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ABSTRACT

Bayesian neural networks (BNNs) have shown success in the areas of uncertainty1

estimation and robustness. However, a crucial challenge prohibits their use in2

practice. Bayesian NNs require a large number of predictions to produce reliable3

results, leading to a significant increase in computational cost. To alleviate this4

issue, we propose spatial smoothing, a method that ensembles neighboring feature5

map points of CNNs. By simply adding a few blur layers to the models, we6

empirically show that spatial smoothing improves accuracy, uncertainty estimation,7

and robustness of BNNs across a whole range of ensemble sizes. In particular,8

BNNs incorporating spatial smoothing achieve high predictive performance merely9

with a handful of ensembles. Moreover, this method also can be applied to canonical10

deterministic neural networks to improve the performances. A number of evidences11

suggest that the improvements can be attributed to the stabilized feature maps12

and the flattening of the loss landscape. In addition, we provide a fundamental13

explanation for prior works—namely, global average pooling, pre-activation, and14

ReLU6—by addressing them as special cases of spatial smoothing. These not15

only enhance accuracy, but also improve uncertainty estimation and robustness by16

making the loss landscape smoother in the same manner as spatial smoothing.17
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Figure 1: Spatial smoothing improves
both accuracy and uncertainty (NLL).
Smooth means spatial smoothing. Down-
ward from left to the right (↘) means bet-
ter accuracy and uncertainty.

In a real-world environment where many unexpected19

events occur, machine learning systems cannot be guar-20

anteed to always produce accurate predictions. In or-21

der to handle this issue, we make system decisions22

more reliable by considering estimated uncertainties,23

in addition to predictions. Uncertainty quantification is24

particularly crucial in building a trustworthy system in25

the field of safety-critical applications, including med-26

ical analysis and autonomous vehicle control. However,27

canonical deep neural networks (NNs)—or determinis-28

tic NNs—cannot produce reliable estimations of uncer-29

tainties (Guo et al., 2017), and their accuracy is often30

severely compromised by natural data corruptions from31

noise, blur, and weather changes (Engstrom et al., 2019;32

Azulay & Weiss, 2019).33

Bayesian neural networks (BNNs), such as Monte Carlo34

(MC) dropout (Gal & Ghahramani, 2016), provide a35

probabilistic representation of NN weights. They com-36

bine a number of models selected based on weight prob-37

ability to make predictions of desired results. Thanks to38

this feature, BNNs have been widely used in the areas of uncertainty estimation (Kendall & Gal, 2017)39

and robustness (Ovadia et al., 2019). They are also promising in other fields like out-of-distribution40

detection (Malinin & Gales, 2018) and meta-learning (Yoon et al., 2018).41
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Figure 2: Comparison of three different Bayesian neural network inferences: canonical BNN
inference, temporal smoothing (Park et al., 2021), and spatial smoothing (ours). In this figure, x0 is
observed data, pi is predictions p(y|x0,wi) or p(y|xi,wi), πi is importances π(xi|x0), and N is
ensemble size.

Nevertheless, there remains a significant challenge that prohibits their use in practice. BNNs require42

an ensemble size of up to fifty to achieve high predictive performance, which results in a fiftyfold43

increase in computational cost (Kendall & Gal, 2017; Loquercio et al., 2020). Therefore, if BNNs44

can achieve high predictive performance merely with a handful of ensembles, they could be applied45

to a much wider range of areas.46

1.1 PRELIMINARY47

We would first like to discuss BNN inference in detail, then move on to Vector-Quantized BNN48

(VQ-BNN) inference (Park et al., 2021), an efficient approximated BNN inference.49

BNN inference. Suppose we have access to posterior probability of NN weight p(w|D) for training
dataset D. The predictive result of BNN is given by the following predictive distribution:

p(y|x0,D) =

∫
p(y|x0,w) p(w|D) dw (1)

wherex0 is observed input data vector, y is output vector, and p(y|x,w) is the probabilistic prediction
parameterized by the result of NN for an input x and weight w. In most cases, the integral cannot be
solved analytically. Thus, we use the MC estimator to approximate it as follows:

p(y|x0,D) '
N−1∑
i=0

1

N
p(y|x0,wi) (2)

wherewi ∼ p(w|D) and N is the number of the samples. The equation indicates that BNN inference50

is ensemble average of NN predictions for one observed data point as shown on the left of Fig. 2.51

Using N neural networks in the ensemble would requires N times more computational complexity52

than one NN execution.53
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Figure 3: Spatial smoothing improves both accuracy and uncertainty across a whole range of
ensemble sizes. We report the predictive performance of ResNet-18 on CIFAR-100.

Data-complemented BNN inference. To reduce the computational cost of BNN inference, VQ-
BNN (Park et al., 2021) executes NN for an observed data only once and complements the result
with previously calculated predictions for other data. If we have access to previous predictions, the
computational performance of VQ-BNN becomes comparable to that of one NN execution. To be
specific, VQ-BNN inference is:

p(y|x0,D) '
N−1∑
i=0

π(xi|x0) p(y|xi,wi) (3)

where π(xi|x0) is the importance of data xi with respect to the observed data x0, and it is defined as a54

similarity betweenxi andx0. p(y|x0,w0) is the newly calculated prediction, and {p(y|x1,w1), · · · }55

are previously calculated predictions. To accurately infer the results, the previous predictions should56

consist of predictions for “data similar to the observed data”.57

Thanks to the temporal consistency of real-world data streams, aggregating predictions for similar58

data in data streams is straightforward. Since temporally proximate data sequences tend to be similar,59

we can memorize recent predictions and calculates their average using exponentially decreasing60

importance. In other words, VQ-BNN inference for data streams is simply temporal smoothing of61

recent predictions as shown in the middle of Fig. 2.62

VQ-BNN has two limitations, although it may be a promising approach to obtain reliable results63

in an efficient way. First, it was only applicable to data streams such as video sequences. Applying64

VQ-BNN to images is challenging because it is impossible to memorize all similar images in advance.65

Second, Park et al. (2021) used VQ-BNN only in the testing phase, not in the training phase. We find66

that ensembling predictions for similar data helps in NN training by smoothing the loss landscape.67

1.2 MAIN CONTRIBUTION68

1 Spatially neighboring points in visual imagery tend to be similar, as do feature maps of convolu-69

tional neural networks (CNNs). By exploiting this spatial consistency, we propose spatial smoothing70

as a method of ensembling nearby feature maps to improve the efficiency of ensemble size in BNN71

inference. The right side of Fig. 2 visualizes spatial smoothing aggregating neighboring feature maps.72

2 We empirically demonstrate that spatial smoothing improves the efficiency in vision tasks, such73

as image classification on CIFAR (Krizhevsky et al., 2009) and ImageNet (Russakovsky et al., 2015),74

without any additional training parameters. Figure 3 shows that negative log-likelihood (NLL) of75

“MC dropout + spatial smoothing” with an ensemble size of two is comparable to that of vanilla MC76

dropout with an ensemble size of fifty. We also demonstrate that spatial smoothing improves accuracy,77

uncertainty, and robustness all at the same time. Figure 1 shows that spatial smoothing improves both78

the accuracy and uncertainty of various deterministic and Bayesian NNs with an ensemble size of79

fifty on CIFAR-100.80

3 Global average pooling (GAP) (Lin et al., 2014; Zhou et al., 2016), pre-activation (He et al.,81

2016b), and ReLU6 (Krizhevsky & Hinton, 2010; Sandler et al., 2018) have been widely used in vision82

tasks. However, their motives are largely justified by the experiments. We provide an explanation for83

these methods by addressing them as special cases of spatial smoothing. Experiments support the84

claim by showing that the methods improve not only accuracy but also uncertainty and robustness.85
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2 PROBABILISTIC SPATIAL SMOOTHING86
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Figure 4: Stages of CNNs such as ResNet (left) and the
stages incorporating spatial smoothing layer (right).

To improve the computational perfor-87

mance of BNN inference, VQ-BNN88

(Park et al., 2021) executes NN pre-89

diction only once and complements90

the result with previously calculated91

predictions. The key to the success92

of this approach largely depends on93

the collection of previous predictions94

for proximate data. Gathering tempo-95

rally proximate data and their predic-96

tions from data streams is easy be-97

cause recent data and predictions can98

be aggregated using temporal consis-99

tency. On the other hand, gathering100

time-independent proximate data, e.g. images, is more difficult because they lack such consistency.101

2.1 MODULE ARCHITECTURE FOR ENSEMBLING NEIGHBORING FEATURE MAP POINTS102

So instead of temporal consistency, we use spatial consistency—where neighboring pixels of images103

are similar—for real-world images. Under this hypothesis, we take the feature maps as predictions104

and aggregate neighboring feature maps.105

Most CNN architectures, including ResNet, consist of multiple stages that begin with increasing the
number of channels while reducing the spatial dimension of the input volume. We decompose an
entire BNN inference into several steps by rewriting each stage in a recurrence relation as follows:

p(zi+1|zi,D) =

∫
p(zi+1|zi,wi) p(wi|D) dwi (4)

where zi is input volume of the i-th stage, and the first and the last volume are input data and106

output. wi and p(wi|D) are NN weight in the i-th stage and its probability. p(zi+1|zi,wi) is output107

probability of zi+1 with respect to the input volume zi. To derive the probability from the output108

feature map, we transform each point of the feature map into a Bernoulli distribution. To do so, a109

composition of tanh and ReLU, a function from value of range [−∞,∞] into probability, is added110

after each stage. Put shortly, we use neural networks for point-wise binary feature classification.111

Since Eq. (4) is a kind of BNN inference, it can be approximated using Eq. (3). In other words, each112

stage predicts feature map points only once and complements predictions with similar feature maps.113

Under spatial consistency, it averages probabilities of spatially neighboring feature map points, which114

is well known as blur operation in image processing. For the sake of implementation simplicity,115

average pooling with a kernel size of 2 and a stride of 1 is used as a box blur. This operation ensembles116

four neighboring probabilities with the same importances.117

In summary, as shown in Fig. 4, we propose the following probabilistic spatial smoothing layer:

Smooth(z) = Blur ◦ Prob (z) (5)

where Prob(·) is a point-wise function from a feature map to probability, and Blur(·) is importance-118

weighted average for ensembling spatially neighboring probabilities from feature maps. Smooth layer119

is added after each stage. Prob and Blur are further elaborated below.120

Prob: Feature map to probability. Prob is a function that transforms a real-valued feature map
into probability. We use tanh–ReLU composition for this purpose. However, tanh is commonly
known to suffer from the vanishing gradient problem. To alleviate this issue, we propose the following
temperature-scaled tanh:

tanhτ (z) = τ tanh (z/τ) (6)

where τ is a hyperparameter called temperature. τ is 1 in conventional tanh and ∞ in identity121

function. tanhτ imposes an upper bound on a value, but does not limit the upper bound to 1.122
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Figure 5: Spatial smoothing layers reduce feature map variances, suggesting that they ensemble
feature map points. We provide standard deviation of feature maps by block depth with ResNet-50 on
CIFAR-100. c1 to c4 and s1 to s4 each stand for stages and spatial smoothing layers, respectively.
Model uncertainty is represented by the average standard deviation of several feature maps obtained
from multiple NN executions. Data uncertainty is represented by the standard deviation of feature
map points obtained from one NN execution.

An unnormalized probability, ranging from 0 to τ , is allowed as the output of Prob. Then, thanks to
the linearity of integration, we obtain an unnormalized predictive distribution accordingly. Taking
this into account, we propose the following Prob:

Prob(z) = ReLU ◦ tanhτ (z) (7)

where τ > 1. We empirically determine τ to minimize NLL, a metric that measures both accuracy123

and uncertainty. See Fig. B.3 for more detailed ablation studies. In addition, we expect upper-bounded124

functions, e.g., ReLU6(z) = ReLU ◦ min(z, 6) and feature map scaling z/τ with τ > 1 which125

is BatchNorm, to be able to replace tanhτ in Prob; and as expected, these alternatives improve126

uncertainty estimation in addition to accuracy. See Appendix C.2 and Appendix C.3 for detailed127

discussions on activation (ReLU ◦ BatchNorm) and ReLU6 as Prob.128

Blur: Averaging neighboring probabilities. Blur averages the probabilities from feature maps.
We primarily use the average pool with a kernel size of 2 and a stride of 1 as the implementation
of Blur for the sake of simplicity. Nevertheless, we could generalize Blur by using the following
depth-wise convolution, which acts on each input channel separately, with non-trainable kernel

K =
1

||k||21
k ⊗ k> (8)

where k is a 1D matrix, e.g., k ∈ {(1) , (1, 1) , (1, 2, 1) , (1, 4, 6, 4, 1)}. Different ks derive different129

importances for neighboring feature maps. We empirically show that most Blurs improve the130

predictive performance and that optimalK varies by model. For more ablation studies, see Table B.2.131

2.2 HOW DOES SPATIAL SMOOTHING HELP OPTIMIZATION?132

We present theoretical and empirical aspects to show that spatial smoothing ensembles feature maps.133

Feature map variance. BNNs have two types of uncertainties: One is model uncertainty and the134

other is data uncertainty (Park et al., 2021). These randomnesses increase the variance of the feature135

maps. To demonstrate that spatial smoothing is an ensemble, we use the following proposition:136

Proposition 1. Ensembles reduce the variance of predictions.137

We omit the proof since it is straightforward. In our context, predictions are output feature maps of a138

stage. We investigate model and data uncertainties of the predictions along NN layers to show that139

spatial smoothing reduces the randomnesses and ensembles feature maps. Figure 5 shows the model140

uncertainty and data uncertainty of Bayesian ResNet including MC dropout layers. In this figure, the141
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Figure 6: MC dropout adds high-frequency noises, and spatial smoothing filters high-frequency
signals. In these experiments, we use ResNet-50 for ImageNet. Left: Frequency mask Mf with
w = 0.1π. Middle: Diagonal components of Fourier transformed feature maps at the end of the
stage 1. Right: The accuracy against frequency-based random noise. ResNets are vulnerable to
high-frequency noises. Spatial smoothing improves the robustness against high-frequency noises.

uncertainty of MC dropout’s feature map only accumulates, and almost monotonically increases in142

every NN layer. In contrast, the uncertainty of “MC dropout + spatial smoothing”’s feature map is143

significantly decreases at the end of stages, suggesting that the smoothing layers ensemble the feature144

map. In other words, they make the feature map more accurate and stabilized input volumes for the145

next stages. In addition, consistently, the spatial smoothing layer close to the last layer significantly146

improves performance because it reduces the uncertainty of predictions largely. See Fig. B.5 for more147

detailed results. Deterministic NNs do not have model uncertainty but data uncertainty. Therefore,148

spatial smoothing improves the performance of deterministic NNs as well as Bayesian NNs.149

Fourier analysis. We also analyze spatial smoothing through the lens of Fourier transform:150

Proposition 2. Ensembles filter high-frequency signals.151

The proof is provided in Eqs. (16) to (17). Figure 6b shows the 2D Fourier transformed output152

feature map at the end of the stage 1. This figure reveals that MC dropout almost does not affect153

low-frequency (< 0.3π) ranges, and it adds high-frequency (≥ 0.3π) noises. Since spatial smoothing154

is a low-pass filter, it effectively filters high-frequency signals, including the noises caused by MC155

dropout.156

We also find that CNNs are particularly vulnerable to high-frequency noises. To demonstrate this157

claim, following Shao et al. (2021), we measure accuracy with respect to data with frequency-based158

random noise xnoise = x0 +F−1 (F(δ)�Mf ), where x0 is clean data, F(·) and F−1(·) are Fourier159

transform and inverse Fourier transform, δ is random noise, and Mf is frequency mask as shown160

in Fig. 6a. Figure 6c exhibits the results. In sum, high-frequency noises, including those caused by161

MC dropout, significantly impair accuracy. Spatial smoothing improves the robustness by effectively162

removing high-frequency noises.163

Loss landscape. Lastly, we show that the randomness hinders NN training as follows:164

Proposition 3. Randomness of predictions sharpens the loss landscape, and ensembles flatten it.165

The proof is provided in Eqs. (18) to (25). Since a sharp loss function disturbs NN optimization166

(Keskar et al., 2017; Santurkar et al., 2018; Foret et al., 2020), reducing the uncertainty helps NN167

learn strong representations. For example, training phase NN ensemble averages out the randomness,168

and it flattens the loss function. In consequence, an ensemble of BNN outputs in training phase169

significantly improves the predictive performance. See Fig. D.4 for numerical results. However, we170

do not use training phase ensemble because it significantly increases the training time. Instead, we171

use spatial smoothing as a method that ensembles feature maps without sacrificing training time.172

We visualizes the loss landscapes (Li et al., 2018), the contours of NLL on training dataset. Figure 8b173

shows that the loss landscapes of MC dropout fluctuate and have irregular surfaces due to the174
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Figure 8: Both GAP and spatial smoothing smoothen the loss landscapes. To demonstrate this,
we present the loss landscape visualizations of ResNet-18 models with MC dropout on CIFAR-100.
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Figure 7: Both GAP and spa-
tial smoothing suppress large
Hessian eigenvalue outliers,
i.e., they flatten the loss land-
scapes. Compare with Fig. 8.

randomness. As Li et al. (2018); Foret et al. (2020) pointed out,175

this may lead to poor generalization and predictive performance.176

Spatial smoothing reduces randomness as discussed above, and177

spatial smoothing aids in optimization by stabilizing and flattening178

the loss landscape of BNN as shown in Fig. 8c.179

Furthermore, we use Hessian to quantitatively represent the sharp-180

ness of the loss landscapes. Figure 7 shows the Hessian max eigen-181

value spectra of the models in Fig. 8 with a batch size of 128, which182

reveals that spatial smoothing reduces the magnitude of Hessian183

eigenvalues and suppresses outliers. Since large Hessian eigenval-184

ues disturb NN training (Ghorbani et al., 2019), we come to the185

same conclusion that spatial smoothing helps NN optimization. See186

Appendix C.1 for a more detailed description of the configurations187

of the Hessian max eigenvalue spectra. In addition, from these188

observations, we propose the conjecture that the flatter the loss189

landscape, the better the uncertainty estimation, and vice versa.190

2.3 REVISITING GLOBAL AVERAGE POOLING191

Table 1: MLP does not overfit the
training dataset. We report train-
ing NLL (NLLtrain) and testing NLL
(NLLtest) of ResNet-50 on CIFAR-100.

CLASSIFIER NLLtrain NLLtest

GAP 0.0061 0.822
MLP 0.0071 1.029

The success of GAP classifier in image classification is192

indisputable. The initial motivation and the most widely193

accepted explanation for this success is that GAP prevents194

overfitting by using far fewer parameters than multi-layer195

perceptron (MLP) (Lin et al., 2014). However, we discover196

that the explanation is poorly supported. We compares197

GAP with other classifiers including MLP. Contrary to198

popular belief, Table 1 suggests that MLP does not overfit199

the training dataset. MLP underfits or gives comparable200

performance to GAP on the training dataset. On the test201

dataset, GAP provides better results compared with MLP. See Table C.1 for more detailed results.202

Our argument is that GAP is an extreme case of spatial smoothing. In other words, GAP is successful203

because it ensembles feature maps and smoothens the loss landscape to help optimization. To support204

this claim, we visualizes the loss landscape of MLP as shown in Fig. 8a. It is chaotic compared to205

that of GAP as shown in Fig. 8b. Hessian shows the consistent results as demonstrated by Fig. 7.206

3 EXPERIMENTS207

This section presents two experiments. The first experiment is image classification through which208

we show that spatial smoothing not only improves the ensemble efficiency, but also the accuracy,209

uncertainty, and robustness of both deterministic NN and MC dropout. The second experiment is210

semantic segmentation on data streams through which we show that spatial smoothing and temporal211

smoothing (Park et al., 2021) are complementary. See Appendix A for more detailed configurations.212
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Figure 9: Spatial smoothing also improves predictive performance on large datasets. We report
predictive performance of ResNet-50 on ImageNet.

Three metrics are measured in these experiments: NLL (↓1), accuracy (↑), and expected calibration213

error (ECE, ↓) (Guo et al., 2017). NLL represents both accuracy and uncertainty, and is the most214

widely used as a proper scoring rule. ECE measures discrepancy between accuracy and confidence.215

3.1 IMAGE CLASSIFICATION216

This section mainly discuss ResNet (He et al., 2016a). Table E.1 also discuss other settings that217

show the same trend: e.g., VGG (Simonyan & Zisserman, 2015), ResNeXt (Xie et al., 2017),218

and pre-activation models (He et al., 2016a). Spatial smoothing also improves deep ensemble219

(Lakshminarayanan et al., 2017), another non-Bayesian probabilistic NN method. See Fig. E.1.220

Performance. Fig. 3 and Fig. 9 show the predictive performances of ResNet-18 on CIFAR-100221

and ResNet-50 on ImageNet, respectively. The results indicate that spatial smoothing improves both222

accuracy and uncertainty in many respects. Let us be more specific. First, spatial smoothing improves223

the efficiency of ensemble size. In these examples, the NLL of “MC dropout + spatial smoothing”224

with an ensemble size of 2 is comparable to or even better than that of MC dropout with an ensemble225

size of 50. In other words, “MC dropout + spatial smoothing” is 25× faster than MC dropout with226

a similar predictive performance. Second, the predictive performance of “MC dropout + spatial227

smoothing” is better than that of MC dropout, at an ensemble size of 50. Third, spatial smoothing228

improves the predictive performance of deterministic NN, as well as MC dropout.229
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Figure 10: Spatial smoothing
improves the robustness. See
Fig. E.3 for more details.

Robustness. To evaluate robustness against data corruption, we230

measure predictive performance of ResNet-18 on CIFAR-100-231

C (Hendrycks & Dietterich, 2019). This dataset consists of data232

corrupted by 15 different types, each with 5 levels of intensity233

each. We use mean corruption NLL (mCNLL, ↓), the averages234

of NLL over intensities and corruption types, to summarize the235

performance of corrupted data in a single value. See Eq. (32) for236

a more rigorous definition. Figure 10 shows that spatial smoothing237

not only improves the efficiency but also corruption robustness238

across a whole range of ensemble size. See Fig. E.3 for more239

details. Spatial smoothing also improves adversarial robustness240

and perturbation consistency (↑) (Hendrycks & Dietterich, 2019;241

Zhang, 2019a), shift-transformation invariance. See Table E.2,242

Table E.3, and Fig. E.4 for more details.243

3.2 SEMANTIC SEGMENTATION244

Table 2 summarizes the result of semantic segmentation on CamVid dataset (Brostow et al., 2008)245

that consists of real-world 360×480 pixels videos. The table shows that spatial smoothing improves246

predictive performance, which is consistent with the image classification experiment. Moreover, the247

result reveals that spatial smoothing and temporal smoothing (Park et al., 2021) are complementary.248

See Table E.4 for more results.249

1We use arrows to indicate which direction is better.

8



Under review as a conference paper at ICLR 2022

Table 2: Spatial smoothing and temporal smoothing are complementary. We provide predictive
performance of MC dropout in semantic segmentation. SPAT and TEMP each stand for spatial
smoothing and temporal smoothing. ACC and CONS stand for accuracy and consistency. The numbers
in brackets denote the performance improvements over the baseline.

SPAT TEMP NLL ACC
(%)

ECE
(%)

CONS
(%)

· · 0.298 (-0.000) 92.5 (+0.0) 4.20 (-0.00) 95.4 (+0.0)
X · 0.284 (-0.014) 92.6 (+0.1) 3.96 (-0.24) 95.6 (+0.2)
· X 0.273 (-0.025) 92.6 (+0.1) 3.23 (-0.97) 96.4 (+1.0)
X X 0.260 (-0.038) 92.6 (+0.1) 2.71 (-1.49) 96.5 (+1.1)

4 RELATED WORK250

Spatial smoothing can be compared with prior works in the following areas.251

Anti-aliased CNNs. Local means (Zhang, 2019a; Zou et al., 2020; Vasconcelos et al., 2020; Sinha252

et al., 2020) were introduced for the shift-invariance of deterministic CNNs in image classification.253

They were motivated to prevent the aliasing effect of subsampling. Although the local filtering can254

result in a loss of information, Zhang (2019a) experimentally observed an increase in accuracy that255

was beyond expectation. We provide a fundamental explanation for this phenomenon: Local means256

are a spatial ensemble. An ensemble not only improves accuracy, but also uncertainty and robustness257

of deterministic and Bayesian NNs. In Fig. F.1, we also show that the predictive performance258

improvement is not due to anti-aliasing of local mean. See Appendix F for more discussion on local259

means. For a discussion on non-local means (Wang et al., 2018) and self-attention (Dosovitskiy et al.,260

2021), see Section 5.261

Sampling-free BNNs. Sampling-free BNNs (Hernández-Lobato & Adams, 2015; Wang et al.,262

2016; Wu et al., 2019) predict results based on a single or couple of NN executions. To this end, it is263

assumed that posterior and feature maps follow Gaussian distributions. However, the discrepancy264

between reality and assumption accumulates in every NN layer. Consequently, to the best of our265

knowledge, most of the sampling-free BNNs could only be applied to shallow models, such as LeNet,266

and were tested on small datasets. Postels et al. (2019) applied sampling-free BNNs to SegNet;267

nonetheless, Park et al. (2021) argued that they do not predict well-calibrated results.268

Efficient deep ensembles. Deep ensemble (Lakshminarayanan et al., 2017; Fort et al., 2019) is269

another probabilistic NN approach for predicting reliable results. BatchEnsemble (Wen et al., 2020;270

Dusenberry et al., 2020) ensembles over a low-rank subspace to make deep ensemble more efficient.271

Depth uncertainty network (Antoran et al., 2020) aggregates feature maps from different depths of272

a single NN to predict results efficiently. Despite being robust against data corruption, it provides273

weaker predictive performance compared to deterministic NN and MC dropout.274

5 DISCUSSION275

We propose spatial smoothing, a simple yet efficient module to improve BNN. Three different per-276

spectives, namely, feature map variance, Fourier analysis, and loss landscape, suggest that spatial277

smoothing ensembles feature maps. The limitation of spatial smoothing is that designing its compo-278

nents requires inductive bias. In other words, the optimal shape of the blur kernel is model-dependent.279

We believe this problem can be solved by introducing self-attention (Vaswani et al., 2017). Self-280

attentions for computer vision (Dosovitskiy et al., 2021; Touvron et al., 2021; Carion et al., 2020)281

can be deemed as trainable importance-weighted ensembles of feature maps. The observation that282

Transformers are more robust than expected (Bhojanapalli et al., 2021; Shao et al., 2021) supports this283

claim. Therefore, using self-attentions to generalize spatial smoothing would be a promising future284

work because it not only expands our work, but also helps deepen our understanding of self-attention.285
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REPRODUCIBILITY STATEMENT286

To ensure reproducibility, we provide comprehensive resources, such as code and experimental details.287

The codebase will be released as open source under the Apache License 2.0. See the supplemental288

material for the code. Appendix A provides the specifications of all models used in this work. Detailed289

experimental setup including hyperparameters and ablation study are also available in Appendix A290

and Appendix B. De-facto image datasets are used for all experiments as described in Appendix A.291
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Figure A.1: Spatial smoothing improves predictive performance at all dropout rates. As the
dropout rate increases, both accuracy and ECE decrease. The performance is optimized when
accuracy and uncertainty are balanced.

A EXPERIMENTAL SETUP AND DATASETS444

We obtain the main experimental results with the Intel Xeon W-2123 Processor, 32GB memory, and445

a single GeForce RTX 2080 Ti for CIFAR (Krizhevsky et al., 2009) and CamVid (Brostow et al.,446

2008). For ImageNet (Russakovsky et al., 2015), we use AMD Ryzen Threadripper 3960X 24-Core447

Processor, 256GB memory, and four GeForce RTX 2080 Ti. We conduct ablation studies with four448

Intel Intel Broadwell CPUs, 15GB memory, and a single NVIDIA T4. Models are implemented449

in PyTorch(Paszke et al., 2019). The detailed configurations of image classification and semantic450

segmentation are as follows.451

A.1 IMAGE CLASSIFICATION452

We use VGG (Simonyan & Zisserman, 2015), ResNet (He et al., 2016a), pre-activation ResNet (He453

et al., 2016a), and ResNeXt (Xie et al., 2017) in image classification. According to the structure454

suggested by Zagoruyko & Komodakis (2016), each block of Bayesian NNs contains one MC dropout455

layer.456

NNs are trained using categorical cross-entropy loss and SGD optimizer with initial learning rate of457

0.1, momentum of 0.9, and weight decay of 5× 10−4. We also use multi-step learning rate scheduler458

with milestones at 60, 130, and 160, and gamma of 0.2 on CIFAR, and with milestones at 30, 60,459

and 80, and gamma of 0.2 on ImageNet. We train NNs for 200 epochs with batch size of 128 on460

CIFAR, and for 90 epochs with batch size of 256 on ImageNet. We start training with gradual warmup461

(Goyal et al., 2017) for 1 epoch on CIFAR. Basic data augmentations, namely random cropping and462

horizontal flipping, are used. One exception is the training of ResNeXt on ImageNet. In this case, we463

use the batch size of 128 and learning rate of 0.05 because of memory limitation.464

We use hyperparameters that minimizes NLL of ResNet. Table A.1 provides hyperparameters for465

deterministic and Bayesian NNs. For fair comparison, models with and without spatial smoothing466

share hyperparameters such as MC dropout rate. However, Fig. A.1 shows that spatial smoothing467

improves predictive performance of ResNet-18 at all dropout rates on CIFAR-100. The default468

ensemble size of MC dropout is 50. We report averages of three evaluations, and error bars in figures469

represent min and max values. Standard deviations are omitted from tables for better visualization.470

See the source code released on GitHub for other details.471

A.2 SEMANTIC SEGMENTATION472

We use U-Net (Ronneberger et al., 2015) in semantic segmentation. Following Bayesian SegNet473

(Kendall et al., 2017), Bayesian U-Net contains six MC dropout layers. We add spatial smoothing474

before each subsampling layer in U-Net encoder. We use 5 previous predictions and decay rate of475

e−0.8 for temporal smoothing.476
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Table A.1: Hyperparameters of models for image classification.

DATASET MODEL
MC DROPOUT RATE

(%) |k| TEMPERATURE

CIFAR-10
& CIFAR-100

VGG

· · ·
30 · ·
· 2 10
30 2 10

ResNet

· · ·
30 · ·
· 2 10
30 2 10

Preact-ResNet

· · ·
30 · ·
· 2 10
30 2 10

ResNeXt

· · ·
30 · ·
· 2 10
30 2 10

ImageNet

ResNet

· · ·
5 · ·
· 2 10
5 2 10

ResNeXt

· · ·
5 · ·
· 2 10
5 2 10

CamVid consists of 720×960 pixels road scene video sequences. We resize the image bilinearly to477

360×480 pixels. We use a list reduced to 11 labels by following previous works, e.g. (Kendall & Gal,478

2017).479

NNs are trained using categorical cross-entropy loss and Adam optimizer with initial learning rate of480

0.001 and β1 of 0.9, and β2 of 0.999. We train NN for 130 epoch with batch size of 3. The learning481

rate decreases to 0.0002 at the 100 epoch. Random cropping and horizontal flipping are used for482

data augmentation. Median frequency balancing is used to mitigate dataset imbalance. Other details483

follow Park et al. (2021).484

B ABLATION STUDY485
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Figure B.1: Upper-bounded functions as
a candidates of Prob.

The probabilistic spatial smoothing proposed in this486

paper consists of two components: Prob and Blur. This487

section explores several candidates for each component488

and their properties.489

B.1 Prob: FEATURE MAPS TO PROBABILITIES490

We define Prob as a composition of an upper-491

bounded function and ReLU, a function that imposes492

the lower bound of zero. Fig. B.1 shows widely used493

upper-bounded functions: tanhτ (x) = τ tanh(x/τ),494

ReLU6(x) = min(max(x, 6), 0), and constant scaling495

which is x/τ .496

Table B.1 shows the predictive performance improve-497

ment by Prob with various upper-bounded functions on498
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Table B.1: We use tanh as the default for Prob based on the predictive performance of MC dropout
for CIFAR-100 with various Probs.

MODEL SMOOTH NLL ACC
(%)

ECE
(%)

VGG-16

· 1.133 (-0.000) 68.8 (+0.0) 3.66 (+0.00)
ReLU ◦ tanh 1.064 (-0.069) 70.4 (+1.6) 2.99 (-0.67)

ReLU ◦ ReLU6 1.093 (-0.040) 69.8 (+1.0) 4.26 (+0.60)

ReLU ◦ Constant 0.995 (-0.138) 72.5 (+3.7) 2.11 (-1.55)

Blur 0.985 (-0.000) 72.4 (+0.0) 1.77 (+0.00)

Blur ◦ ReLU ◦ tanh 0.984 (-0.001) 72.7 (+0.3) 2.07 (+0.30)

Blur ◦ ReLU ◦ ReLU6 0.982 (-0.003) 72.5 (+0.1) 1.84 (+0.07)

Blur ◦ ReLU ◦ Constant 0.991 (+0.005) 72.9 (+0.5) 1.03 (-0.74)

VGG-19

· 1.215 (-0.000) 67.3 (+0.0) 6.37 (+0.00)
ReLU ◦ tanh 1.131 (-0.084) 69.2 (+1.9) 5.23 (-1.14)

ReLU ◦ ReLU6 1.166 (-0.049) 68.3 (+1.0) 6.44 (-0.06)

ReLU ◦ Constant 0.997 (-0.218) 72.5 (+5.2) 1.09 (-5.29)

Blur 1.039 (-0.000) 71.1 (+0.0) 3.12 (+0.00)

Blur ◦ ReLU ◦ tanh 1.034 (-0.005) 71.3 (+0.2) 3.31 (+0.19)

Blur ◦ ReLU ◦ ReLU6 1.038 (-0.002) 71.3 (+0.2) 3.84 (+0.72)

Blur ◦ ReLU ◦ Constant 0.995 (-0.045) 72.3 (+1.2) 1.41 (-1.71)

ResNet-18

· 0.848 (-0.000) 77.3 (+0.0) 3.01 (+0.00)
ReLU ◦ tanh 0.838 (-0.010) 77.7 (+0.4) 2.92 (-0.08)

ReLU ◦ ReLU6 0.844 (-0.004) 77.4 (+0.1) 2.74 (-0.27)

ReLU ◦ Constant 0.825 (-0.023) 77.7 (+0.4) 1.87 (-1.14)

Blur 0.806 (-0.000) 78.6 (+0.0) 2.56 (+0.00)

Blur ◦ ReLU ◦ tanh 0.801 (-0.005) 78.9 (+0.3) 2.56 (-0.01)

Blur ◦ ReLU ◦ ReLU6 0.805 (-0.001) 78.9 (+0.2) 2.59 (+0.03)

Blur ◦ ReLU ◦ Constant 0.811 (+0.005) 78.5 (-0.2) 1.84 (-0.72)

ResNet-50

· 0.822 (-0.000) 79.1 (+0.0) 6.63 (+0.00)
ReLU ◦ tanh 0.812 (-0.010) 79.3 (+0.2) 6.74 (+0.11)

ReLU ◦ ReLU6 0.799 (-0.023) 79.4 (+0.3) 6.71 (+0.08)

ReLU ◦ Constant 0.788 (-0.034) 79.6 (+0.5) 5.22 (-1.41)

Blur 0.798 (-0.000) 80.0 (+0.0) 7.21 (+0.00)

Blur ◦ ReLU ◦ tanh 0.800 (+0.002) 80.1 (+0.1) 7.25 (+0.04)

Blur ◦ ReLU ◦ ReLU6 0.800 (+0.002) 80.2 (+0.2) 7.30 (+0.09)

Blur ◦ ReLU ◦ Constant 0.779 (-0.019) 80.4 (+0.4) 5.81 (-1.40)
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Figure B.2: Temperature-scaled tanhs (left) and their first derivatives (right) for different tem-
peratures.
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Figure B.3: The temperature controls the trade-off between accuracy and uncertainty. The
accuracy increases as the temperature increases, but predictions become more overconfident.

CIFAR-100. In this experiment, we use models with MC dropout, and τ = 5 for constant scaling. The499

results indicate that upper-bounded functions with ReLU tend to improve accuracy and uncertainty500

at the same time. In addition, they show that Prob and Blur are complementary. The best results501

are obtained when using both Prob and Blur. For the main experiments, we use the composition502

of tanhτ and ReLU as Prob, because the hyperparameter of constant scaling is highly dependent on503

dataset and model.504

Temperature. The characteristics of temperature-scaled tanh depends on τ . Figure B.2 plots505

tanhτ and their first derivatives with various temperatures. As shown in this figure, tanhτ has a506

couple of useful properties. First, tanhτ has an upper bound of τ . Second, the first derivative of507

tanhτ at x = 0 does not depend on τ .508

Fig. B.3 shows the predictive performance of ResNet-18 with MC dropout and spatial smoothing for509

the temperature on CIFAR-100. In this figure, the accuracy increases as the temperature increases. In510

terms of ECE, NN predicts more underconfident results as τ decreases. It is a misinterpretation that511

the result is overconfident at low τ because ECE is high. By definition, ECE relies on the absolute512

value of the difference between confidence and accuracy. In this example, at low τ , the accuracy is513

greater than the confidence, which leads to a high ECE. Moreover, at τ = 0.2, ECE with N = 50 is514

greater than that with N = 1, which means that the result is severely underconfident. NLL, a metric515

representing both accuracy and uncertainty, is minimized when the accuracy and the uncertainty are516

balanced. In conclusion, we set the default value of τ to 10.517
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Figure B.4: Kernels for Blur. Brighter background indicates higher importance.

Table B.2: The optimal shape of the blur kernel is model-dependent. We measure the predictive
performance of MC dropout using spatial smoothing with various size of Blur kernels on CIFAR-100.

MODEL |k| NLL ACC
(%)

ECE
(%)

VGG-16

1 1.087 (-0.000) 69.8 (+0.0) 3.43 (-0.00)
2 1.034 (-0.053) 71.4 (+1.6) 1.06 (-2.37)
3 0.986 (-0.101) 72.7 (+2.9) 1.03 (-2.40)
5 1.018 (-0.069) 72.0 (+2.2) 1.32 (-2.11)

VGG-19

1 1.096 (-0.000) 69.8 (+0.0) 4.74 (-0.00)
2 1.071 (-0.025) 70.4 (+0.6) 2.15 (-2.59)
3 1.026 (-0.070) 71.9 (+2.1) 2.56 (-2.18)
5 1.032 (-0.064) 71.6 (+1.8) 2.16 (-2.58)

ResNet-18

1 0.840 (-0.000) 77.6 (+0.0) 2.63 (-0.00)
2 0.801 (-0.039) 78.9 (+1.4) 2.56 (-0.07)
3 0.822 (-0.018) 78.7 (+1.1) 2.86 (-0.23)
5 0.837 (-0.003) 78.4 (+0.8) 3.05 (-0.42)

ResNet-50

1 0.814 (-0.000) 79.5 (+0.0) 6.56 (-0.00)
2 0.806 (-0.008) 80.0 (+0.5) 7.35 (+0.79)
3 0.796 (-0.019) 79.9 (+0.4) 7.38 (+0.82)
5 0.816 (+0.001) 79.4 (-0.1) 7.38 (+0.82)
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Figure B.5: Spatial smoothing close to the last layer (s3) significantly improves performance.
We report predictive performance of ResNet-18 with one spatial smoothing after each stage on
CIFAR-100. None indicates vanilla MC dropout.

B.2 Blur: AVERAGING NEIGHBORING PROBABILITIES518

Blur is a depth-wise convolution with a kernel. The kernel given by Eq. (8) is derived from various519

ks such as k ∈ {(1) , (1, 1) , (1, 2, 1) , (1, 4, 6, 4, 1)}. In these examples, if |k| is 1, Blur is identity.520

If |k| is 2, Blur is a box blur, which is used in the main experiments. If |k| is 3 or 5, Blur is an521

approximated Gaussian blur.522

Table B.2 shows predictive performance of models using spatial smoothing with the kernels on523

CIFAR-100. This results show that most kernels improve both accuracy and uncertainty. However,524

the most effective kernel size depends on the model.525

B.3 POSITION OF SPATIAL SMOOTHING.526

As shown in Fig. 5, the magnitude of uncertainty tends to increase as the depth increases. Therefore,527

we expect that spatial smoothing close to the output layer will mainly drive performance improvement.528

We investigate the predictive performance of models with MC dropout using only one spatial smooth-529

ing layer. Figure B.5 shows the predictive performance of ResNet-18 with one spatial smoothing after530

each stage on CIFAR-100. The results suggest that spatial smoothing after s3 is the most important531

for improving performance. Surprisingly, spatial smoothing after s4 is the least important. This is532

because GAP, the most extreme case of spatial smoothing, already exists there.533

C REVISITING PRIOR WORKS534

As mentioned in Section 2, prior works—namely, GAP, pre-activation, and ReLU6—are spacial cases535

of spatial smoothing. This section discusses them in detail.536

C.1 GLOBAL AVERAGE POOLING537

The composition of GAP and a fully connected layer is the most popular classifier in classification538

tasks. The original motivation and the most widely accepted explanation for the success is that GAP539

classifier prevents overfitting because it uses significantly fewer parameters than MLP (Lin et al.,540

2014). To verify this claim, we measure the predictive performance of MLP, GAP, and global max541

pooling (GMaxP), a classifier that uses the same number of parameters as GAP, on training dataset.542

Predictive performance. Table C.1 shows the experimental results on the training and the test543

dataset of CIFAR-100, suggesting that the explanation is poorly supported. On both the training544

and the test dataset, most predictive performance of MLP is worse than that of GAP. It is a counter-545

intuitive result meaning that MLP do not overfit the training dataset. In addition, the performance546

improvement by GAP is remarkable in VGG, which has irregular loss landscape. The predictive547
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Table C.1: MLP classifier does not overfit training dataset, i.e., GAP does not regularize NNs. We
provide predictive performance of MC dropout with various classifiers on CIFAR-100. ERR is error.

MODEL CLASSIFIER

TRAIN TEST

NLL ERR
(%)

ECE
(%) NLL ACC

(%)
ECE
(%)

VGG-16

GAP 0.0852 0.461 6.75 1.030 72.3 3.24
MLP 0.5492 13.1 13.8 1.133 68.8 3.66

GMaxP 0.0846 0.470 6.67 1.050 72.2 3.60
GMedP 0.0867 0.501 6.80 1.042 72.2 3.35

VGG-19

GAP 0.1825 2.50 10.4 1.035 71.9 1.46
MLP 0.7144 17.7 14.8 1.215 67.3 6.37

GMaxP 0.1939 2.85 10.6 1.063 71.5 2.10
GMedP 0.1938 2.80 10.6 1.051 71.7 1.70

ResNet-18

GAP 0.0124 0.0287 1.19 0.841 77.5 2.92
MLP 0.0076 0.0347 7.22 1.040 74.8 9.55

GMaxP 0.0113 0.0233 1.41 0.905 76.3 5.23
GMedP 0.0156 0.0347 1.46 0.889 76.4 5.03

ResNet-50

GAP 0.0061 0.0220 0.48 0.822 79.1 6.63
MLP 0.0071 0.0370 8.53 1.029 76.9 11.8

GMaxP 0.0074 0.0313 1.09 0.887 77.2 5.67
GMedP 0.0053 0.0287 0.47 0.849 78.5 6.29
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Figure C.1: GAP classifier improves not only the predictive performance on clean dataset but
also the robustness. We measure the predictive performance of ResNet-18 using MC dropout with
classifiers on CIFAR-100-C.
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(a) MLP classifier

(b) GAP classifier

(c) GAP classifier + Smooth

Figure C.2: GAP and spatial smoothing flatten the loss landscapes. We visualize the loss landscape
sequences of ResNet-18 with MC dropout on CIFAR-100. Although each sequence shares the bases,
it fluctuates due to the randomness of the MC dropout.

performance of GMaxP is better than that of MLP, but worse than that of GAP. This shows that using548

fewer parameters partially helps to improve predictive performance; however, it is insufficient to549

explain the predictive performance improvement by GAP. Finally, global median pooling (GMedP)550

provides better predictive performance than GMaxP. It implies that using other noise reduction551

methods instead of average pooling helps to improve predictive performance.552

Robustness. To evaluate the robustness of the classifiers, we measure the predictive performance of553

ResNet-18 using MC dropout with the classifiers on CIFAR-100-C. Figure C.1 shows the experimental554

results. This figure suggests that MLP is not robust against data corruption, as we would expect. In555

terms of accuracy, the robustness of GMaxP and GMedP is relatively comparable to that of GAP;556

however, in terms of uncertainty, GAP is the most robust. These are consistent results with other557

spatial smoothing experiments.558

Loss landscape visualization. To understand the mechanism of GAP performance improvement,559

we investigate the loss landscape. Figure C.2 shows the loss landscape sequences of ResNet with560

MC dropout. In this figure, each sequence shares the bases, but they fluctuate due to the randomness561

of the MC dropout. Figure C.2a is the loss landscape of the model using MLP classifier instead of562

GAP classifier. The loss landscape is chaotic and irregular, resulting in hindering and destabilizing563

NN optimization. Fig. C.2b is loss landscape sequence of ResNet with GAP classifier. Since GAP564

ensembles all of the feature map points at the last stage, it flattens and stabilizes the loss landscape.565

Likewise, as shown in Fig. C.2c, spatial smoothing layers at the end of all stages also flattens and566

stabilizes the loss landscape.567

Hessian eigenvalue spectra. To evaluate the smoothness of the loss landscapes quantitatively,568

we also investigate their Hessians at the optimized weights. In particular, we calculate Hessian569

eigenvalue spectra (Ghorbani et al., 2019), distributions of Hessian eigenvalues, to show how spatial570

smoothing helps NN optimization. To this end, we try to use stochastic Lanczos quadrature algorithm571
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implemented by Yao et al. (2020). However, the problem is that the model with MLP classifier572

requires a lot of memory while the algorithm is memory inefficient.573

In the training phase, we calculate the mean gradients with respect to mini-batches, rather than the574

entire dataset. Therefore, it may be reasonable to investigate the properties of the Hessian “mini-575

batch-wisely”. For that purpose, we propose a method, Hessian max eigenvalue spectra, that evaluates576

the distribution of “Hessian’s maximum eigenvalues for one mini-batch”. We use power iteration to577

produce only the greatest eigenvalue of the Hessian. This algorithm is easy to implement and requires578

significantly less memory and computational cost, compared with stochastic Lanczos quadrature579

with respect to entire dataset. With this method, we can investigate the Hessian of NNs with MLP580

classifiers, which would require a lot of GPU memory.581
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Figure C.3: Spatial smoothing
suppress eigenvalue outliers.
We provide Hessian eigenvalue
spectra of ResNet-18 with MC
dropout on CIFAR-100. See also
Fig. 7.

Figure 7 shows the Hessian max eigenvalue spectra of GAP classi-582

fier models with and without spatial smoothing layers. As Li et al.583

(2018); Foret et al. (2020) and Appendix D.3 pointed out, Hessian584

eigenvalue outliers disturb NN training. This figure explicitly show585

that the GAP and spatial smoothing reduce the magnitude of the586

Hessian eigenvalues and suppress the outliers, which leads to the587

same result as the previous visualizations: GAP as well as spatial588

smoothing smoothen the loss landscape. In conclusion, averag-589

ing feature map points tends to help neural network optimization590

by smoothing, flattening, and stabilizing the loss landscape. We591

observe a similar phenomenon for deterministic NNs. We also592

evaluate the Hesse eigenvalue spectrum as shown in Fig. C.3, and593

it leads to the same conclusion.594

In these experiments, we use MLP incorporating dropout layers595

with a rate of 50% as the classifier. Since the dropout is one of596

the factors that makes MLP underfit the training dataset, we also597

evaluate MLP using dropouts with a rate of 0%. Nevertheless, the598

results still shows that the predictive performance of MLP is worse599

than that of GAP on the training dataset. Moreover, it severely degrades predictive performance of600

ResNet on the test dataset.601

C.2 PRE-ACTIVATION602

He et al. (2016b) experimentally showed that the pre-activation arrangement, in which the activation603

ReLU ◦ BatchNorm is placed before the convolution, improves the accuracy of ResNet. Since γs of604

most BatchNorms in CNNs are near-zero (Frankle et al., 2021), BatchNorms reduce the magnitude605

of feature maps. As shown in Fig. B.1, constant scaling is a non-trainable BatchNorm with no606

bias, and it also reduces the magnitude of feature map. In Table B.1, we show that constant scaling607

improves predictive performance. Considering the similarity between Prob with constant scaling and608

conventional activation, i.e., the similarity between ReLU◦ConstantScaling and ReLU◦BatchNorm,609

we find that the pre-activation arrangement improves uncertainty as well as accuracy, because610

convolutions act as a Blur.611

To show this, we change the post-activation of all layers to pre-activation, and measure the predictive612

performance. For ResNet, we follow the original paper by He et al. (2016b). Table C.2 shows613

the predictive performance of models with pre-activation. The results suggests that pre-activation614

improves both accuracy and uncertainty in most cases. For deterministic VGG-19, pre-activation615

significantly degrades accuracy but improves NLL. In conclusion, they imply that pre-activation is a616

special case of spatial smoothing.617

Santurkar et al. (2018) argued that BatchNorm helps in optimization by flattening the loss landscape.618

We show that spatial smoothing flattens and smoothens the loss landscape, which is a consistent619

explanation. It will be interesting to investigate if BatchNorm helps in ensembling feature maps.620

C.3 RELU6621

ReLU6 was experimentally introduced to improve predictive performance (Krizhevsky & Hinton,622

2010). Sandler et al. (2018) used “ReLU6 as the non linearity because of its robustness when used623
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Table C.2: Pre-activation arrangement improves uncertainty as well as accuracy. We measure
the predictive performance of models with pre-activation arrangement on CIFAR-100.

MODEL MC DROPOUT PRE-ACT NLL ACC
(%)

ECE
(%)

VGG-16

· · 2.047 (-0.000) 71.6 (+0.0) 19.2 (-0.0)
· X 1.827 (-0.219) 72.5 (+0.9) 19.8 (+0.6)
X · 1.133 (-0.000) 68.8 (+0.0) 3.66 (-0.00)
X X 1.036 (-0.096) 71.7 (+2.9) 3.55 (-0.11)

VGG-19

· · 2.016 (-0.000) 67.6 (+0.0) 21.2 (-0.0)
· X 1.799 (-0.217) 64.4 (-3.2) 17.2 (-4.0)
X · 1.215 (-0.000) 67.3 (+0.0) 6.37 (-0.00)
X X 1.084 (-0.131) 70.1 (+3.7) 4.23 (-2.14)

ResNet-18

· · 0.983 (-0.000) 77.1 (+0.0) 7.75 (-0.00)
· X 0.934 (-0.049) 77.6 (+0.5) 8.04 (+0.29)
X · 0.937 (-0.000) 76.9 (+0.0) 5.11 (-0.00)
X X 0.872 (-0.065) 77.6 (+0.7) 5.53 (+0.42)

ResNet-50

· · 0.880 (-0.000) 79.0 (+0.0) 8.35 (-0.00)
· X 0.870 (-0.010) 79.4 (+0.4) 8.27 (-0.08)
X · 0.831 (-0.000) 78.6 (+0.0) 6.06 (-0.00)
X X 0.819 (-0.012) 79.5 (+0.9) 6.29 (+0.23)

with low-precision computation”. In Table B.1, we show that ReLU6s at the end of stages helps to624

ensemble spatial information by transforming the feature map to Bernoulli distributions. Since spatial625

smoothing improves robustness against data corruption, it seems reasonable that ReLU6 is robust to626

low-precision computation. A more abundant investigation into this topic is promising future works.627

We measure the predictive performance of NNs using all activations as ReLU6 instead of ReLU.628

However, in contrast to the results in Table B.1, the results are not consistent. We speculate that the629

reason is that a lot of ReLU6s overly regularize NNs.630

D EXTENDED ANALYSIS OF HOW SPATIAL SMOOTHING WORKS631

This section provides further explanation of the analysis in Section 2.2.632

D.1 NEIGHBORING FEATURE MAPS IN CNNS ARE SIMILAR633

This work exploits the spatial consistency of feature maps, i.e., neighboring feature maps in CNNs634

are similar. Below, we theoretically and empirically prove the spatial consistency. Moreover, this635

spatial consistency of feature maps holds even if the input data is spatially inconsistent.636

Consider a single-layer convolutional neural network with one channel:

yi = [w ∗ x]i (9)

=

k∑
l=1

wlxi−l+1 (10)
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(a) single-layer CNN (b) five-layer CNN with ReLU

Figure D.1: Neighboring feature map points in CNNs are similar, even if input values are iid.
We provide covariances of feature map points with respect to the center feature map (in the red
square). Input values are Gaussian random noise. Left: A single convolutional layer correlates the
target feature map with another feature map that is 3 pixels away, since the kernel size is 3×3. Right:
A deep CNN more strongly correlates neighboring feature maps.

where ∗ is convolution operator with a kernel of size k, y is feature map output, w is kernel weight,
and x is input random variable. Then, the covariance of two neighboring feature maps is:

Cov(yi, yi+1) = Cov(

k∑
l=1

wlxi−l+1,

k∑
m=1

wmxi−m+2) (11)

=

k∑
l=1

k∑
m=1

wlwm Cov(xi−l+1, xi−m+2) (12)

=

k−1∑
l=1

wlwl+1 σ
2(xi−l+2) + · · · (13)

where σ2(xi−l+1) is the variance of xi−l+1. Therefore, Cov(yi,yi+1) is non-zero for randomly637

initialized weights. If x is iid, i.e., Cov(xi, xj) = δijσ
2(xi) where δij is the Kronecker delta, the638

remainders in Eq. (13) vanish.639

For example, the covariance of two neighboring feature map points in a CNN with a kernel size of 3
is:

Cov(y1, y2) = w1w1 Cov(x1, x2) + w1w2 Cov(x1, x3) + w1w3 Cov(x1, x4)

+ w2w1 Cov(x2, x2) + w2w2 Cov(x2, x3) + w2w3 Cov(x2, x4)

+ w3w1 Cov(x3, x2) + w3w2 Cov(x3, x3) + w3w3 Cov(x3, x4)

(14)

When xi is iid, the covariance is:

Cov(y1, y2) = w1w2 σ
2(x2) + w2w3 σ

2(x3) (15)

Since it is non-zero, the neighboring feature maps y1 and y2 are correlated.640

Experiment. To demonstrate the spatial consistency of feature maps empirically, we provide641

feature map covariances of randomly initialized single-layer CNN and five-layer CNN with ReLU642

non-linearity. In this experiment, the input values are Gaussian random noises. As shown in Fig. D.1a,643

one convolutional layer correlates neighboring feature map points. Fig. D.1b shows that multiple644

convolutional layers correlate one feature map with distant feature maps. Moreover, the feature maps645

in deep CNNs have a stronger relationship with neighboring feature maps.646

D.2 ENSEMBLE FILTERS HIGH-FREQUENCY SIGNALS647

Following the notation of Eq. (3), the ensemble is convolution of importance π and prediction p:

π ∗ p (16)
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where πi,j = π(xi|xj) and pi = p(y|xi,wi). To show that this ensemble is low-pass filter, we
apply the convolution N times:

π ∗ · · · ∗ π︸ ︷︷ ︸
N times

∗p (17)

Since π is probability, i.e.,
∑
i πi,j = 1, π ∗ · · · ∗ π is the probability for the sum of N random648

variables from π, i.e, φ + · · · + φ ∼ π ∗ · · · ∗ π where φ ∼ π. By definition, an operator is649

low-pass filter if and only if the high frequency component vanishes when the operator is applied650

infinitely. Therefore, ensemble with π is low-pass filter because Var(φ+ · · ·+ φ) = N Var(φ) and651

F [π ∗ · · · ∗ π ∗ p] = F [π ∗ · · · ∗ π] F [p] where F is Fourier transform.652

Experiment. Since blur filter is low-pass filter, probabilistic spatial smoothing is also low-pass653

filter. In Section 2.2, at the end of the stage 1, we show that MC dropout adds high-frequency noise to654

feature maps, and spatial smoothing effectively removes it. As shown in Fig. D.2, we observe the655

same phenomena at other stages.656

In addition, Fig. 6c shows that CNNs are vulnerable to high-frequency random noise. Interestingly, it657

also shows that CNNs are robust against noise with frequencies from 0.6π to 0.8π, corresponding to658

approximately 3 pixel periods. Since the receptive fields of convolutions are 3×3, the noise with a659

period smaller than the size is averaged out by convolutions. For the same reason, convolutions are660

particularly vulnerable against the noise with a frequency of 0.3π, corresponding to a period of 6661

pixel.662

D.3 RANDOMNESS SHARPENS LOSS LANDSCAPE, AND ENSEMBLE SMOOTHENS IT663

Ws show that the randomness of BNNs hinder and destabilize NN training because it causes the loss664

landscape and its gradient to fluctuate from moment to moment. In other words, the randomness,665

such as dropout, sharpens the loss landscape.666

To show the claim theoretically, we use Foret et al. (2020)’s definition of sharpness with respect to
training dataset D:

sharpnessρ = max
δw≤ρ

LD(w + δw)− LD(w) (18)

where LD is NLL loss, w is NN weight, δw is small weight perturbation, and ρ is neighborhood667

radius. Therefore, as dropout rate—and the magnitude of δw—increases, the sharpness increases.668

We next calculate the sharpness more rigorously. Let pi ∈ (0, 1] be a confidence of one NN prediction,
and p̄(N) be a confidence of N ensemble, i.e., p̄(N) = 1

N

∑N
i=1 pi. Then, the variance of the NLL

loss is:

V [L] = V

[
1

|D|
∑
D
− log p̄(N)

]
(19)

=
1

|D|
V
[
− log p̄(N)

]
(20)

' 1

|D|
V
[
− logµ+

(
1− p̄(N)

µ

)]
(21)

=
1

|D|
V
[
− p̄

(N)

µ

]
(22)

=
1

N

V [pi]

µ2|D|
(23)

=
1

N

σ2
pred

µ2|D|
(24)

where µ = p̄(∞) and σ2
pred is predictive variance of confidence. We use the formula V

[
1
N

∑N
i=1 ξ

]
=

1
NV [ξ] for arbitrary random variable ξ, and we take the first-order Taylor expansion with an assump-
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(a) Deterministic

(b) Deterministic + Smooth

(c) MC dropout

(d) MC dropout + Smooth
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Figure D.2: Spatial smoothing filters high-frequency signals including MC dropout noise. We
present average feature maps of ResNet-50 on ImageNet in frequency space by using Fourier
transform. Each column corresponds to feature maps at stage 1 to 4.

26



Under review as a conference paper at ICLR 2022

0 10 20
Eigenvlaue

Lo
g 

de
ns

ity

0 200 400 600
Max Eigenvlaue

D
en

sit
y

0 10 20
Eigenvlaue

D
en

sit
y

0 % 10 % 20 % 30 %

Figure D.3: Randomness due to MC dropout sharpens the loss function. We provide Hessian
eigenvalue (left) and Hessian max eigenvalue spectra (right) of ResNet-18 on CIFAR-100.

tion p̄(N) ' µ in Eq. (21). Therefore, the approximated sharpness is:

sharpness2ρ '
1

N

σ2
pred

µ2|D|
(25)

In conclusion, the variance of NLL, (the square of) the sharpness, is proportional to the variance of669

predictions σ2
pred and inversely proportional to the ensemble size N . As the ensemble size increases670

in the training phase, the loss landscape becomes smoother. Flat loss landscape results in better671

predictive performance and generalization (Foret et al., 2020).672

Here, we only consider model uncertainty for the sake of simplicity. Extending the formulations to
data uncertainty is straightforward. The predictive distribution of data-complemented BNN inference
(Park et al., 2021) is:

p(y|S,D) =

∫
p(y|x,w)p(x|S)p(w|D)dxdw (26)

=

∫
p(y|z)p(z|S,D)dz (27)

where S is proximate data distribution, z = (x,w), and p(z|S,D) = p(x|S) p(w|D). This equation673

clearly shows that w and x are symmetric. Therefore, we obtain the formulas including both model674

and data uncertainty by replacing w with joint random variable of x and w, i.e. w → z = (w,x).675

Experiment. Above, we claim two statements. First, the higher the dropout rate, the sharper the676

loss landscape. Second, the variance of the loss is inversely proportional to the ensemble size.677

To demonstrate the former claim quantitatively, we compare the Hessian eigenvalue spectra and the678

Hessian max eigenvalue spectra of MC dropout with various dropout rates. In these experiments,679

we use ensemble size of one for MC dropout. For detailed explanation of Hessian max eigenvalue680

spectrum, see Appendix C.1.681

Fig. D.3 represents the spectra, which reveals that as the randomness of the model increases, the682

number of Hessian eigenvalue outliers increases. Since outliers are detrimental to the optimization683

process (Ghorbani et al., 2019), dropout disturb NN optimization.684

To show the latter claim, we evaluate the variance of NLL loss for ensemble size Ntrain as shown in685

Fig. D.4a. As we would expect, the variance of the NLL loss—the sharpness of the loss landscape—is686

inversely proportional to the ensemble size for large Ntrain.687

D.4 TRAINING PHASE ENSEMBLE LEADS TO BETTER PERFORMANCE688

Appendix D.3 raises an immediate question: Is there a performance difference between ‘training689

with prediction ensemble’ and ‘training with a low MC dropout rate, instead of no ensemble’? Note690
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Figure D.4: Training phase ensemble helps NN learn strong representation. Left: The variance
of NLL (V [L]) on training dataset is inversely proportional to the ensemble size for large Ntrain. See
Eq. (24). Right: Training phase ensemble improves the predictive performance on test dataset.

that both methods reduce the sharpness of the loss landscape. This section answers the question691

by providing theoretical and experimental explanations that the ensemble in the training phase can692

improve predictive performance.693

According to Gal & Ghahramani (2016), the total predictive variance (in regression tasks) is:

σ2
pred = σ2

model + σ2
sample (28)

where σ2
model is model precision and σ2

sample is NN prediction variance. Therefore, the model precision
is the lower bound of the predictive variance, i.e.:

σ2
pred ≥ σ2

model (29)

The model precision depends only on the model architecture. For example, in the case of MC dropout,
σ2

model is proportional to the dropout rate (Gal & Ghahramani, 2016) as follows:

σ2
model ∝ dropout rate (30)

These suggest that model precision dominate predictive variance if the MC dropout rate is large694

enough, i.e., even if the number of ensembles is increased in the training phase, the predictive variance695

is almost the same. In contrast, decreasing the MC dropout rate reduces prediction diversity, and it696

obviously leads to performance degradation. Therefore, in the training phase, it is better to ensemble697

predictions than to lower the MC dropout rate. We believe that the training phase ensemble is strongly698

correlated with Batch Augmentation (Hoffer et al., 2020). We leave concrete analysis for future work.699

Experiment. The experiments below support the theoretical analysis. We train MC dropout by700

using training-phase ensemble method with various ensemble sizes Ntrain.701

As we would expect, Fig. D.4b shows that training phase ensemble significantly improves the702

predictive performance. In this experiment, we use MC dropout rate of 30%. As shown in Fig. A.1, it703

provides the best predictive performance. We use ensemble size Ntest = 50 in test phase.704

We also measure the predictive variances of NLL. The predictive variances of the model with705

Ntrain = 1 and with Ntrain = 3 are V [L] = 0.0169 and V [L] = 0.0179, respectively. Since the706

predictive variances of the two models are almost the same, we infer that there exists a lower bound.707

E EXTENDED INFORMATIONS OF EXPERIMENTS708

This section provides additional information on the experiments in Section 3.709

E.1 IMAGE CLASSIFICATION710

We present numerical comparisons in the image classification experiment and discuss the results in711

detail.712
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Table E.1: Spatial smoothing improves both accuracy and uncertainty at the same time. Predic-
tive performance of models with spatial smoothing in image classification on CIFAR-10, CIFAR-100,
and ImageNet.

MODEL &
DATASET

MC DROPOUT SMOOTH NLL ACC
(%)

ECE
(%)

VGG-19 &
CIFAR-10

· · 0.401 (-0.000) 93.1 (+0.0) 3.80 (-0.00)
· X 0.376 (-0.002) 93.2 (+0.1) 5.49 (+1.69)
X · 0.238 (-0.000) 92.6 (+0.0) 3.55 (-0.00)
X X 0.197 (-0.041) 93.3 (+0.7) 0.68 (-2.86)

ResNet-18 &
CIFAR-10

· · 0.182 (-0.000) 95.2 (+0.0) 2.75 (-0.00)
· X 0.173 (-0.009) 95.4 (+0.2) 2.31 (-0.44)
X · 0.157 (-0.000) 95.2 (+0.0) 1.14 (-0.00)
X X 0.144 (-0.014) 95.5 (+0.2) 1.04 (-0.10)

VGG-16 &
CIFAR-100

· · 2.047 (-0.000) 71.6 (+0.0) 19.2 (-0.0)
· X 1.878 (-0.169) 72.2 (+0.6) 20.5 (+1.3)
X · 1.133 (-0.000) 68.8 (+0.0) 3.66 (-0.00)
X X 1.034 (-0.099) 71.4 (+2.6) 1.06 (-2.60)

VGG-19 &
CIFAR-100

· · 2.016 (-0.000) 67.6 (+0.0) 21.2 (-0.0)
· X 1.851 (-0.165) 71.7 (+4.0) 20.2 (-1.0)
X · 1.215 (-0.000) 67.3 (+0.0) 6.37 (-0.00)
X X 1.071 (-0.144) 70.4 (+3.0) 2.15 (-4.22)

ResNet-18 &
CIFAR-100

· · 0.886 (-0.000) 77.9 (+0.0) 4.97 (-0.00)
· X 0.863 (-0.023) 78.9 (+1.0) 4.40 (-0.57)
X · 0.848 (-0.000) 77.3 (+0.0) 3.01 (-0.00)
X X 0.801 (-0.047) 78.9 (+1.6) 2.56 (-0.45)

ResNet-50 &
CIFAR-100

· · 0.835 (-0.000) 79.9 (+0.0) 8.88 (-0.00)
· X 0.834 (-0.002) 80.7 (+0.8) 9.29 (+0.42)
X · 0.822 (-0.000) 79.1 (+0.0) 6.63 (-0.00)
X X 0.800 (-0.022) 80.1 (+1.0) 7.25 (+0.62)

ResNeXt-50 &
CIFAR-100

· · 0.804 (-0.000) 80.6 (+0.0) 8.23 (-0.00)
· X 0.825 (+0.022) 80.8 (+0.3) 9.41 (+1.18)
X · 0.762 (-0.000) 80.5 (+0.0) 5.67 (-0.00)
X X 0.759 (-0.002) 80.7 (+0.2) 6.62 (+0.94)

ResNet-18 &
ImageNet

· · 1.210 (-0.000) 70.3 (+0.0) 1.62 (-0.00)
· X 1.183 (-0.027) 70.6 (+0.3) 1.22 (-0.40)
X · 1.215 (-0.000) 70.0 (+0.0) 1.39 (-0.00)
X X 1.190 (-0.032) 70.6 (+0.6) 2.25 (+0.86)

ResNet-50 &
ImageNet

· · 0.949 (-0.000) 76.0 (+0.0) 2.97 (-0.00)
· X 0.916 (-0.033) 76.9 (+0.9) 3.46 (+0.49)
X · 0.945 (-0.000) 76.0 (+0.0) 1.89 (-0.00)
X X 0.905 (-0.040) 77.0 (+1.0) 2.49 (+0.60)

ResNeXt-50 &
ImageNet

· · 0.919 (-0.000) 77.7 (+0.0) 3.63 (-0.00)
· X 0.907 (-0.012) 78.0 (+0.3) 4.60 (+0.97)
X · 0.895 (-0.000) 77.7 (+0.0) 2.53 (-0.00)
X X 0.887 (-0.008) 78.1 (+0.4) 3.28 (+0.75)
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(a) VGG-19 on CIFAR-10
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(b) ResNet-18 on CIFAR-10
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(c) ResNet-18 on CIFAR-100
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(d) ResNet-50 on CIFAR-100
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(e) ResNet-50 on ImageNet

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Deep ensemble Deep ensemble + Smooth MC dropout MC dropout + Smooth

Figure E.1: Spatial smoothing improves both accuracy and uncertainty across a whole range of
ensemble sizes.
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Figure E.3: Spatial smoothing improves corruption robustness. We measure the predictive per-
formance of ResNet-18 on CIFAR-100-C. In the top row, we use an ensemble size of fifty for MC
dropout with and without spatial smoothing.

Computational performance. The throughput of MC dropout and “MC dropout + spatial smooth-713

ing” is 755 and 675 image/sec, respectively, in training phase on ImageNet. As mentioned in lines714

Section 3.1, NLL of “MC dropout + spatial smoothing” with ensemble size of 2 is comparable715

to or even better than that of MC dropout with ensemble size of 50. Therefore, “MC dropout +716

spatial smoothing” is 22× faster than MC dropout with similar predictive performance, in terms of717

throughput.718
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Figure E.2: Spatial smoothing cal-
ibrates predictions. We present re-
liability diagram of ResNet-18 on
CIFAR-100.

Predictive performance on test dataset. Fig. E.2 repre-719

sents the reliability diagram of ResNet-18 on CIFAR-100,720

which shows that spatial smoothing improves the uncertainty721

of both deterministic and Bayesian NNs. Numerical compar-722

isons are provided below.723

Table E.1 shows the predictive performance of various deter-724

ministic and Bayesian NNs with and without spatial smooth-725

ing on CIFAR-10, CIFAR-100, and ImageNet. This table726

suggests the following: First, spatial smoothing improves727

both accuracy and uncertainty in most cases. In particular, it728

improves the predictive performance of all models with MC729

dropouts. Second, spatial smoothing significantly improves730

the predictive performance of VGG compared with ResNet.731

VGG has a chaotic loss landscape, which results in poor pre-732

dictive performance (Li et al., 2018), and spatial smoothing733

smoothens its loss landscape effectively. Third, as the depth734

increases, the performance improvement decreases. Deeper735

NNs provide more overconfident results (Guo et al., 2017),736

but the number of spatial smoothing layers calibrating uncer-737

tainty is fixed. Last, the performance improvement of ResNeXt, which includes an ensemble in its738

internal structure, is relatively marginal.739

Fig. E.1 shows predictive performance of MC dropout and deep ensemble for ensemble size. A740

deep ensemble with an ensemble size of 1 is a deterministic NN. This figure shows that spatial741

smoothing improves efficiency of ensemble size and the predictive performance at ensemble size of742
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Table E.2: Spatial smoothing improves adversarial robustness. We measure the accuracy (ACC)
and the Attack Success Rate (ASR) of ResNet-50 against adversarial attacks on ImageNet.

ATTACK MC DROPOUT SMOOTH
ACC
(%)

ASR
(%)

FGSM

· · 28.3 (+0.0) 62.9 (-0.0)
· X 30.3 (+2.0) 60.5 (-2.4)
X · 30.3 (+0.0) 59.8 (-0.0)
X X 32.6 (+2.3) 57.4 (-2.4)

PGD

· · 7.5 (+0.0) 90.1 (-0.0)
· X 9.0 (+1.4) 88.2 (-1.9)
X · 12.2 (+0.0) 83.7 (-0.0)
X X 13.7 (+1.5) 82.1 (-1.6)

50. In addition, spatial smoothing stabilizes NN training. It reduces the variance of the performance,743

especially in VGG.744

A peculiarity of the results on ImageNet is that spatial smoothing degrades ECE of ResNet-50. It745

is because spatial smoothing significantly improves the accuracy in this case, and there tends to be746

a trade-off between accuracy and ECE, e.g. as shown in (Guo et al., 2017), Fig. A.1, and Fig. B.3.747

Instead, spatial smoothing shows the improvement in NLL, another uncertainty metric.748

Predictive performance on training datasets. Note that spatial smoothing helps NN learn strong749

representations. In other words, spatial smoothing does not regularize NNs. For example, NLL750

ResNet-18 with MC dropout on CIFAR-100 training dataset is 2.20× 10−2. The NLL of the ResNet751

with spatial smoothing is 1.94× 10−2. In conclusion, spatial smoothing reduces the training loss.752

Corruption robustness. We measure predictive performance on CIFAR-100-C (Hendrycks &753

Dietterich, 2019) in order to evaluate the robustness of the models against 5 intensities and 15 types754

of data corruption. The top row of Fig. E.3 shows the results as a box plot. The box plot shows the755

median, interquartile range (IQR), minimum, and maximum of predictive performance for types.756

They reveal that spatial smoothing improves predictive performance for corrupted data. In particular,757

spatial smoothing undoubtedly helps in predicting reliable uncertainty.758

To summarize the performance of corrupted data in a single value, Hendrycks & Dietterich (2019)
introduced a corruption error (CE) for quantitative comparison. CEfc , which is CE for corruption type
c and model f , is as follows:

CEfc =

(
5∑
i=1

Efi,c

)/(
5∑
i=1

EAlexNet
i,c

)
(31)

whereEfi,c is top-1 error of f for corruption type c and intensity i, andEAlexNet
i,c is the error of AlexNet.

Mean CE or mCE summarizes CEfc by averaging them over 15 corruption types such as Gaussian
noise, brightness, and show. Likewise, to evaluate robustness in terms of uncertainty, we introduce
corruption NLL (CNLL, ↓) and corruption ECE (CECE, ↓) as follows:

CNLLfc =

(
5∑
i=1

NLLfi,c

)/(
5∑
i=1

NLLAlexNet
i,c

)
(32)

and

CECEfc =

(
5∑
i=1

ECEfi,c

)/(
5∑
i=1

ECEAlexNet
i,c

)
(33)
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Table E.3: Spatial smoothing improves the consistency, robustness against shift-perturbation.
We measure the consistency of ResNet-18 on CIFAR-10-P. Deterministic NN with N = 5 means
deep ensemble.

MC DROPOUT SMOOTH N
CONS
(%)

CEC
(×10−2)

· · 1 97.9 (+0.0) 1.03 (-0.00)
· X 1 98.2 (+0.3) 1.16 (+0.13)
· · 5 98.7 (+0.0) 1.22 (-0.00)
· X 5 98.9 (+0.2) 1.33 (+0.11)
X · 50 98.2 (+0.0) 1.29 (-0.00)
X X 50 98.4 (+0.2) 1.34 (+0.05)

where NLLfi,c and ECEfi,c are NLL and ECE of f for c and i, respectively. mCNLL and mCECE759

are averages over corruption types. Experimental results show that spatial smoothing improves the760

robustness against data corruption. See Fig. E.3 for the results.761

The bottom row of Fig. E.3 shows mCNLL, mCE, and mCECE for ensemble size. They indicates that762

spatial smoothing improves not only the efficiency but corruption robustness across a whole range of763

ensemble size.764

Adversarial robustness. We show that spatial smoothing also improves adversarial robustness.765

First, we measure the robustness, in terms of accuracy and attack success rate (ASR), of ResNet-766

50 on ImageNet against popular adversarial attacks, namely FGSM (Goodfellow et al., 2015) and767

PGD (Madry et al., 2018). Table E.2 indicate that both MC dropout and spatial smoothing improve768

robustness against adversarial attacks.769

Next, we find out how spatial smoothing improves adversarial robustness. To this end, similar770

to Section 2.2, we measure the accuracy on the test datasets with frequency-based adversarial771

perturbations. In this experiment, we use FGSM attack. This experimental result shows that spatial772

smoothing is particularly robust against high frequency (≥ 0.3π) adversarial attacks. This is because773

spatial smoothing is a low-pass filter, as we mentioned in Section 2.2. Since the ResNet is vulnerable774
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Figure E.4: Spatial smoothing improves the
confidence when the predictions are incorrect.
We define relative confidence (See Eq. (36)),
and measure the metric of ResNet-18 on CIFAR-
10-P.

against high frequency adversarial attack, an ef-775

fective defense of spatial smoothing against high776

frequency attacks significantly improves the robust-777

ness.778

Consistency. To evaluate the translation invari-
ance of models, we use consistency (Hendrycks &
Dietterich, 2019; Zhang, 2019a), a metric represent-
ing translation consistency for shift-translated data
sequences S = {x1, · · · ,xM+1}, as follows:

Consistency =
1

M

M∑
i=1

1(g(xi) = g(xi+1))

(34)

where g(x) = arg max p(y|x,D). Table E.3 pro-779

vides consistency of ResNet-18 on CIFAR-10-P780

(Hendrycks & Dietterich, 2019). The results shows781

that MC dropout and deep ensemble improve con-782

sistency, and spatial smoothing improves consis-783

tency of both deterministic and Bayesian NNs.784

Prior works (Zhang, 2019a; Azulay & Weiss, 2019)
investigated the fluctuation of predictive confidence
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Table E.4: Spatial smoothing and temporal smoothing are complementary. We provide predictive
performance of MC dropout in semantic segmentation on CamVid for each method. SPAT and TEMP
each stand for spatial smoothing and temporal smoothing. CONS stands for consistency.

MC DROPOUT SPAT TEMP N NLL ACC
(%)

ECE
(%)

CONS
(%)

· · · 1 0.354 (+0.000) 92.3 (+0.0) 4.95 (+0.00) 95.1 (+0.0)
· X · 1 0.318 (+0.036) 92.4 (+0.1) 4.54 (+0.41) 95.5 (+0.4)
· · X 1 0.290 (+0.064) 92.5 (+0.2) 3.18 (+1.77) 96.3 (+1.2)
· X X 1 0.278 (+0.076) 92.5 (+0.2) 3.03 (+1.92) 96.6 (+1.5)
X · · 50 0.298 (+0.000) 92.5 (+0.0) 4.20 (+0.00) 95.4 (+0.0)
X X · 50 0.284 (+0.014) 92.6 (+0.1) 3.96 (+0.24) 95.6 (+0.2)
X · X 1 0.273 (+0.025) 92.6 (+0.1) 3.23 (+0.97) 96.4 (+1.0)
X X X 1 0.260 (+0.038) 92.6 (+0.1) 2.71 (+1.49) 96.5 (+1.1)

on shift-translated data sequence. However, surprisingly, we find that confidence fluctuation has
little to do with consistency. To demonstrate this claim, we introduce cross-entropy consistency
(CEC, ↓), a metric that represents the fluctuation of confidence on a shift-translated data sequence
S = {x1, · · · ,xM+1}, as follows:

CEC = − 1

M

M∑
i=1

f(xi) · log(f(xi+1)) (35)

where f(x) = p(y|x,D). In Table E.3, high consistency does not mean low CEC; conversely, high785

consistency tends to be high CEC. Canonical NNs predict overconfident probabilities, and their786

confidence sometimes changes drastically from near-zero to near-one. Correspondingly, it results in787

low consistency but low CEC. On the contrary, well-calibrated NNs such as MC dropout provide788

confidence that oscillates between zero and one, which results in high CEC.789

To represent the NN reliability properly, we propose relative confidence (↑) as follows:

Relative confidence = p(ytrue|x,D)
/

max p(y|x,D) (36)

where max p(y|x,D) is confidence of predictive result and p(ytrue|x,D) is probability of the result790

for true label. It is 1 when NN classifies the image correctly, and less than 1 when NN classifies it791

incorrectly. Therefore, relative confidence is a metric that indicates the overconfidence of a prediction792

when NN’s prediction is incorrect.793

Figure E.4 shows a qualitative example of consistency on CIFAR-10-P by using relative confidence.794

This figure suggests that spatial smoothing improves consistency of both deterministic and Bayesian795

NN.796

E.2 SEMANTIC SEGMENTATION797

Table E.4 shows the performance of U-Net on the CamVid dataset. This table indicates that spatial798

smoothing improves accuracy, uncertainty, and consistency of deterministic and Bayesian NNs.799

This is consistent with the results in image classification. In addition, temporal smoothing leads800

to significant improvement in efficiency of ensemble size, accuracy, uncertainty, and consistency801

by exploiting temporal information. Moreover, temporal smoothing requires only one ensemble to802

achieve high predictive performance, since it cooperates with the temporally previous predictions. We803

obtain the best predictive and computational performance by using both temporal smoothing and804

spatial smoothing.805
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F COMPARISON WITH ANTI-ALIASED CNN806

As we mentioned in Section 4, local means (Blur), also known as anti-aliased CNN (Zhang, 2019a),807

improve accuracy. Nevertheless, our work (Prob + Blur) has novelties in three respects: different808

motivation, improved uncertainty estimation, and analysis of how spatial smoothing works.809

Different motivation. The motivation of local means was to mitigate the aliasing effect of subsam-810

pling and to improve shift invariance. In contrast, our spatial smoothing is introduced to aggregate811

and ensemble nearby feature map points.812

Improved uncertainty estimation. We demonstrate that spatial smoothing improves not only813

accuracy, but also uncertainty estimation and robustness against natural corruptions and adversarial814

attacks all at the same time. Moreover, we show that spatial smoothing significantly enhances the815

performance of MC dropout. Since there typically tends to be a trade-off between accuracy and816

“uncertainty + robustness”—e.g. as shown in (Guo et al., 2017; Zhang et al., 2019; Geirhos et al.,817

2019; Zhang, 2019b), Fig. A.1, and Fig. B.3—in NN modeling, we believe our simple yet effective818

method makes major inroads into the uncertainty quantification and generalization.819

Analysis of how spatial smoothing improves performance. We find that the predictive perfor-820

mance improvement is not due to the anti-aliasing effect of local means.821

• Prob + Blur—our probabilistic spatial smoothing—improves the performance of pre-822

activation CNNs, but Blur alone—local mean or anti-aliased CNN—does not. In fact,823

contrary to (Zhang, 2019a), local mean degrades the predictive performance since it results824

in loss of information. It suggests that Prob plays an key role in prediction. For more details,825

see Appendix F.1.826

• Although the local filtering can result in loss of information, Zhang (2019a) experimentally827

observed an increase in both shift-invariance (as expected) and accuracy (which was be-828

yond expectation). However, “there exist a fundamental trade-off between ‘shift-invariance829

plus anti-aliasing’ and performance” (Zhang, 2019b). Moreover, it is difficult to relate830

anti-aliasing to improved uncertainty and robustness. Zhang (2019a) did not provide an831

explanation for these phenomena. As discussed in Appendix E.1, spatial smoothing helps832

NNs learn strong representations, not regularizes NNs.833

• Spatial smoothing is, surprisingly, robust against blur corruptions.834

We analyze how spatial smoothing improves predictive performance, by using loss landscape vi-835

sualization, Hessian eigenvalue spectra, and Fourier analysis. These analyzes draw the following836

conclusions:837

• Loss landscape visualization: Spatial smoothing stabilizes loss landscape fluc-838

tuations, caused by e.g. MC dropout. This results in stabilizing NN training839

and improving performance as well as generalization. See Figs. 8 and C.2.840

See also code/resources/losslandscapes/resnet_mcdo_18.gif and841

code/resources/losslandscapes/resnet_mcdo_smoothing_18.gif in the842

supplementary material.843

• Hessian eigenvalue spectra: Spatial smoothing suppresses outliers of Hessian eigenvalues,844

which disrupt NN training. See Figs. 7 and C.3.845

• Fourier analysis: Spatial smoothing effectively removes high frequency signals, including846

noise due to MC dropout. We also show that CNNs are vulnerable to high frequency noise847

and high frequency adversarial attacks. See Figs. 6 and D.2.848

We also provide theoretical analysis of how spatial smoothing works. We prove that dropout sharpens849

the loss landscape, and ensemble smoothens it. Since the spatial smoothing is a spatial ensemble, it850

significantly enhances the performance of MC dropout. See Appendix D.3 for more details. Further-851

more, we also show that training-phase ensemble significantly improves the predictive performance852

because it smoothens the loss landscape without loss of prediction diversity. Therefore, the spatial853

smoothing, which ensembles feature map points at training time, improves the performance effectively.854

See Appendix D.4.855
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F.1 Prob PLAYS AN IMPORTANT ROLE IN SPATIAL SMOOTHING856

As discussed in Section 2.1, we take the perspective that each point in feature map is a prediction for857

binary classification by deriving the Bernoulli distributions from the feature map by using Prob. It is858

in contrast to previous works known as sampling-free BNNs (Hernández-Lobato & Adams, 2015;859

Wang et al., 2016; Wu et al., 2019) attempting to approximate the distribution of feature map with860

one Gaussian distribution. We do not use any assumptions on the distribution of feature map, and861

exactly represent the Bernoulli distributions and their averages. However, sampling-free BNNs are862

error-prone because there is no guarantee that feature maps will follow a Gaussian distribution.863

This Prob plays an important role in spatial smoothing. CNNs such as VGG, ResNet, and ResNeXt
generally use post-activation arrangement. In other words, their stages end with BatchNorm and
ReLU. Therefore, spatial smoothing layers Smooth(z) = Blur ◦ Prob(z) in CNNs cooperates with
BatchNorm and ReLU as follows:

Prob(z) = ReLU ◦ tanhτ ◦ ReLU ◦ BatchNorm (z) (37)
= ReLU ◦ tanhτ ◦ BatchNorm (z) (38)

since ReLU and tanhτ are commutative, and ReLU ◦ ReLU is ReLU. This Prob is trainable and is a864

general form of Eq. (7). If we only use Blur as spatial smoothing, the activations BatchNorm–ReLU865

play the role of Prob.866
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Figure F.1: Blur alone harms the predic-
tive performance, although Prob + Blur im-
proves it. We provide NLL of pre-activation
VGG-16 on CIFAR-100.

In order to analyze the roles of Prob and Blur867

more precisely, we measure the predictive perfor-868

mance of the model that does not use the post-869

activation. Figure F.1 shows NLL of pre-activation870

VGG-16 on CIFAR-100. The result shows that871

Blur with Prob improves the performance, but872

Blur alone does not. In fact, contrary to (Zhang,873

2019a), blur degrades the predictive performance874

since it results in loss of information. We also875

measure the performance of VGG-19, ResNet-18,876

ResNet-50, and BlurPool (Zhang, 2019a) with pre-877

activation, and observe the same phenomenon. In878

addition, BatchNorm–ReLU in front of GAP signif-879

icantly improves the performance of pre-activation880

ResNet.881

As mentioned in Appendix C.2, pre-activation is882

a special case of spatial smoothing. Therefore, the883

performance improvement of pre-activation by spa-884

tial smoothing is marginal compared to that of post-885

activation.886
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