

000 FLOWSEARCHER: SYNTHESIZING MEMORY-GUIDED 001 AGENTIC WORKFLOWS FOR WEB INFORMATION 002 SEEKING 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009

010 ABSTRACT 011

012 Web search is a cornerstone for deep research agents, enabling them to acquire
013 and reason over knowledge beyond static corpora. Yet most existing systems fol-
014 low rigid ReAct-style tool chains locked into fixed workflow structures, which
015 hinders their ability to flexibly handle diverse query types and tool-use strate-
016 gies. We introduce **FlowSearcher**, a novel web search framework built on agentic
017 workflow synthesis. FlowSearcher decomposes queries into sub-goals, each or-
018 chestrated by a tailored workflow graph that adapts the depth and order of tool
019 use, giving the system structural flexibility to handle diverse sub-goals ranging
020 from simple lookups and focused navigation to multi-hop information synthesis.
021 Complementing this, a hierarchical memory distills past workflows into structured
022 experience, providing reusable context that improves orchestration and guides
023 tool use on new queries. This shift from reactive tool calls to memory-driven
024 workflow design and execution marks a principled step toward deliberative web
025 research. Empirical results on **GAIA**, **BrowseComp**, and **GPQA** show that our
026 memory-driven, training-free workflow synthesis consistently matches or exceeds
027 the performance of **RLHF**-trained systems, pointing toward a new direction of
028 agent design grounded in memory-enhanced structural planning rather than pa-
029 rameter fine-tuning.
030

031 1 INTRODUCTION 032

033 The paradigm of scaling large language models (LLMs) is shifting away from expanding static
034 pre-training corpora toward dynamic, real-time knowledge acquisition. Central to this shift is
035 the emergence of research agents, which couple LLMs' intrinsic reasoning capabilities with ex-
036 ternal tools and web interaction. This fusion goes beyond static retrieval, equipping models to
037 tackle time-sensitive, knowledge-intensive tasks across domains such as science, technology, and
038 finance (Huang et al., 2025; Xu & Peng, 2025). This trajectory is already exemplified by industrial
039 systems such as OpenAI's Deep Research (OpenAI, 2025b) and Google Gemini Advanced (Co-
040 manici et al., 2025; Google, 2024), which vividly illustrate how LLMs can evolve from passive
041 repositories into autonomous collaborators that retrieve, evaluate, and synthesize knowledge at scale.

042 Despite recent advances, the real bottleneck is not *model scale* but the *decision structures* that deter-
043 mine how agents navigate the web. Training-based systems such as WebThinker (Li et al., 2025d)
044 and WebDancer (Wu et al., 2025a) still follow the ReAct template (Yao et al., 2023), locking agents
045 into a think-act-observe loop. This enforces a narrow, single-threaded trajectory that collapses in-
046 herently branching research queries into linear chains, suppressing parallel exploration, backtrack-
047 ing, and structural revision. Plan-execute frameworks (Song et al., 2025; Zheng et al., 2025) offer
048 higher-level organization but remain static: once produced, the plan becomes a fixed scaffold with
049 little room for reordering or adaptation as new evidence arrives. As a result, these architectures
050 remain fundamentally misaligned with the non-linear, exploratory, and continuously evolving work-
051 flows that genuine research demands.

052 Another foundational challenge for long-horizon agent systems is the inability to learn across
053 tasks (ang Gao et al., 2025). When faced with open-domain queries, most agents still operate in
episode isolation (Wu et al., 2025a; Li et al., 2025a; Tao et al., 2025): tool calls are issued within

short reactive chains, and whatever is learned evaporates as soon as the episode ends. This limitation arises from their reliance on ephemeral, episodic memory, where chains-of-thought, tool traces, and exploration paths are never consolidated into any persistent, structured knowledge. Without such consolidation, agents accumulate no reusable experience. They repeatedly reinvent the wheel, repeating ineffective actions, failing to exploit strategies that succeeded previously, and showing little improvement across similar tasks. Overcoming this bottleneck requires abandoning transient context windows in favor of a cumulative, structured memory system that can retain, organize, and reuse past workflows, supporting genuine long-horizon planning and strategic adaptation.

Building on these foundations, we present **FlowSearcher**, a unified framework for web-based research that departs from the rigid, reactive behavior of traditional agents by synthesizing full **workflow graphs** rather than issuing step-wise tool calls. Instead of committing to a single linear trajectory, the agent constructs explicit non-linear workflows that break a complex query into coherent subgoals and structured tool operations. To support principled cross-task generalization, FlowSearcher integrates a **hierarchical memory** that organizes past trajectories at the task, graph, and node levels, along with a retrieval mechanism that surfaces the most relevant prior experience for the current query. Retrieved knowledge enhances both **planning**, by recalling effective structural patterns, and **execution**, by shaping context-aware decisions about tool usage, ordering, and termination. Through this combination of workflow synthesis and structured experience reuse, FlowSearcher turns raw execution traces into strategic knowledge, enabling adaptive and efficient research behavior that jointly optimizes how workflows are designed and how they are carried out.

The integrated use of three foundational modules: task decomposition, hierarchical memory, and DAG-based execution, recasts their purpose in FlowSearcher in a way fundamentally different from simply placing them side-by-side. Instead of extending a ReAct chain with extra utilities, FlowSearcher reframes the entire problem: it treats open-domain web research as **experience-driven workflow synthesis**, not as sequential action prediction. Under this perspective, the agent’s reasoning is centered on how the problem *should be structured*, rather than merely *what to do next*. Past trajectories are elevated into strategic assets that shape how workflow graphs are composed, organized, and executed, enabling adaptive planning, multi-path exploration, and principled revision, capabilities that do not emerge when these components are used in isolation or embedded in traditional step-wise pipelines.

Moreover, by elevating workflow structure to the center of decision-making, FlowSearcher introduces a **learning-free mechanism** that can design, adapt, and refine sophisticated research strategies without any RLHF or supervised tuning. FlowSearcher’s memory-driven workflow synthesis paradigm provides a stable form of generalization: the agent retains useful structures while avoiding drift, enabling consistent improvement across domains without retraining. Experiments on GAIA, BroweComp, and GPQA show that this structural, memory-driven paradigm can match or exceed the performance of strong RLHF-trained ReAct agents under the same model backbone. This points toward a new class of web agents grounded in compositional planning and reusable experience, offering a scalable alternative to ever-larger parametric fine-tuning.

In summary, our contributions are three-fold:

- We model the web information seeking task solution trajectory as a two-level process, with query decomposition and workflow synthesis at the high level and workflow execution at the low level. This decoupling empowers the system to (i) flexibly adapt by generating a tailored workflow for each decomposed sub-task, and (ii) simultaneously optimize high-level workflow orchestration and low-level execution, enhancing both efficiency and effectiveness in complex, multi-step information-seeking tasks.
- We reframe web search as a principled problem of workflow synthesis. By grounding **FlowSearcher** in a compact yet expressive library of building blocks, we enable the system to flexibly compose diverse solution strategies at each decomposed step, achieving both structural rigor and adaptive problem-solving.
- We introduce a *multi-level memory* (node, graph, and task levels) that consolidates prior workflows into reusable structural knowledge, along with a compatible retrieval mechanism capable of accessing execution traces at both the graph and node levels. These traces are transformed into actionable insights by an instructor module, which then injects them into both workflow orchestration and execution prompts. This design enables **co-optimization** under memory guidance,

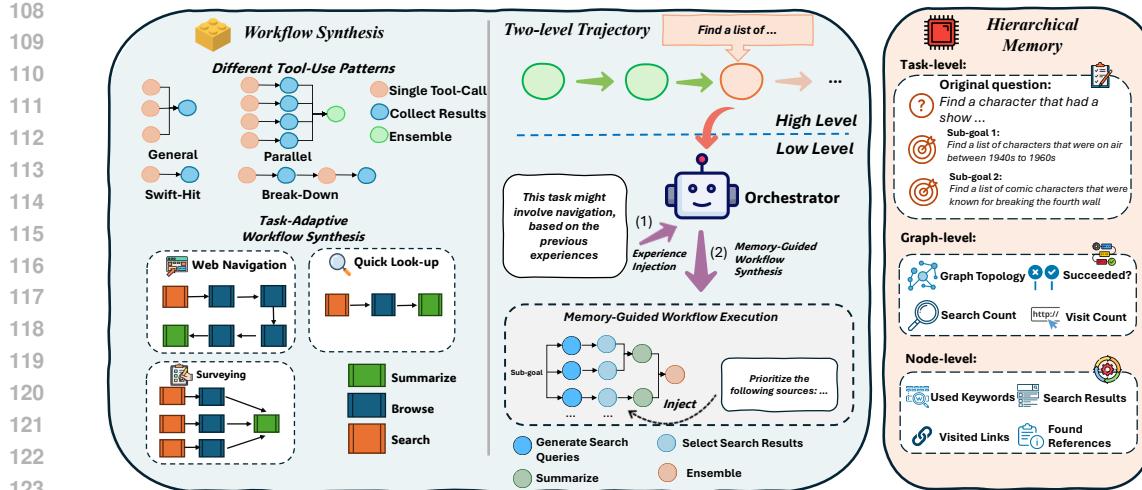


Figure 1: **An overview of the FlowSearcher framework.** **Left:** Diverse tool-use patterns (e.g., first-hit, parallel, progressive decomposition) are synthesized into workflows tailored to research tasks such as navigation, look-up, and surveying. **Middle:** FlowSearcher employs a hierarchical searching trajectory, where a high-level orchestrator decomposes goals into sub-goals and injects prior experience, while a low-level executor conducts memory-guided workflow execution. **Right:** A structured hierarchical memory records traces at the task-, graph-, and node-level, enabling adaptive reuse and precise tool-use guidance across executions.

allowing the system to learn from past successes and failures, dynamically adapt its strategies, and generalize across diverse tasks.

Our proposed **FlowSearcher** achieves substantial gains over WebThinker-Base (+11.5% on GAIA, +9.5% on BrowseComp), clearly surpassing the marginal benefits of RL-based fine-tuning. These results highlight that **structural flexibility through adaptive workflow planning is more decisive than parameter-level training**, offering a scalable and cost-efficient path forward. **FlowSearcher** supports a variety of distinct web search workflows by maintaining a controllable set of building blocks, thus is capable of handling diversified queries without specialized training.

2 RELATED WORK

Our work lies at the intersection of Large Reasoning Models (LRMs) for deep information seeking, dynamic workflow synthesis, and explicit memory mechanisms. We organize this section into three areas: (1) limitations of current search paradigms, (2) advances in workflow decomposition and synthesis, and (3) the role of memory in research agents. We conclude by highlighting FlowSearcher’s unique contribution.

Agentic Information Seeking Systems Although there exist works that demonstrate different information seeking behaviors by shifting among pre-defined modes like Reason-in-Documents module introduced in Li et al. (2025c), and Problem-Solving and Report-Drafting modes introduced in Li et al. (2025d), they still adopt single-step, linear planning structures (Li et al., 2024a; Jin et al., 2025; Song et al., 2025; Zheng et al., 2025; Wu et al., 2025a). While effective for simple tasks, these systems were brittle when handling complex, multi-faceted queries. Their main weaknesses stemmed from limited long-horizon context management and the inflexible coordination of search components across an extended research trajectory.

Workflow Planning and Optimization Recent work explores how research agents decompose tasks and execute multi-step workflows. **ReAct-style frameworks** such as WebThinker (Li et al., 2025d) and WebWalker (Wu et al., 2025b) interleave reasoning and actions through sequential traces, but their global search strategy remains implicit, making optimization and generalization difficult.

162 **Planning-first frameworks** (Hu et al., 2025; Tang et al., 2025b) impose top-down workflow structures, improving coherence but relying on manually defined roles and rules, which limits scalability in open-domain web settings (Qiu et al., 2025; Xie et al., 2025). **RL-based systems** like Web-Dancer (Wu et al., 2025a) treat information seeking as an end-to-end pipeline and optimize via sampled trajectories. Surveys such as Xu & Peng (2025), Huang et al. (2025), and Li et al. (2025b) summarize these trends. More recent efforts—**AutoFlow** (Li et al., 2024b) and **AFLOW** (Zhang et al., 2025b)—shift toward automated protocol synthesis, showing that reusable workflow patterns can serve as transferable knowledge. Our work builds on this insight by dynamically instantiating workflows from evidence, rather than relying on fixed templates or rigid execution schemes.

171 **Agentic Memory and Experience Reuse** Another line of research equips agents with persistent
 172 memory to support long-horizon reasoning. **A-MEM** (Xu et al., 2025) proposes a Zettelkasten-
 173 inspired memory system where new experiences are stored as structured “notes,” linked to similar
 174 past traces, and dynamically evolved as new evidence arrives, enabling adaptive long-term reasoning.
 175 **Mem0** (Chikara et al., 2025) offers a lightweight, production-oriented memory layer that
 176 maintains multi-level persistent state and summarizes past interactions to reduce context length and
 177 improve personalization. **G-Memory** (Zhang et al., 2025a) extends memory to multi-agent systems
 178 by organizing experiences into hierarchical graphs—spanning interaction, query, and insight
 179 levels—and retrieving both abstract and fine-grained information through graph traversal to guide
 180 coordinated agent behavior. Despite these advances, most existing memory systems depend on fixed
 181 retrieval rules or single-level memory structures, limiting adaptability in open-domain web tasks.
 182 Our work differs by introducing a workflow-conditioned, multi-level memory hierarchy that adapts
 183 retrieval not only to the task query but also to the evolving structure of the synthesized workflow.

185 3 METHODOLOGY

187 3.1 HIERARCHICAL AGENTIC WEB SEARCH TASK FORMULATION

189 In this paper, we present **FlowSearcher**, an agentic workflow framework for web search. We first
 190 reframe research query solving as a hierarchical decision-making process, where high-level query
 191 decomposition and workflow synthesis are coupled with low-level structured execution. We then
 192 introduce a memory-driven workflow planner that conditions each execution step on both workflow
 193 structure and accumulated traces. Through this design, FlowSearcher brings structural flexibility
 194 and layered memory grounding into agentic web search, enabling adaptive handling of complex
 195 queries and resilient reasoning over long horizons.

196 We formalize each research task together with its solution trajectory as $\{Q, \hat{y}, \Gamma\}$. Here, Q denotes
 197 the original query, \hat{y} the predicted answer, and $\Gamma = \{\mu_i, \mathcal{G}_i\}$ the trajectory consisting of decomposed
 198 sub-questions $\{\mu_i\}$ and their corresponding workflow graphs $\{\mathcal{G}_i\}$. In addition, we maintain a
 199 structured execution memory \mathcal{M} , which is updated after each step to record intermediate traces,
 200 and later serves as a foundation for both workflow synthesis and execution.

201 **High-level (decomposition \Rightarrow
 202 workflow synthesis).** At the high
 203 level, FlowSearcher generates a
 204 trajectory by iteratively decompos-
 205 ing the query into sub-questions
 206 and synthesizing workflow graphs.
 207 At step i , the agent samples the
 208 next sub-question μ_i and then
 209 generates a workflow graph \mathcal{G}_i that specifies how to address it. Formally, if the query is solved in K
 210 steps, the probability of generating the overall trajectory is given by:

$$Q \xrightarrow{\theta_\mu} \underbrace{\left\{ \mu_i \xrightarrow{\mathcal{M}, \theta_\mathcal{G}} \underbrace{\mathcal{G}_i \xrightarrow{\mathcal{M}} \{\alpha, o\}_v}_{\text{Lower level}} \right\}}_{\text{Upper level}}_{i=1}^K \xrightarrow{\text{finalize}} \hat{y}.$$

214 Figure 2: **FlowSearcher’s hierarchical search trajectory**, involving
 215 workflow synthesis, execution, and aggregation.

$$211 P(\Gamma | Q, \mathcal{M}_0) = \prod_{i=1}^K P(\mu_i | Q, \Gamma_{<i}, \mathcal{M}_{i-1}, \theta_\mu) P(\mathcal{G}_i | Q, \Gamma_{<i}, \mathcal{M}_{i-1}, \theta_\mathcal{G}, \mu_i), \quad (1)$$

212 where θ_μ and $\theta_\mathcal{G}$, are the prompts for decomposition and workflow synthesis modules. Note that
 213 at the start of each trajectory, we have $\Gamma_0, \mathcal{M}_0 = \emptyset$. As the trajectory unfolds, the memory \mathcal{M}
 214 is incrementally updated, accumulating execution traces that capture both workflow structure and

216 intermediate outcomes, providing rich contextual grounding that guides subsequent decomposition
 217 and execution. After obtaining a complete trajectory, a finalization step is performed to produce the
 218 predicted answer \hat{y} for query Q .

219 **Low-level (workflow execution).** At the low level, each workflow \mathcal{G}_i for sub-question μ_i is ex-
 220 ecuted at the node level, where each node is followed along its dependency connections and guided
 221 by accumulated memory traces. For a given node $v \in V(\mathcal{G}_i)$, the agent interacts with the web envi-
 222 ronment to generate an action sequence α and observations o . Hence, given a node with K_v distinct
 223 action steps, the execution process can thus be factorized as follows:

$$225 \quad P(\alpha, o \mid \mu_i, \mathcal{M}_{i-1}) = \prod_{t=1}^{K_v} P(\alpha_t, o_t \mid \alpha_{<t}, o_{<t}, \mu_i, \mathcal{M}_{i-1}). \quad (2)$$

228 Given the above formulation, the overall trajectory of FlowSearcher is illustrated in Fig. 2. Empow-
 229 ered by a hierarchical task structure and workflow-grounded execution, FlowSearcher departs from
 230 traditional linear tool-use agents and enables adaptive reasoning across complex query landscapes.
 231 This flexible structure not only aligns decomposition with execution, but also provides memory-
 232 grounded coherence, offering a principled path toward resilient long-horizon web search.

234 3.2 STRUCTURED COMPOSITIONAL MEMORY FOR EXPERIENCE REUSE

235 To enable efficient reuse of past experiences, we introduce a **Structured Compositional Memory**
 236 that organizes trajectories into a three-level hierarchy. Our design allows selective retrieval and
 237 flexible cross-level recomposition of past traces, which is crucial for adapting workflows to insightful
 238 queries and ensuring generalization beyond single-task memorization. Formally, the memory \mathcal{M} is
 239 a set of task entries $\mathcal{M} = \{M_j^{task}\}$, each bundling its sub-question workflow graphs together with
 240 their node-level traces.

241 **Node-level.** For a node $v \in V(\mathcal{G}_i)$, we record:

$$243 \quad M_v^{node} = (N_v, \alpha^{(v)}, o^{(v)}),$$

244 where N_v is the node type and variant, and $\alpha^{(v)}$ and $o^{(v)}$ denote the action sequence and its corre-
 245 sponding output. This fine-grained representation enables precise replay and transfer of tool execu-
 246 tion patterns across different sub-questions.

247 **Graph level.** For a workflow graph \mathcal{G}_i addressing sub-question μ_i , we store

$$248 \quad M_i^{graph} = (G_i, \mu_i, \gamma_i, \mathbf{n}_i, \{M_v^{node}\}_{v \in V(\mathcal{G}_i)}),$$

249 where G_i is the textual representation of \mathcal{G}_i , $\gamma_i \in \{0, 1\}$ is a success indicator, and $\mathbf{n}_i \in \mathbb{N}^{|\mathcal{T}|}$ is a
 250 per-tool usage vector, with component $(\mathbf{n}_i)_\tau$ counting how many times tool $\tau \in \mathcal{T}$ was invoked in
 251 \mathcal{G}_i . By recording workflow structure, performance signals, and tool statistics, graph-level memory
 252 enables targeted reuse of effective strategies while avoiding over-reliance on fragile tool chains.

253 **Task level.** For a query Q_j we maintain:

$$254 \quad M_j^{task} = (Q_j, \xi_Q, \{M_i^{graph}\}_{i=1}^K),$$

255 where $\xi_Q \in \{0, 1\}$ indicates whether the task is successfully solved. It encapsulates the end-to-
 256 end problem context and its outcome, allowing direct recall of solved tasks and failures alike, and
 257 providing reliable signals that guide decomposition and workflow selection in future queries.

258 **Memory Retrieval Mechanism.** FlowSearcher flexibly retrieves and recomposes traces from its
 259 hierarchical memory to guide agentic search with prior experience. To support adaptive reuse
 260 of trajectories, we define a unified retrieval operator $\mathcal{R}(\cdot; \zeta)$ parameterized by retrieval level
 261 $\zeta \in \{\text{graph, node}\}$. Given a new query $(Q^*, \mu^*; \zeta)$, the operator selects the top- k relevant struc-
 262 tured traces from \mathcal{M} :

$$263 \quad \mathcal{R}(Q^*, \mu^*; \zeta) = \arg \underset{\substack{M^{task} \in \mathcal{M}, Q \in M^{task}, \\ M^\zeta \subseteq M^{task}, \mu \in M^\zeta}}{\text{top-}k} \left[\delta \frac{E(Q^*) \cdot E(Q)}{|E(Q^*)| |E(Q)|} + (1 - \delta) \frac{E(\mu^*) \cdot E(\mu)}{|E(\mu^*)| |E(\mu)|} \right]. \quad (3)$$

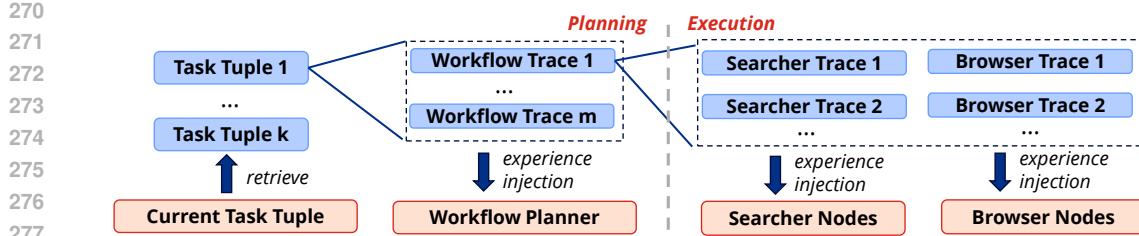


Figure 3: FlowSearcher’s structured compositional memory enables the co-optimization of workflow synthesis and execution. Retrieved *task*-level tuples surface high-value workflow traces that shape the global DAG structure (“planning”), while *graph*- and *node*-level traces inject fine-grained procedural knowledge into searcher and browser nodes (“execution”).

where $E(\cdot)$ denotes the textual embedding and δ is a factor balancing between similarities of the original question and the sub-question. Finally, depending on the retrieval level ζ , each entry is flexibly expanded within the hierarchical memory, yielding the enriched set: $\mathcal{R}(Q^*, \mu^*; \zeta) \oplus \{M_i^\zeta\}$. This flexible retrieval mechanism allows FlowSearcher to ground future reasoning not only on relevant past queries, but also on useful insights extracted from targeted execution traces.

3.3 MEMORY-GUIDED AGENTIC WORKFLOW PLANNING

We present *memory-guided agentic workflow planning*, which aims to synthesize adaptive workflows as typed directed acyclic graphs (DAGs). In this formulation, decomposed sub-queries are handled by adaptive planning modules, while past execution traces are reused to refine and update these workflows, yielding workflows that are refined by experience at both orchestration and execution levels. Fig. 3 illustrates how FlowSearcher’s hierarchical memory supports this process: workflow-level traces guide high-level DAG synthesis, whereas searcher- and browser-level traces effectively refine node behaviors and execution strategies.

At each step i , the orchestrator must not only generate a valid workflow, but also adapt its structure to the evolving query context. Formally, to handle sub-question μ_i , it constructs a typed workflow graph as:

$$\text{orchestrator}(Q, \mu_i, \Gamma_{<i}, \mathcal{B}, \theta_{\mathcal{G}}) \xrightarrow{\mathcal{M}_{i-1}} \mathcal{G}_i(\mathcal{V}_{[\tau, \theta, l]}, \mathcal{E}_{[\rho]}), \quad (4)$$

$$\mathcal{V} \subseteq \mathcal{B}, \quad \mathcal{E} \subseteq \mathcal{V} \times \mathcal{V} \text{ s.t. } (u, v) \in \rho \quad \forall (u, v) \in \mathcal{E}.$$

Here, $\mathcal{V}_{[\tau, \theta, l]}$ denotes typed nodes parameterized by an available tool τ , prompt schema θ , and backbone model l ; $\mathcal{E}_{[\rho]}$ are admissible edges constrained by the web grammar ρ , and \mathcal{B} is the pre-defined set of building blocks. Crucially, the construction of \mathcal{G}_i binds the query Q , current sub-question μ_i , the previous trajectory $\Gamma_{<i}$, and memory \mathcal{M}_{i-1} . This makes each workflow not just a static composition, but an *experience-driven program* that evolves with context.

Experience-Guided Workflow Orchestration. Retrieved graph-level traces inject prior experience into orchestration, exposing both successful and failed strategies, tool-usage statistics, and graph topologies. Formally,

$$\tilde{\mathcal{M}}_{\mathcal{G}} = R_{\mathcal{G}}(Q^*, \mu^*), \quad \xi_{\mathcal{G}} = I_{\mathcal{G}}(\tilde{\mathcal{M}}_{\mathcal{G}}, Q^*, \mu^*), \quad \mathcal{G}^* = \text{orchestrator}(\theta_{\mathcal{G}} \oplus \xi_{\mathcal{G}}). \quad (5)$$

Here $\tilde{\mathcal{M}}_{\mathcal{G}} = \{\mathcal{G}, \gamma, \mathbf{n}^k\}_{1..K}$ denotes the retrieved graph-level traces, each containing the workflow structure \mathcal{G} , its success indicator γ , and tool-usage statistics \mathbf{n}^k . These traces are expanded into full execution records and distilled by the orchestration instructor $I_{\mathcal{G}}$ into concise insights $\xi_{\mathcal{G}}$, which are then injected into the orchestration prompt $\theta_{\mathcal{G}}$. As a result, the workflow \mathcal{G}^* is not a static composition, but one shaped by prior evidence: by contrasting successful and unsuccessful workflows, FlowSearcher uncovers structural patterns that guide effective design choices, while tool-usage statistics across topologies reveal how efficiency scales with structure. These insights ground orchestration in empirical evidence, making it adaptive, resource-aware, and systematically refined by past executions.

324 **Experience-Guided Workflow Execution.** We formalize the node-level memory-enhanced ex-
 325 ecution process as equation 6:
 326

$$327 \quad \tilde{M}_v = \mathcal{R}_v(Q^*, \mu^*), \quad \xi_v = I_v(\tilde{M}_v, \mathcal{G}^*, Q^*, \mu^*), \quad (\alpha^*, o^*) = \text{execute}(\theta_v \oplus \xi_v, \tau_v). \quad (6)$$

329 The retrieved traces, $\tilde{M}_v = \{N, (\alpha, o)\}_{1..K}$, expand into execution logs that capture node config-
 330 uration N , action sequences α , and their outcomes o . Distilled by the node instructor I_v , these traces
 331 yield execution insights ξ_v , which are injected into the node prompt θ_v to guide the next action
 332 sequence (α^*, o^*) .

333 Beyond replay, these traces enable *node-type specialization*, refining execution strategies for roles
 334 such as retrieval, parsing, or tool invocation. They also support *cross-query transfer*, allowing new
 335 tasks to inherit behaviors from structurally similar nodes. Crucially, the workflow graph \mathcal{G}^* provides
 336 the scaffold for structure, while node-level memory drives local behavioral refinement. This divi-
 337 sion localizes and mitigates errors at the node level, while improving robustness over long-horizon
 338 workflow executions.

339 Together with orchestration, this node-level adaptation achieves the *co-optimization of workflow*
 340 *planning and execution*, ensuring workflows evolve holistically with both structural and behav-
 341 ioral guidance. Beyond conventional rigid workflows that are statically designed and replayed,
 342 FlowSearcher enables adaptive strategies that scale to diverse tasks and promotes transfer across
 343 queries by grounding decisions in accumulated experience. To the best of our knowledge,
 344 FlowSearcher is the first framework to realize such experience-driven agentic workflow planning.

346 4 EXPERIMENTS

348 4.1 EXPERIMENT SETUP

350 **Tasks and Benchmarks.** We evaluate **FlowSearcher** on three challenging benchmarks:
 351 **GAIA**: (Mialon et al., 2023) A benchmark testing AI models’ ability as general assistants with three
 352 levels of difficulty, we used 103 text-only questions to evaluate our system’s complex information
 353 retrieval and reasoning abilities; **BrowseComp**: (Wei et al., 2025) A benchmark for browsing agents
 354 consisting of “hard to solve yet easy to verify” questions across topics like Art, History, etc.; **GPQA**-
 355 **Diamond**: (Rein et al., 2023) A graduate-level Google-proof benchmarks of multi-choice questions
 356 across three domains: Physics, Biology, and Chemistry. We chose the Diamond subset as our test
 357 set, which consists of questions experts can answer correctly but non-experts rarely.

358 **Baselines.** We compare **FlowSearcher** with three types of baselines: (1) Vanilla LLMs with no
 359 agency: under this category, we tested two variants: Base LLMs with no access to search tools
 360 and LLMs incorporated with standard RAG which retrieved top-10 relevant documents from search
 361 engines as references before generating answers. (2) Close-sourced proprietary framework: We
 362 chose OpenAI Deep Research (OpenAI, 2025b) as an example of commercial solution. Notably,
 363 we exclude it from our quantitative comparisons because its full methodology, training setup, and
 364 evaluation pipeline are not publicly available, making results non-reproducible. (3) Existing agentic
 365 frameworks (particularly ReAct-style): including Vanilla ReAct, WebThinker (Li et al., 2025d),
 366 WebDancer (Wu et al., 2025a), and Search-o1 (Li et al., 2025c).

367 **Implementation Details.** We utilized a variety of LLM backbones including both open-sourced
 368 models (Qwen3-32B, Qwen2.5-32B, QwQ-32B (Yang et al., 2025; Owen et al., 2025)) and close-
 369 sourced models (GPT-4o-mini (OpenAI, 2024)). We used SerpAPI¹ to enable web search and the
 370 Jina Reader API² for browsing capabilities. For each query initiated by the agents, we retrieved the
 371 top 10 results from the respective search tool. We provide details of prompts and data schemas as
 372 per Appendix C.

373 4.2 BENCHMARK EVALUATION RESULTS

375 We present benchmark evaluation results in Table I.

377 ¹<https://serpapi.com/>

²<https://jina.ai/reader/>

378 Table 1: Performance comparisons on three benchmarks. We report Pass@1 metric on all tasks. The
 379 best results are highlighted in **bold** and the first runner-ups are underlined. Results from OpenAI’s
 380 Deep Research are presented in gray for reference.

382 Backbone	383 Framework	GAIA				GPQA-Diamond				BrowseComp		
		384 Level 1	385 Level 2	386 Level 3	387 Avg.	388 Phy.	389 Chem.	390 Bio.	391 Avg.	392 Art	393 His.	394 Avg.
<i>No Agency</i>												
384 Qwen-2.5-32B	385 Base	20.5	9.6	8.3	13.1	52.3	30.1	68.4	43.4	0.0	0.0	0.0
	RAG	20.3	11.8	6.3	13.0	64.0	41.9	57.9	53.0	0.0	0.0	0.0
386 Qwen-2.5-72B	387 Base	20.5	13.5	6.0	13.4	58.1	39.8	57.9	49.5	0.0	0.0	0.0
	GPT-4o	23.1	15.4	8.3	15.6	62.8	46.2	68.4	55.6	0.8	0.8	0.8
388 QwQ-32B	389 Base	30.8	15.6	6.7	17.7	84.8	44.1	68.4	64.1	0.0	0.0	0.0
	RAG	33.3	25.0	0.0	19.4	84.9	45.2	73.7	65.2	0.0	0.0	0.0
390 DeepSeek-R1-671B	391 Base	43.6	26.9	8.3	31.1	90.7	<u>57.0</u>	84.2	74.2	0.0	0.0	0.0
<i>Close-Sourced Agentic Frameworks</i>												
392 OpenAI DR		74.3	69.1	47.6	67.4	-	-	-	-	-	-	51.5
<i>ReAct Agentic Frameworks</i>												
393 Qwen-2.5-32B	394 Vanilla ReAct	46.1	26.9	0.0	31.0	64.0	41.9	57.9	53.0	0.0	0.0	0.0
	WebDancer	46.1	44.2	8.3	40.7	-	-	-	-	-	-	-
395 QwQ-32B	396 Vanilla ReAct	48.7	34.6	16.6	37.8	76.7	46.2	68.4	61.6	0.8	0.0	0.4
	Search-ol	61.5	50.0	25.0	51.5	77.9	47.3	78.9	63.6	1.6	2.4	1.9
397 QwQ-32B	398 WebThinker-Base	53.8	44.2	16.7	44.7	<u>87.2</u>	<u>51.6</u>	68.4	68.7	2.4	2.4	2.3
	399 WebThinker-RL	56.4	50.0	<u>16.7</u>	48.5	90.7	50.5	78.9	70.7	2.4	3.1	2.7
400 QwQ-32B	401 WebDancer	61.5	50.0	25.0	51.5	-	-	-	-	-	-	3.8
	402 DeepSeek-R1-671B	403	<i>Ours</i>				<i>Ours</i>					
404 Qwen-2.5-32B	405 FlowSearcher	61.5	46.2	<u>16.7</u>	48.5	72.0	47.3	68.4	60.1	5.5	5.6	5.6
406 Qwen-3-32B	407 FlowSearcher	69.2	<u>53.8</u>	<u>16.7</u>	<u>55.3</u>	<u>87.2</u>	48.4	<u>78.9</u>	68.2	8.7	8.0	8.1
408 QwQ-32B	409 FlowSearcher	<u>66.7</u>	57.7	<u>16.7</u>	56.3	90.7	<u>51.6</u>	<u>78.9</u>	71.2	7.9	7.2	8.0
410 GPT-4o-mini	411 FlowSearcher	<u>66.7</u>	<u>53.8</u>	25.0	<u>55.3</u>	81.4	49.5	73.7	65.7	11.0	12.0	11.8

402 **ReAct-style agents do provide noticeable gains.** For instance, vanilla ReAct boosts Qwen2.5-32B’s
 403 GAIA score by **+25.8** over standard RAG. However, their rigid step-wise structure limits further
 404 improvement. Even with reinforcement learning, progress quickly plateaus: WebThinker-RL im-
 405 proves over WebThinker-Base by only **+3.8** on GAIA, **+2.0** on GPQA, and a negligible **+0.2** on
 406 BrowseComp, despite the heavy cost of dataset construction and training. These results reveal a
 407 core constraint: *fine-tuning alone cannot overcome the structural bottlenecks of linear ReAct-style*
 408 *search.*

409 In contrast, **FlowSearcher** avoids these limitations through dynamic, memory-guided workflow syn-
 410 thesis. Without any supervised fine-tuning, it consistently outperforms comparably scaled agentic
 411 baselines. With a QwQ-32B backbone, FlowSearcher surpasses WebDancer by **+4.8** on GAIA and
 412 **+4.2** on BrowseComp. Its advantage becomes even clearer on BrowseComp, which stresses open-
 413 domain browsing and long-horizon reasoning: FlowSearcher achieves a further **+8.0%** improvement
 414 using a GPT-4o-mini backbone. On GPQA-Diamond, it reaches performance competitive with ad-
 415 vanced reasoning models such as DeepSeek-R1-671B.

416 These results illuminate two key insights: **(i) FlowSearcher’s structural flexibility enables it to**
 417 **adapt reasoning procedures to large, noisy, and unpredictable information spaces**, a capability
 418 that rigid ReAct-style workflows struggle to match. **(ii) FlowSearcher improves purely through**
 419 **experience-driven workflow planning, without relying on any fine-tuning pipeline.** This in-
 420 dependence makes the system practical, generalizable, and naturally self-refining: it continually
 421 strengthens its workflows directly from execution history. In open-domain knowledge environments,
 422 FlowSearcher simply has more strategic leverage to navigate diverse and unreliable sources of in-
 423 formation.

424 4.3 BLOCK USAGE

425 In this section, we evaluate the functional contributions of the pre-defined modules in
 426 **FlowSearcher**. We begin by analyzing block usage on the GAIA benchmark with the GPT-4o-
 427 mini backbone, verifying that the workflow orchestrator assigns each block to tasks aligned with its
 428 intended role.

429 The block usage across GAIA’s three levels is shown in Fig. 4. Our key observations are:

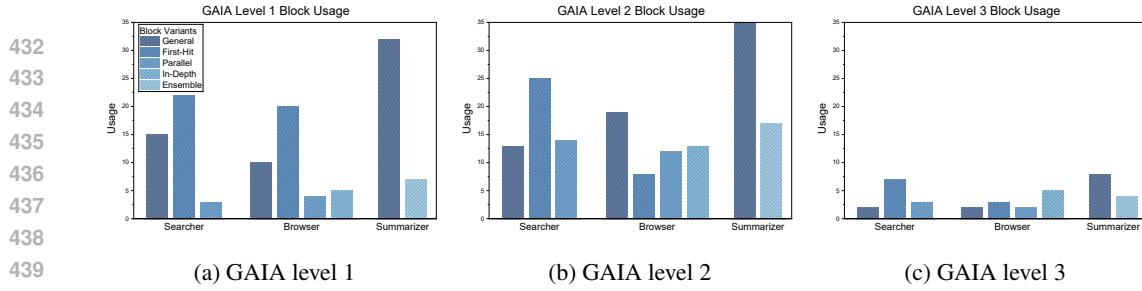


Figure 4: Usage of each block variant on GAIA evaluation tests with GPT-4o-mini backbone. The distribution highlights how the orchestrator assigns blocks in alignment with their intended roles, with deeper browser variants increasingly favored at higher task levels.

Searcher block usage patterns are largely consistent across levels. Among the variants, the first-hit searcher dominates at all levels, reflecting that most sub-steps involve quick look-ups. However, parallel searchers appear more frequently in Levels 2 and 3, capturing the added complexity of harder problems.

Browser block usage varies significantly. At Level 1, the first-hit browser was dominant, often paired with first-hit searchers for simple fact-checking. In contrast, usage of the in-depth browser rose sharply at higher levels, becoming the most frequently used at Level 3. This indicates that more complex tasks at Levels 2 and 3 required deeper web navigation and interaction with webpages.

Summarizer block usage is the most stable. Between the two summarizer variants, the general summarizer was consistently more common than the ensemble summarizer across all levels. Nonetheless, a slight increase in ensemble summarizer usage was observed at Levels 2 and 3 compared to Level 1.

These studies reveal that **FlowSearcher** adapts its strategies to the blocks at hand, shifting from quick look-ups to deeper browsing when searchers are limited, or leaning on summarization when browsing capacity is reduced. Crucially, even with a smaller toolset, the system reorganizes workflows to sustain performance, underscoring its adaptability and robustness under constrained searching conditions.

4.4 ABLATION STUDY

In this section, we conduct ablation studies that probe the internal mechanics of FlowSearcher by independently scaling its two core modules: (a) **block library**, which governs the expressiveness of workflow synthesis; (b) **hierarchical memory**, which governs experience-driven refinement.

4.4.1 IMPACT OF SCALING THE BUILDING BLOCK LIBRARY

For analyzing the effects of scaling blocks, we conducted three groups of controlled experiments on GAIA with GPT-4o-mini backbone, where the set of available blocks was configured following three settings:

First-Hit Only. In this condition, the searcher and browser modules are restricted to their first-hit variants. Accordingly, the system is permitted to perform only a single search query at a time, and the browsing process terminates immediately once the first relevant piece of information is retrieved.

First-Hit + General. In this condition, the range of available modules is expanded to include both the general and first-hit variants of the searcher and browser. The system may therefore issue up to five search queries and aggregate their results, and it may browse up to ten distinct webpages while extracting relevant information. However, the system can't conduct in-depth browsing, which means they cannot click links on pages and perform web navigation tasks.

No Limitations. In this condition, the orchestrator operates without any restrictions on module selection. All block types are available, and the system may employ them without predefined limits. This represents the default, unconstrained configuration, supporting the broadest possible range of retrieval strategies.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 2: Performance on different sets of block options (with increasing system-level flexibility). Results show that broader block availability consistently enables more diverse strategies and delivers higher performance.

Block Option	GAIA			
	Level 1	Level 2	Level 3	Avg.
First-Hit only	35.9	26.9	0.0	27.2
First-Hit + General	41.0	36.5	8.3	35.0
No limitations	66.7	53.8	25.0	55.3

The results (Table 2) show a clear progression. The *first-hit only* condition struggled due to its rigid constraints. Adding general blocks yielded a moderate gain of **+7.8%**, while lifting all restrictions produced a substantial **+20.3%** improvement. These numbers underscore a simple truth: limiting core building blocks narrows workflow flexibility, whereas expanding the available toolkit unlocks richer, more effective execution patterns, mirroring real-life web search, where diverse strategies are often required, much like how humans adapt their browsing behavior to the task at hand.

4.4.2 IMPACT OF MEMORY COMPOSITION

In this section, we conducted four groups of controlled experiments to study the impact of utilizing different memory composition: **(i) No Memory**: FlowSearcher synthesizes and executes workflows with no memory retrieval and experience injection in this settings; **(ii) Full Memory**: FlowSearcher synthesizes and executes workflows while recording and utilizing all past traces; **(iii) Only Successful Memory**: Only successful episodes are recorded and retrieved; **(iv) Only Unsuccessful Memory**: Only unsuccessful episodes are recorded and retrieved.

We shuffled GAIA’s 103 tasks in order to observe the unbiased trend shown in Table 3. We inferred from the results that: (a) **Successful-only memory yields the fastest early-stage gains** because it reinforces high-quality positive patterns without noise; (b) **Full memory eventually overtakes all others**, as combining successful and unsuccessful traces enables stronger long-term correction and generalization; (c) **No-memory and unsuccessful-only strategies improve far more slowly**, highlighting the importance of structured experience reuse for continual self-improvement.

5 CONCLUSION

In this work, we introduced **FlowSearcher**, a framework that redefines web information seeking through experience-driven agentic workflows. Rather than relying on reactive tool-use, FlowSearcher constructs and optimizes full workflow graphs, supported by a structured memory that retrieves and adapts past trajectories across tasks. These reusable traces directly inform both workflow orchestration and execution, enabling FlowSearcher to achieve consistent and sizable gains over strong baselines on three challenging benchmarks. Beyond empirical results, our findings highlight a broader insight: **memory-driven workflow design can unlock improvements on par with, and in some cases exceeding, those achieved through conventional fine-tuning**. This suggests a promising direction for future agent systems. Looking forward, we aim to enrich FlowSearcher’s memory with finer-grained patterns and distilled abstractions, and to extend its workflow representations with more expressive structures, moving toward agents that are increasingly adaptive, transferable, and self-improving.

540 **6 REPRODUCIBILITY STATEMENT**

541

542 To ensure the reproducibility and transparency of our research findings, all evaluations were con-
 543 ducted using publicly available benchmarks: GAIA (General AI Assistant benchmark)³, GPQA-
 544 Diamond (Graduate-level Google-Proof Q&A benchmark)⁴, and BrowseComp (Web browsing and
 545 comprehension benchmark)⁵. These datasets are openly accessible to the research community, en-
 546 abling replication of our experimental conditions. Environment setting scripts, benchmark repro-
 547 ducing scripts (testing and evaluation) are provided as per in the Supplementary Materials. Com-
 548 prehensive implementation details are provided in the Appendix. This documentation, combined
 549 with the standardized nature of the public benchmarks, ensures that our work can be independently
 550 reproduced and validated by the research community.

551

552 **REFERENCES**

553

- 554 Huan ang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong
 555 Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, Hongru Wang, Han Xiao, Yuhang Zhou, Shaokun Zhang,
 556 Jiayi Zhang, Jinyu Xiang, Yixiong Fang, Qiwen Zhao, Dongrui Liu, Qihan Ren, Cheng Qian,
 557 Zhenhailong Wang, Minda Hu, Huazheng Wang, Qingyun Wu, Heng Ji, and Mengdi Wang. A
 558 survey of self-evolving agents: On path to artificial super intelligence, 2025. URL <https://arxiv.org/abs/2507.21046>.
- 559
- 560 Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
 561 production-ready ai agents with scalable long-term memory, 2025. URL <https://arxiv.org/abs/2504.19413>.
- 562
- 563 Gheorghe Comanici, Emile Bieber, et al. Gemini 2.5: Pushing the frontier with advanced rea-
 564 soning, multimodality, long context, and next generation agentic capabilities. *arXiv preprint*
 565 *arXiv:2507.06261*, 2025. URL <https://arxiv.org/abs/2507.06261>.
- 566
- 567 Google. Gemini deep research — your personal research assistant, 2024. URL <https://gemini.google/overview/deep-research/>. Accessed: 2025-08-25.
- 568
- 569 Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan
 570 Jin, Yingru Li, Qiguang Chen, Zeyu Zhang, Yifeng Wang, Qianshuo Ye, Bernard Ghanem, Ping
 571 Luo, and Guohao Li. Owl: Optimized workforce learning for general multi-agent assistance in
 572 real-world task automation, 2025. URL <https://arxiv.org/abs/2505.23885>.
- 573
- 574 Yuxuan Huang, Yihang Chen, Haozheng Zhang, Kang Li, Meng Fang, Linyi Yang, Xiaoguang Li,
 575 Lifeng Shang, Songcen Xu, Jianye Hao, et al. Deep research agents: A systematic examination
 576 and roadmap. *arXiv preprint arXiv:2506.18096*, 2025.
- 577
- 578 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 579 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 580 learning, 2025. URL <https://arxiv.org/abs/2503.09516>.
- 581
- 582 Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baix-
 583 uan Li, Zhengwei Tao, Xinyu Wang, Weizhou Shen, Junkai Zhang, Dingchu Zhang, Xixi Wu,
 584 Yong Jiang, Ming Yan, Pengjun Xie, Fei Huang, and Jingren Zhou. Websailor: Navigating super-
 585 human reasoning for web agent, 2025a. URL <https://arxiv.org/abs/2507.02592>.
- 586
- 587 Wenjun Li, Zhi Chen, Jingru Lin, Hannan Cao, Wei Han, Sheng Liang, Zhi Zhang, Kuicai Dong,
 588 Dexun Li, Chen Zhang, et al. Reinforcement learning foundations for deep research systems: A
 589 survey. *arXiv preprint arXiv:2509.06733*, 2025b.
- 590
- 591 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
 592 Zhiheng Dou. Search-o1: Agentic search-enhanced large reasoning models, 2025c. URL
 593 <https://arxiv.org/abs/2501.05366>.

594³<https://huggingface.co/gaia-benchmark>

595⁴<https://huggingface.co/datasets/Idavidrein/gpqa>

596⁵<https://openai.com/index/browsecomp/>

- 594 Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
 595 Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability,
 596 2025d. URL <https://arxiv.org/abs/2504.21776>.
- 597 Yangning Li, Yinghui Li, Xinyu Wang, Yong Jiang, Zhen Zhang, Xinran Zheng, Hui Wang, Hai-
 598 Tao Zheng, Pengjun Xie, Philip S. Yu, Fei Huang, and Jingren Zhou. Benchmarking multimodal
 599 retrieval augmented generation with dynamic vqa dataset and self-adaptive planning agent, 2024a.
 600 URL <https://arxiv.org/abs/2411.02937>.
- 601 Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Balaji Rama, Om Raheja, Hao Wang, He Zhu, and
 602 Yongfeng Zhang. AutoFlow: Automated workflow generation for large language model agents.
 603 *arXiv preprint arXiv:2407.12821*, 2024b.
- 604 Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
 605 Scialom. Gaia: a benchmark for general ai assistants, 2023. URL <https://arxiv.org/abs/2311.12983>.
- 606 OpenAI. Gpt-4o mini: Advancing cost-efficient intelligence, 2024. URL <https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/>.
- 607 OpenAI. Deep research system card, 2025a. URL <https://cdn.openai.com/deep-research-system-card.pdf>, Technical Report/System Documentation.
- 608 OpenAI. Introducing deep research, 2025b. URL <https://openai.com/index/introducing-deep-research/>. Accessed: 2025-08-25.
- 609 Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin
 610 Yao, Qihan Ren, Xun Jiang, et al. Alita: Generalist agent enabling scalable agentic reasoning
 611 with minimal predefinition and maximal self-evolution. *arXiv preprint arXiv:2505.20286*, 2025.
- 612 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 613 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 614 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 615 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 616 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 617 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 618 URL <https://arxiv.org/abs/2412.15115>.
- 619 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 620 Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
 621 benchmark, 2023. URL <https://arxiv.org/abs/2311.12022>.
- 622 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
 623 and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
 624 learning, 2025. URL <https://arxiv.org/abs/2503.05592>.
- 625 Jiabin Tang, Tianyu Fan, and Chao Huang. Autoagent: A fully-automated and zero-code framework
 626 for llm agents, 2025a. URL <https://arxiv.org/abs/2502.05957>.
- 627 Xiangru Tang, Tianrui Qin, Tianhao Peng, Ziyang Zhou, Daniel Shao, Tingting Du, Ximeng Wei,
 628 Peng Xia, Fang Wu, He Zhu, Ge Zhang, Jiaheng Liu, Xingyao Wang, Sirui Hong, Chenglin Wu,
 629 Hao Cheng, Chi Wang, and Wangchunshu Zhou. Agent kb: Leveraging cross-domain experience
 630 for agentic problem solving, 2025b. URL <https://arxiv.org/abs/2507.06229>.
- 631 Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li,
 632 Liwen Zhang, Xinyu Wang, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. Web-
 633 shaper: Agentically data synthesizing via information-seeking formalization, 2025. URL
 634 <https://arxiv.org/abs/2507.15061>.
- 635 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 636 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 637 challenging benchmark for browsing agents, 2025. URL <https://arxiv.org/abs/2504.12516>.

- 648 Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
 649 Zekun Xi, Gang Fu, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. Webdancer: Towards
 650 autonomous information seeking agency, 2025a. URL <https://arxiv.org/abs/2505.22648>.
- 652 Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang,
 653 Yulan He, Deyu Zhou, Pengjun Xie, and Fei Huang. WebWalker: Benchmarking LLMs in web
 654 traversal. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
 655 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
 656 (Volume 1: Long Papers)*, pp. 10290–10305, Vienna, Austria, jul 2025b. Association for Com-
 657 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.508. URL
 658 <https://aclanthology.org/2025.acl-long.508/>.
- 659 Zhitian Xie, Qintong Wu, Chengyue Yu, Chenyi Zhuang, and Jinjie Gu. Aworld: Dynamic
 660 multi-agent system with stable maneuvering for robust gaia problem solving. *arXiv preprint*
 661 *arXiv:2508.09889*, 2025.
- 663 Renjun Xu and Jingwen Peng. A comprehensive survey of deep research: Systems, methodologies,
 664 and applications, 2025. URL <https://arxiv.org/abs/2506.12594>.
- 665 Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, and Yongfeng Zhang. A-mem: Agentic
 666 memory for LLM agents. In *The Thirty-ninth Annual Conference on Neural Information Process-
 667 ing Systems*, 2025. URL <https://openreview.net/forum?id=FiM0M8gcct>.
- 669 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 670 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 671 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 672 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 673 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 674 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 675 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 676 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 677 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
- 678 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 679 React: Synergizing reasoning and acting in language models, 2023. URL <https://arxiv.org/abs/2210.03629>.
- 681 Guibin Zhang, Muxin Fu, Kun Wang, Guancheng Wan, Miao Yu, and Shuicheng YAN. G-memory:
 682 Tracing hierarchical memory for multi-agent systems. In *The Thirty-ninth Annual Conference on
 683 Neural Information Processing Systems*, 2025a. URL <https://openreview.net/forum?id=mmIAp3cVS0>.
- 685 Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xiong-Hui Chen, Jiaqi Chen, Mingchen
 686 Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
 687 Wu. AFlow: Automating agentic workflow generation. In *The Thirteenth International Confer-
 688 ence on Learning Representations*, 2025b. URL <https://openreview.net/forum?id=z5uVAKwmjf>.
- 691 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 692 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
 693 ments, 2025. URL <https://arxiv.org/abs/2504.03160>.
- 694
 695
 696
 697
 698
 699
 700
 701

702 **A DEFINITIONS AND NOTATIONS**
703704
705 The notations and definitions are presented in Table 4.
706707 Table 4: Notations and definitions used in the FlowSearcher methodology.
708

709 Notation	710 Definition
711 Q	712 The original query (main research question).
712 \hat{y}	713 The predicted answer aggregated from workflow executions.
713 μ_i	714 Sub-question at step i , decomposed from Q .
714 $\Gamma = \{\mu_i, \mathcal{G}_i\}$	715 Solution trajectory consisting of sub-questions and their workflow graphs.
715 \mathcal{G}_i	716 Workflow graph composed of building blocks (e.g., search, browse, summarize).
716 $v = (\alpha, o)$	717 Node representation: action sequence α and corresponding outputs o .
717 \mathcal{M}	718 Structured hierarchical memory storing past task, graph, and node traces.
718 θ_μ	719 Prompt for sub-question decomposition.
719 $\theta_\mathcal{G}$	720 Prompt for workflow synthesis.
720 $P(\Gamma \mid Q, \mathcal{M}_0)$	721 Probability of generating a trajectory given query Q and initial memory \mathcal{M}_0 .
721 $P(\alpha, o \mid \mu_i, \mathcal{M}_{i-1})$	722 Probability of node execution (action-output sequence) conditioned on sub-question and memory.

723 **B INFERENCE PROCESS**
724725 This section we are going to walk through a typical pipeline of solving a task by FlowSearcher.
726727 **B.1 HIGH LEVEL: NEXT SUB-QUESTION GENERATION AND MEMORY-GUIDED WORKFLOW
728 SYNTHESIS**
729730 **Sub-question generation and experience retrieval.** The inference procedure is organized in a
731 stepwise manner. At the beginning of each step, a sub-question is generated based on the aggregated
732 observations and the original query. To guide the orchestration, three entries from the execution log
733 are retrieved from memory. These logs are processed and passed to the instructor module, which
734 distills them into at most three concise and transferable experiences on workflow orchestration. The
735 resulting experiences are then incorporated into the orchestrator prompt.
736737 **Workflow graph orchestration and validation.** Once the workflow graph, represented in YAML,
738 is orchestrated, the system’s graph validation module is invoked to verify whether the generated
739 graph is valid (see Section C.2). If validation fails, the orchestrator is prompted to regenerate the
740 graph using the provided error message.
741742 **Conversion to executable code.** After a valid workflow is obtained, the converter module translates
743 the YAML graph specification into executable Python files.
744745 **Workspace creation.** Finally, a workspace folder is created, into which all relevant files are stored,
746 including the pre-execution metadata (original question, current sub-question, aggregated observa-
747 tions, and tool-call details), the YAML configuration file, and the generated executables.
748749 A high-level process demonstration is presented in Algorithm 1.
750

756
757
758
759
760
761
762
763
764
765
766

Algorithm 1 FlowSearcher High-Level Inference Process

800
801
802
803
804
805
806
807
808
809

810 B.2 LOW LEVEL: MEMORY-GUIDED WORKFLOW EXECUTION
811812 **Execution of Searcher Blocks.** Searcher blocks are responsible for generating search keywords,
813 performing searches, and selecting relevant search results. URLs from the selected results are passed
814 directly to the browser blocks for further processing.815 **Execution of Browser Blocks.** Browser blocks navigate the webpages provided by the searcher
816 blocks and extract information from them. In the case of in-depth browsing, additional links on the
817 page are also collected. All extracted content is organized as a list of references, each containing the
818 original information and its source URL.819 **Execution of Summarizer Blocks.** Summarizer blocks select the most relevant references and
820 produce a concise summary that addresses the current sub-question and contributes to the overall
821 answer. The updated summary is then stored for subsequent use.822
823 **Verification Process**

- 824
-
- 825 1.
- Sub-question Verification:**
- Check if the current sub-question has been successfully ad-
-
- 826 dressed.
-
- 827 • If verification fails, repeat the workflow until conditions are met.
-
- 828 2.
- Final Verification:**
- If the sub-question is verified, determine whether the original question
-
- 829 can now be answered:
-
- 830 • If yes, activate the aggregation module to produce the final answer.
-
- 831 • If no, generate the next sub-question and continue the high-level control flow.
-
- 832

833 We present the low-level process as shown in Algorithm 2.

834
835 **Algorithm 2** FlowSearcher Low-Level Workflow Execution836 1: **procedure** EXECUTEWORKFLOW(Q_{sub} , F_{exec} , O)
837 2: **repeat**
838 — **Block Execution** —
839 3: **Searcher Blocks:** Generate keywords, perform search, and select results (URLs).
840 4: **Browser Blocks:** Navigate URLs, extract content, and organize as references.
841 5: **Summarizer Blocks:** Select relevant references and generate a summary for Q_{sub} .
842 6: Store the new summary and references in the aggregated observations O .
843 — **Sub-question Verification** —
844 7: Check if Q_{sub} has been successfully addressed by the generated summary.
845 8: **until** Q_{sub} is addressed
846 9: **end procedure**847 B.3 EXECUTION AND RESULT AGGREGATION
848849 When the accumulated summary and references pass the final verification stage, the **finalizer block**
850 is invoked to derive a concise answer to the original query. The finalizer operates in two steps. First,
851 it identifies the subset of references most relevant to the query and verifies the factual consistency
852 between these references and the constructed summary. Subsequently, it reasons over the verified
853 portion of the summary and synthesizes a concise, accurate answer.854
855 C IMPLEMENTATION DETAILS
856857 **FlowSearcher** is implemented through Langgraph⁶. In this section, we present the implementation
858 details of **FlowSearcher**.
859860 C.1 BUILDING BLOCKS
861862 In **FlowSearcher**, building blocks are categorized into these types:
8636⁶<https://www.langchain.com/langgraph>

- 864 1. **Searcher:** Responsible for retrieving relevant information from external sources, such as databases,
 865 search engines, or knowledge bases, based on the current query or sub-question. It provides the raw
 866 material for further reasoning and analysis.
- 867 2. **Browser:** Navigates through the retrieved resources to extract structured and unstructured information.
 868 The browser interprets web pages, documents, or other content, and transforms them into a
 869 form usable by downstream modules.
- 870 3. **Summarizer:** Condenses the collected information into concise, coherent summaries. It filters out
 871 irrelevant details, highlights key points, and prepares the content for verification and higher-level
 872 reasoning.
- 873 4. **Verifier:** Checks the factuality and consistency of the summarized content against the original
 874 sources or cross-references. It ensures that the information used for reasoning is accurate and trust-
 875 worthy.
- 876 5. **Finalizer:** Integrates verified information to produce a coherent and concise answer to the main
 877 query. The finalizer synthesizes evidence from multiple sources and ensures that the resulting answer
 878 is accurate, complete, and well-structured.
- 879 6. **Thinker:** Performs high-level reasoning and problem-solving. It can generate sub-questions, plan
 880 multi-step workflows, and determine which tools or blocks should be invoked to solve complex
 881 tasks.

883 Now we are presenting the two most important functional block types: Searcher and Browser.

885 C.1.1 SEARCHER-TYPE BLOCKS

886 The searcher blocks receive the original question (`OverallState.messages[0].content`)
 887 and the current_summary (`OverallState.current_summary`) as input. Upon completion of
 888 their execution, all fields within `SearcherState` are updated to reflect the results of the search
 889 process. The state structure is demonstrated in [C.4](#).

891 **General Searcher** first generates up to 5 search queries, performs a search and collects search
 892 results for each query. The prompts for generating search queries and collecting search results for
 893 each query are as follows:

894 Search Query Generation Prompt

895 You are a query writer agent that operates in a workflow that solves a question step by step.

896 You are given:

- 897 - The main question
- 898 - The sub-goal of the current step
- 899 - Some used keywords or phrases used in the previous searches
- 900 - A summary containing current found information

901 ****Your tasks:****

- 902 - The current summary (if provided) fails to reach the sub-goal
- 903 - Output some keywords or phrases that have the potential to find other useful information
- 904 outside of the current summary and related to the sub-goal
- 905 - Don't output more than {query_count} keywords or phrases

906 ****Extra notes:****

- 907 - If no used keywords and summary provided, that means you need to think about the first
- 908 keywords to search
- 909 - The current date is ****current_date****, be careful when it's necessary to specify time in the
- 910 search keywords
- 911 experiences

912 —

913 **Main question:**

914 {original_question}

915 **Sub-goal:**

```

918
919 {sub_question}
920 Used search queries:
921 {used_search_keywords_and_phrases}
922 Current summary:
923 {current_summary}
924
925
926
927

```

Search Result Selection Prompt

You are a search result selection agent that operates in a workflow that solves a question step by step.

You are given:

- The main question
- The sub-goal of the current step
- Search results obtained by searching for {query}

Your tasks:

- Select relevant search results and only output their URLs and snippets
- If no relevant search results provided, output an empty list
- The current date is **{current_date}**, be careful when the question requires updated information

{experiences}

—

Main question:

{original_question}

Sub-goal:

{sub_question}

Search results:

{search_results}

First-Hit Searcher only generates one search query and performs one search, the search result selection process is the same as General Searcher. The query generation prompt is as follows:

Goal Break-Down Prompt

You are a query writer agent that operates in a workflow that solves a question step by step.

You are given:

- The main question
- The sub-goal of the current step
- Some used keywords or phrases used in the previous searches
- A summary containing current found information

Your tasks:

- The current summary (if provided) fails to answer the sub-goal
- Output one search query that has the potential to find other useful information outside of the current summary and related to the sub-goal

Extra notes:

- If no used keywords and summary provided, that means you need to think about the first keyword to search
- The current date is **{current_date}**, be careful when it's necessary to specify time in the search keyword

```

972
973 {experiences}
974
975
976 Main question:
977 {original_question}
978 Sub-goal:
979 {sub_question}
980 Used search queries:
981 {used_search_keywords_and_phrases}
982 Current summary:
983 {current_summary}
984
985
986

```

Parallel Searcher. Specifically, given a sub-goal, the block first decomposes it into a structured list of finer-grained goals that can each be independently addressed. For every goal, the block automatically generates one or more search queries tailored to the goal’s intent and retrieves the corresponding candidate results. To ensure consistency and reliability, all retrieved outputs are subsequently processed through a unified result selection procedure that ranks, filters, and consolidates the candidate results into a coherent evidence set. This design enables the block to operate as a self-contained unit that bridges abstract sub-goals with concrete, high-quality information.

Break-down Goal Prompt

You are a helper agent breaking down a goal into a list of ready-to-search sub-goals that operates in a workflow that solves a question step by step. The workflow is solving the question using a search engine.

You are given:

- The main question
 - The sub-goal of the current step
- **Your tasks:**
- Break down the current sub-goal into a list of ready-to-search sub-goals
 - If the sub-goal is already specific enough to conduct a search on it, just output the sub-goal as a single item in the list
 - The current date is **{current_date}**, be careful when the question requires updated information

—

Main question:

{question}

Sub-goal:

{sub_goal}

—

Example:

Main question: "Help me find a character who constantly breaks the fourth wall and has a backstory of being saved by an ascetic"

Sub-goal: "Find which characters from this list have a backstory of being saved by an ascetic: A, B, C, D, E"

List of ready-to-search sub-goals:

- "Find A's backstory and determine if A is saved by an ascetic",
- "Find B's backstory and determine if B is saved by an ascetic",
- "Find C's backstory and determine if C is saved by an ascetic",
- "Find D's backstory and determine if D is saved by an ascetic",
- "Find E's backstory and determine if E is saved by an ascetic"

1026 C.1.2 BROWSER-TYPE BLOCKS
10271028 The browser blocks receive search results from the orchestrated searcher blocks, visit the URLs, and
1029 extract relevant information. Webpage content is split into chunks, and at each step, browser blocks
1030 must decide whether to continue visiting the next chunk.1031 **General Browser.** The general browser block selects up to five URLs and sequentially extracts
1032 information from each page it visits.
10331034 URL Selection Prompt
10351036 You are an agent that selects next relevant URLs to browse when solving a question step by
1037 step.

1038 You are given:

- 1039
- The main question
 - The sub-goal of the current step
 - A list of URLs and their snippets
- 1040

1041 ****Your tasks:****

- 1042
- Check through the list of URLs and their snippets and determine what kind of information is
1043 being provided relevant to the sub-goal
 - Select the URLs that have the potential to provide useful information relevant to the sub-goal,
1044 you can select them all if you think they are all relevant
 - The current date is ****{current_date}****, be careful when the question requires updated infor-
1045 mation
- 1046

1047 ****Extra notes:****

- 1048
- ****CRITICAL:** Pay close attention to specific requirements in the question** (e.g., "official
1049 script", "official website", "primary source", "government data", etc.)
 - ****Prioritize URLs that match the specific source requirements mentioned in the question****
 - If the question asks for "official" sources, prioritize URLs from official organizations, gov-
1050 ernment sites, or primary sources over fan sites, transcripts, or secondary sources
- 1051

1052 ****Source Priority Guidelines:****

- 1053
- Official/Primary sources: Government sites (.gov), official organization websites, original
1054 publishers, etc.
 - Secondary sources: News sites, academic sites, established databases
 - Tertiary sources: Fan sites, transcripts, wikis, forums (use only if no better sources available)
1055 {experiences} —
- 1056

1057 **Main question:**1058 {original_question} **Sub-goal:**1059 {sub_question} **List of URLs and their snippets:**

1060 {list_of_urls_and_snippets}

1061

1062 Information Extraction Prompt
10631064 You are an information extractor agent that operates in a workflow that solves a question step
1065 by step.

1066 You are given:

- 1067
- The main question
 - The sub-goal of the current step
 - Part of the content of a webpage, you will be given the number of parts and the index of the
1068 current part
- 1069

1070 ****Your tasks:****

- 1071
- Extract ONLY information that is directly relevant to answering the sub-goal or the main
1072 question
 - Be selective and focused - avoid extracting tangential information like version histories, con-
1073 tributor lists, or general background unless specifically needed
- 1074

1080
 1081 - The current date is `**{current_date}**`, be careful when the question requires updated information
 1082
 1083 ****What NOT to extract:****
 1084 - Version histories or release notes unless the question specifically asks about versions
 1085 - Contributor lists or acknowledgments unless the question asks about contributors
 1086 - General background information that doesn't directly relate to the question
 1087 - Marketing content, testimonials, or promotional material
 1088 - Navigation elements, headers, footers, or UI text
 1089 - Repeated information that has already been captured
 1090
 1091 —
 1092 Main question:
 1093 `{original_question}` Sub-goal:
 1094 `{sub_question}` Webpage content:
 1095 `{webpage_content}`

1096
 1097 **First-Hit Browser.** The first-hit browser block selects the single most reliable URL and stops immediately after retrieving the relevant information.
 1099

1100
 1101 **First-hit Information Extraction Prompt**

1102
 1103 You are an information extractor agent that operates in a workflow that solves a question step by step.
 1104
 1105 You are given:
 1106 - The main question
 1107 - The sub-goal of the current step
 1108 - Part of the content of a webpage, you will be given the number of parts and the index of the current part
 1109 ****Your task:****
 1110 - Browse through the webpage content and look for the information that contains the answer to the sub-goal or the original question
 1111 - Extract that information ****in its ORIGINAL FORM, don't paraphrase or modify the information****
 1112 - When you can't find the information from the current part, decide whether you should continue browsing the next part of the webpage
 1113 - The current date is `**{current_date}**`, be careful when the question requires updated information
 1114
 1115 ****Extra notes:****
 1116 - If no information founded, leave the information field as """
 1117 - Make sure the answer can be clearly extracted from the information without any ambiguity
 1118 — Main question:
 1119
 1120 `{original_question}` Sub-goal:
 1121 `{sub_question}` Webpage content:
 1122 `{webpage_content_part}`

1123
 1124 **Parallel Browser.** The parallel browser block visits all URLs returned by the current search results concurrently. It uses the same prompts as General Browser with multi-threading.
 1125

1126
 1127 **In-depth Browser.** The in-depth browser block selects up to three root URLs, extracts both relevant URLs and information from each page, maintains a queue of discovered pages, and continues visiting until the queue is empty or a predefined visit limit is reached.
 1128
 1129
 1130
 1131
 1132
 1133

1134 Root URL Selection Prompt
 1135
 1136 You are a helper agent that selects the root URLs to browse when solving a question step by
 1137 step.
 1138 You are given:
 1139 - A question
 1140 - The sub-goal of the current step
 1141 - A list of URLs and their snippets
 1142 ****Your tasks:****
 1143 - Select the root URLs that potentially have tabs and buttons to direct to pages with useful in-
 1144 formation relevant to the sub-goal
 1145 - If you think some URLs directly provide the information you need, you can also select them
 1146 - The current date is ****{current_date}****, be careful when the question requires updated infor-
 1147 mation ****Extra notes:****
 1148 - ****CRITICAL:** Pay close attention to specific requirements in the question** (e.g., "official
 1149 script", "official website", "primary source", "government data", etc.)
 1150 - ****Prioritize URLs that match the specific source requirements mentioned in the question****
 1151 - If the question asks for "official" sources, prioritize URLs from official organizations, gov-
 1152 ernment sites, or primary sources over fan sites, transcripts, or secondary sources
 1153
 1154 {experiences} —
 1155 Question:
 1156 {question} Sub-goal:
 1157 {sub_goal} List of URLs and their snippets:
 1158 {list_of_urls_and_snippets}
 1159

1160
 1161 In-depth Browsing Prompt
 1162
 1163 You are a helper agent that browses the web to find useful information when solving a question
 1164 step by step.
 1165 You are given:
 1166 - A question
 1167 - The sub-goal of the current step
 1168 - A part of the content of a webpage
 1169 ****Your tasks:****
 1170 - Extract ALL information that could be relevant to answering the question or achieving the
 1171 sub-goal
 1172 - Look for specific details like names, numbers, dates, relationships, lists, tables, and factual
 1173 data
 1174 - Pay special attention to structured data (tables, lists, rosters, directories) that might contain
 1175 answers
 1176 - Find links present in the webpage that can potentially direct to pages with useful information
 1177 relevant to the sub-goal
 1178 - You are given the part index and the total number of parts of the webpage
 1179 - You need to decide whether to keep browsing the next part of the webpage if there is still part
 1180 left
 1181 - Be generous in what you consider "relevant" - include information that might be indirectly
 1182 useful
 1183 - The current date is ****{current_date}****, be careful when the question requires updated infor-
 1184 mation
 1185 —
 1186 Question:
 1187 {question}
 1188 Sub-goal:

```

1188
1189 {sub_goal}
1190 Webpage content:
1191 {webpage_content}
1192
1193
1194 C.2 QUERY WRITER AND ORCHESTRATOR
1195
1196 The query writer is in charge of decomposing and generating the next query based on the current
1197 information summary and the original question.
1198
1199 Next Query Writer Prompt
1200
1201 You are an advisor agent that operates in a workflow that solves a question step by step using a
1202 search engine.
1203 You are given:
1204 - A question
1205 - A summary containing the current found information
1206 **Your tasks:**
1207 - Review the current summary to see what information has already been found
1208 - Identify what key information is still missing to answer the main question completely
1209 - Write a comprehensive sub-goal that encompasses all the information agents can start to find
1210 given the summary's context
1211 - If no summary provided, start with the first logical sub-goal needed to answer the main question,
1212 the first sub-goal can be exactly the same as the main question, if you think the main
1213 question is focused enough on one specific goal
1214 **Instructions:**
1215 - Create a sub-goal that maximizes information gathering potential - don't limit the scope (Example:
1216 "Find a list ...")
1217 - When there are several possible sub-goals, choose the one that is easier to reach using a search
1218 engine
1219 - However, the new sub-goal still needs to be based on the current summary's context, missing
1220 context would mislead the workflow
1221 - The sub-goal must encompass queries about all relevant information that can be discovered
1222 based on the current summary's context
1223 - Stay focused on the main question - your sub-goal should be a necessary step toward answering
1224 it
1225 - Use information from the current summary as context for the next sub-goal (e.g., if the summary
1226 identifies a city, use that city name in your next goal)
1227 - The current date is **{current_date}**, be careful when the question requires updated information
1228
1229 **Key principle:** Always use specific information from the current summary in your next
1230 sub-goal rather than generic placeholders.
1231
1232 Question:
1233 {question} Summary:
1234 {current_summary}
1235
1236 The orchestrator is in charge of orchestrate the workflow from a pre-defined set of building blocks.
1237
1238 Workflow Orchestration Prompt
1239
1240 You are an orchestrator agent that designs search workflows to answer sub-questions using
1241 specialized building blocks.
1242 **Decision Logic:**
```

```

1242
1243 - Can sub-goal be answered without web searches? → **Thinker-Summarizer**  

1244 - Need new information from web? → **Searcher-Browser-Summarizer**  

1245
1246 ENCOURAGE DIVERSE COMBINATIONS  

1247 **Searcher Options**: fast_searcher, searcher, advanced_searcher  

1248 **Browser Options**: fast_browser, browser, advanced_browser, deep_browser  

1249 **Summarizer Options**: summarizer, advanced_summarizer  

1250 REQUIREMENTS  

1251 - **Function names must match exact ‘block_name’ from block list**  

1252 - **Output complete YAML** with “yaml and “ tags  

1253 - **DO NOT modify the rest of the YAML template - only fill in the highlighted/placeholder  

1254 parts**  

1255 - **ONLY use these 4 node types**: ‘searcher’, ‘browser’, ‘summarizer’, ‘thinker’ (and their  

1256 variants)  

1257 - **DO NOT use**: ‘verifier’ or ‘finalizer’ - these are handled automatically  

1258 **YAML template:**  

1259 “yaml  

1260 {yaml_template} “ {experiences} **IMPORTANT**: Only modify the highlighted/placeholder  

1261 sections in the template above. The rest of the YAML structure must remain unchanged.  

1262 —  

1263 **The original question:**  

1264 {original_question} **The current sub-goal:**  

1265 {question} **Current summary of the found information:**  

1266 {current_summary} **List of pre-defined building blocks:**  

1267 {list_of_building_blocks}  

1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286 C.3 YAML CONVERTER MODULE
1287
1288
1289
1290
1291
1292
1293
1294
1295 In FlowSeacher, the orchestrator orchestrates the workflows by fill in a YAML template that already  

contains the verification logic as below:

```

```

1296 YAML Template
1297
1298 nodes:
1299   **Your selected building blocks**
1300   - name: sub_verifier
1301   function: verifier
1302   config:
1303     verifier_variant: sub
1304     - name: final_verifier
1305     function: verifier
1306     config:
1307       verifier_variant: final
1308       - name: finalizer
1309       function: finalizer
1310       edges:
1311         - START - **The first building block to execute when solving the question**
1312         **Your orchestrated edges**
1313         - **The last building block to execute when solving the question** - sub_verifier
1314         - finalizer - END
1315         conditional_edges:
1316           - from: sub_verifier
1317           condition: state.get('sub_verified')
1318           routes:
1319             - false: **The first building block to execute when solving the question**
1320             - true: final_verifier
1321             - from: final_verifier
1322             condition: state.get('final_verified')
1323             routes:
1324               - false: END
1325               - true: finalizer
1326
1327 C.4 AGENTIC WORKFLOW CREATION AND EXECUTION
1328
1329 The workflow is created as a state graph with every agentic action altering part of fields of an overall
1330 state object.
1331
1332 Agentic Workflow State
1333
1334 Overall State:
1335   • messages: list of messages (auto-append new messages)
1336   • current_sub_question: string
1337   • current_sub_question_iteration: integer
1338   • current_summary: string
1339   • final_answer: string
1340   • sub_verified: boolean
1341   • final_verified: boolean
1342   • searcher_state: SearcherState (updated automatically)
1343   • browser_state: BrowserState (updated automatically)
1344   • instruction_state: InstructionState
1345
1346 SearcherState:
1347   • search_count: integer
1348   • used_keywords: list of strings
1349

```

```

1350
1351 • history_search_results: list of SearchResult
1352 • search_results: list of SearchResult
1353 • search_cache: dictionary
1354 BrowserState:
1355 • visit_count: integer
1356 • visited_urls: list of strings
1357 • history_found_references: list of Reference
1358 • found_references: list of Reference
1359 • visit_cache: dictionary
1360 InstructionState:
1361 • orchestrator_instructions: list of strings
1362 • searcher_instructions: list of strings
1363 • browser_instructions: list of strings
1364
1365
1366
1367

```

1368 When a workflow is successfully generated, a folder named "workspace" will be created with graph
 1369 settings and executables. When a workflow is executed successfully, the final state is saved to the
 1370 same "workspace" folder.

1371 The structure of the folder is as follows:

```

1372
1373 Workspace Structure after Successful Execution
1374
1375 sample_workspace/
1376     after_state.json
1377     before_state.json
1378     graph.py
1379     graph.yaml
1380     run.py
1381
1382

```

C.5 MEMORY STRUCTURE AND PROMPT INJECTION

1383 **FlowSearcher** maintains a multi-level memory structured as the below schema:

1384 FlowSearcher Execution Memory

1385 Overall State:

- ```

1386
1387
1388 • execution_id: string
1389 • question: string
1390 • sub_question: string
1391 • before_summary: string
1392 • summary: string
1393 • can_answer_sub_question: boolean
1394 • can_answer_question: boolean
1395 • workflow: string (YAML representation)
1396 • searcher_execution_memory: SearcherExecutionMemory (updated automatically)
1397 • browser_execution_memory: BrowserExecutionMemory (updated automatically)
1398 • question_embedding: list of floats
1399 • sub_question_embedding: list of floats
1400
1401
1402
1403

```

### 1404 SearcherExecutionMemory:

```

1404 • search_count: integer
1405 • new_keywords_added: list of strings
1406 • new_search_results: list of SearchResult
1407
1408 BrowserExecutionMemory:
1409 • visit_count: integer
1410 • new_visited_urls: list of strings
1411 • new_references_found: list of Reference
1412
1413

```

1414 When a new sub-query is generated, we retrieve the relevant memory entries with a weighted sum  
 1415 of main question and sub-question similarity with default weights set to **0.5** and **0.5**.

1416  
 1417 Then we pass the graph-level and node-level traces to the instructor module. The trace schemas are  
 1418 as follows:

#### 1419     **Orchestrator Execution History Template**

```

1420
1421 Original question: {question}
1422 Sub-goal: {sub_goal}
1423 Before summary: {before_summary}
1424 After summary: {after_summary}
1425 Orchestrated workflow: {workflow}
1426 Successful: {successful}
1427

```

#### 1428     **Search Execution History Template**

```

1429
1430 Original question: {question}
1431 Sub-goal: {sub_goal}
1432 Search keywords: {search_keywords}
1433 Search results: {search_results}
1434 Successful: {successful}
1435

```

#### 1436     **Browse Execution History Template**

```

1437
1438 Original question: {question}
1439 Sub-goal: {sub_goal}
1440 New found references: {new_found_references}
1441 Successful: {successful}
1442

```

1443 Then, we pass the history traces of these format to the instructor module, gain the actionable expe-  
 1444 riences and inject them to corresponding prompts' placeholders.

## 1445     **D CASE STUDY**

1446 In this section, we present two specific cases of our system performing different types of tasks with  
 1447 GPT-4o-mini backbone.

### 1448     **D.1 EXAMPLE OF PERFORMING WEB NAVIGATION TASK**

1449 Below is an example execution of a web navigation task from GPT-4o-mini backbone. The workflow  
 1450 settings are First-hit Searcher + In-depth Browser + General Summarizer.

1458  
1459**Example Web Navigation Task**1460  
1461**Original Question:** According to GitHub, when was the *Regression* label added to the oldest closed `numpy.polynomial` issue, in MM/DD/YY format?1462  
1463  
1464  
1465  
1466**Summary from Previous Steps:** I found a filtered GitHub Issues view for the NumPy repository, showing issues labeled “06 – Regression” that are closed. This label is used to track regressions, i.e., cases where something that previously worked in NumPy became broken in a later version. The results are limited to the first page of closed regression issues, so only a subset is visible.1467  
1468**Current Sub-goal:** Identify the oldest issue involving the component `numpy.polynomial`.1469  
1470**Orchestrated Workflow:** `First-hit Searcher` + `In-depth Browser` + `General Summarizer`.

1471

**Execution Process:**1472  
1473

- `First-hit Searcher` performs a search: `numpy polynomial` issues Regression label GitHub

1474  
1475

- `In-depth Browser` processes the Regression-label issue page:

1476  
1477

- found page button: [20]
- navigated to the target page
- found link to the oldest issue: Issue #291
- visited the link
- extracted information

1478  
1479  
1480  
1481  
1482  
1483  
1484  
1485

- `General Summarizer` incrementally updates the summary: ... The oldest closed Regression issue on GitHub is #291, opened on Jun 5, 2012. However, this issue does not appear to be directly relevant to `numpy.polynomial`. (A new iteration started.)

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

**D.2 EXAMPLE OF PERFORMING COMPREHENSIVE SURVEYING TASK**

1504

1505

1506

1507

1508

1509

1510

1511

Below is an example execution of performing a comprehensive surveying task, the workflow settings are Advanced Searcher + Advanced Browser + Advanced Summarizer.

1512  
1513**Example Comprehensive Surveying Task**1514  
1515  
1516  
1517  
1518

**Original Question:** An African author tragically passed away in a tragic road accident. As a child, he'd wanted to be a police officer. He lectured at a private university from 2018 until his death. In 2018, this author spoke about writing stories that have no sell by date in an interview. One of his books was selected to be a compulsory school reading in an African country in 2017. Which years did this author work as a probation officer?

1519  
1520  
1521  
1522  
1523

**Summary from Previous Steps:** The initial step is to deconstruct the user's query to identify the author in question. The key identifying facts are: an African author who died in a road accident, lectured at a private university from 2018 until his death, had a book become compulsory reading in an African country in 2017, and gave a specific interview in 2018. The final goal is to determine the years this author worked as a probation officer.

1524  
1525  
1526  
1527

**Current Sub-goal:** Find a list of African writers who had a lecturer career.

**Orchestrated Workflow:** [Advanced Searcher](#) + [Advanced Browser](#) + [Advanced Summarizer](#).

**Execution Process:**1528  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547

- [Advanced Searcher](#) performs 25 searches: "African author lecturer died in accident", "Nigerian author book compulsory reading 2017", "Pius Adesanmi biography", "Pius Adesanmi career", "Pius Adesanmi probation officer employment history"
- [Advanced Browser](#) processes the 58 pages:
  - found informations from 25 pages:
  - Pius Adesanmi was a Nigerian-Canadian author and professor at Carleton University. He died in the Ethiopian Airlines Flight 302 crash on March 10, 2019. He was an active lecturer in 2018 until his death. His book "Naija No Dey Carry Last" was highly acclaimed and recommended for school curricula in Nigeria. A review of his CV and multiple biographies shows a career exclusively in academia and literature, with no mention of him working as a probation officer.
- [Advanced Summarizer](#) ensembles and updates the summary: The author described is identified as Pius Adesanmi based on his profile as a Nigerian author, lecturer, the timing of his death in an accident, and the status of his book. After a thorough review of his employment history, there is no evidence that he ever worked as a probation officer. The premise of the original question appears to be incorrect. (A new iteration started.)

**E ACKNOWLEDGMENT ON LLM USAGE**1548  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1560  
1561  
1562  
1563  
1564  
1565

We acknowledge the use of large language models (LLMs) specifically for language polishing, rephrasing, and improving readability, which helped us present our demonstrations more clearly. These tools were employed solely for stylistic refinement and did not contribute to the conceptualization, design, or methodological development of this work. All ideas, experiments, analyses, and conclusions remain entirely the result of the authors' own efforts.