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ABSTRACT

Web search is a cornerstone for deep research agents, enabling them to acquire
and reason over knowledge beyond static corpora. Yet most existing systems fol-
low rigid ReAct-style tool chains locked into fixed workflow structures, which
hinders their ability to flexibly handle diverse query types and tool-use strate-
gies. We introduce FlowSearcher, a novel web search framework built on agentic
workflow synthesis. FlowSearcher decomposes queries into sub-goals, each or-
chestrated by a tailored workflow graph that adapts the depth and order of tool
use, giving the system structural flexibility to handle diverse sub-goals ranging
from simple lookups and focused navigation to multi-hop information synthesis.
Complementing this, a hierarchical memory distills past workflows into structured
experience, providing reusable context that improves orchestration and guides
tool use on new queries. This shift from reactive tool calls to memory-driven
workflow design and execution marks a principled step toward deliberative web
research. Empirical results on GAIA, BrowseComp, and GPQA show that our
memory-driven, training-free workflow synthesis consistently matches or exceeds
the performance of RLHF-trained systems, pointing toward a new direction of
agent design grounded in memory-enhanced structural planning rather than pa-
rameter fine-tuning.

1 INTRODUCTION

The paradigm of scaling large language models (LLMs) is shifting away from expanding static
pre-training corpora toward dynamic, real-time knowledge acquisition. Central to this shift is
the emergence of research agents, which couple LLMs’ intrinsic reasoning capabilities with ex-
ternal tools and web interaction. This fusion goes beyond static retrieval, equipping models to
tackle time-sensitive, knowledge-intensive tasks across domains such as science, technology, and
finance (Huang et al., 2025; Xu & Peng, 2025). This trajectory is already exemplified by industrial
systems such as OpenAI’s Deep Research (OpenAI, 2025b;a) and Google Gemini Advanced (Co-
manici et al., 2025; Google, 2024), which vividly illustrate how LLMs can evolve from passive
repositories into autonomous collaborators that retrieve, evaluate, and synthesize knowledge at scale.

Despite recent advances, the real bottleneck is not model scale but the decision structures that deter-
mine how agents navigate the web. Training-based systems such as WebThinker (Li et al., 2025d)
and WebDancer (Wu et al., 2025a) still follow the ReAct template (Yao et al., 2023), locking agents
into a think–act–observe loop. This enforces a narrow, single-threaded trajectory that collapses in-
herently branching research queries into linear chains, suppressing parallel exploration, backtrack-
ing, and structural revision. Plan–execute frameworks (Song et al., 2025; Zheng et al., 2025) offer
higher-level organization but remain static: once produced, the plan becomes a fixed scaffold with
little room for reordering or adaptation as new evidence arrives. As a result, these architectures
remain fundamentally misaligned with the non-linear, exploratory, and continuously evolving work-
flows that genuine research demands.

Another foundational challenge for long-horizon agent systems is the inability to learn across
tasks (ang Gao et al., 2025). When faced with open-domain queries, most agents still operate in
episode isolation (Wu et al., 2025a; Li et al., 2025a; Tao et al., 2025): tool calls are issued within
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short reactive chains, and whatever is learned evaporates as soon as the episode ends. This limita-
tion arises from their reliance on ephemeral, episodic memory, where chains-of-thought, tool traces,
and exploration paths are never consolidated into any persistent, structured knowledge. Without
such consolidation, agents accumulate no reusable experience. They repeatedly reinvent the wheel,
repeating ineffective actions, failing to exploit strategies that succeeded previously, and showing
little improvement across similar tasks. Overcoming this bottleneck requires abandoning transient
context windows in favor of a cumulative, structured memory system that can retain, organize, and
reuse past workflows, supporting genuine long-horizon planning and strategic adaptation.

Building on these foundations, we present FlowSearcher, a unified framework for web-based re-
search that departs from the rigid, reactive behavior of traditional agents by synthesizing full work-
flow graphs rather than issuing step-wise tool calls. Instead of committing to a single linear tra-
jectory, the agent constructs explicit non-linear workflows that break a complex query into co-
herent subgoals and structured tool operations. To support principled cross-task generalization,
FlowSearcher integrates a hierarchical memory that organizes past trajectories at the task, graph,
and node levels, along with a retrieval mechanism that surfaces the most relevant prior experi-
ence for the current query. Retrieved knowledge enhances both planning, by recalling effective
structural patterns, and execution, by shaping context-aware decisions about tool usage, ordering,
and termination. Through this combination of workflow synthesis and structured experience reuse,
FlowSearcher turns raw execution traces into strategic knowledge, enabling adaptive and efficient
research behavior that jointly optimizes how workflows are designed and how they are carried out.

The integrated use of three foundational modules: task decomposition, hierarchical memory, and
DAG-based execution, recasts their purpose in FlowSearcher in a way fundamentally different
from simply placing them side-by-side. Instead of extending a ReAct chain with extra utilities,
FlowSearcher reframes the entire problem: it treats open-domain web research as experience-
driven workflow synthesis, not as sequential action prediction. Under this perspective, the agent’s
reasoning is centered on how the problem should be structured, rather than merely what to do next.
Past trajectories are elevated into strategic assets that shape how workflow graphs are composed,
organized, and executed, enabling adaptive planning, multi-path exploration, and principled revi-
sion, capabilities that do not emerge when these components are used in isolation or embedded in
traditional step-wise pipelines.

Moreover, by elevating workflow structure to the center of decision-making, FlowSearcher intro-
duces a learning-free mechanism that can design, adapt, and refine sophisticated research strate-
gies without any RLHF or supervised tuning. FlowSearcher’s memory-driven workflow synthesis
paradigm provides a stable form of generalization: the agent retains useful structures while avoiding
drift, enabling consistent improvement across domains without retraining. Experiments on GAIA,
BrowseComp, and GPQA show that this structural, memory-driven paradigm can match or exceed
the performance of strong RLHF-trained ReAct agents under the same model backbone. This points
toward a new class of web agents grounded in compositional planning and reusable experience,
offering a scalable alternative to ever-larger parametric fine-tuning.

In summary, our contributions are three-fold:

• We model the web information seeking task solution trajectory as a two-level process, with
query decomposition and workflow synthesis at the high level and workflow execution at the
low level. This decoupling empowers the system to (i) flexibly adapt by generating a tailored
workflow for each decomposed sub-task, and (ii) simultaneously optimize high-level workflow
orchestration and low-level execution, enhancing both efficiency and effectiveness in complex,
multi-step information-seeking tasks.

• We reframe web search as a principled problem of workflow synthesis. By grounding
FlowSearcher in a compact yet expressive library of building blocks, we enable the system to
flexibly compose diverse solution strategies at each decomposed step, achieving both structural
rigor and adaptive problem-solving.

• We introduce a multi-level memory (node, graph, and task levels) that consolidates prior work-
flows into reusable structural knowledge, along with a compatible retrieval mechanism capable
of accessing execution traces at both the graph and node levels. These traces are transformed into
actionable insights by an instructor module, which then injects them into both workflow orches-
tration and execution prompts. This design enables co-optimization under memory guidance,
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Figure 1: An overview of the FlowSearcher framework. Left: Diverse tool-use patterns (e.g.,
first-hit, parallel, progressive decomposition) are synthesized into workflows tailored to research
tasks such as navigation, look-up, and surveying. Middle: FlowSearcher employs a hierarchical
searching trajectory, where a high-level orchestrator decomposes goals into sub-goals and injects
prior experience, while a low-level executor conducts memory-guided workflow execution. Right:
A structured hierarchical memory records traces at the task-, graph-, and node-level, enabling adap-
tive reuse and precise tool-use guidance across executions.

allowing the system to learn from past successes and failures, dynamically adapt its strategies,
and generalize across diverse tasks.

Our proposed FlowSearcher achieves substantial gains over WebThinker-Base (+11.5% on GAIA,
+9.5% on BrowseComp), clearly surpassing the marginal benefits of RL-based fine-tuning. These
results highlight that structural flexibility through adaptive workflow planning is more decisive
than parameter-level training, offering a scalable and cost-efficient path forward. FlowSearcher
supports a variety of distinct web search workflows by maintaining a controllable set of building
blocks, thus is capable of handling diversified queries without specialized training.

2 RELATED WORK

Our work lies at the intersection of Large Reasoning Models (LRMs) for deep information seeking,
dynamic workflow synthesis, and explicit memory mechanisms. We organize this section into three
areas: (1) limitations of current search paradigms, (2) advances in workflow decomposition and syn-
thesis, and (3) the role of memory in research agents. We conclude by highlighting FlowSearcher’s
unique contribution.

Agentic Information Seeking Systems Although there exist works that demonstrate different in-
formation seeking behaviors by shifting among pre-defined modes like Reason-in-Documents mod-
ule introduced in Li et al. (2025c), and Problem-Solving and Report-Drafting modes introduced in
Li et al. (2025d), they still adopt single-step, linear planning structures(Li et al., 2024a; Jin et al.,
2025; Song et al., 2025; Zheng et al., 2025; Wu et al., 2025a). While effective for simple tasks,
these systems were brittle when handling complex, multi-faceted queries. Their main weaknesses
stemmed from limited long-horizon context management and the inflexible coordination of search
components across an extended research trajectory.

Workflow Planning and Optimization Recent work explores how research agents decompose
tasks and execute multi-step workflows. ReAct-style frameworks such as WebThinker (Li et al.,
2025d) and WebWalker (Wu et al., 2025b) interleave reasoning and actions through sequential traces,
but their global search strategy remains implicit, making optimization and generalization difficult.
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Planning-first frameworks (Hu et al., 2025; Tang et al., 2025b;a) impose top-down workflow struc-
tures, improving coherence but relying on manually defined roles and rules, which limits scalability
in open-domain web settings (Qiu et al., 2025; Xie et al., 2025). RL-based systems like Web-
Dancer (Wu et al., 2025a) treat information seeking as an end-to-end pipeline and optimize via
sampled trajectories. Surveys such as Xu & Peng (2025), Huang et al. (2025), and Li et al. (2025b)
summarize these trends. More recent efforts—AutoFlow (Li et al., 2024b) and AFLOW (Zhang
et al., 2025b)—shift toward automated protocol synthesis, showing that reusable workflow patterns
can serve as transferable knowledge. Our work builds on this insight by dynamically instantiating
workflows from evidence, rather than relying on fixed templates or rigid execution schemes.

Agentic Memory and Experience Reuse Another line of research equips agents with persistent
memory to support long-horizon reasoning. A-MEM (Xu et al., 2025) proposes a Zettelkasten-
inspired memory system where new experiences are stored as structured “notes,” linked to similar
past traces, and dynamically evolved as new evidence arrives, enabling adaptive long-term reason-
ing. Mem0 (Chhikara et al., 2025) offers a lightweight, production-oriented memory layer that
maintains multi-level persistent state and summarizes past interactions to reduce context length and
improve personalization. G-Memory (Zhang et al., 2025a) extends memory to multi-agent sys-
tems by organizing experiences into hierarchical graphs—spanning interaction, query, and insight
levels—and retrieving both abstract and fine-grained information through graph traversal to guide
coordinated agent behavior. Despite these advances, most existing memory systems depend on fixed
retrieval rules or single-level memory structures, limiting adaptability in open-domain web tasks.
Our work differs by introducing a workflow-conditioned, multi-level memory hierarchy that adapts
retrieval not only to the task query but also to the evolving structure of the synthesized workflow.

3 METHODOLOGY

3.1 HIERARCHICAL AGENTIC WEB SEARCH TASK FORMULATION

In this paper, we present FlowSearcher, an agentic workflow framework for web search. We first
reframe research query solving as a hierarchical decision-making process, where high-level query
decomposition and workflow synthesis are coupled with low-level structured execution. We then
introduce a memory-driven workflow planner that conditions each execution step on both workflow
structure and accumulated traces. Through this design, FlowSearcher brings structural flexibility
and layered memory grounding into agentic web search, enabling adaptive handling of complex
queries and resilient reasoning over long horizons.

We formalize each research task together with its solution trajectory as {Q, ŷ,Γ}. Here, Q denotes
the original query, ŷ the predicted answer, and Γ = {µi,Gi} the trajectory consisting of decomposed
sub-questions {µi} and their corresponding workflow graphs {Gi}. In addition, we maintain a
structured execution memory M, which is updated after each step to record intermediate traces,
and later serves as a foundation for both workflow synthesis and execution.

Q −→
θµ

{
µi −−−−→M,θG

Gi −−→M {α, o}v
︸ ︷︷ ︸

Lower level

}K

i=1

︸ ︷︷ ︸
Upper level

finalize
======⇒ ŷ.

1

Figure 2: FlowSearcher’s hierarchical search trajectory, involv-
ing workflow synthesis, execution, and aggregation.

High-level (decomposition ⇒
workflow synthesis). At the high
level, FlowSearcher generates a
trajectory by iteratively decompos-
ing the query into sub-questions
and synthesizing workflow graphs.
At step i, the agent samples the
next sub-question µi and then
generates a workflow graph Gi that specifies how to address it. Formally, if the query is solved in K
steps, the probability of generating the overall trajectory is given by:

P (Γ | Q,M0) =
K

i

∏

=1

P (µi | Q,Γ<i,Mi−1, θµ)P (Gi | Q,Γ<i,Mi−1, θG , µi) , (1)

where θµi
and θGi

, are the prompts for decomposition and workflow synthesis modules. Note that
at the start of each trajectory, we have Γ0,M0 = ∅. As the trajectory unfolds, the memory M
is incrementally updated, accumulating execution traces that capture both workflow structure and

4
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intermediate outcomes, providing rich contextual grounding that guides subsequent decomposition
and execution. After obtaining a complete trajectory, a finalization step is performed to produce the
predicted answer ŷ for query Q.

Low-level (workflow execution). At the low level, each workflow Gi for sub-question µi is exe-
cuted at the node level, where each node is followed along its dependency connections and guided
by accumulated memory traces. For a given node v ∈ V (Gi), the agent interacts with the web envi-
ronment to generate an action sequence α and observations o. Hence, given a node with Kv distinct
action steps, the execution process can thus be factorized as follows:

P (α,o | µi,Mi−1) =

Kv∏

t=1

P (αt, ot | α<t, o<t, µi,Mi−1). (2)

Given the above formulation, the overall trajectory of FlowSearcher is illustrated in Fig. 2. Empow-
ered by a hierarchical task structure and workflow-grounded execution, FlowSearcher departs from
traditional linear tool-use agents and enables adaptive reasoning across complex query landscapes.
This flexible structure not only aligns decomposition with execution, but also provides memory-
grounded coherence, offering a principled path toward resilient long-horizon web search.

3.2 STRUCTURED COMPOSITIONAL MEMORY FOR EXPERIENCE REUSE

To enable efficient reuse of past experiences, we introduce a Structured Compositional Memory
that organizes trajectories into a three-level hierarchy. Our design allows selective retrieval and
flexible cross-level recomposition of past traces, which is crucial for adapting workflows to insightful
queries and ensuring generalization beyond single-task memorization. Formally, the memoryM is
a set of task entriesM = {M task

j }, each bundling its sub-question workflow graphs together with
their node-level traces.

Node-level. For a node v∈V (Gi), we record:

Mnode
v =

(
Nv, α

(v), o(v)
)
,

where Nv is the node type and variant, and α(v) and o(v) denote the action sequence and its corre-
sponding output. This fine-grained representation enables precise replay and transfer of tool execu-
tion patterns across different sub-questions.

Graph level. For a workflow graph Gi addressing sub-question µi, we store

Mgraph
i =

(
Gi, µi, γi, ni, {Mnode

v }v∈V (Gi)

)
,

where Gi is the textual representation of Gi, γi ∈ {0, 1} is a success indicator, and ni ∈ N|T | is a
per-tool usage vector, with component (ni)τ counting how many times tool τ ∈ T was invoked in
Gi. By recording workflow structure, performance signals, and tool statistics, graph-level memory
enables targeted reuse of effective strategies while avoiding over-reliance on fragile tool chains.

Task level. For a query Qj we maintain:

M task
j =

(
Qj , ξQ, {Mgraph

i }Ki=1

)
,

where ξQ ∈ {0, 1} indicates whether the task is successfully solved. It encapsulates the end-to-
end problem context and its outcome, allowing direct recall of solved tasks and failures alike, and
providing reliable signals that guide decomposition and workflow selection in future queries.

Memory Retrieval Mechanism. FlowSearcher flexibly retrieves and recomposes traces from its
hierarchical memory to guide agentic search with prior experience. To support adaptive reuse
of trajectories, we define a unified retrieval operator R(·; ζ) parameterized by retrieval level
ζ ∈ {graph, node}. Given a new query (Q∗, µ∗; ζ), the operator selects the top-k relevant struc-
tured traces fromM:

R(Q∗, µ∗; ζ) = arg top-k
Mtask∈M, Q∈Mtask,

Mζ⊆Mtask, µ∈Mζ

[
δ
E(Q∗) · E(Q)

|E(Q∗)| |E(Q)| + (1− δ)
E(µ∗) · E(µ)

|E(µ∗)| |E(µ)|

]
. (3)

5
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FlowSearcher: Hierarchical Memory and Learning from Experience

FlowSearcher’s three-level memory: 

Task

Graph

Node

Node Level: Node settings (type and 
variant) 𝑁𝑣 and the corresponding 
execution traces 𝛼𝑣, 𝑜𝑣

Graph Level: Topological representation 
𝑁𝐺 and some meta-data such as success 
indicator 𝛾 and tool calling counts 𝑛𝜏

Task Level: Tuples of task description 
{Q, μi}, where Q is the original query 
and μi is one of its decomposed sub-
query

A universal compositional retriever: 

1. Task-level Retrieval: Retrieve top-k task 
tuples by weighted similarity between original 
queries and sub-queries 𝑄∗, 𝜇∗  ⇒ 𝑄, 𝜇 𝑘

2. Graph-level Expansion: Match graph-level 
traces from graph-level memory 𝑄, 𝜇 𝑘 ⇒ 
{𝑀𝑔𝑟𝑎𝑝ℎ}

3. Node-level Expansion: Match node-level 
entries from node-level memory 𝑀𝑔𝑟𝑎𝑝ℎ  ⇒ 
{𝑀𝑠𝑒𝑎𝑟𝑐ℎ, 𝑀𝑏𝑟𝑜𝑤𝑠𝑒}

 Experience-driven Co-optimization of Workflow 
Planning and Execution

Task Tuple 1 Workflow Trace 1

Task Tuple k

…
Workflow Trace m

…

Current Task Tuple

Searcher Trace 1 Browser Trace 1

…
Searcher Trace 2 Browser Trace 2

…

Workflow Planner Searcher Nodes Browser Nodes

retrieve
experience 
injection

experience 
injection

experience 
injection

Planning Execution

Figure 3: FlowSearcher’s structured compositional memory enables the co-optimization of work-
flow synthesis and execution. Retrieved task-level tuples surface high-value workflow traces that
shape the global DAG structure (“planning”), while graph- and node-level traces inject fine-grained
procedural knowledge into searcher and browser nodes (“execution”).

where E(.) denotes the textual embedding and δ is a factor balancing between similarities of the
original question and the sub-question. Finally, depending on the retrieval level ζ, each entry is flex-
ibly expanded within the hierarchical memory, yielding the enriched set: R(Q∗, µ∗; ζ) ⊕ {Mζ

i }.
This flexible retrieval mechanism allows FlowSearcher to ground future reasoning not only on rele-
vant past queries, but also on useful insights extracted from targeted execution traces.

3.3 MEMORY-GUIDED AGENTIC WORKFLOW PLANNING

We present memory-guided agentic workflow planning, which aims to synthesize adaptive work-
flows as typed directed acyclic graphs (DAGs). In this formulation, decomposed sub-queries are
handled by adaptive planning modules, while past execution traces are reused to refine and update
these workflows, yielding workflows that are refined by experience at both orchestration and ex-
ecution levels. Fig. 3 illustrates how FlowSearcher’s hierarchical memory supports this process:
workflow-level traces guide high-level DAG synthesis, whereas searcher- and browser-level traces
effectively refine node behaviors and execution strategies.

At each step i, the orchestrator must not only generate a valid workflow, but also adapt its structure
to the evolving query context. Formally, to handle sub-question µi, it construct a typed workflow
graph as:

orchestrator(Q,µi,Γ<i,B, θG)
Mi−1
=====⇒ Gi

(
V[τ,θ,l], E[ρ]

)
,

V ⊆ B, E ⊆ V × V s.t. (u, v) ∈ ρ ∀(u, v) ∈ E .
(4)

Here, V[τ,θ,l] denotes typed nodes parameterized by an available tool τ , prompt schema θ, and
backbone model l; E[ρ] are admissible edges constrained by the web grammar ρ, and B is the pre-
defined set of building blocks. Crucially, the construction of Gi binds the query Q, current sub-
question µi, the previous trajectory Γ<i, and memoryMi−1. This makes each workflow not just a
static composition, but an experience-driven program that evolves with context.

Experience-Guided Workflow Orchestration. Retrieved graph-level traces inject prior experi-
ence into orchestration, exposing both successful and failed strategies, tool-usage statistics, and
graph topologies. Formally,

M̃G = RG(Q
∗, µ∗), ξG = IG(M̃G , Q

∗, µ∗), G∗ = orchestrator(θG ⊕ ξG). (5)

Here M̃G = {G, γ,nk}1..K denotes the retrieved graph-level traces, each containing the work-
flow structure G, its success indicator γ, and tool-usage statistics nk. These traces are expanded
into full execution records and distilled by the orchestration instructor IG into concise insights ξG ,
which are then injected into the orchestration prompt θG . As a result, the workflow G∗ is not a
static composition, but one shaped by prior evidence: by contrasting successful and unsuccess-
ful workflows, FlowSearcher uncovers structural patterns that guide effective design choices, while
tool-usage statistics across topologies reveal how efficiency scales with structure. These insights
ground orchestration in empirical evidence, making it adaptive, resource-aware, and systematically
refined by past executions.

6
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Experience-Guided Workflow Execution. We formalize the node-level memory-enhanced exe-
cution process as equation 6:

M̃v = Rv(Q
∗, µ∗), ξv = Iv(M̃v,G∗, Q∗, µ∗), (α∗,o∗) = execute(θv ⊕ ξv, τv). (6)

The retrieved traces, M̃v = {N, (α,o)}1..K , expand into execution logs that capture node configu-
ration N , action sequences α, and their outcomes o. Distilled by the node instructor Iv , these traces
yield execution insights ξv , which are injected into the node prompt θv to guide the next action
sequence (α∗,o∗).

Beyond replay, these traces enable node-type specialization, refining execution strategies for roles
such as retrieval, parsing, or tool invocation. They also support cross-query transfer, allowing new
tasks to inherit behaviors from structurally similar nodes. Crucially, the workflow graph G∗ provides
the scaffold for structure, while node-level memory drives local behavioral refinement. This divi-
sion localizes and mitigates errors at the node level, while improving robustness over long-horizon
workflow executions.

Together with orchestration, this node-level adaptation achieves the co-optimization of workflow
planning and execution, ensuring workflows evolve holistically with both structural and behav-
ioral guidance. Beyond conventional rigid workflows that are statically designed and replayed,
FlowSearcher enables adaptive strategies that scale to diverse tasks and promotes transfer across
queries by grounding decisions in accumulated experience. To the best of our knowledge,
FlowSearcher is the first framework to realize such experience-driven agentic workflow planning.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Tasks and Benchmarks. We evaluate FlowSearcher on three challenging benchmarks:
GAIA:(Mialon et al., 2023) A benchmark testing AI models’ ability as general assistants with three
levels of difficulty, we used 103 text-only questions to evaluate our system’s complex information
retrieval and reasoning abilities; BrowseComp:(Wei et al., 2025) A benchmark for browsing agents
consisting of ”hard to solve yet easy to verify” questions across topics like Art, History, etc.; GPQA-
Diamond:(Rein et al., 2023) A graduate-level Google-proof benchmarks of multi-choice questions
across three domains: Physics, Biology, and Chemistry. We chose the Diamond subset as our test
set, which consists of questions experts can answer correctly but non-experts rarely.

Baselines. We compare FlowSearcher with three types of baselines: (1) Vanilla LLMs with no
agency: under this category, we tested two variants: Base LLMs with no access to search tools
and LLMs incorporated with standard RAG which retrieved top-10 relevant documents from search
engines as references before generating answers. (2) Close-sourced proprietary framework: We
chose OpenAI Deep Research(OpenAI, 2025b) as an example of commercial solution. Notably,
we exclude it from our quantitative comparisons because its full methodology, training setup, and
evaluation pipeline are not publicly available, making results non-reproducible. (3) Existing agen-
tic frameworks (particularly ReAct-style): including Vanilla ReAct, WebThinker(Li et al., 2025d),
WebDancer(Wu et al., 2025a), and Search-o1(Li et al., 2025c).

Implementation Details. We utilized a variety of LLM backbones including both open-sourced
models (Qwen3-32B, Qwen2.5-32B, QwQ-32B(Yang et al., 2025; Qwen et al., 2025)) and close-
sourced models (GPT-4o-mini(OpenAI, 2024)). We used SerpAPI1 to enable web search and the
Jina Reader API2 for browsing capabilities. For each query initiated by the agents, we retrieved the
top 10 results from the respective search tool. We provide details of prompts and data schemas as
per Appendix C.

4.2 BENCHMARK EVALUATION RESULTS

We present benchmark evaluation results in Table 1.

1https://serpapi.com/
2https://jina.ai/reader/
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Table 1: Performance comparisons on three benchmarks. We report Pass@1 metric on all tasks. The
best results are highlighted in bold and the first runner-ups are underlined. Results from OpenAI’s
Deep Research are presented in gray for reference.

Backbone Framework GAIA GPQA-Diamond BrowseComp

Level 1 Level 2 Level 3 Avg. Phy. Chem. Bio. Avg. Art His. Avg.

No Agency
Qwen-2.5-32B Base 20.5 9.6 8.3 13.1 52.3 30.1 68.4 43.4 0.0 0.0 0.0

RAG 20.3 11.8 6.3 13.0 64.0 41.9 57.9 53.0 0.0 0.0 0.0
Qwen-2.5-72B Base 20.5 13.5 6.0 13.4 58.1 39.8 57.9 49.5 0.0 0.0 0.0
GPT-4o Base 23.1 15.4 8.3 15.6 62.8 46.2 68.4 55.6 0.8 0.8 0.8
QwQ-32B Base 30.8 15.6 6.7 17.7 84.8 44.1 68.4 64.1 0.0 0.0 0.0

RAG 33.3 25.0 0.0 19.4 84.9 45.2 73.7 65.2 0.0 0.0 0.0
DeepSeek-R1-671B Base 43.6 26.9 8.3 31.1 90.7 57.0 84.2 74.2 0.0 0.0 0.0

Close-Sourced Agentic Frameworks
OpenAI DR 74.3 69.1 47.6 67.4 - - - - - - 51.5

ReAct Agentic Frameworks
Qwen-2.5-32B Vanilla ReAct 46.1 26.9 0.0 31.0 64.0 41.9 57.9 53.0 0.0 0.0 0.0

WebDancer 46.1 44.2 8.3 40.7 - - - - - - -
QwQ-32B Vanilla ReAct 48.7 34.6 16.6 37.8 76.7 46.2 68.4 61.6 0.8 0.0 0.4

Search-o1 61.5 50.0 25.0 51.5 77.9 47.3 78.9 63.6 1.6 2.4 1.9
WebThinker-Base 53.8 44.2 16.7 44.7 87.2 51.6 68.4 68.7 2.4 2.4 2.3
WebThinker-RL 56.4 50.0 16.7 48.5 90.7 50.5 78.9 70.7 2.4 3.1 2.7
WebDancer 61.5 50.0 25.0 51.5 - - - - - - 3.8

Ours
Qwen-2.5-32B FlowSearcher 61.5 46.2 16.7 48.5 72.0 47.3 68.4 60.1 5.5 5.6 5.6
Qwen-3-32B FlowSearcher 69.2 53.8 16.7 55.3 87.2 48.4 78.9 68.2 8.7 8.0 8.1
QwQ-32B FlowSearcher 66.7 57.7 16.7 56.3 90.7 51.6 78.9 71.2 7.9 7.2 8.0
GPT-4o-mini FlowSearcher 66.7 53.8 25.0 55.3 81.4 49.5 73.7 65.7 11.0 12.0 11.8

ReAct-style agents do provide noticeable gains. For instance, vanilla ReAct boosts Qwen2.5–32B’s
GAIA score by +25.8 over standard RAG. However, their rigid step-wise structure limits further
improvement. Even with reinforcement learning, progress quickly plateaus: WebThinker-RL im-
proves over WebThinker-Base by only +3.8 on GAIA, +2.0 on GPQA, and a negligible +0.2 on
BrowseComp, despite the heavy cost of dataset construction and training. These results reveal a
core constraint: fine-tuning alone cannot overcome the structural bottlenecks of linear ReAct-style
search.

In contrast, FlowSearcher avoids these limitations through dynamic, memory-guided workflow syn-
thesis. Without any supervised fine-tuning, it consistently outperforms comparably scaled agentic
baselines. With a QwQ–32B backbone, FlowSearcher surpasses WebDancer by +4.8 on GAIA and
+4.2 on BrowseComp. Its advantage becomes even clearer on BrowseComp, which stresses open-
domain browsing and long-horizon reasoning: FlowSearcher achieves a further +8.0% improvement
using a GPT–4o-mini backbone. On GPQA-Diamond, it reaches performance competitive with ad-
vanced reasoning models such as DeepSeek-R1–671B.

These results illuminate two key insights: (i) FlowSearcher’s structural flexibility enables it to
adapt reasoning procedures to large, noisy, and unpredictable information spaces, a capability
that rigid ReAct-style workflows struggle to match. (ii) FlowSearcher improves purely through
experience-driven workflow planning, without relying on any fine-tuning pipeline. This in-
dependence makes the system practical, generalizable, and naturally self-refining: it continually
strengthens its workflows directly from execution history. In open-domain knowledge environments,
FlowSearcher simply has more strategic leverage to navigate diverse and unreliable sources of in-
formation.

4.3 BLOCK USAGE

In this section, we evaluate the functional contributions of the pre-defined modules in
FlowSearcher. We begin by analyzing block usage on the GAIA benchmark with the GPT-4o-
mini backbone, verifying that the workflow orchestrator assigns each block to tasks aligned with its
intended role.

The block usage across GAIA’s three levels is shown in Fig. 4. Our key observations are:
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Figure 4: Usage of each block variant on GAIA evaluation tests with GPT-4o-mini backbone. The
distribution highlights how the orchestrator assigns blocks in alignment with their intended roles,
with deeper browser variants increasingly favored at higher task levels.

Searcher block usage patterns are largely consistent across levels. Among the variants, the first-
hit searcher dominates at all levels, reflecting that most sub-steps involve quick look-ups. However,
parallel searchers appear more frequently in Levels 2 and 3, capturing the added complexity of
harder problems.

Browser block usage varies significantly. At Level 1, the first-hit browser was dominant, often
paired with first-hit searchers for simple fact-checking. In contrast, usage of the in-depth browser
rose sharply at higher levels, becoming the most frequently used at Level 3. This indicates that more
complex tasks at Levels 2 and 3 required deeper web navigation and interaction with webpages.

Summarizer block usage is the most stable. Between the two summarizer variants, the gen-
eral summarizer was consistently more common than the ensemble summarizer across all levels.
Nonetheless, a slight increase in ensemble summarizer usage was observed at Levels 2 and 3 com-
pared to Level 1.

These studies reveal that FlowSearcher adapts its strategies to the blocks at hand, shifting from
quick look-ups to deeper browsing when searchers are limited, or leaning on summarization when
browsing capacity is reduced. Crucially, even with a smaller toolset, the system reorganizes work-
flows to sustain performance, underscoring its adaptability and robustness under constrained search-
ing conditions.

4.4 ABLATION STUDY

In this section, we conduct ablation studies that probe the internal mechanics of FlowSearcher by
independently scaling its two core modules: (a) block library, which governs the expressiveness of
workflow synthesis; (b) hierarchical memory, which governs experience-driven refinement.

4.4.1 IMPACT OF SCALING THE BUILDING BLOCK LIBRARY

For analyzing the effects of scaling blocks, we conducted three groups of controlled experiments
on GAIA with GPT-4o-mini backbone, where the set of available blocks was configured following
three settings:

First-Hit Only. In this condition, the searcher and browser modules are restricted to their first-hit
variants. Accordingly, the system is permitted to perform only a single search query at a time, and
the browsing process terminates immediately once the first relevant piece of information is retrieved.

First-Hit + General. In this condition, the range of available modules is expanded to include both
the general and first-hit variants of the searcher and browser. The system may therefore issue up
to five search queries and aggregate their results, and it may browse up to ten distinct webpages
while extracting relevant information. However, the system can’t conduct in-depth browsing, which
means they cannot click links on pages and perform web navigation tasks.

No Limitations. In this condition, the orchestrator operates without any restrictions on module
selection. All block types are available, and the system may employ them without predefined limits.
This represents the default, unconstrained configuration, supporting the broadest possible range of
retrieval strategies.
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Table 2: Performance on different sets of block options (with increasing system-level flexibility).
Results show that broader block availability consistently enables more diverse strategies and delivers
higher performance.

Block Option GAIA
Level 1 Level 2 Level 3 Avg.

First-Hit only 35.9 26.9 0.0 27.2
First-Hit + General 41.0 36.5 8.3 35.0
No limitations 66.7 53.8 25.0 55.3

The results (Table 2) show a clear progression. The first-hit only condition struggled due to its rigid
constraints. Adding general blocks yielded a moderate gain of +7.8%, while lifting all restrictions
produced a substantial +20.3% improvement. These numbers underscore a simple truth: limiting
core building blocks narrows workflow flexibility, whereas expanding the available toolkit unlocks
richer, more effective execution patterns, mirroring real-life web search, where diverse strategies are
often required, much like how humans adapt their browsing behavior to the task at hand.

4.4.2 IMPACT OF MEMORY COMPOSITION

Table 3: Cumulative number of successful tasks under dif-
ferent memory compositions.

Task Window Full
Mem.

No
Mem.

Succ.-
Only

Unsucc.-
Only

1-20 5 7 6 5
1-40 16 (+11) 18 (+11) 20 (+14) 13 (+8)
1-60 26 (+10) 24 (+6) 30 (+10) 24 (+11)
1-80 40 (+14) 33 (+9) 42 (+12) 36 (+12)

1-103 57 (+17) 42 (+9) 53 (+11) 48 (+12)

In this section, we conducted four
groups of controlled experiments to
study the impact of utilizing different
memory composition: (i) No Mem-
ory: FlowSearcher synthesizes and
executes workflows with no mem-
ory retrieval and experience injec-
tion in this settings; (ii) Full Mem-
ory: FlowSearcher synthesizes and
executes workflows while recording
and utilizing all past traces; (iii) Only
Successful Memory: Only success-
ful episodes are recorded and re-
trieved; (iv) Only Unsuccessful Memory: Only unsuccessful episodes are recorded and retrieved.

We shuffled GAIA’s 103 tasks in order to observe the unbiased trend shown in Table 3. We inferred
from the results that: (a) Successful-only memory yields the fastest early-stage gains because
it reinforces high-quality positive patterns without noise; (b) Full memory eventually overtakes
all others, as combining successful and unsuccessful traces enables stronger long-term correction
and generalization; (c) No-memory and unsuccessful-only strategies improve far more slowly,
highlighting the importance of structured experience reuse for continual self-improvement.

5 CONCLUSION

In this work, we introduced FlowSearcher, a framework that redefines web information seek-
ing through experience-driven agentic workflows. Rather than relying on reactive tool-use,
FlowSearcher constructs and optimizes full workflow graphs, supported by a structured memory that
retrieves and adapts past trajectories across tasks. These reusable traces directly inform both work-
flow orchestration and execution, enabling FlowSearcher to achieve consistent and sizable gains over
strong baselines on three challenging benchmarks. Beyond empirical results, our findings highlight a
broader insight: memory-driven workflow design can unlock improvements on par with, and in
some cases exceeding, those achieved through conventional fine-tuning. This suggests a promis-
ing direction for future agent systems. Looking forward, we aim to enrich FlowSearcher’s memory
with finer-grained patterns and distilled abstractions, and to extend its workflow representations with
more expressive structures, moving toward agents that are increasingly adaptive, transferable, and
self-improving.
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6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility and transparency of our research findings, all evaluations were con-
ducted using publicly available benchmarks: GAIA (General AI Assistant benchmark)3, GPQA-
Diamond (Graduate-level Google-Proof Q&A benchmark)4, and BrowseComp (Web browsing and
comprehension benchmark)5. These datasets are openly accessible to the research community, en-
abling replication of our experimental conditions. Environment setting scripts, benchmark repro-
ducing scripts (testing and evaluation) are provided as per in the Supplementary Materials. Com-
prehensive implementation details are provided in the Appendix. This documentation, combined
with the standardized nature of the public benchmarks, ensures that our work can be independently
reproduced and validated by the research community.
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A DEFINITIONS AND NOTATIONS

The notations and definitions are presented in Table 4.

Table 4: Notations and definitions used in the FlowSearcher methodology.

Notation Definition

Q The original query (main research question).
ŷ The predicted answer aggregated from workflow executions.
µi Sub-question at step i, decomposed from Q.
Γ = {µi,Gi} Solution trajectory consisting of sub-questions and their workflow

graphs.
Gi Workflow graph composed of building blocks (e.g., search, browse,

summarize).
v = (α,o) Node representation: action sequence α and corresponding outputs

o.
M Structured hierarchical memory storing past task, graph, and node

traces.
θµ Prompt for sub-question decomposition.
θG Prompt for workflow synthesis.
P (Γ | Q,M0) Probability of generating a trajectory given query Q and initial mem-

oryM0.
P (α,o | µi,Mi−1) Probability of node execution (action-output sequence) conditioned

on sub-question and memory.

B INFERENCE PROCESS

This section we are going to walk through a typical pipeline of solving a task by FlowSearcher.

B.1 HIGH LEVEL: NEXT SUB-QUESTION GENERATION AND MEMORY-GUIDED WORKFLOW
SYNTHESIS

Sub-question generation and experience retrieval. The inference procedure is organized in a
stepwise manner. At the beginning of each step, a sub-question is generated based on the aggregated
observations and the original query. To guide the orchestration, three entries from the execution log
are retrieved from memory. These logs are processed and passed to the instructor module, which
distills them into at most three concise and transferable experiences on workflow orchestration. The
resulting experiences are then incorporated into the orchestrator prompt.

Workflow graph orchestration and validation. Once the workflow graph, represented in YAML,
is orchestrated, the system’s graph validation module is invoked to verify whether the generated
graph is valid (see Section C.2). If validation fails, the orchestrator is prompted to regenerate the
graph using the provided error message.

Conversion to executable code. After a valid workflow is obtained, the converter module translates
the YAML graph specification into executable Python files.

Workspace creation. Finally, a workspace folder is created, into which all relevant files are stored,
including the pre-execution metadata (original question, current sub-question, aggregated observa-
tions, and tool-call details), the YAML configuration file, and the generated executables.

A high-level process demonstration is presented in Algorithm 1.
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Algorithm 1 FlowSearcher High-Level Inference Process

Require: Original Query Qorig

Ensure: Final Answer Afinal

1: Initialize Aggregated Observations O ← ∅
2: final answer found← false
3: while not final answer found do

— Sub-question Generation and Memory-Guided Workflow Synthesis —
4: Generate sub-question Qsub based on Qorig and O.
5: Retrieve execution logs from memory and distill into experiences E.

— Workflow Graph Orchestration and Validation —
6: repeat
7: Orchestrate workflow graph G (YAML) using Qsub and E.
8: is valid, error msg ← ValidateGraph(G).
9: if not is valid then

10: Regenerate G with feedback from error msg.
11: end if
12: until is valid

— Conversion and Workspace Setup —
13: Convert valid graph G into executable Python files Fexec.
14: Create workspace and store metadata, G, and Fexec.

15: Call EXECUTEWORKFLOW(Qsub, Fexec, O)

— Final Verification —
16: Determine if Qorig can be answered with the updated observations O.
17: if Qorig is answerable then
18: final answer found← true
19: end if ▷ If not, the loop continues to generate the next sub-question.
20: end while

— Execution and Result Aggregation —
21: Invoke the Finalizer Block.
22: Identify the most relevant references Rrel within O.
23: Verify factual consistency between Rrel and the summary in O.
24: Synthesize the final answer Afinal by reasoning over the verified summary.
25: return Afinal
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B.2 LOW LEVEL: MEMORY-GUIDED WORKFLOW EXECUTION

Execution of Searcher Blocks. Searcher blocks are responsible for generating search keywords,
performing searches, and selecting relevant search results. URLs from the selected results are passed
directly to the browser blocks for further processing.

Execution of Browser Blocks. Browser blocks navigate the webpages provided by the searcher
blocks and extract information from them. In the case of in-depth browsing, additional links on the
page are also collected. All extracted content is organized as a list of references, each containing the
original information and its source URL.

Execution of Summarizer Blocks. Summarizer blocks select the most relevant references and
produce a concise summary that addresses the current sub-question and contributes to the overall
answer. The updated summary is then stored for subsequent use.

Verification Process

1. Sub-question Verification: Check if the current sub-question has been successfully ad-
dressed.

• If verification fails, repeat the workflow until conditions are met.

2. Final Verification: If the sub-question is verified, determine whether the original question
can now be answered:

• If yes, activate the aggregation module to produce the final answer.
• If no, generate the next sub-question and continue the high-level control flow.

We present the low-level process as shown in Algorithm 2:

Algorithm 2 FlowSearcher Low-Level Workflow Execution

1: procedure EXECUTEWORKFLOW(Qsub, Fexec, O)
2: repeat

— Block Execution —
3: Searcher Blocks: Generate keywords, perform search, and select results (URLs).
4: Browser Blocks: Navigate URLs, extract content, and organize as references.
5: Summarizer Blocks: Select relevant references and generate a summary for Qsub.
6: Store the new summary and references in the aggregated observations O.

— Sub-question Verification —
7: Check if Qsub has been successfully addressed by the generated summary.
8: until Qsub is addressed
9: end procedure

B.3 EXECUTION AND RESULT AGGREGATION

When the accumulated summary and references pass the final verification stage, the finalizer block
is invoked to derive a concise answer to the original query. The finalizer operates in two steps. First,
it identifies the subset of references most relevant to the query and verifies the factual consistency
between these references and the constructed summary. Subsequently, it reasons over the verified
portion of the summary and synthesizes a concise, accurate answer.

C IMPLEMENTATION DETAILS

FlowSearcher is implemented through Langgraph6. In this section, we present the implementation
details of FlowSearcher.

C.1 BUILDING BLOCKS

In FlowSearcher, building blocks are categorized into these types:

6https://www.langchain.com/langgraph
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1. Searcher: Responsible for retrieving relevant information from external sources, such as databases,
search engines, or knowledge bases, based on the current query or sub-question. It provides the raw
material for further reasoning and analysis.

2. Browser: Navigates through the retrieved resources to extract structured and unstructured informa-
tion. The browser interprets web pages, documents, or other content, and transforms them into a
form usable by downstream modules.

3. Summarizer: Condenses the collected information into concise, coherent summaries. It filters out
irrelevant details, highlights key points, and prepares the content for verification and higher-level
reasoning.

4. Verifier: Checks the factuality and consistency of the summarized content against the original
sources or cross-references. It ensures that the information used for reasoning is accurate and trust-
worthy.

5. Finalizer: Integrates verified information to produce a coherent and concise answer to the main
query. The finalizer synthesizes evidence from multiple sources and ensures that the resulting answer
is accurate, complete, and well-structured.

6. Thinker: Performs high-level reasoning and problem-solving. It can generate sub-questions, plan
multi-step workflows, and determine which tools or blocks should be invoked to solve complex
tasks.

Now we are presenting the two most important functional block types: Searcher and Browser.

C.1.1 SEARCHER-TYPE BLOCKS

The searcher blocks receive the original question (OverallState.messages[0].content)
and the current summary (OverallState.current summary) as input. Upon completion of
their execution, all fields within SearcherState are updated to reflect the results of the search
process. The state structure is demonstrated in C.4.

General Searcher first generates up to 5 search queries, performs a search and collects search
results for each query. The prompts for generating search queries and collecting search results for
each query are as follows:

Search Query Generation Prompt

You are a query writer agent that operates in a workflow that solves a question step by step.
You are given:
- The main question
- The sub-goal of the current step
- Some used keywords or phrases used in the previous searches
- A summary containing current found information
**Your tasks:**
- The current summary (if provided) fails to reach the sub-goal
- Output some keywords or phrases that have the potential to find other useful information
outside of the current summary and related to the sub-goal
- Don’t output more than {query count} keywords or phrases

**Extra notes:**
- If no used keywords and summary provided, that means you need to think about the first
keywords to search
- The current date is **current date**, be careful when it’s necessary to specify time in the
search keywords
experiences
—
Main question:
{original question}
Sub-goal:
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{sub question}
Used search queries:
{used search keywords and phrases}
Current summary:
{current summary}

Search Result Selection Prompt

You are a search result selection agent that operates in a workflow that solves a question step
by step.

You are given:
- The main question
- The sub-goal of the current step
- Search results obtained by searching for {query}

**Your tasks:**
- Select relevant search results and only output their URLs and snippets
- If no relevant search results provided, output an empty list
- The current date is **{current date}**, be careful when the question requires updated
information
{experiences}
—
Main question:
{original question}
Sub-goal:
{sub question}
Search results:
{search results}

First-Hit Searcher only generates one search query and performs one search, the search result
selection process is the same as General Searcher. The query generation prompt is as follows:

Goal Break-Down Prompt

You are a query writer agent that operates in a workflow that solves a question step by step.
You are given:

- The main question
- The sub-goal of the current step
- Some used keywords or phrases used in the previous searches
- A summary containing current found information
**Your tasks:**

- The current summary (if provided) fails to answer the sub-goal
- Output one search query that has the potential to find other useful information outside of the
current summary and related to the sub-goal
**Extra notes:**

- If no used keywords and summary provided, that means you need to think about the first
keyword to search
- The current date is **{current date}**, be careful when it’s necessary to specify time in the
search keyword
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{experiences}
—

Main question:
{original question}
Sub-goal:
{sub question}
Used search queries:
{used search keywords and phrases}
Current summary:
{current summary}

Parallel Searcher. Specifically, given a sub-goal, the block first decomposes it into a structured
list of finer-grained goals that can each be independently addressed. For every goal, the block
automatically generates one or more search queries tailored to the goal’s intent and retrieves the
corresponding candidate results. To ensure consistency and reliability, all retrieved outputs are sub-
sequently processed through a unified result selection procedure that ranks, filters, and consolidates
the candidate results into a coherent evidence set. This design enables the block to operate as a
self-contained unit that bridges abstract sub-goals with concrete, high-quality information.

Break-down Goal Prompt

You are a helper agent breaking down a goal into a list of ready-to-search sub-goals that
operates in a workflow that solves a question step by step. The workflow is solving the
question using a search engine.
You are given:

- The main question
- The sub-goal of the current step
**Your tasks:**

- Break down the current sub-goal into a list of ready-to-search sub-goals
- If the sub-goal is already specific enough to conduct a search on it, just output the sub-goal
as a single item in the list
- The current date is **{current date}**, be careful when the question requires updated
information
—
Main question:
{question}
Sub-goal:
{sub goal}
—
Example:

Main question: ”Help me find a character who constantly breaks the fouth wall and has a
backstory of being saved by an ascetic”
Sub-goal: ”Find which characters from this list have a backstory of being saved by an ascetic:
A, B, C, D, E”
List of ready-to-search sub-goals:

”Find A’s backstory and determine if A is saved by an ascetic”,
”Find B’s backstory and determine if B is saved by an ascetic”,
”Find C’s backstory and determine if C is saved by an ascetic”,
”Find D’s backstory and determine if D is saved by an ascetic”,
”Find E’s backstory and determine if E is saved by an ascetic”
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C.1.2 BROWSER-TYPE BLOCKS

The browser blocks receive search results from the orchestrated searcher blocks, visit the URLs, and
extract relevant information. Webpage content is split into chunks, and at each step, browser blocks
must decide whether to continue visiting the next chunk.

General Browser. The general browser block selects up to five URLs and sequentially extracts
information from each page it visits.

URL Selection Prompt

You are an agent that selects next relevant URLs to browse when solving a question step by
step.
You are given:

- The main question
- The sub-goal of the current step
- A list of URLs and their snippets
**Your tasks:**

- Check through the list of URLs and their snippets and determine what kind of information is
being provided relevant to the sub-goal
- Select the URLs that have the potential to provide useful information relevant to the sub-goal,
you can select them all if you think they are all relevant
- The current date is **{current date}**, be careful when the question requires updated infor-
mation
**Extra notes:**

- **CRITICAL: Pay close attention to specific requirements in the question** (e.g., ”official
script”, ”official website”, ”primary source”, ”government data”, etc.)
- **Prioritize URLs that match the specific source requirements mentioned in the question**
- If the question asks for ”official” sources, prioritize URLs from official organizations, gov-
ernment sites, or primary sources over fan sites, transcripts, or secondary sources
**Source Priority Guidelines:**

- Official/Primary sources: Government sites (.gov), official organization websites, original
publishers, etc.
- Secondary sources: News sites, academic sites, established databases
- Tertiary sources: Fan sites, transcripts, wikis, forums (use only if no better sources available)
{experiences}—

Main question:
{original question} Sub-goal:
{sub question} List of URLs and their snippets:
{list of urls and snippets}

Information Extraction Prompt

You are an information extractor agent that operates in a workflow that solves a question step
by step.
You are given:

- The main question
- The sub-goal of the current step
- Part of the content of a webpage, you will be given the number of parts and the index of the
current part
**Your tasks:**

- Extract ONLY information that is directly relevant to answering the sub-goal or the main
question
- Be selective and focused - avoid extracting tangential information like version histories, con-
tributor lists, or general background unless specifically needed
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- The current date is **{current date}**, be careful when the question requires updated infor-
mation
**What NOT to extract:**

- Version histories or release notes unless the question specifically asks about versions
- Contributor lists or acknowledgments unless the question asks about contributors
- General background information that doesn’t directly relate to the question
- Marketing content, testimonials, or promotional material
- Navigation elements, headers, footers, or UI text
- Repeated information that has already been captured

—
Main question:
{original question} Sub-goal:
{sub question}Webpage content:
{webpage content}

First-Hit Browser. The first-hit browser block selects the single most reliable URL and stops im-
mediately after retrieving the relevant information.

First-hit Information Extraction Prompt

You are an information extractor agent that operates in a workflow that solves a question step
by step.
You are given:

- The main question
- The sub-goal of the current step
- Part of the content of a webpage, you will be given the number of parts and the index of the
current part
**Your task:**

- Browse through the webpage content and look for the information that contains the answer to
the sub-goal or the original question
- Extract that information **in its ORIGINAL FORM, don’t paraphrase or modify the infor-
mation**
- When you can’t find the information from the current part, decide whether you should con-
tinue browsing the next part of the webpage
- The current date is **{current date}**, be careful when the question requires updated infor-
mation
**Extra notes:**

- If no information founded, leave the information field as ””
- Make sure the answer can be clearly extracted from the information without any ambiguity
— Main question:

{original question} Sub-goal:
{sub question}Webpage content:
{webpage content part}

Parallel Browser. The parallel browser block visits all URLs returned by the current search results
concurrently. It uses the same prompts as General Browser with multi-threading.

In-depth Browser. The in-depth browser block selects up to three root URLs, extracts both rele-
vant URLs and information from each page, maintains a queue of discovered pages, and continues
visiting until the queue is empty or a predefined visit limit is reached.
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Root URL Selection Prompt

You are a helper agent that selects the root URLs to browse when solving a question step by
step.
You are given:

- A question
- The sub-goal of the current step
- A list of URLs and their snippets
**Your tasks:**

- Select the root URLs that potentially have tabs and buttons to direct to pages with useful in-
formation relevant to the sub-goal
- If you think some URLs directly provide the information you need, you can also select them
- The current date is **{current date}**, be careful when the question requires updated infor-
mation **Extra notes:**
- **CRITICAL: Pay close attention to specific requirements in the question** (e.g., ”official
script”, ”official website”, ”primary source”, ”government data”, etc.)
- **Prioritize URLs that match the specific source requirements mentioned in the question**
- If the question asks for ”official” sources, prioritize URLs from official organizations, gov-
ernment sites, or primary sources over fan sites, transcripts, or secondary sources

{experiences}—
Question:
{question} Sub-goal:
{sub goal} List of URLs and their snippets:
{list of urls and snippets}

In-depth Browsing Prompt

You are a helper agent that browses the web to find useful information when solving a question
step by step.
You are given:

- A question
- The sub-goal of the current step
- A part of the content of a webpage
**Your tasks:**

- Extract ALL information that could be relevant to answering the question or achieving the
sub-goal
- Look for specific details like names, numbers, dates, relationships, lists, tables, and factual
data
- Pay special attention to structured data (tables, lists, rosters, directories) that might contain
answers
- Find links present in the webpage that can potentially direct to pages with useful information
relevant to the sub-goal
- You are given the part index and the total number of parts of the webpage
- You need to decide whether to keep browsing the next part of the webpage if there is still part
left
- Be generous in what you consider ”relevant” - include information that might be indirectly
useful
- The current date is **{current date}**, be careful when the question requires updated infor-
mation
—
Question:
{question}
Sub-goal:
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{sub goal}
Webpage content:
{webpage content}

C.2 QUERY WRITER AND ORCHESTRATOR

The query writer is in charge of decomposing and generating the next query based on the current
information summary and the original question.

Next Query Writer Prompt

You are an advisor agent that operates in a workflow that solves a question step by step using a
search engine.
You are given:

- A question
- A summary containing the current found information
**Your tasks:**

- Review the current summary to see what information has already been found
- Identify what key information is still missing to answer the main question completely
- Write a comprehensive sub-goal that encompasses all the information agents can start to find
given the summary’s context
- If no summary provided, start with the first logical sub-goal needed to answer the main ques-
tion, the first sub-goal can be exactly the same as the main question, if you think the main
question is focused enough on one specific goal
**Instructions:**

- Create a sub-goal that maximizes information gathering potential - don’t limit the scope (Ex-
ample: ”Find a list ...”)
- When there are several possible sub-goals, choose the one that is easier to reach using a search
engine
- However, the new sub-goal still needs to be based on the current summary’s context, missing
context would mislead the workflow
- The sub-goal must encompass queries about all relevant information that can be discovered
based on the current summary’s context
- Stay focused on the main question - your sub-goal should be a necessary step toward answer-
ing it
- Use information from the current summary as context for the next sub-goal (e.g., if the sum-
mary identifies a city, use that city name in your next goal)
- The current date is **{current date}**, be careful when the question requires updated infor-
mation

**Key principle:** Always use specific information from the current summary in your next
sub-goal rather than generic placeholders.
—
Question:
{question} Summary:
{current summary}

The orchestrator is in charge of orchestrate the workflow from a pre-defined set of building blocks.

Workflow Orchestration Prompt

You are an orchestrator agent that designs search workflows to answer sub-questions using
specialized building blocks.
**Decision Logic:**
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- Can sub-goal be answered without web searches? → **Thinker-Summarizer**
- Need new information from web? → **Searcher-Browser-Summarizer**

ENCOURAGE DIVERSE COMBINATIONS
**Searcher Options**: fast searcher, searcher, advanced searcher

**Browser Options**: fast browser, browser, advanced browser, deep browser
**Summarizer Options**: summarizer, advanced summarizer
REQUIREMENTS
- **Function names must match exact ‘block name‘ from block list**
- **Output complete YAML** with “‘yaml and “‘ tags
- **DO NOT modify the rest of the YAML template - only fill in the highlighted/placeholder
parts**
- **ONLY use these 4 node types**: ‘searcher‘, ‘browser‘, ‘summarizer‘, ‘thinker‘ (and their
variants)
- **DO NOT use**: ‘verifier‘ or ‘finalizer‘ - these are handled automatically
**YAML template:**

“‘yaml
{yaml template} “‘ {experiences} **IMPORTANT**: Only modify the highlighted/place-

holder sections in the template above. The rest of the YAML structure must remain unchanged.
—
**The original question:**
{original question} **The current sub-goal:**
{question} **Current summary of the found information:**
{current summary} **List of pre-defined building blocks:**
{list of building blocks}

C.3 YAML CONVERTER MODULE

In FlowSeacher, the orchestrator orchestrates the workflows by fill in a YAML template that already
contains the verification logic as below:
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YAML Template

nodes:
**Your selected building blocks**
- name: sub verifier
function: verifier
config:
verifier variant: sub
- name: final verifier
function: verifier
config:
verifier variant: final
- name: finalizer
function: finalizer
edges:

- START - **The first building block to execute when solving the question**
**Your orchestrated edges**
- **The last building block to execute when solving the question** - sub verifier
- finalizer - END
conditional edges:

- from: sub verifier
condition: state.get(’sub verified’)
routes:
- false: **The first building block to execute when solving the question**
- true: final verifier
- from: final verifier
condition: state.get(’final verified’)
routes:
- false: END
- true: finalizer

C.4 AGENTIC WORKFLOW CREATION AND EXECUTION

The workflow is created as a state graph with every agentic action altering part of fields of an overall
state object.

Agentic Workflow State

Overall State:
• messages: list of messages (auto-append new messages)
• current sub question: string
• current sub question iteration: integer
• current summary: string
• final answer: string
• sub verified: boolean
• final verified: boolean
• searcher state: SearcherState (updated automatically)
• browser state: BrowserState (updated automatically)
• instruction state: InstructionState
SearcherState:
• search count: integer
• used keywords: list of strings

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

• history search results: list of SearchResult
• search results: list of SearchResult
• search cache: dictionary
BrowserState:
• visit count: integer
• visited urls: list of strings
• history found references: list of Reference
• found references: list of Reference
• visit cache: dictionary
InstructionState:
• orchestrator instructions: list of strings
• searcher instructions: list of strings
• browser instructions: list of strings

When a workflow is successfully generated, a folder named ”workspace” will be created with graph
settings and executables. When a workflow is executed successfully, the final state is saved to the
same ”workspace” folder.

The structure of the folder is as follows:

Workspace Structure after Successful Execution

sample workspace/
after state.json
before state.json
graph.py
graph.yaml
run.py

C.5 MEMORY STRUCTURE AND PROMPT INJECTION

FlowSearcher maintains a multi-level memory structured as the below schema:

FlowSearcher Execution Memory

Overall State:
• execution id: string
• question: string
• sub question: string
• before summary: string
• summary: string
• can answer sub question: boolean
• can answer question: boolean
• workflow: string (YAML representation)
• searcher execution memory: SearcherExecutionMemory (updated automatically)
• browser execution memory: BrowserExecutionMemory (updated automatically)
• question embedding: list of floats
• sub question embedding: list of floats

SearcherExecutionMemory:
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• search count: integer
• new keywords added: list of strings
• new search results: list of SearchResult

BrowserExecutionMemory:
• visit count: integer
• new visited urls: list of strings
• new references found: list of Reference

When a new sub-query is generated, we retrieve the relevant memory entries with a weighted sum
of main question and sub-question similarity with default weights set to 0.5 and 0.5.

Then we pass the graph-level and node-level traces to the instructor module. The trace schemas are
as follows:

Orchestrator Execution History Template

Original question: {question}
Sub-goal: {sub_goal}
Before summary: {before_summary}
After summary: {after_summary}
Orchestrated workflow: {workflow}
Successful: {successful}

Search Execution History Template

Original question: {question}
Sub-goal: {sub_goal}
Search keywords: {search_keywords}
Search results: {search_results}
Successful: {successful}

Browse Execution History Template

Original question: {question}
Sub-goal: {sub_goal}
New found references: {new_found_references}
Successful: {successful}

Then, we pass the history traces of these format to the instructor module, gain the actionable expe-
riences and inject them to corresponding prompts’ placeholders.

D CASE STUDY

In this section, we present two specific cases of our system performing different types of tasks with
GPT-4o-mini backbone.

D.1 EXAMPLE OF PERFORMING WEB NAVIGATION TASK

Below is an example execution of a web navigation task from GPT-4o-mini backbone. The workflow
settings are First-hit Searcher + In-depth Browser + General Summarizer.
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Example Web Navigation Task

Original Question: According to GitHub, when was the Regression label added to the oldest
closed numpy.polynomial issue, in MM/DD/YY format?
Summary from Previous Steps: I found a filtered GitHub Issues view for the NumPy repos-
itory, showing issues labeled “06 – Regression” that are closed. This label is used to track
regressions, i.e., cases where something that previously worked in NumPy became broken in
a later version. The results are limited to the first page of closed regression issues, so only a
subset is visible.
Current Sub-goal: Identify the oldest issue involving the component
numpy.polynomial.
Orchestrated Workflow: First-hit Searcher + In-depth Browser +
General Summarizer.
Execution Process:

• First-hit Searcher performs a search: numpy polynomial issues
Regression label GitHub

• In-depth Browser processes the Regression-label issue page:
– found page button: [20]
– navigated to the target page
– found link to the oldest issue: Issue #291
– visited the link
– extracted information

• General Summarizer incrementally updates the summary: ... The oldest closed
Regression issue on GitHub is #291, opened on Jun 5, 2012. However, this issue
does not appear to be directly relevant to numpy.polynomial. (A new iteration
started.)

D.2 EXAMPLE OF PERFORMING COMPREHENSIVE SURVEYING TASK

Below is an example execution of performing a comprehensive surveying task, the workflow settings
are Advanced Searcher + Advanced Browser + Advanced Summarizer.
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Example Comprehensive Surveying Task

Original Question: An African author tragically passed away in a tragic road accident. As
a child, he’d wanted to be a police officer. He lectured at a private university from 2018 until
his death. In 2018, this author spoke about writing stories that have no sell by date in an
interview. One of his books was selected to be a compulsory school reading in an African
country in 2017. Which years did this author work as a probation officer?
Summary from Previous Steps: The initial step is to deconstruct the user’s query to iden-
tify the author in question. The key identifying facts are: an African author who died in a
road accident, lectured at a private university from 2018 until his death, had a book become
compulsory reading in an African country in 2017, and gave a specific interview in 2018.
The final goal is to determine the years this author worked as a probation officer.
Current Sub-goal: Find a list of Arican writers who had a lecturer career.
Orchestrated Workflow: Advanced Searcher + Advanced Browser +
Advanced Summarizer.
Execution Process:

• Advanced Searcher performs 25 searches: ”African author lecturer died in acci-
dent”, ”Nigerian author book compulsory reading 2017”, ”Pius Adesanmi biography”,
”Pius Adesanmi career”, ”Pius Adesanmi probation officer employment history”

• Advanced Browser processes the 58 pages:
– found informations from 25 pages:
– Pius Adesanmi was a Nigerian-Canadian author and professor at Carleton Univer-

sity. He died in the Ethiopian Airlines Flight 302 crash on March 10, 2019. He was
an active lecturer in 2018 until his death. His book ”Naija No Dey Carry Last” was
highly acclaimed and recommended for school curricula in Nigeria. A review of his
CV and multiple biographies shows a career exclusively in academia and literature,
with no mention of him working as a probation officer.

• Advanced Summarizer ensembles and updates the summary: The author described
is identified as Pius Adesanmi based on his profile as a Nigerian author, lecturer, the
timing of his death in an accident, and the status of his book. After a thorough review of
his employment history, there is no evidence that he ever worked as a probation officer.
The premise of the original question appears to be incorrect. (A new iteration started.)

E ACKNOWLEDGMENT ON LLM USAGE

We acknowledge the use of large language models (LLMs) specifically for language polishing,
rephrasing, and improving readability, which helped us present our demonstrations more clearly.
These tools were employed solely for stylistic refinement and did not contribute to the conceptual-
ization, design, or methodological development of this work. All ideas, experiments, analyses, and
conclusions remain entirely the result of the authors’ own efforts.
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