing filters high-frequency signals including MC dropout noise**. We present average feature maps of ResNet-50 on ImageNet in frequency space by using Fourier transform. Each column corresponds to feature maps at stage 1 to 4.

Figure D.3: **Randomness due to MC dropout sharpens the loss function**. We provide Hessian eigenvalue (*left*) and Hessian max eigenvalue spectra (*right*) of ResNet-18 on CIFAR-100.

tion $\bar{p}^{(N)} \simeq \mu$ in Eq. (21). Therefore, the approximated sharpness is:

sharpness²_{$$\rho$$} $\simeq \frac{1}{N} \frac{\sigma_{\text{pred}}^2}{\mu^2 |\mathcal{D}|}$ (25)

- 669 In conclusion, the variance of NLL, (the square of) the sharpness, is proportional to the variance of
- predictions σ_{pred}^2 and inversely proportional to the ensemble size N. As the ensemble size increases

in the training phase, the loss landscape becomes smoother. Flat loss landscape results in better

⁶⁷² predictive performance and generalization (Foret et al., 2020).

Here, we only consider model uncertainty for the sake of simplicity. Extending the formulations to data uncertainty is straightforward. The predictive distribution of data-complemented BNN inference (Park et al., 2021) is:

$$p(\boldsymbol{y}|\boldsymbol{\mathcal{S}},\boldsymbol{\mathcal{D}}) = \int p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{w}) p(\boldsymbol{x}|\boldsymbol{\mathcal{S}}) p(\boldsymbol{w}|\boldsymbol{\mathcal{D}}) d\boldsymbol{x} d\boldsymbol{w}$$
(26)

$$= \int p(\boldsymbol{y}|\boldsymbol{z}) p(\boldsymbol{z}|\mathcal{S}, \mathcal{D}) d\boldsymbol{z}$$
(27)

where S is proximate data distribution, z = (x, w), and p(z|S, D) = p(x|S) p(w|D). This equation clearly shows that w and x are symmetric. Therefore, we obtain the formulas including both model and data uncertainty by replacing w with joint random variable of x and w, i.e. $w \to z = (w, x)$.

Experiment. Above, we claim two statements. First, the higher the dropout rate, the sharper the loss landscape. Second, the variance of the loss is inversely proportional to the ensemble size.

To demonstrate the former claim quantitatively, we compare the Hessian eigenvalue spectra and the Hessian max eigenvalue spectra of MC dropout with various dropout rates. In these experiments, we use ensemble size of one for MC dropout. For detailed explanation of Hessian max eigenvalue spectrum, see Appendix C.1.

Fig. D.3 represents the spectra, which reveals that *as the randomness of the model increases, the number of Hessian eigenvalue outliers increases.* Since outliers are detrimental to the optimization process (Ghorbani et al., 2019), dropout disturb NN optimization.

To show the latter claim, we evaluate the variance of NLL loss for ensemble size N_{train} as shown in Fig. D.4a. As we would expect, the variance of the NLL loss—the sharpness of the loss landscape—is inversely proportional to the ensemble size for large N_{train} .

688 D.4 TRAINING PHASE ENSEMBLE LEADS TO BETTER PERFORMANCE

Appendix D.3 raises an immediate question: *Is there a performance difference between 'training* with prediction ensemble' and 'training with a low MC dropout rate, instead of no ensemble'? Note

(a) $\mathbb{V}[\mathcal{L}]$ for ensemble size on training dataset (b) NLL for ensemble size on test dataset

Figure D.4: **Training phase ensemble helps NN learn strong representation.** *Left:* The variance of NLL ($\mathbb{V}[\mathcal{L}]$) on training dataset is inversely proportional to the ensemble size for large N_{train} . See Eq. (24). *Right:* Training phase ensemble improves the predictive performance on test dataset.

that both methods reduce the sharpness of the loss landscape. This section answers the question by providing theoretical and experimental explanations that the ensemble in the training phase can improve predictive performance.

According to Gal & Ghahramani (2016), the total predictive variance (in regression tasks) is:

$$\sigma_{\rm pred}^2 = \sigma_{\rm model}^2 + \sigma_{\rm sample}^2 \tag{28}$$

where σ_{model}^2 is model precision and σ_{sample}^2 is NN prediction variance. Therefore, the model precision is the lower bound of the predictive variance, i.e.:

$$\sigma_{\rm pred}^2 \ge \sigma_{\rm model}^2 \tag{29}$$

The model precision depends only on the model architecture. For example, in the case of MC dropout, σ_{model}^2 is proportional to the dropout rate (Gal & Ghahramani, 2016) as follows:

$$\sigma_{\rm model}^2 \propto {\rm dropout\ rate}$$
 (30)

These suggest that model precision dominate predictive variance if the MC dropout rate is large enough, i.e., even if the number of ensembles is increased in the training phase, the predictive variance is almost the same. In contrast, decreasing the MC dropout rate reduces prediction diversity, and it obviously leads to performance degradation. Therefore, in the training phase, *it is better to ensemble predictions than to lower the MC dropout rate*. We believe that the training phase ensemble is strongly correlated with Batch Augmentation (Hoffer et al., 2020). We leave concrete analysis for future work.

Experiment. The experiments below support the theoretical analysis. We train MC dropout by using training-phase ensemble method with various ensemble sizes N_{train} .

As we would expect, Fig. D.4b shows that *training phase ensemble significantly improves the predictive performance*. In this experiment, we use MC dropout rate of 30%. As shown in Fig. A.1, it provides the best predictive performance. We use ensemble size $N_{\text{test}} = 50$ in test phase.

We also measure the predictive variances of NLL. The predictive variances of the model with $N_{\text{train}} = 1$ and with $N_{\text{train}} = 3$ are $\mathbb{V}[\mathcal{L}] = 0.0169$ and $\mathbb{V}[\mathcal{L}] = 0.0179$, respectively. Since the predictive variances of the two models are almost the same, we infer that there exists a lower bound.

708 E EXTENDED INFORMATIONS OF EXPERIMENTS

This section provides additional information on the experiments in Section 3.

710 E.1 IMAGE CLASSIFICATION

We present numerical comparisons in the image classification experiment and discuss the results in detail.

Model & Dataset	MC DROPOUT	Ѕмоотн	NLL	Acc (%)	ECE (%)
	•		0.401 (-0.000)	93.1 (+0.0)	3.80 (-0.00)
VGG-19 &		\checkmark	0.376 (-0.002)	93.2 (+0.1)	5.49 (+1.69)
CIFAR-10	\checkmark	•	0.238 (-0.000)	92.6 (+0.0)	3.55 (-0.00)
	\checkmark	\checkmark	0.197 (-0.041)	93.3 (+0.7)	0.68 (-2.86)
		•	0.182 (-0.000)	95.2 (+0.0)	2.75 (-0.00)
ResNet-18 & CIFAR-10		\checkmark	0.173 (-0.009)	95.4 (+0.2)	2.31 (-0.44)
	\checkmark	•	0.157 (-0.000)	95.2 (+0.0)	1.14 (-0.00)
	\checkmark	\checkmark	0.144 (-0.014)	95.5 (+0.2)	1.04 (-0.10)
		•	2.047 (-0.000)	71.6 (+0.0)	19.2 (-0.0)
VGG-16 &		\checkmark	1.878 (-0.169)	72.2 (+0.6)	20.5 (+1.3)
CIFAR-100	\checkmark	•	1.133 (-0.000)	68.8 (+0.0)	3.66 (-0.00)
	\checkmark	\checkmark	1.034 (-0.099)	71.4 (+2.6)	1.06 (-2.60)
			2.016 (-0.000)	67.6 (+0.0)	21.2 (-0.0)
VGG-19 & CIFAR-100		\checkmark	1.851 (-0.165)	71.7 (+4.0)	20.2 (-1.0)
	\checkmark	•	1.215 (-0.000)	67.3 (+0.0)	6.37 (-0.00)
	\checkmark	\checkmark	1.071 (-0.144)	70.4 (+3.0)	2.15 (-4.22)
			0.886 (-0.000)	77.9 (+0.0)	4.97 (-0.00)
ResNet-18 &		\checkmark	0.863 (-0.023)	78.9 (+1.0)	4.40 (-0.57)
CIFAR-100	\checkmark		0.848 (-0.000)	77.3 (+0.0)	3.01 (-0.00)
	\checkmark	\checkmark	0.801 (-0.047)	78.9 (+1.6)	2.56 (-0.45)
		•	0.835 (-0.000)	79.9 (+0.0)	8.88 (-0.00)
ResNet-50 &		\checkmark	0.834 (-0.002)	80.7 (+0.8)	9.29 (+0.42)
CIFAR-100	\checkmark	•	0.822 (-0.000)	79.1 (+0.0)	6.63 (-0.00)
	\checkmark	\checkmark	0.800 (-0.022)	80.1 (+1.0)	7.25 (+0.62)
		•	0.804 (-0.000)	80.6 (+0.0)	8.23 (-0.00)
ResNeXt-50 &		\checkmark	0.825 (+0.022)	80.8 (+0.3)	9.41 (+1.18)
CIFAR-100	\checkmark		0.762 (-0.000)	80.5 (+0.0)	5.67 (-0.00)
	\checkmark	\checkmark	0.759 (-0.002)	80.7 (+0.2)	6.62 (+0.94)
			1.210 (-0.000)	70.3 (+0.0)	1.62 (-0.00)
ResNet-18 &	•	\checkmark	1.183 (-0.027)	70.6 (+0.3)	1.22 (-0.40)
ImageNet	\checkmark		1.215 (-0.000)	70.0 (+0.0)	1.39 (-0.00)
	\checkmark	\checkmark	1.190 (-0.032)	70.6 (+0.6)	2.25 (+0.86)
			0.949 (-0.000)	76.0 (+0.0)	2.97 (-0.00)
ResNet-50 &	· .	\checkmark	0.916 (-0.033)	76.9 (+0.9)	3.46 (+0.49)
ImageNet	\checkmark		0.945 (-0.000)	76.0 (+0.0)	1.89(-0.00)
	\checkmark	\checkmark	0.905 (-0.040)	77.0 (+1.0)	2.49 (+0.60)
			0.919 (-0.000)	77.7 (+0.0)	3.63 (-0.00)
ResNeXt-50 &		\checkmark	0.907 (-0.012)	78.0 (+0.3)	4.60 (+0.97)
ImageNet	\checkmark		0.895 (-0.000)	77.7 (+0.0)	2.53(-0.00)
	\checkmark	\checkmark	0.887 (-0.008)	78.1 (+0.4)	3.28 (+0.75)

Table E.1: **Spatial smoothing improves both accuracy and uncertainty at the same time**. Predictive performance of models with spatial smoothing in image classification on CIFAR-10, CIFAR-100, and ImageNet.

Figure E.1: Spatial smoothing improves both accuracy and uncertainty across a whole range of ensemble sizes.

Figure E.3: **Spatial smoothing improves corruption robustness**. We measure the predictive performance of ResNet-18 on CIFAR-100-C. In the top row, we use an ensemble size of fifty for MC dropout with and without spatial smoothing.

Computational performance. The throughput of MC dropout and "MC dropout + spatial smoothing" is 755 and 675 image/sec, respectively, in training phase on ImageNet. As mentioned in lines Section 3.1, NLL of "MC dropout + spatial smoothing" with ensemble size of 2 is comparable to or even better than that of MC dropout with ensemble size of 50. Therefore, "MC dropout + spatial smoothing" is $22 \times$ faster than MC dropout with similar predictive performance, in terms of throughput.

Predictive performance on test dataset. Fig. E.2 represents the reliability diagram of ResNet-18 on CIFAR-100,
which shows that spatial smoothing improves the uncertainty
of both deterministic and Bayesian NNs. Numerical comparisons are provided below.

Table E.1 shows the predictive performance of various deter-724 ministic and Bayesian NNs with and without spatial smooth-725 ing on CIFAR-10, CIFAR-100, and ImageNet. This table 726 suggests the following: First, spatial smoothing improves 727 both accuracy and uncertainty in most cases. In particular, it 728 improves the predictive performance of all models with MC 729 dropouts. Second, spatial smoothing significantly improves 730 the predictive performance of VGG compared with ResNet. 731 VGG has a chaotic loss landscape, which results in poor pre-732 dictive performance (Li et al., 2018), and spatial smoothing 733 smoothens its loss landscape effectively. Third, as the depth 734 increases, the performance improvement decreases. Deeper 735 NNs provide more overconfident results (Guo et al., 2017), 736 but the number of spatial smoothing layers calibrating uncer-737

Figure E.2: **Spatial smoothing calibrates predictions**. We present reliability diagram of ResNet-18 on CIFAR-100.

tainty is fixed. Last, the performance improvement of ResNeXt, which includes an ensemble in its internal structure, is relatively marginal.

Fig. E.1 shows predictive performance of MC dropout and deep ensemble for ensemble size. A
 deep ensemble with an ensemble size of 1 is a deterministic NN. This figure shows that spatial
 smoothing improves efficiency of ensemble size and the predictive performance at ensemble size of

Attack	MC DROPOUT	Ѕмоотн	Acc (%)	ASR (%)
		•	28.3 (+0.0)	62.9 (-0.0)
FGSM -		\checkmark	30.3 (+2.0)	60.5 (-2.4)
	\checkmark		30.3 (+0.0)	59.8 (-0.0)
	\checkmark	\checkmark	32.6 (+2.3)	57.4 (-2.4)
			7.5 (+0.0)	90.1 (-0.0)
PGD -		\checkmark	9.0 (+1.4)	88.2 (-1.9)
	\checkmark		12.2 (+0.0)	83.7 (-0.0)
	\checkmark	\checkmark	13.7 (+1.5)	82.1 (-1.6)

Table E.2: **Spatial smoothing improves adversarial robustness.** We measure the accuracy (ACC) and the Attack Success Rate (ASR) of ResNet-50 against adversarial attacks on ImageNet.

50. In addition, spatial smoothing stabilizes NN training. It reduces the variance of the performance,
 especially in VGG.

A peculiarity of the results on ImageNet is that spatial smoothing degrades ECE of ResNet-50. It

⁷⁴⁶ is because spatial smoothing significantly improves the accuracy in this case, and there tends to be

⁷⁴⁷ a trade-off between accuracy and ECE, e.g. as shown in (Guo et al., 2017), Fig. A.1, and Fig. B.3.

⁷⁴⁸ Instead, spatial smoothing shows the improvement in NLL, another uncertainty metric.

Predictive performance on training datasets. Note that *spatial smoothing helps NN learn strong representations*. In other words, *spatial smoothing does not regularize NNs*. For example, NLL ResNet-18 with MC dropout on CIFAR-100 training dataset is 2.20×10^{-2} . The NLL of the ResNet

with spatial smoothing is 1.94×10^{-2} . In conclusion, spatial smoothing reduces the training loss.

Corruption robustness. We measure predictive performance on CIFAR-100-C (Hendrycks & Dietterich, 2019) in order to evaluate the robustness of the models against 5 intensities and 15 types of data corruption. The top row of Fig. E.3 shows the results as a box plot. The box plot shows the median, interquartile range (IQR), minimum, and maximum of predictive performance for types. They reveal that spatial smoothing improves predictive performance for corrupted data. In particular, spatial smoothing undoubtedly helps in predicting reliable uncertainty.

To summarize the performance of corrupted data in a single value, Hendrycks & Dietterich (2019) introduced a corruption error (CE) for quantitative comparison. CE_c^f , which is CE for corruption type c and model f, is as follows:

$$CE_c^f = \left(\sum_{i=1}^5 E_{i,c}^f\right) \middle/ \left(\sum_{i=1}^5 E_{i,c}^{AlexNet}\right)$$
(31)

where $E_{i,c}^{f}$ is top-1 error of f for corruption type c and intensity i, and $E_{i,c}^{AlexNet}$ is the error of AlexNet. Mean CE or *mCE* summarizes CE_{c}^{f} by averaging them over 15 corruption types such as Gaussian noise, brightness, and show. Likewise, to evaluate robustness in terms of uncertainty, we introduce corruption NLL (*CNLL*, \downarrow) and corruption ECE (*CECE*, \downarrow) as follows:

$$\operatorname{CNLL}_{c}^{f} = \left(\sum_{i=1}^{5} \operatorname{NLL}_{i,c}^{f}\right) / \left(\sum_{i=1}^{5} \operatorname{NLL}_{i,c}^{\operatorname{AlexNet}}\right)$$
(32)

and

$$\operatorname{CECE}_{c}^{f} = \left(\sum_{i=1}^{5} \operatorname{ECE}_{i,c}^{f}\right) \middle/ \left(\sum_{i=1}^{5} \operatorname{ECE}_{i,c}^{\operatorname{AlexNet}}\right)$$
(33)

MC DROPOUT	Ѕмоотн	N	Cons (%)	$\underset{(\times 10^{-2})}{\text{CEC}}$
	•	1	97.9 (+0.0)	1.03 (-0.00)
	\checkmark	1	98.2 (+0.3)	1.16 (+0.13)
		5	98.7 (+0.0)	1.22 (-0.00)
	\checkmark	5	98.9 (+0.2)	1.33 (+0.11)
\checkmark		50	98.2 (+0.0)	1.29 (-0.00)
\checkmark	\checkmark	50	98.4 (+0.2)	1.34 (+0.05)

Table E.3: Spatial smoothing improves the consistency, robustness against shift-perturbation. We measure the consistency of ResNet-18 on CIFAR-10-P. Deterministic NN with N = 5 means deep ensemble.

where NLL^{*f*}_{*i,c*} and ECE^{*f*}_{*i,c*} are NLL and ECE of *f* for *c* and *i*, respectively. *mCNLL* and *mCECE* are averages over corruption types. Experimental results show that spatial smoothing improves the robustness against data corruption. See Fig. E.3 for the results.

The bottom row of Fig. E.3 shows mCNLL, mCE, and mCECE for ensemble size. They indicates that spatial smoothing improves not only the efficiency but corruption robustness across a whole range of ensemble size.

Adversarial robustness. We show that spatial smoothing also improves adversarial robustness.
 First, we measure the robustness, in terms of accuracy and attack success rate (ASR), of ResNet 50 on ImageNet against popular adversarial attacks, namely FGSM (Goodfellow et al., 2015) and
 PGD (Madry et al., 2018). Table E.2 indicate that both MC dropout and spatial smoothing improve
 robustness against adversarial attacks.

Next, we find out how spatial smoothing improves adversarial robustness. To this end, similar to Section 2.2, we measure the accuracy on the test datasets with frequency-based adversarial perturbations. In this experiment, we use FGSM attack. This experimental result shows that spatial smoothing is particularly robust against high frequency ($\geq 0.3\pi$) adversarial attacks. This is because spatial smoothing is a low-pass filter, as we mentioned in Section 2.2. Since the ResNet is vulnerable

against high frequency adversarial attack, an ef-

776 fective defense of spatial smoothing against high 777 frequency attacks significantly improves the robust-

778 ness.

Consistency. To evaluate the translation invariance of models, we use *consistency* (Hendrycks & Dietterich, 2019; Zhang, 2019a), a metric representing translation consistency for shift-translated data sequences $S = \{x_1, \dots, x_{M+1}\}$, as follows:

Consistency =
$$\frac{1}{M} \sum_{i=1}^{M} \mathbb{1}(g(\boldsymbol{x}_i) = g(\boldsymbol{x}_{i+1}))$$
(34)

where $g(x) = \arg \max p(y|x, D)$. Table E.3 provides consistency of ResNet-18 on CIFAR-10-P (Hendrycks & Dietterich, 2019). The results shows that MC dropout and deep ensemble improve consistency, and spatial smoothing improves consistency of both deterministic and Bayesian NNs.

Prior works (Zhang, 2019a; Azulay & Weiss, 2019) investigated the fluctuation of predictive confidence

Figure E.4: **Spatial smoothing improves the confidence** *when the predictions are incorrect*. We define relative confidence (See Eq. (36)), and measure the metric of ResNet-18 on CIFAR-10-P.

MC DROPOUT	SPAT	Темр	N	NLL	ACC (%)	ECE (%)	Cons (%)
			1	0.354 (+0.000)	92.3 (+0.0)	4.95 (+0.00)	95.1 (+0.0)
	\checkmark	•	1	0.318 (+0.036)	92.4 (+0.1)	4.54 (+0.41)	95.5 (+0.4)
		\checkmark	1	0.290 (+0.064)	92.5 (+0.2)	3.18 (+1.77)	96.3 (+1.2)
	\checkmark	\checkmark	1	0.278 (+0.076)	92.5 (+0.2)	3.03 (+1.92)	96.6 (+1.5)
\checkmark	•	•	50	0.298 (+0.000)	92.5 (+0.0)	4.20 (+0.00)	95.4 (+0.0)
\checkmark	\checkmark	•	50	0.284 (+0.014)	92.6 (+0.1)	3.96 (+0.24)	95.6 (+0.2)
\checkmark	•	\checkmark	1	0.273 (+0.025)	92.6 (+0.1)	3.23 (+0.97)	96.4 (+1.0)
✓	\checkmark	\checkmark	1	0.260 (+0.038)	92.6 (+0.1)	2.71 (+1.49)	96.5 (+1.1)

Table E.4: Spatial smoothing and temporal smoothing are complementary. We provide predictive performance of MC dropout in semantic segmentation on CamVid for each method. SPAT and TEMP each stand for spatial smoothing and temporal smoothing. CONS stands for consistency.

on shift-translated data sequence. However, surprisingly, we find that confidence fluctuation has *little to do with consistency.* To demonstrate this claim, we introduce cross-entropy consistency (CEC, \downarrow), a metric that represents the fluctuation of confidence on a shift-translated data sequence $\mathcal{S} = \{ \boldsymbol{x}_1, \cdots, \boldsymbol{x}_{M+1} \}$, as follows:

$$\operatorname{CEC} = -\frac{1}{M} \sum_{i=1}^{M} f(\boldsymbol{x}_i) \cdot \log(f(\boldsymbol{x}_{i+1}))$$
(35)

where $f(\mathbf{x}) = p(\mathbf{y}|\mathbf{x}, \mathcal{D})$. In Table E.3, high consistency does not mean low CEC; conversely, high 785 consistency tends to be high CEC. Canonical NNs predict overconfident probabilities, and their 786 confidence sometimes changes drastically from near-zero to near-one. Correspondingly, it results in 787 low consistency but low CEC. On the contrary, well-calibrated NNs such as MC dropout provide 788 confidence that oscillates between zero and one, which results in high CEC. 789

To represent the NN reliability properly, we propose *relative confidence* (\uparrow) as follows:

Relative confidence =
$$p(y_{\text{true}}|\boldsymbol{x}, \mathcal{D}) / \max p(\boldsymbol{y}|\boldsymbol{x}, \mathcal{D})$$
 (36)

where max p(y|x, D) is confidence of predictive result and $p(y_{true}|x, D)$ is probability of the result 790 for true label. It is 1 when NN classifies the image correctly, and less than 1 when NN classifies it 791 incorrectly. Therefore, relative confidence is a metric that indicates the overconfidence of a prediction 792 when NN's prediction is incorrect. 793

Figure E.4 shows a qualitative example of consistency on CIFAR-10-P by using relative confidence. 794 This figure suggests that spatial smoothing improves consistency of both deterministic and Bayesian 795 NN.

796

SEMANTIC SEGMENTATION E.2 797

Table E.4 shows the performance of U-Net on the CamVid dataset. This table indicates that spatial 798 smoothing improves accuracy, uncertainty, and consistency of deterministic and Bayesian NNs. 799 This is consistent with the results in image classification. In addition, temporal smoothing leads 800 to significant improvement in efficiency of ensemble size, accuracy, uncertainty, and consistency 801 by exploiting temporal information. Moreover, temporal smoothing requires only one ensemble to 802 achieve high predictive performance, since it cooperates with the temporally previous predictions. We 803 obtain the best predictive and computational performance by using both temporal smoothing and 804 spatial smoothing. 805

806 F COMPARISON WITH ANTI-ALIASED CNN

As we mentioned in Section 4, local means (Blur), also known as anti-aliased CNN (Zhang, 2019a), improve accuracy. Nevertheless, our work (Prob + Blur) has novelties in three respects: different motivation, improved uncertainty estimation, and analysis of how spatial smoothing works.

Different motivation. The motivation of local means was to mitigate the aliasing effect of subsampling and to improve shift invariance. In contrast, our spatial smoothing is introduced to aggregate and ensemble nearby feature map points.

Improved uncertainty estimation. We demonstrate that spatial smoothing improves not only accuracy, but also uncertainty estimation and robustness against natural corruptions and adversarial attacks all at the same time. Moreover, we show that spatial smoothing significantly enhances the performance of MC dropout. Since there typically tends to be a trade-off between accuracy and "uncertainty + robustness"—e.g. as shown in (Guo et al., 2017; Zhang et al., 2019; Geirhos et al., 2019; Zhang, 2019b), Fig. A.1, and Fig. B.3—in NN modeling, we believe our simple yet effective method makes major inroads into the uncertainty quantification and generalization.

Analysis of how spatial smoothing improves performance. We find that the predictive performance improvement is *not* due to the anti-aliasing effect of local means.

- Prob + Blur—our probabilistic spatial smoothing—improves the performance of preactivation CNNs, but Blur alone—local mean or anti-aliased CNN—does not. In fact, contrary to (Zhang, 2019a), local mean degrades the predictive performance since it results in loss of information. It suggests that Prob plays an key role in prediction. For more details, see Appendix F.1.
- Although the local filtering can result in loss of information, Zhang (2019a) experimentally
 observed an increase in both shift-invariance (as expected) and accuracy (which was be yond expectation). However, "there exist a fundamental trade-off between 'shift-invariance
 plus anti-aliasing' and performance" (Zhang, 2019b). Moreover, it is difficult to relate
 anti-aliasing to improved uncertainty and robustness. Zhang (2019a) did not provide an
 explanation for these phenomena. As discussed in Appendix E.1, spatial smoothing helps
 NNs learn strong representations, not regularizes NNs.
- Spatial smoothing is, surprisingly, robust against blur corruptions.

We analyze how spatial smoothing improves predictive performance, by using loss landscape visualization, Hessian eigenvalue spectra, and Fourier analysis. These analyzes draw the following conclusions:

- Loss landscape visualization: Spatial smoothing stabilizes loss landscape fluc-838 tuations, caused by e.g. MC dropout. This results in stabilizing NN training 839 and improving performance as well as generalization. See Figs. 8 and C.2. 840 code/resources/losslandscapes/resnet_mcdo_18.gif See also and 841 code/resources/losslandscapes/resnet_mcdo_smoothing_18.gif the 842 in supplementary material. 843
- *Hessian eigenvalue spectra*: Spatial smoothing suppresses outliers of Hessian eigenvalues,
 which disrupt NN training. See Figs. 7 and C.3.
- *Fourier analysis*: Spatial smoothing effectively removes high frequency signals, including noise due to MC dropout. We also show that CNNs are vulnerable to high frequency noise and high frequency adversarial attacks. See Figs. 6 and D.2.

We also provide theoretical analysis of how spatial smoothing works. We prove that *dropout sharpens the loss landscape, and ensemble smoothens it.* Since the spatial smoothing is a spatial ensemble, it significantly enhances the performance of MC dropout. See Appendix D.3 for more details. Furthermore, we also show that *training-phase ensemble significantly improves the predictive performance because it smoothens the loss landscape without loss of prediction diversity.* Therefore, the spatial smoothing, which ensembles feature map points at training time, improves the performance effectively. See Appendix D.4.

856 F.1 PROB PLAYS AN IMPORTANT ROLE IN SPATIAL SMOOTHING

As discussed in Section 2.1, we take the perspective that each point in feature map is a prediction for binary classification by deriving the Bernoulli distributions from the feature map by using Prob. It is in contrast to previous works known as sampling-free BNNs (Hernández-Lobato & Adams, 2015; Wang et al., 2016; Wu et al., 2019) attempting to approximate the distribution of feature map with one Gaussian distribution. We do not use any assumptions on the distribution of feature map, and exactly represent the Bernoulli distributions and their averages. However, sampling-free BNNs are error-prone because there is no guarantee that feature maps will follow a Gaussian distribution.

This Prob plays an important role in spatial smoothing. CNNs such as VGG, ResNet, and ResNeXt generally use post-activation arrangement. In other words, their stages end with BatchNorm and ReLU. Therefore, spatial smoothing layers $\texttt{Smooth}(z) = \texttt{Blur} \circ \texttt{Prob}(z)$ in CNNs cooperates with BatchNorm and ReLU as follows:

$$\operatorname{Prob}(\boldsymbol{z}) = \operatorname{ReLU} \circ \operatorname{tanh}_{\tau} \circ \operatorname{ReLU} \circ \operatorname{BatchNorm}(\boldsymbol{z}) \tag{37}$$

$$= \operatorname{ReLU} \circ \operatorname{tanh}_{\tau} \circ \operatorname{BatchNorm}(z) \tag{38}$$

since ReLU and $tanh_{\tau}$ are commutative, and ReLU \circ ReLU is ReLU. This Prob is trainable and is a general form of Eq. (7). If we only use Blur as spatial smoothing, the activations BatchNorm-ReLU

866 play the role of Prob.

In order to analyze the roles of Prob and Blur 867 more precisely, we measure the predictive perfor-868 mance of the model that does not use the post-869 activation. Figure F.1 shows NLL of pre-activation 870 VGG-16 on CIFAR-100. The result shows that 871 Blur with Prob improves the performance, but 872 Blur alone does not. In fact, contrary to (Zhang, 873 2019a), blur degrades the predictive performance 874 since it results in loss of information. We also 875 measure the performance of VGG-19, ResNet-18, 876 ResNet-50, and BlurPool (Zhang, 2019a) with pre-877 activation, and observe the same phenomenon. In 878 addition, BatchNorm-ReLU in front of GAP signif-879 880 icantly improves the performance of pre-activation ResNet. 881

As mentioned in Appendix C.2, pre-activation is a special case of spatial smoothing. Therefore, the performance improvement of pre-activation by spatial smoothing is marginal compared to that of postactivation.

Figure F.1: Blur alone harms the predictive performance, although Prob + Blur improves it. We provide NLL of pre-activation VGG-16 on CIFAR-100.