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ABSTRACT

In machine learning, quantization is widely used to simplify data representation
and facilitate algorithm deployment on hardware. Considering the fundamental
role of classification in machine learning, it is imperative to investigate the im-
pact of quantization on classification. Current research primarily revolves around
quantization errors, under the assumption that higher quantization errors generally
lead to lower classification performance. However, this assumption lacks a solid
theoretical foundation, and often contradicts empirical findings. For instance,
some extremely low bit-width quantization methods, such as {0, 1}-binary quanti-
zation and {0, £1}-ternary quantization, can achieve comparable or even superior
classification accuracy compared to the original non-quantized data, despite ex-
hibiting high quantization errors. To evaluate the classification performance more
accurately, we propose to directly investigate the feature discrimination of quan-
tized data, rather than analyze its quantization error. It is found that both binary
and ternary quantization methods can surprisingly improve, rather than degrade,
the feature discrimination of original data. This remarkable performance is vali-
dated through classification experiments on diverse data types, including images,
speech and text.

1 INTRODUCTION

Quantization has been widely applied in machine learning to simplify data storage and computation
complexities, while also catering to the requirements of algorithm deployment on digital hardware.
In general, this operation will lead to a decrease in classification accuracy (Baras & Deyl [1999;
Hoefler et al., 2021), due to reducing the precision of data or model parameters. To achieve a
balance between complexity and accuracy, it is crucial to delve into the impact of quantization
on classification. Currently, the impact is mainly evaluated through quantization errors, with the
assumption that larger quantization errors generally lead to decreased classification accuracy (Lin
et al., 2016a). However, this assumption lacks a solid theoretical basis (Lin et al., 2016a), as it
merely adopts the quantization principle from signal processing (Gray & Neuhoff] [1998)), which
primarily focuses on data reconstruction fidelity rather than classification accuracy. In practice, it
seems challenging to accurately assess the classification performance solely based on quantization
errors.

For instance, it has been observed that some extremely low bit-width quantization methods, such
as the {0, 1}-binary quantization and {0, +-1}-ternary quantization, which have been successively
applied large-scale retrieval (Charikar} 2002)) and deep network quantization (Qin et al., 2020} |Gho-
lami et al.l 2022), can achieve comparable or even superior classification performance than their
full-precision counterparts (Courbariaux et al} 2015 [Lin et al., 2016b; [Lu et al., 2023), despite
suffering from high quantization errors. Apparently, the remarkable classification improvement re-
sulting from quantization should not be attributed to the high quantization errors. This reveals the
inadequacy of quantization errors in assessing the actual classification performance. Due to the ab-
sence of a theoretical explanation, the classification improvement induced by quantization has often
been regarded as incidental and received little attention. Instead of quantization errors, in the paper
we demonstrate that this intriguing phenomenon can be reasonably explained by feature discrimi-
nation. Following the Fisher’s linear discriminant analysis (Fisher, |1936), we here refer to feature
discrimination as the ratio between inter-class and intra-class scatters, and evaluate the classification



Under review as a conference paper at ICLR 2025

performance based on the rule that the higher the feature discrimination, the easier the classification.
To the best of our knowledge, this is the first study that exploits feature discrimination to analyze the
impact of quantization on classification, although it is more direct and reasonable than quantization
errors in evaluating classification performance. The scarcity of relevant research can be attributed to
the nonlinearity of the quantization operation, which substantially increases the analytical complex-
ity of feature discrimination functions.

In the paper, it is demonstrated that the impact of the threshold-based binary and ternary quanti-
zation on feature discrimination can be analyzed, when the data are appropriately modeled using
a Gaussian mixture model, with each Gaussian element representing one class of data. The Gaus-
sian mixture model is chosen here based on two considerations. Firstly, the model has been well-
established for approximating the distributions of real-world data (Torralba & Olival 2003; Weiss &
Freeman| 2007)) and their feature transformations (Wainwright & Simoncelli, |{1999; [Lam & Good-
man, 2000). Secondly, the closure property of Gaussian distributions under linear operations can
simplify the analysis of the feature discrimination function. By analyzing the discrimination across
varying quantization thresholds, it is found that there exist certain quantization thresholds that can
improve the discrimination of original data, thereby yielding improved classification performance.
This finding is extensively validated through classification experiments both on synthetic and real
data.

The related works are discussed as follows. As mentioned earlier, our work should be the first to
take advantage of feature discrimination to investigate the impact of quantization on classification.
In the filed of signal processing, there have been a few works proposed to reduce the negative impact
of quantization on signal detection or classification (Poor & Thomas| [1977; Oehler & Gray,|1995)).
However, these studies did not employ feature discrimination analysis, distinguishing them from
our research in both methodology and outcomes. Specifically, in these studies the model design
accounts for both reconstruction loss and classification loss. The classification loss is primarily
modeled in several ways, such as directly minimizing the classification error on quantized data
(Srinivasamurthy & Ortegal, [2002), enlarging the inter-class distance between quantized data (Jana
& Moulin, 2000; 2003)), reducing the difference between the distributions of quantized data and
original data (Baras & Dey, [1999)), as well as minimizing the discrepancy in classification before
and after quantization (Dogahe & Murthi,[2011). Through analyses of these losses, the classification
performance of quantized data can only approach, rather than surpass, the performance of original
data (Baras & Dey, |{1999).

2 PROBLEM FORMULATION
In this section, we specify the feature discrimination functions for the original (non-quantized) and

quantized data. Prior to this, we introduce the binary and ternary quantization functions, as well as
the data modeling.

2.1 QUANTIZATION FUNCTIONS

The binary and ternary quantization functions are formulated as

1, ifz>r7
) — ) 1
fol@;m) {0, otherwise M
and
1, ife >r1
fi(z;7) =40, if —7<z<r7 ()
-1, fe<—71
where the threshold parameter 7 € (—o0, +00) for fy(z;7), and 7 € [0,400) for fi(x; 7). The
two functions operate element-wise on a vector X = [x1,Za, -+ , o] € R™, namely fy(x;7) =
(fo(x137), folwa;7), -+, fo(wa; 7)) " and the same applies to f;(x; 7).

2.2 DATA DISTRIBUTIONS

Throughout the work, we denote each data sample using a vector. For the sake of generality, as
discussed before, we assume that the data vector randomly drawn from a class is a random vector
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X = {Xy, Xo,-+, X, } T, with its each element X; following a Gaussian distribution Ny ;, 0%);
and similarly, for the random vector Y = {Y7,Ys, -, Yn}T drawn from another class, we suppose
its each element Y; ~ N (p2,, 02), where p9 ; # 11,;. Considering that the discrimination between
the two random vectors X and Y positively correlates with the discrimination between their each
pair of corresponding elements X; and Y;, we propose to analyze the discrimination at the element
level, specifically between X; and Y;, rather than between the entire vectors, X and Y. For nota-
tional convenience, without causing confusion, in the sequel we will omit the subscript "i" of X;
and Y;, and write their distributions as X ~ N(uy,0%) and Y ~ N(ua,0?), where 1y # 2. Note
that we assume here that the two variables X and Y share the same variance o2. This assumption is
common in statistical research, as the data we intend to investigate are often drawn from the same
or similar scenarios and thus exhibit similar noise levels.

When standardization, a common practice in machine learning, is applied to the two variables, X
and Y, their distributions will exhibit specific relationships. More precisely, in a binary classification
problem, the dataset we handle is a mixture, denoted as Z, comprising two classes of samples
drawn respectively from X and Y. Usually, the mixture Z is assumed to possess a balanced class
distribution, meaning that samples are drawn from X and Y with equal probabilities. Under this
assumption, when we perform standardization by subtracting the mean and dividing by the standard
deviation for each sample in Z, the distributions of X and Y (in Z) will become

- X -E[Z] (11— p2)/2 o?
x=2""“ N , 3)
DI\ Jor K — e 7 Rl ) (
and
- Y - FE[Z] —(p1 — p2) /2 o
Y=——7"7r~ ~N ; “4)
o\ s e 7 R

where E[Z] and D[Z] denote the expectation and variance of Z, which have expressions E[Z] =
3 (11 + p2) and D[Z] = 0 + 3 (1 — p2)?.

From Equations (B) and (d), it can be seen that after standardization, the two classes of variables X
and Y still exhibit Gaussian distributions, but showcase two interesting properties: 1) their means
are symmetric about zero; and 2) they have the sum of the square of the mean and the variance equal
to one. By the two properties, the distributions of two classes of standardized data are characterized
in Property [I] In the paper, we will typically focus our study on the standardized data.

Property 1 (The distributions of two classes of standardized data). The two classes of standardized
data we aim to study have their samples i.i.d drawn from X ~ N(u,0?) and Y ~ N(—p,0?),
where ;12 + 02 =1, 1 € (0,1).

2.3 FEATURE DISCRIMINATION

Following the Fisher’s linear discriminant rule, we define the discrimination between two classes of
data as the ratio of the expected inter-class distance to the expected intra-class distance, as specified
below.

Definition 1 (Discrimination between two classes of data). For two classes of data with samples
respectively drawn from the variables X and Y, the discrimination between them is defined as
E[(X; - Y1)?]

D= B x)0+ Blh - %)

&)
where X; and X5 are i.i.d. samples of X, and Y7 and Y5 are i.i.d samples of Y.

In the sequel, we will utilize the above definition D to denote the discrimination between original
(non-quantized) data; and for the binary and ternary quantized data, as detailed below, we adopt D,
and D, to represent their discrimination.

Definition 2 (Discrimination between two classes of quantized data). Following the discrimination
specified in Definition |1} the discrimination between two binary quantized data X, = f,(X; 7) and
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Y, = fp(Y;7), is formulated as

El(X1p —Y1p)%
D, = b~ L, 6
"= B(Xrp = Xo0)2] + B[(Yig — Yau)7] ©

where X , and X 3 arei.i.d. samples of X;, and Y7 , and Y5 5, are i.i.d. samples of V3. Similarly, the
discrimination between two ternary quantized data X; = f;(X;7) and Y; = f;(Y;7) is expressed

as
E[( X1, —Y14)?]
D, = L L 7
"7 B[(X1 — X2)?] + B[(Y1, — Yau)?] @

where X ; and X5 ; are i.i.d. samples of X;, and Y7 ; and Y5 ,; are i.i.d. samples of Y;.

2.4 GOAL

The major goal of the paper is to investigate whether there exist threshold values 7 in the binary
quantization f,(x;7) and the ternary quantization f;(x; 7), such that the quantization can improve
the feature discrimination of original data, namely having Dy, > D and D; > D.

3 DISCRIMINATION ANALYSIS

3.1 THEORETICAL RESULTS

Theorem 1 (Binary Quantization). Consider the discrimination D between two classes of data X ~
N(p,0%) and Y ~ N(—pu,0?) as specified in Property 1] as well as the discrimination Dj, between
their binary quantization X, = f,(X;7) and Y, = f,(Y;7). We have D, > D, if there exists a
quantization threshold 7 € (—o0, +-00) such that

2(1 — _ 244 —
B_a+ﬂ(1 28) 1M+52+ A1 5)>07 (8)

where v = ® (=) and 8 = ® (ZX£), with () denoting the cumulative distribution function of
the standard normal distribution.

Theorem 2 (Ternary Quantization). Consider the discrimination D between two classes of data
X ~ N(p,0?)and Y ~ N(—pu,0?) as specified in Property [1} as well as the discrimination D,
between their ternary quantization X; = f;(X;7) and Y; = f(Y;7). We have D, > D, if there
exists a quantization threshold 7 € [0, 4-00) such that

2 _ 4 2
Boath Vit +8u*p

2

>0, (€))

where ¢ = ® (==£) and 8 = & (= U—HL), with ®(+) denoting the cumulative distribution function
of the standard normal distribution.

Remarks: Regarding the two theorems, there are three issues worth discussing. 1) The two theo-
rems suggest that both binary and ternary quantization methods can indeed improve the classification
performance of original data, if there exist quantization thresholds 7 that can satisfy the constraints
shown in Equations (8) and (©). The following numerical analysis demonstrates that the desired
threshold 7 does exist, when the two classes of data X ~ N(u,0?) and Y ~ N(—pu,0?) are as-
signed appropriate values for ;¢ and o. This threshold 7 can be approximately estimated using the
bisection method. 2) Our theoretical analysis is based on the premise that the data vectors belonging
to the same class have Gaussian distributions at the vectors’ each coordinate. This condition should
hold true when two classes of data are readily separable, as in this case the data points within each
class should cluster tightly, allowing for Gaussian approximation. This explains the recent research
findings, that the binary or ternary quantization tends to achieve comparable or superior classifi-
cation performance, when handling relatively simple datasets (Courbariaux et al., | 2015; [Lin et al.,
2016b), or distinguishable features (Lu et all [2023)). 3) The conclusion we derive in Theorem 1| for
{0, 1}-binary quantization also applies to another popular {—1, 1}-binary quantization (Qin et al.,
2020), since the Euclidean distance of the former is equivalent to the cosine distance of the latter.
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Figure 1: Consider two classes of data X ~ N(u,02?) and Y ~ N(—p,0?), with y = 0.8 and
o2 = 0.36, as specified in Property The values for the left and right sides of Equations (8) and (9)
are provided in (a) and (c) for binary and ternary quantization, respectively; and the discrimination
D, Dy, and D statistically estimated with Equations (3], (€) and (7) are illustrated in (b) and (d) for
binary and ternary quantization, respectively.

3.2 NUMERICAL ANALYSIS

In this part, we conduct numerical analyses for two primary objectives. Firstly, we aim to prove the
existence of the desired quantization threshold 7 that holds Equations (§) and (9), namely making
the left sides of the two inequalities larger than their right sides (with values equal to zero). For this
purpose, we compute the values of the left sides of Equations (8) and (9), through assigning specific
values to 7, as well as to the two variables X and Y’s distribution parameters y and 0. Note that we
here set 02 = 1 — p?, pu € (0, 1), in accordance with Property In Figure 1| we examine the case
that fixes 1 = 0.8 and 0 = (.36, while varying the value of 7 with a step width 0.01. The results
for binary quantization and ternary quantization are provided in Figures[T] (a) and (c), respectively.
It can be seen that for the two quantization methods, their conditions shown in Equations (8) and
(@) will hold when respectively having 7 € [—0.2,0.2] and 7 € [0, 0.5]. This proves the existence
of the desired quantization threshold 7 that can improve feature discrimination. For limited space,
we here only discuss the case of ;1 = 0.8 (and 0? = 1 — ?) in Figure[ll By examining different
w € (0,1) in the same way, we can find that the quantization threshold 7 that holds Equations
(8) and (@), is present when p € (0.76,1) and o € (0.66, 1), respectively; see Figures [7] and
for more evidences. This result implies two consequences. On one hand, ternary quantization has
more chances to improve feature discrimination compared to binary quantization, as the former has
a broader range of y. On the other hand, the improved discrimination tends to be achieved when i is
sufficiently large, coupled with a correspondingly small o, or when the discrimination between two
classes of data is sufficiently high. Empirically, as depicted in Figure[T7] the two specific ranges of
1 values are attainable for the commonly-used features of real data.

The second goal is to verify that the quantization thresholds 7 we estimate with Equations (8) and
@) in Theorems[T]and 2] can indeed improve feature discrimination. To this end, it needs to prove
that the ranges of 7 derived by Equations (8) and (9), such as the ones depicted in Figures [I] (a) and
(c), are consistent with the ranges we can statistically estimate by the discrimination definitions D,
Dy and Dy, as specified in Definitions |I| and@ To estimate the discrimination D, D, and D;, we
randomly generate 10,000 samples from X ~ N(0.8,0.36) and Y ~ N(—0.8,0.36), respectively,
and then statistically estimate them with Equations (3), (6) and (7)), across varying 7 (with a step
width 0.01). The results are provided in Figures[T] (b) and (d), respectively for binary quantization
and ternary quantization. It can be seen that we have 7 € [—0.2,0.2] for D, > D, and have
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7 € [0,0.5] for Dy > D. The results coincide with the theoretical results shown in Figures|l|(a) and
(c), validating the correctness of Theorems [I]and 2}

4 EXPERIMENTS

Through previous theoretical and numerical analyses, we have demonstrated that binary and ternary
quantization can improve feature discrimination between two classes of data, when the data vectors
within each class exhibit Gaussian distributions across each coordinate point of their feature vec-
tors. Given that improved feature discrimination should yield better classification performance, this
section aims to validate this improvement by assessing classification results.

Our experiments will mainly investigate binary classification using two fundamental linear classi-
fiers: the k-nearest neighbors (KNN) algorithm (with £ = 5) (Petersonl 2009), employing both
Euclidean and cosine distances as similarity metrics, and the support vector machine (SVM) (Cortes
& Vapnikl [19935)), equipped with a linear kernel. We choose linear classifiers for binary classifica-
tion based on two considerations. Firstly, linear binary classification can directly reflect the feature
discrimination between two classes, unlike more complex nonlinear classifiers that often involve
feature selection operations. Secondly, linear binary classification is a foundational concept in ma-
chine learning. The insights gained from this analysis can be extended to multiclass and nonlinear
classifier-based classifications, as evidenced in the subsequent experiments.

To assess the robustness and generalizability of our theoretical findings, we will conduct classi-
fication evaluations on both synthetic and real data. Synthetic data can conform perfectly to the
distribution conditions outlined in our theoretical analysis, whereas real data usually cannot.

4.1 SYNTHETIC DATA
4.1.1 SETTING

In the simulation, we suppose that two classes of data have their samples i.i.d. drawn from two
different random vectors X = {X1, X, -+, X,}" and Y = {V},Ys,---,Y,}T, for which we
set X; ~ N(pi,02)and Y; ~ N(—p;,02), with u; € (=1,0) U (0,1) and 62 = 1 — 2, in
accordance with the data distributions specified in Property[I] Considering the fact that the features
of real-world data usually exhibit sparse structures (Weiss & Freeman)| [2007; Kotz et al., |2012),
we further suppose that the means u; decay exponentially in magnitude, i.e. |u;y1|/|pui] = €77,
A > 0, and set 3 = 0.8 in the following simulation. It can be seen that with the increasing of
A, the mean’s magnitude |p;| (with ¢ > 1) will become smaller, indicating a smaller data element
X, (in magnitude) and a sparser data structure. However, the data element X; with smaller p;, is
not favorable for quantization to improve feature discrimination, as indicated by previous numerical
analyses. The impact of data sparsity on quantization can be investigated by increasing the value of
the parameter \.

With the data model described above, we randomly generate two classes of data, each class contain-
ing 1000 samples. The dataset is split into two parts for training and testing, in a ratio of 4:1. Then
we evaluate the KNN and SVM classification on them. The classification accuracy is determined by
averaging the accuracy results obtained from repeating the data generation and classification process
100 times. The results for KNN with Euclidean distance are provided in Figures [2] and 3] and the
results for KNN with cosine distance and SVM are given in the appendix, Figures 9HI2} It can be
seen that the three classifiers exhibit similar performance trends. For conciseness, we will focus
more on the results of KNN with Euclidean distance in the following discussion.

4.1.2 RESULTS

Comparison between the data with different sparsity. In Figure[2] we investigate the classifi-
cation performance for the data generated with different parameters A € {0,0.01,0.1, 1}, namely
with different sparsity levels. Recall that the larger the A, the smaller the |y;|, or say the smaller the
data element X; (in magnitude). By previous analyses, the data element X; with smaller |;| is not
conducive to enhancing feature discrimination through quantization. Nevertheless, empirically, the
negative effect does not appear to be significant. From Figure |2} it can be seen that when increasing
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Figure 2: KNN (Euclidean distance) classification accuracy for the 10,000-dimensional binary,
ternary, and original data that are generated with the varying parameter A € {0,0.01, 0.1, 1}, which
controls the data sparsity.
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Figure 3: KNN (Euclidean distance) classification accuracy for the binary, ternary, and original data
generated with the parameter A = 1, and with varying dimensions n € {1, 100, 10000}.

A from 0.1 to 1, there have been quantization thresholds 7 that can yield better classification per-
formance than original data. In addition, it noteworthy that as A increases, the overall classification
accuracy of original data will decrease. This decreasing trend also impacts the absolute performance
of the quantized data, even though it may outperform original data.

Comparison between the data with different dimensions. The impact of data dimensions
n € {1,100,10000} on classification is investigated in Figure [3| where the data are generated
with the exponentially decaying parameter A = 1. It can be seen that with the increasing of data
dimension, the range of the quantization thresholds 7 that outperform original data tends to expand,
but the performance advantage declines. As previously discussed, the decline should be attributed
to the data element X; with small means |u;|, whose quantity will rise with the data dimension n,
particularly when the decay parameter A of |u;| is large. To alleviate this adverse effect, it is rec-
ommended to choose a relatively smaller A for high-dimensional data, indicating a structure that is
not overly sparse. Conversely, when the high-dimensional data is highly sparse, we should reduce
its dimension to improve the classification performance under quantization.

Comparison between binary quantization and ternary quantization. From Figures [2] and [3]
it can be seen that ternary quantization surpasses binary quantization by offering broader ranges
of quantization thresholds 7 that can yield higher classification accuracy than original data. This
observation is consistent with our previous theoretical and numerical analyses.
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Comparison between KNN and SVM. Combining the results in Figures and [9HI2] we can
say that both KNN and SVM enable quantization to improve the classification accuracy of original
data, within specific ranges of quantization thresholds 7. If closely examining these ranges, it can be
observed that KNN often performs better when using Euclidean distance than using cosine distance.
This can be attributed to the advantage of Euclidean distance over cosine distance in measuring the
distance between 0 and 1. Also, KNN often outperforms SVM, such as the case of A = 0.1 shown
in Figures [2]and [I0] This is because the support vector of SVM relies on a few data points located
on the boundary between two classes, which may deteriorate during quantization. In contrast, KNN
depends on the high-quality data points within each class, making it resilient to quantization noise.

Comparison between classification accuracy, feature discrimination and quantization error.
Figure [16] illustrates that the classification accuracy of quantized data across varying quantization
threshold 7 can be reasonably reflected by feature discrimination, rather than quantization errors.

4.2 REAL DATA

4.2.1 SETTING

The classification is conducted on three different types of datasets, including the image datasets
YaleB (Lee et al.l [2005), CIFAR10 (Krizhevsky & Hinton, 2009) and ImageNet1000 (Deng et al.,
2009)), the speech dataset TIMIT (Fisher et al.,[1986), and the text dataset Newsgroup (Lang} |{1995)).
The datasets are briefly introduced as follows. YaleB contains face images of 38 persons, with about
64 faces per person. CIFAR10 consists of 60,000 color images from 10 different classes, with each
class having 6,000 images. ImageNet1000 consists of 1000 object classes, with 1,281,167 training
images, 50,000 validation images, and 100,000 test images. For the above three image datasets,
we separately extract their features using Discrete Wavelet Transform (DWT), ResNet18 (He et al.|
2016) and VGG16 (Simonyan & Zisserman, 2014). For ease of simulation, the resulting feature
vectors are dimensionally reduced by integer multiples, leading to the sizes of 1200, 5018, and
5018 respectively. From TIMIT, as in (Mohamed et al., 201 1} |Hutchinson et al.} [2012), we extract
39 classes of 429-dimensional phoneme features for classification, totally with 1,134,138 training
samples and 58,399 test samples. Newsgroup comprises 20 categories of texts, with 11,269 samples
for training, and 7,505 samples for testing. The feature dimension is reduced to 5000 by selecting
the top 5000 most frequent words in the bag of words, as done in (Larochelle et al.| [2012).

For each dataset, we iterate through all possible class pairs to perform binary classification. The
samples for training and testing are selected according to the default settings of the datasets. For
YaleB without prior settings, we randomly assign half of the samples for training and the remaining
half for testing. In the simulation, we need to test the classification performance of quantized data
across varying quantization threshold 7. The value of 7 should correlate with the element scale of
the feature vectors, in the pursuit of improving classification over orginal data. To address the scale
varying of 7 across different data, we here suppose that 7 = ~ - 1, where 1 denotes the average
magnitude of the feature elements (coordinates) in all the feature vectors used for classification, and
~ is a scaling parameter. By adjusting  within a narrow range, as illustrated later, we can derive the
desired 7 for various types of data.

To verify the generalizability of our feature discrimination analysis between two classes, we not
only evaluate binary classification using KNN and SVM, but also conduct multiclass classification,
as well as nonlinear classification using multilayer perceptron (MLP) (Rumelhart et al., [1986) and
decision trees (Quinlan, [1986). Due to space limitations, in the main body, we present the classifi-
cation results of YaleB, Newsgroup, and TIMIT using KNN with Euclidean distance and SVM, as
illustrated in Figures E] to @ The results for other datasets, such as CIFAR10 and ImageNet1000,
and other classifiers, including KNN with cosine distance, MLP and decision trees, are provided in
the appendix, but briefly discussed within the main text.

4.2.2 RESULTS

Binary classification using KNN and SVM. From Figures [A{6]13] [14] and it can be seen
that that within specific ranges of quantization thresholds 7, both binary and ternary quantization
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Figure 4: Classification accuracy for the binary, ternary, and original data by KNN (Euclidean dis-
tance) and SVM on YaleB. The parameter y corresponds to a threshold 7 = ~y - n, where 7 denotes
the average magnitude of the feature elements in all feature vectors.
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Figure 5: Classification accuracy for the binary, ternary, and original data by KNN (Euclidean dis-
tance) and SVM on TIMIT. The parameter -y corresponds to a threshold 7 = v - ), where 7 denotes
the average magnitude of the feature elements in all feature vectors.

can achieve superior or at least equivalent classification performance compared to the original data
across five different datasets, although as shown in Figure each data class does not adequately
conform to the Gaussian distribution assumption underlying our theoretical analysis. Similarly as in
the classification of synthetic data, we observe the following results. Firstly, when using Euclidean
distance, KNN consistently identifies quantization thresholds 7 that improve the classification of
original data across all datasets. Secondly, compared to cosine distance, Euclidean distance tends
to allow KNN to encompass a wider range of 7 values that are beneficial for improving classi-
fication. Thirdly, with SVM, quantization occasionally achieves comparable performance to the
original data, rather than surpassing it, as exemplified in Figure [I3] Fourthly, ternary quantization
often outperforms binary quantization by providing a broader range of threshold 7 values that fa-
cilitate classification improvement. The rationale behind these results has been elaborated in our
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Figure 6: Classification accuracy for the binary, ternary, and original data by KNN (Euclidean dis-
tance) and SVM on Newsgroup. The parameter + corresponds to a threshold 7 = ~ - n, where n
denotes the average magnitude of the feature elements in all feature vectors.

previous classification analysis of synthetic data. The consistent performance observed in both real
and synthetic data underscores the broad applicability of our theoretical findings.

Multiclass and nonlinear classification. While our feature discrimination analysis is focused on
linear, binary classification, experiments demonstrate that our results can also be extended to mul-
ticlass and nonlinear classifications. For example, in multiclass classification on ImageNet1000,
quantization thresholds 7 that improve the classification of original data have been identified, as
shown in Figure 22] The extension from binary to multiclass classification may be explained by
the fact that feature elements sharing a common coordinate (or feature attribute) across different
classes tend to exhibit a binary state: strong or weak, as illustrated in Figure [I8] which indicates
the intensity of the feature attribute within a feature vector. This suggests that multiclass classifi-
cation at each feature coordinate can be viewed as a binary classification problem. Figures[I9]and
[20] demonstrate that the desired thresholds 7 can also be obtained in nonlinear classifications using
MLP and decision trees. The extension from linear to nonlinear classification may be attributed
to the fundamental linear operations often involved in nonlinear classifiers, which assess the linear
discrimination between features or model parameters.

5 CONCLUSION

In the paper, we have proposed utilizing feature discrimination to analyze the impact of quantiza-
tion on classification. Unlike traditional analyses, which are primarily based on quantization errors,
our feature discrimination-based approach offers a more direct and reasoned assessment of clas-
sification performance. Through our analysis, we demonstrate that common binary and ternary
quantization methods can improve the feature discrimination of original data, particularly when data
vectors within the same class follow Gaussian distributions at each coordinate. This improved dis-
crimination is validated through binary classification experiments on both synthetic and real data.
While our feature discrimination analysis primarily focuses on linear, binary classification issues,
our experiments indicate that the findings can be extended to multiclass and nonlinear classification
scenarios. This underscores the broad applicability of our theoretical results. Importantly, our study
challenges the traditional belief that larger quantization errors generally lead to lower classification
performance, laying a theoretical foundation for developing better quantization methods.

10
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A DETAILED PROOF

A.1 PROOF OF THEOREM 1

Let X, and X5 bei.i.d. samples of X, and Y; and Y5 be i.i.d. samples of Y. Denote X ; and Y; ; as
the binary quantization of X; and Y;, i.e. X; 5 = fo(X;;7) and Y; , = f,(Y;; 7), where ¢ = 1,2. By
the distributions of X and Y specified in Property || and the binary quantization function f,(x;7)
defined in Equation(T)), the probability mass functions of X p and Y; 3, can be derived as

P(X;y = k) = {1_a’ i (10)
a, k=0
and
P(n,b—k)—{l/;ﬁ’ ’,:é (a
where v = ® (T=£) and 8 = ® (X£). By the probability functions, it is easy to deduce that
E (X1 — X2)?] =207, E[(X1p— Xa2p)?] = 2a — 202,
E[(Y1 —Ys)?] =207, E (Y1, —Yay)?] =28 — 28,

E[(X1-Y2)?] =20" +4p%, E[(X1p—Yip)?] =a+ B —2a8.

With these equations, the discrimination D of original data, as specified in Definition [T} can be
further expressed as
E[(X, —11)?] o +2p°

D = E[(Xl _ X2)2] T E[(Yl — }/2)2] = 202’ (12)

and similarly, the discrimination Dy, of binary quantized data, as specified in Definition [2} can be
written as

D — E[(X15— Y1)?] _ a—2ap+p (13)
P E[(X1p— Xop)? + E[(Yip — Y20)2] (20— 202) + (26 — 232)

Next, we are ready to prove that D, > D under the condition (§). By Equations (I2)) and (I3), it is
easy to see that Dy > D is equivalent to

(0% +2u2)a? — 2(0%B + p?)a + (0% + 2u%) 5% — 21%8 > 0. (14)
This inequality can be viewed as a quadratic inequality in «, which has the discriminant:
A = 4p* +16(1 — B)p*B > 0.

By the above inequality, the inequality (T4) holds when o € (—00, ) U (g, +00), where

P2 (1 —28) — pr/p? 4+ 45(1 - B)

o] = B+ 1 +M2 )
and
2 (1=28) + py/p* +4B(1 - B)
ap =B+ e . (15)

Given (T3)), we can further derive az > 3, since p?(1 — 283) + p/p2 + 43(1 — 3) > 0. However,

this result contradicts the conclusion that v < /3 we can derive with the probability mass functions
shown in (T0) and (TT)), mainly by the increasing property of ®(-). So the solution to the inequality

2(1-2B8)—pr/ 1t —
(T4) should be a € (—o0, ay), implying 8 — a + “ (1-25) /1+u/22+4ﬁ(1 A~ o.

A.2 PROOF OF THEOREM 2

Let X; and X bei.i.d. samples of X, and Y7 and Y3 bei.i.d. samples of Y. Denote X; ; = f(X;; 7)
and Y;, = f,(Y;;7), where ¢ = 1,2. By the distributions of X and Y specified in Property [I| and

13
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the ternary quantization f;(x; 7) defined in Equation (2), the probability mass functions of X; ; and
Y; + can be derived as

B, k=1
P(X;;=k)={1-a—-8, k=0 (16)
«, k=-1
a, k=1
PYi,=k)={1l-a—8, k=0 (17)
8, E=-1

where v = ®(="=£) and 8 = ®(=ZH).
Then, by Definition[2] the discrimination D of ternary quantization can be derived as

D — E[(X14 = Y1.0)’] _ (a+a®—2ap+ 5+ 5% (18)
CB[(Xi - X0+ BV~ Y202 2(a -2+ 208+5 - 52
By Equations (I2) and (I8)), it can be seen that D; > D is equivalent to
(a+B) +(@=p)?* _ o*+2
2(a+8) —2(a—p)? 202

bl

which can simplify to
o® — (28 + pPa+ % — p2B > 0. (19)
Clearly, (T9) can be regarded as a quadratic inequality in «, with its discriminant:
A = p* + 8426 > 0.
This inequality implies that the inequality (I9) holds when o € (—00, 1) U (a2, +00), where

@ =/t 4 8u*s

2
p?+ /it + 8u”B 20)
5 :

In (20), the term p? + \/pu* + 823 > 0, implying a > 3. In contrast, we will derive o < /3 by
the probability functions shown in Equations (I6) and (I7), particularly by the increasing property
of ®(-). By this contradiction, we can say that D; > D holds only under the case of & € (—o0, 1),

namely
1 =/t +8u2B

2

o =5+

and

az =0+

B8 —a+ > 0.
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B OTHER RESULTS

B.1 NUMERICAL ANALYSIS
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Figure 7: Consider the binary quantization on two classes of data X ~ N(u,0?) and Y ~
N(—pu,0?) as specified in Property For two kinds of data with distribution parameters (¢ = 0.99,
0? = 0.02) and (1 = 0.76, 02 = 0.42), the values for the left and right side of Equations (8] are
provided in (a) and (c) respectively; and their discrimination D and D, statistically estimated with

Equations (3)) and (6) are illustrated in (b) and (d), respectively.
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Figure 8: Consider the ternary quantization on two classes of data X ~ N(u,0%) and Y ~
N(—p,0?) as specified in Property For two kinds of data with distribution parameters (¢ = 0.99,
0? = 0.02) and (1 = 0.66, o> = 0.56), the values for the left and right side of Equations (9) are
provided in (a) and (c) respectively; and their discrimination D and D statistically estimated with

Equations @) and (]ﬂ) are illustrated in (b) and (d), respectively.
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B.2 SYNTHETIC DATA
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Figure 9: KNN (Cosine) classification accuracy for the 10,000-dimensional binary, ternary, and
original data that are generated with the varying parameter A € {0,0.01,0.1, 1}, which controls the
data sparsity.
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Figure 10: SVM classification accuracy for the 10,000-dimensional binary, ternary, and original data
that are generated with the varying parameter A € {0,0.01, 0.1, 1}, which controls the data sparsity.
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Figure 11: KNN (Cosine) classification accuracy for the binary, ternary, and original data generated
with the sparsity parameter A = 1, and with varying dimensions n € {100, 10000}.
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Figure 12: SVM classification accuracy for the binary, ternary, and original data generated with the
sparsity parameter A = 1, and with varying dimensions n € {1, 100, 10000}.

18



Under review as a conference paper at ICLR 2025

B.3 REAL DATA
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Figure 13: Classification accuracy for the binary, ternary, and original data by KNN (Euclidean
distance) and SVM on CIFARI10. The parameter vy corresponds to a threshold 7 = v - 1, where n
denotes the average magnitude of the feature elements in all feature vectors.
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Figure 14: Classification accuracy for the binary, ternary, and original data by KNN (Cosine dis-
tance) on four different datasets. The parameter ~y corresponds to a quantization threshold 7 = v -1,
where 7 denotes the average magnitude of the feature elements in all feature vectors.
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Figure 15: The histogram (blue bar) of the element values on one coordinate of the feature vectors
1100 within a single class of samples selected from four different datasets, accompanied with a Gaussian
1101 fitting curve (red line).
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C RESPONSE TO REVIEWS

C.1 CLASSIFICATION ACCURACY VS. FEATURE DISCRIMINATION VS. QUANTIZATION ERROR

B B

g 091} g

—~ 3 —~

2L 2o

(%} (%}

i 088 i 0.85

5] 5]

‘E 085¢ =]

5] < o8

o = =QOriginal Data = = =Original Data

% 082 _g-Binary Data % 075 |=©~=Ternary Data

O a4 02 0 02 04O 0 02 04 06 08

(] T Q

% 26 % 3

S 24 >

.5 22- § .5 2 |

= 2 e e em e e e e - = ==

g T~ =The Discrimination D g = =The Discrimination D

&  |-8-The Discrimination Dy 3 -©-The Discrimination D,

A 16 ‘ ‘ ‘ A 15 ©
04 02 0 02 04 0 02 04 06 08

. L, 04 T

8 g

& 08 5 0.3

g g o3

B 07 =

.g E 025

:Ee E 02-

5, 08 |—Binary Data 5, ——Ternary Data

0.15 !
04 -0.4 0 02

T

-04 -02 0 0.4

T

0.2 02

(a) Binary quantization (b) Ternary quantization

Figure 16: KNN (Euclidean distance) classification accuracy for the binary, ternary, and original
synthetic data which are generated with the parameter A = 1, and with data dimension equal to 1.
For comparison, the feature discrimination values and quantization errors across different thresholds
7 are provided for both binary and ternary data. Comments: It can be observed that the changing
trend of classification values across T can be reasonably reflected by feature discrimination, rather
than by quantization errors.
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C.2 THE DATA DISTRIBUTION PARAMETER 4 ESTIMATED WITH REAL DATA
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Figure 17: The histogram of the data distribution parameter y (defined in Property (1) for each ele-
ment (coordinate) of the feature vectors used in binary classification. Comments: It can be seen that
with certain probabilities, the  value of each feature element will fall within the regions of (0.76, 1)
and (0.66, 1), which supports achieving improved classification by binary and ternary quantization.
Despite the fact the the probabilities are not large, namely the amount of feature elements falling
within (0.76, 1) or (0.66, 1) is relatively few, as widely proved in our experiments, we can still ob-
tain the desired thresholds 7 that support improving classification on these real data. This robustness
should be attributed to the fact that classification performance is mainly determined by a few im-
portant feature elements of large magnitude, such as the ones with absolute means p falling within
(0.76,1) or (0.66,1).

23



Under review as a conference paper at ICLR 2025

C.3 THE BINARY ATTRIBUTE OF FEATURE ELEMENTS ACROSS MULTIPLE CLASSES
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Figure 18: Two histograms are drawn, one for the feature elements with values less than zero (dark
red) and the other for those greater than zero (dark blue). The feature elements are collected from a
common coordinate of feature vectors across all classes. Both histograms are fitted with Gaussian
curves. Comments: It can be seen that both histograms approximately exhibit Gaussian distribu-
tions, with their two means separable. This indicates the binary nature (strong and weak) of the fea-
ture elements at each coordinate of feature vectors, regardless of the number of classes from which
the feature vectors are drawn. This property allows us to generalize our binary classification-based
feature discrimination analysis to multiclass classification scenarios. The reason is as follows. Con-
sider a feature vector X = [z, T2, ..,,] " for a given sample, where each element ; corresponds
to a specific feature attribute, such as frequencies in DCT features, scale and spatial positions in
DWT features, or filters in convolutional features. The value of z; indicates the strength of the i-
th attribute present within the sample. The strength of x; can characterized by two distinct states:
strong and weak, which reflect the presence or absence of the i-th attribute in the sample. The two
states are evidenced in our statistical analysis of the x; values in real-data feature vectors x. The
results, depicted in this figure, show that the large (>0) and small values (<0) both exhibit Gaussian
distributions, with the means of theses distributions representing the strong and weak states, respec-
tively. Given this understanding, the classification of each attribute (coordinate) x; in feature vectors
x can be considered a binary classification problem, regardless of the number of classes from which
the feature vectors x are drawn. Consequently, we can conclude that the capability of quantization
to improve binary classification can also be extended to multiclass classification, provided that the
Gaussian distributions of the two attributes at each coordinate of feature vectors are sufficiently sep-
arable, as required in TheoremsElandEl
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C.4 NONLINEAR CLASSIFIERS: MLP AND DECISION TREES
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Figure 19: MLP-based binary classification accuracy for the binary, ternary, and original data on
three different datasets. The parameter y corresponds to a quantization threshold 7 = ~ - 7, where
7 denotes the average magnitude of the feature elements in all feature vectors. Comments: Despite
the fact that our linear feature discrimination analysis on quantized data may not directly extend to
nonlinear classification scenarios, experiments using classifiers MLP and decision trees demonstrate
that binary and ternary quantization can achieve improved or at least comparable classification re-
sults even with nonlinear classifiers. This should be attributed to the fact that nonlinear classifiers
generally involve fundamental linear operations, that evaluate the linear discrimination among fea-

tures or model parameters.
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Figure 20: Decision trees-based binary classification accuracy for the binary, ternary, and original
data on three different datasets. The parameter «y corresponds to a quantization threshold 7 = v - n,
where 7 denotes the average magnitude of the feature elements in all feature vectors. Comments:
Despite the fact that our linear feature discrimination analysis on quantized data may not directly
extend to nonlinear classification scenarios, experiments using classifiers MLP and decision trees
demonstrate that binary and ternary quantization can achieve improved or at least comparable clas-
sification results even with nonlinear classifiers. This should be attributed to the fact that nonlinear
classifiers generally involve fundamental linear operations, that evaluate the linear discrimination
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among features or model parameters.
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C.5 BINARY AND MULTICLASS CLASSIFICATIONS ON IMAGENET1000
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Figure 21: Binary classification accuracy for the binary, ternary, and original data in ImageNet1000,
using the classifier KNN (Euclidean distance). The parameter vy corresponds to a quantization
threshold 7 = v - 1, where 7 denotes the average magnitude of the feature elements in all fea-
ture vectors. Comments: It is evident that there are quantization thresholds 7 that can improve the
binary classification accuracy of ImageNet1000. Given the complexity of ImageNet1000, this vali-
dates the generalizability of our findings.

0.46 043
: : 7“_‘—_\'
Q Q
< 0341 < 0.37 1
- -
= S
Q Q
(5] o
<t 022f[_ _Qriginal data <t 031/~ -Qriginal Data 1
——Binary data —Ternary Data
0.1 0.25
0 05 1 15 2 0 05 1 15 2
Y Y
(a) Binary quantization (b) Ternary quantization

Figure 22: Multiclass classification accuracy for the binary, ternary, and original data in Ima-
geNet1000, using the classifier KNN (Euclidean distance). The parameter y corresponds to a quan-
tization threshold 7 = v - i, where 1 denotes the average magnitude of the feature elements in all
feature vectors. Comments: It can be seen that there are quantization thresholds 7 that can improve
the multiclass classification accuracy of ImageNet1000. This validates that our feature discrimina-
tion analysis, rooted in binary classification, can be extended to multiclass classification, owing to
the binary state of the feature elements sharing a common coordinate across different classes. See
Figure rl;gl for detailed explanations.
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