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Abstract

Supervised fine-tuning (SFT) is crucial for001
adapting Large Language Models (LLMs) to002
specific tasks. In this work, we demonstrate003
that the order of training data can lead to signif-004
icant training imbalances, potentially resulting005
in performance degradation. Consequently, we006
propose to mitigate this imbalance by merg-007
ing SFT models fine-tuned with different data008
orders, thereby enhancing the overall effec-009
tiveness of SFT. Additionally, we introduce010
a novel technique, “parameter-selection merg-011
ing," which outperforms traditional weighted-012
average methods on five datasets. Further,013
through analysis and ablation studies, we vali-014
date the effectiveness of our method and iden-015
tify the sources of performance improvements.016

1 Introduction017

Thanks to the substantial expansion of training018

scale and model size, large language models019

(LLMs) have achieved significant breakthroughs020

across a broad spectrum of NLP tasks (Radford021

et al., 2019; Touvron et al., 2023). For downstream022

tasks, supervised fine-tuning (SFT) is a crucial tech-023

nique for LLMs, enabling the customization of pre-024

trained models for specialized tasks and domains025

(Dettmers et al., 2023; Zhao et al., 2023).026

The SFT process typically involves a few itera-027

tions of training on task-specific data. While ex-028

isting research generally assumes that the order of029

training samples has a negligible impact on final030

model performance, or that sufficient iterations can031

mitigate any potential effects, our preliminary in-032

vestigations suggest otherwise. We found that the033

position of SFT training samples significantly af-034

fects their final training outcomes. For instance,035

Figure 1 (a) and (b) illustrate the relationship be-036

tween the position of training samples in the first037

epoch and their losses after three epochs of train-038

ing. The figure clearly shows that despite multiple039
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Figure 1: Impact of training sample position at first
epoch on final model losses of these samples. Panels
(a) and (b) present the results on the GSM8k and Al-
paca tasks, respectively. Panels (c) and (d) show the
corresponding results from multiple experiments with
different training orders.

epochs of training, samples introduced earlier con- 040

sistently exhibit higher final losses. Figure 1 (c) and 041

(d) present the results of multiple experiments with 042

different training orders, demonstrating a strong 043

and consistent correlation between the position of 044

training samples and their final losses.1 045

These findings suggest a notable imbalance in 046

fine-tuning process: samples processed at differ- 047

ent positions unevenly influence the learning pro- 048

cess, thereby posing a potential risk of skewing 049

the performance of the fine-tuned model. To mit- 050

igate this imbalance, we propose merging multi- 051

ple SFT models obtained from diverse training 052

data orders through parameter merging technique 053

(Matena and Raffel, 2022). Moreover, we introduce 054

“parameter-selection merging," a novel parameter 055

merging method that outperforms the traditional 056

weighted-average method. The core contributions 057

1The experiment was conducted using GSM8K (Cobbe
et al., 2021) and Stanford Alpaca (Taori et al., 2023) datasets,
with Llama-2-7b (Touvron et al., 2023) as the base model.
Each epoch featured a different sample order.
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of this paper are summarized as follows:058

• We identify the training imbalance in SFT pro-059

cess, where the position of training samples060

significantly affects their final training losses.061

• We propose to improve model fine-tuning by062

merging models trained with different data or-063

ders. Moreover, we introduce a novel param-064

eter merging method, “parameter-selection065

merging."066

• Through analysis and ablation studies, we fur-067

ther validate the effectiveness of our method068

and demonstrate the source of improvement.069

2 Method070

2.1 Merge Fine-tuned LLMs with Different071

Data Order072

In this work, we propose to mitigate training imbal-073

ance in LLM fine-tuning by merging models fine-074

tuned with various data orders. As depicted in Fig-075

ure 2, for a given task t, the method initiates by fine-076

tuning a pre-trained LLM multiple times, each with077

a uniquely ordered data sequence. Specifically, for078

various data sequences {s1t , s2t , · · · , skt }, we obtain079

a set of SFT models {θs1t
SFT ,θ

s2t
SFT , · · · ,θ

skt
SFT }.080

Subsequently, these variously fine-tuned models081

are integrated into a unified model through parame-082

ter merging techniques, yielding an improved SFT083

model θSFT ↑084

2.2 Parameter-Selection Merging085

Existing parameter merging techniques can gener-086

ally be categorized under “weighted-average merg-087

ing" approach. In this work, we introduce a088

novel parameter merging approach: “parameter-089

selection merging." Figure 2 shows the compar-090

ison of two merging techniques. Given a set of091

K sub-models {θ1,θ2, . . . ,θK}, each model θi is092

comprised of parameters θi,1, θi,2, . . . , θi,d across093

d parameter dimensions. Weighted-average merg-094

ing calculates the weighted sum of all sub-model095

parameters at each parameter dimension, which096

can be represented by the following formula:097

θmerged,j =
K∑
i=1

wiθi,j, ∀j ∈ {1, . . . , d} (1)098

where θi,j is the parameter of the i-th sub-model in099

dimension d, wi is the weight applied to θi,j .100
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Figure 2: Illustration comparing weighted-average
method and the proposed parameter-selection method.
Weighted-average merging calculates the weighted sum
of all sub-model parameters at each parameter dimen-
sion, whereas parameter-selection merging selects pa-
rameters from a single sub-model. In the resampling
module, parameters that equal those of the base model
are replaced with parameters from alternative models.

Conversely, parameter-selection merging selects 101

a parameter from a single sub-model for each di- 102

mension with probbability pi, as represented by the 103

formula: 104

θmerged,j = θi,j with pi, ∀j ∈ {1, . . . , d} (2) 105

where pi is the probability that θi,j is selected. 106

Given that each sub-model in our method is fine- 107

tuned on the same training dataset and thus has 108

nearly identical performance, we assign equal 109

weights and selection probabilities among sub- 110

models, set as: wi =
1
K , pi =

1
K . 111

2.3 Resample Strategy 112

Task Vectors. Let θpre represent the pre-trained 113

model’s weights and θSFT denote the SFT model 114

’s weights. The task vector τ is defined to cap- 115

ture task-specific adaptations, calculated as: τ = 116

θSFT − θpre (Ilharco et al., 2022). 117

Guided by the intention to maximize the impact 118

of task vectors, we introduce a resampling method 119

within the parameter-selection merging framework 120

to further improve task performance. τi,j represents 121

the task vector of the i-th sub-model at parameter 122

dimension j. As depicted in Figure 2, if τi,j = 123

0, indicating that no parameter change occurred 124

after fine-tuning, a new parameter is resampled 125

from the pool of all sub-models.2 This procedure 126

can be iterated n times, where n is a predefined 127

hyperparameter, as formalized below: 128

θ
(n)
merged,j =

{
θi,j if τi,j ̸= 0 or n = 0,

θ
(n−1)
merged,j others,

(3) 129

2This strategy enables parallel tensor operations by includ-
ing all sub-models in resampling, not just the remaining ones.
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Method
AlpacaEval GSM8K GSM8K-RFT MATH HumanEval

Avg ∆
win-rate acc acc acc pass@1

single SFT 24.25 41.29 52.74 10.36 26.82 -
weighted-avg 24.97(+0.72) 44.35(+3.06) 53.29(+0.88) 11.24(+0.55) 26.22(-0.60) + 0.92

param-selection 25.66(+1.41) 44.73(+3.44) 53.35(+0.61) 11.37(+1.01) 27.43(+0.61) + 1.42
. + resample 25.91(+1.66) 45.26(+3.97) 54.32(+1.58) 12.00(+1.64) 28.05(+1.23) + 2.02

Table 1: Performance comparison of weighted-average and parameter-selection merging based on Llama-2-7b.
“weighted-avg" means weighted-average and “param-selection" means parameter-selection merging method.

Specifically, θ 0
merged,j equals parameter-selection130

method without the resampling module.131

3 Experiments132

This section presents the experimental results. De-133

tailed descriptions of the datasets and evaluation134

metrics employed are provided in the Appendix,135

under Section B.136

3.1 Experimental Results137

138

Main Experiments. We conducted experiments139

on three mainstream LLM tasks: instruction-140

following, mathematical reasoning, and code-141

generating. Llama-2-7b (Touvron et al., 2023)142

was used as the base model. As shown in Ta-143

ble 1, the merged models exhibit performance144

improvements compared to single SFT models.145

Furthermore, as indicated in Table 1, the pro-146

posed parameter-selection method outperforms the147

weighted-average approach, achieving consistent148

performance improvements. Moreover, incorpo-149

rating a resampling module further enhances the150

performance of the parameter-selection method,151

yielding an average improvement of 2.02 percent-152

age points across all datasets. These results affirm153

the effectiveness of our proposed method in im-154

proving LLM fine-tuning performance.155

156

Experiments Across Different Model Sizes.157

We conducted experiments using different pre-158

trained models with various model sizes: BERT-159

base (0.11b)3, BERT-large (0.34b) (Kenton and160

Toutanova, 2019), TinyLlama (1.1b) (Zhang et al.,161

2024), and Llama-2-7b (7b), employing parameter-162

selection as merging method.4 As shown in Ta-163

ble 2, the merged models outperform their single164

3(0.11b) refers to the model having 0.11 billion parameters.
4Experiments were conducted on traditional tasks rather

than on LLM tasks due to the limited capabilities of smaller-
sized models.

Model Method
SST-2 MNLI SQuAD

Avg ∆
acc acc EM

BERT-base
SFT 91.93 83.99 81.07

+ 0.75
merged 92.33 (+0.40) 84.47(+0.48) 82.44(+1.37)

BERT-large
SFT 93.44 86.42 84.15

+ 0.94
merged 94.38(+0.94) 86.71(+0.29) 85.73(+1.58)

TinyLlama
SFT 94.81 85.46 80.53

+ 1.62
merged 95.91(+1.10) 86.93(+1.47) 82.82(+2.29)

Llama-2-7b
SFT 95.09 88.84 84.53

+ 2.11
merged 96.97(+1.88) 90.64(+1.80) 87.18(+2.65)

Table 2: Performance comparison between single SFT
model and merged models across pre-trained models
with various model sizes.

SFT counterparts consistently. These experimental 165

outcomes further demonstrate the effectiveness of 166

merging SFT models with different training orders 167

in improving fine-tuning performance. Further- 168

more, as detailed in Table 2, models with larger 169

parameter sizes exhibit more pronounced average 170

improvements, suggesting our method’s potential 171

applicability in LLM contexts. 172

173

Experiments in Multi-Task Merging Contexts. 174

We conducted experiments in multi-task merging 175

contexts to validate the effectiveness of parameter- 176

selection. Multi-task merging aims to combine 177

single-task models into one multi-task model capa- 178

ble of handling several tasks simultaneously, with 179

minimal performance loss in single-task capabili- 180

ties.5 As shown in Table 3, the parameter-selection 181

method significantly outperforms the weighted- 182

average method, achieving an increase of 4.72 per- 183

centage points in performance retention. This result 184

demonstrates the efficacy of proposed parameter- 185

selection method. 186

5Due to significant performance degradation for LLM
tasks, 13b models were chosen instead of 7b. We used
WizardLM-13B (Xu et al., 2023), WizardMath-13B (Luo et al.,
2023), and Llama-2-13b-code-alpaca (Chaudhary, 2023) as
single SFT models for instruction-following, mathematical
reasoning, and code-generating tasks, respectively.
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Method
AlpacaEval GSM8K MATH HumanEval

Avg ∆
win-rate acc acc pass@1

Single-Task Model

single SFT 89.29 63.76 14.26 23.78 -

Multi-Task Models

weighted-avg 72.29 58.38 9.90 18.90 - 7.91
param-selection 72.08 57.01 10.1 14.64 - 9.32
. + resample 78.70 61.71 11.7 26.22 - 3.19

Table 3: Performance comparison in multi-task merging
contexts. The “single SFT" represents a single-task
model, showing results for individual tasks, whereas the
other entries are multi-task models, showing results for
handling multiple tasks simultaneously.
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Figure 3: Comparison of training losses across differ-
ent models, with the first epoch sample position of the
anchor model as the x-axis. Green lines represent final
training losses of the anchor model; blue ‘x’ markers
indicate losses of SFT models trained with various data
order; red dots show losses of the merged model.

3.2 Analysis and Ablation Studies187

This section presents the analysis and ablation stud-188

ies conducted on the GSM8K and Alpaca tasks.189

190

Traning Set Loss Analysis. We investigate191

whether the merged models can alleviate the train-192

ing imbalance problem previously identified. We193

selected one SFT model as the “anchor model".194

Based on positions during the first epoch training195

of the anchor model, we divided training samples196

into multiple segments. Figure 3 shows the final197

training loss of these sample segments. As shown198

in Figure 3, compared to the anchor model, the199

losses of the merged model are situated between200

those of sub-models, showing no clear correlation201

with the data position. This result indicates that202

merging models with various data orders can di-203

minish the influence of the data order from a single204

model, such as the anchor model.205

206

Validation Set Loss Analysis. We analyzed the207

validation set losses of the single SFT model and208

the merged model at various training steps. As209
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Figure 4: Comparison of validation loss between single
and merged SFT models at various training steps.

Method
GSM8K AlpacaEval

acc win-rate

singel SFT 41.29 24.25
param-selection + resample 45.26 25.91
param-selection + resample (fix-batch) 45.51 25.83

Table 4: Performance comparison of standard merged
models and models with fixed intra-batch combinations.

shown in Figure 4, at all training steps, the merged 210

models exhibited lower validation losses compared 211

to those of single SFT models. This result demon- 212

strates that the merged model exhibits lower losses 213

on unseen samples, which aligns with the perfor- 214

mance enhancements previously observed. 215

216

Determining the Source of Improvement: Sam- 217

ple Position or Batch Diversity. Altering the order 218

of training data not only changes the position of 219

samples but also modifies the combinations of sam- 220

ples within each batch. This raises the question: 221

Do performance improvements result from varied 222

sample positions or from diversity in sample com- 223

binations? To address this, we conducted ablation 224

experiments by merging models with fixed intra- 225

batch sample combinations while varying batch 226

positions. As shown in Table 4, models with fixed 227

intra-batch combinations achieved similar perfor- 228

mance to those with variable combinations, indi- 229

cating that performance gains are primarily due to 230

changes in sample positions rather than to diversity 231

in intra-batch combinations. 232

4 Conclusion 233

This study highlighted how training data order af- 234

fects LLM fine-tuning, leading to significant im- 235

balances. Merging models with diverse data orders 236

can mitigate these imbalances and improve model 237

performance. Future research will focus on en- 238

hancing model robustness and extending parameter- 239

selection merging technique to various scenarios. 240
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Limitations241

This study has several primary limitations that re-242

main unexplored:243

• While our method improves LLM fine-tuning244

without adding deployment and inference245

costs, it requires additional computation to246

fine-tune multiple sub-models.247

• Although models with larger parameter sizes248

show more pronounced average improve-249

ments, as demonstrated in Table 2, suggesting250

the method’s potential in LLM contexts, our251

experiments were primarily conducted with252

7b models due to computational resource con-253

straints. Future studies are needed to evaluate254

the scalability of our methods with larger mod-255

els.256

• The study introduces the novel parameter-257

selection merging technique, which outper-258

forms the traditional weighted-average ap-259

proach. However, many model merging stud-260

ies in multi-task scenarios rely on a weighted-261

average formula. It remains to be explored262

whether replacing the weighted-average with263

parameter-selection can improve these exist-264

ing methods in multi-task scenarios.265
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A Related Work 417

A.1 Parameter Merging in Multi-Task 418
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mitigated task conflict by partially removing task- 431

specific parameters; Moreover, Xiao et al. (2023) 432

aimed to maximally preserve the performance of 433

one primary task among all tasks; Furthermore, 434

Huang et al. (2023) investigated the composability 435

of LoRA (Hu et al., 2021) for enhancing cross-task 436

generalization. 437

A.2 Parameter Merging in Single-Task 438

Scenario 439

Compared to merging models from multiple tasks, 440

which often leads to performance degradation on 441

individual tasks, the potential of utilizing the pa- 442

rameter merging technique to improve single-task 443

LLMs has not yet received much attention. While 444

6



Model BERT-base & BERT-large TinyLlama & Llama-2-7b
Dataset SST-2 MNLI SQuAD SST-2 MNLI SQuAD AG News Hellaswag MRPC Winogrande

max seq-length 512 512 512 800 800 800 800 800 800 800
learning rate 2e-5 2e-5 3e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
batch size 32 32 12 128 128 128 128 128 128 128

Table 5: Hyperparameters for training models on traditional tasks.

Dataset AlpacaEval GSM8K GSM8K-RFT MATH HumanEval

max seq-length 1200 800 800 800 1200
learning rate 2e-5 2e-5 2e-5 2e-5 2e-5
batch size 128 64 64 64 128
max epoch 3 3 3 3 3
n 1 1 4 1 4

Table 6: Hyperparameters for training Llama-2-7b on LLM tasks.

some studies, such as Wortsman et al. (2022), have445

explored merging models fine-tuned with differ-446

ent settings, these experiments were predominantly447

conducted on comparatively smaller models like448

BERT and achieved only modest improvements.449

B Detailed Experimental Settings450

B.1 Datasets451

Datasets employed in our experiments are catego-452

rized into two groups: LLM tasks and traditional453

NLP tasks.454

455

LLM Tasks:456

• Instruction-following: Stanford Alpaca (Taori457

et al., 2023)458

• Mathematical Reasoning: GSM8K (Cobbe459

et al., 2021), GSM8K-RFT (Yuan et al., 2023),460

MATH (Hendrycks et al., 2021)461

• Code-generating: Evol-instruction-66k, ob-462

tained from Hugging Face Datasets463

464

Traditional NLP Tasks:465

• SST-2 (Xu et al., 2023)466

• MNLI (Williams et al., 2017)467

• SQuAD (Rajpurkar et al., 2016)468

• AG News (Zhang et al., 2015)469

• Hellaswag (Zellers et al., 2019)470

• MRPC (Dolan and Brockett, 2005) 471

• Winogrande (Sakaguchi et al., 2020) 472

For traditional tasks, experiments involving 473

decoder-based models utilized the version collected 474

by Cheng et al. (2023); Wang et al. (2023). For the 475

MATH dataset, an augmented version (Yu et al., 476

2023b) is employed, with data originally sourced 477

from GSM8K excluded. The Evol-instruction- 478

66k dataset is obtained from the Hugging Face 479

library (https://huggingface.co/datasets/codefuse- 480

ai/Evol-instruction-66k). 481

B.2 Evaluation Metrics 482

We employ AlpacaEval (Li et al., 2023) to evalu- 483

ate models fine-tuned on Stanford Alpaca dataset, 484

using win-rate as the evaluation metric and GPT-4 485

as the annotator. We employ HumanEval (Chen 486

et al., 2021) to evaluate models fine-tuned on Evol- 487

instruction-66k dataset, using pass@1 as the evalu- 488

ation metric. For the SQuAD dataset, Exact Match 489

(EM) is utilized as the evaluation metric. Accuracy 490

(acc) is used as the evaluation metric for all other 491

tasks. 492

B.3 Basic Settings 493

For single SFT models, we report the average 494

results across all sub-models. For parameter- 495

selection merging models, we conduct five experi- 496

ments with different random seeds and report the 497

average outcomes. For decoder-based models, the 498

temperature is set to 0.0 for greedy decoding. Train- 499

ing of LLMs was conducted using mixed preci- 500

sion BF16. All experiments were conducted on 8 501
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Method
AG News Hellaswag MNLI MRPC SST-2 Winogrande

Avg ∆
acc acc acc acc acc acc

Single-Task Model

single SFT 94.42 77.20 87.90 85.78 95.53 75.45 -

Multi-Task Models

weighted-avg 74.01 74.10 61.15 71.32 90.37 70.17 - 12.53
param-selection 77.03 74.13 64.77 67.16 92.66 70.40 - 11.67
. + resample 81.28 74.12 64.45 72.55 95.30 70.56 - 9.67

Table 7: Performance comparison in multi-task merging contexts for traditional tasks. “. + resample" refers to the
addition of the resampling module to our parameter-selection method.

NVIDIA Tesla A800 GPUs.502

B.4 Hyperparameters503

For the parameter merging method, the number504

of sub-models K is a necessary hyperparameter.505

Based on the selection range of 1-50 suggested by506

Wortsman et al. (2022), we use K = 20, a rela-507

tively moderate value for all datasets (15 datasets508

in total). The search space for resampling times509

n includes {1, 2, 3, 4}. In our experiments, the510

maximum number of epochs was set to 3, with511

model states saved at the end of each epoch. The512

hyperparameters used for fine-tuning are detailed513

in Tables 5 and 6.514

C Computational Complexity of Merging515

Process516

The parameter selection and weighted-average517

merging processes can be efficiently managed on518

a CPU with rapid execution times. For instance,519

merging 10 Llama-2-7b models on a single CPU520

typically takes about 1 minute. The resampling521

process, meanwhile, requires time proportional to522

the number of resampling iterations n, with each523

iteration approximately taking about 0.1 minute.524

D Experiments in Multi-Task Merging525

Contexts for Traditional Tasks526

In multi-task merging contexts, we conduct exper-527

iments on six traditional tasks using Llama-2-7b528

as the base model. The results are presented in529

Table 7. Consistent with the results for LLM tasks,530

the parameter-selection method outperforms the531

average-based method as well, achieving 2.86 more532

percentage points in performance retention.533
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