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Abstract

We introduce a new private regression setting we call Private Regression in Multiple Outcomes
(PRIMO), inspired by the common situation where a data analyst wants to perform a set of l
regressions while preserving privacy, where the features X are shared across all l regressions,
and each regression i ∈ [l] has a different vector of outcomes yi. Naively applying existing
private linear regression techniques l times leads to a

√
l multiplicative increase in error over

the standard linear regression setting. We apply a variety of techniques including sufficient
statistics perturbation (SSP) and geometric projection-based methods to develop scalable
algorithms that outperform this baseline across a range of parameter regimes. In particular,
we obtain no dependence on l in the asymptotic error when l is sufficiently large. Empirically,
on the task of genomic risk prediction with multiple phenotypes we find that even for values
of l far smaller than the theory would predict, our projection-based method improves the
accuracy relative to the variant that doesn’t use the projection.

1 Introduction

Linear regression is one of the most fundamental statistical tools used across the applied sciences, for both
inference and prediction. In genetics, polygenic risk scores Krapohl et al. (2018); Pattee & Pan (2020) are
computed by regressing different phenotypes (observed outcomes of interest like the presence of a trait or
disease) onto individual genomic data (SNPs) in order to identify genetic risk factors. In the social sciences,
observed societal outcomes like income or marital status might be regressed on a fixed set of demographic
features Agresti & Barbara (2009). In many of these cases where the data records correspond to individuals,
there are two aspects of the problem setting that co-occur:

Aspect 1. The individuals may have a legal or moral right to privacy that has the potential to be compromised
by their participation in a study.

Aspect 2. Multiple regressions will be ran using the same set of individual characteristics across each regression
with different outcomes, either within the same study or across many different studies.

Aspect 1 has been established as a legitimate concern through both theoretical and applied work. The
seminal paper of Homer et al. (2008) showed that the presence of an individual in a genomic dataset could be
identified given simple summary statistics about the dataset, leading to widespread concern over the sharing
of the results of genomic analyses. In the machine learning setting, where what is being released is a model w
trained on the underlying data, there is a long line of research into “Membership Inference Attacks" Hu et al.
(2021); Shokri et al. (2016), which given access to w are able to identify which points are in the training set.
Over the last decade, differential privacy Dwork & Roth (2014) has emerged as a rigorous solution to the
privacy risk posed by Aspect 1. In the particular case of linear regression the problem of how to privately
compute the optimal regressor has been studied in great detail, which we summarise in Subsection 2.1.

Aspect 2 has been studied extensively from the orthogonal perspective of multiple hypothesis testing, but
until now has not been considered in the context of privacy. The problem of overfitting or “p-hacking” in
the social and natural sciences has been referred to as the “statistical crisis in science" Gelman & Loken
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Figure 1: PRIMO imagines the scenario where the weights W computed as a function of sensitive features X
and multiple outcomes Y are published or leaked. Our algorithms prevent an adversary with access to W
from exposing the underlying sensitive data xi, yi.

(2014), and developing methods that quantify and mitigate the effects of overfitting has been the subject of
much attention in the statistics and computer science communities Dwork et al. (2015a); Bassily et al. (2021);
Korthauer et al. (2019). Given the ubiquity of Aspects 1 and 2, this raises an important question that we
explore in this work:

When computing i = 1 . . . l distinct regressions with a common set of X’s and distinct yi’s, what
is the optimal accuracy-privacy tradeoff?

2 Preliminaries

We start by defining the standard linear regression problem. Let X ∈ X n ⊂ Rn×d consist of d-dimensional
samples from n individuals, yi ∈ Yn be a vector of n outcomes for a regression indexed by i, and parameter
space W ⊂ Rd denote the subset of linear regression coefficients we will optimize over.

For w ∈ W let f(w) := 1
n

∑n
k=1(w · xk − yik)2 be the linear regression objective, and denote by wi∗ =

arg minw∈Rd f(w) = (XT X)†XT yi, where † is the Moore-Penrose inverse. For λ > 0 let fλ(w) = 1
n

∑n
k=1(w ·

xk −yik)2 +λ||w||22 the ridge regression objective, and let wλ
i∗ = arg min fλ(w)w∈Rd = ( 1

n XT X +λId)−1 1
n XT yi.

The definition of data privacy we use throughout is the popular (ε, δ)-differential privacy introduced in Dwork
et al. (2006). We refer the reader the to Dwork & Roth (2014) for an overview of the basic properties of
(ε, δ)−DP including closure under post-processing and advanced composition. In order to define a differentially
private mechanism, we first define what it means for two datasets to be adjacent.
Definition 1. Two datasets (X, y), (X ′, y′) ∈ X n × Yn are adjacent if they differ in a single element, e.g.
there exists j, j′ ∈ [n], such that X ∪ {x′j} \ {xj} = X ′, y ∪ {y′j} \ {yj} = y′. We say that (X, y), (X ′, y′) are
feature-adjacent if they share labels y = y′, and ∃j ∈ [n] such that X ∪ {x′j} \ {xj} = X ′. Similarly, they are
label-adjacent if X = X ′, and ∃j ∈ [n] such that y ∪ {y′j} \ {yj} = y′.

We denote adjacency of (X, y), (X ′, y′) by (X, y) ∼ (X ′, y′).
Definition 2. Let M : (X × Y)n → O a randomized algorithm taking as input a dataset of n records. M is
(ε, δ)-DP if ∀ pairs of adjacent datasets (X, Y ) ∼ (X ′, Y ′), O ⊂ O:

Pr[M(X, Y ) ∈ O] ≤ eε Pr[M(X ′, Y ′) ∈ O] + δ (1)

When Definition 1 holds for adjacency defined over (xi, yi) pairs, this is the standard setting of differential
privacy, which we call “Full DP” in order to differentiate it from its relaxations. In the less restrictive case
where Equation 1 holds only over pairs of label-adjacent datasets, we are in the well-studied setting of label
differential privacy Ghazi et al. (2021); Esfandiari et al. (2021); Papernot et al. (2016). When Equation 1
holds only over pairs of feature-adjacent datasets, we say that we have feature differential privacy. We develop

2



Published in Transactions on Machine Learning Research (01/2025)

speci�c PRIMO algorithms for these relaxations of DP in Section 5. We now formalize thePrivate Regression
In Multiple Outcomes (PRIMO) problem.

De�nition 3. PRIMO. Let x i 2 X � Rd; yij 2 Y ; for i = 1 : : : n; j = 1 : : : l . Let X n � d the matrix with i th

row x i , and let Yn � l the matrix with j th column yj = ( y1j ; : : : ynj ). The optimal solution W � to the PRIMO
problem is

W � = arg min
W 2W l � Rd � l

jjXW � Y jj2
F

Given a randomized algorithm M : (X � Y l )n ! W l , we say that M is an (�; �; "; � ) solution to the PRIMO
problem if (i) M is ("; � )-DP, and (ii) with probability 1 � � over ~W � M :

1
nl

jjX ~W � Y jj2
F �

1
nl

jjXW � � Y jj2
F < �

We will use yj to denote the vector ofn outcomes for thej th outcome, andyi 2 Y l for the vector of l outcomes
corresponding to individual i 2 [n]. We note that in PRIMO under full DP, the adjacency condition holds
over pairs (x i ; yi ). The (�; � )-DP algorithm we will use most throughout is the Gaussian Mechanism. We
state a version of the Gaussian mechanism with constantc(�; � ) that is valid for all � > 0, which follows from
analyzing the mechanism using Renyi DP Mironov (2017) and converting back to(�; � )-DP.

Lemma 1 (Dwork & Roth (2014)) . Let f : X n ! Rd an arbitrary d-dimensional function, and de�ne it's
sensitivity � 2(f ) = supX � X 0 jj f (X ) � f (X 0)jj2, where X � X 0 are datasets that di�er in exactly one element.
Then the Gaussian mechanismGaussMech("; �; �) releasesf (X ) + N (0; � 2), and is ("; � )-di�erentially private

for � � c("; � )� 2(f ), where c("; � ) =
q

2( 1
� + log 1

�
" 2 ).

Lastly, we de�ne some notation. Given a vector v and matrix A, jjvjj2; jjAjj2 denote the l2 and the spectral

norm respectively, jjAjjF is the Frobenius norm, jX j = supx 2X jj xjj1 ; jYj = jjyjj1 , and jj ŵjj2 =
q

1
l jjW � jj2

F ,
where W � is the optimal PRIMO solution in De�nition 3. Following convention in prior work, we will let
jjX jj 2; jjYjj 2; jjWjj 2 denote supx 2X jj xjj2; supy2Y jj yjj2; supw2W jjwjj2 respectively.

2.1 Private Linear Regression

Private linear regression is well-studied under a variety of di�erent assumptions on the data generating process
and parameter regimes. Typically analysis of private linear regression is done either under the fully agnostic
setting where only parameter boundsjjX jj 2; jYj ; jjWjj 2 are assumed, or under the assumption of a �xed design
matrix and y generated by a linear Gaussian model (the so-called realizable case), or under the assumption
of a random design matrix from a known distribution Milionis et al. (2022). In this paper we focus on the
�rst fully agnostic setting, because in our intended applications within the social and biomedical sciences in
general we neither have realizability (wheny is actually a linear function of x) or Gaussian features. In the
fully agnostic setting Wang (2018) provides a comprehensive survey of existing private regression approaches
and bounds, including a discussion of the impact of di�erent parameter norms.

Broadly speaking, techniques for private linear regression fall into4 classes: su�cient statistics perturbation
(SSP) Vu & Slavkovic (2009); Foulds et al. (2016), Objective Perturbation (ObjPert ) Kifer et al. (2012),
Posterior sampling Dimitrakakis et al. (2016), and privatized (stochastic) gradient descent (NoisySGD)
Chaudhuri et al. (2011). The methods in this paper are a sub-class ofSSP-based methods, which correspond
to Algorithm 1 where l = 1 . Methods based onSSPrely on perturbing X T X = � and X T yi = � Xy separately
with matrices of Gaussian noise (denoted byE1; E2i respectively), and then using these noisy estimates to
compute the (regularized) least squares estimator:

~wi � = ( X T X + �I + E1) � 1

| {z }
noisy covariance term ~�

� (X T yi + E2i )| {z }
noisy association term ~� Xy

(2)

In their Theorem 5:3 Bassily et al. (2014) give a lower bound on the mean squared error ofany (�; � )-DP
algorithm for optimizing a Lipschitz objective function. In the case of linear regression (which corresponds to
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PRIMO with l = 1 ), if wprivate denotes the output of any (�; � )-DP algorithm, then with probability at least
1
3 :

� = f (wprivate ) � f (wi � ) � minfjjYjj 2
2;

p
d(jjX jj 2

2jjWjj 2
2 + jjX jj 2jjWjj 2jjYjj 2

n�
g (3)

Cai et al. (2020) prove a lower bound that is tailored for realizable low-dimensional (n � d) linear regression,
where y � x t � + N (0; � 2), with jjxjj2 � 1 and jjX T X jj1 = O(1=d), showing that � = 
( � 2( d

n + d2

n 2 � 2 )) .
Neither of these bounds are exactly applicable to our setting; the bound of Bassily et al. (2014) is not
neccessarily tight for linear regression, and the bound of Cai et al. (2020) makes realizability assumptions
that clearly fail to hold for the type of genomic applications that motivate our work. We also note that all
existing lower bounds for private linear regression are under full DP, and so do not immediately apply to the
algorithms in Section 5 which operate in the weaker feature-DP or label-DP settings. In general, the focus of
this work is on upper bounds, and so we highlight this curious lack of relevant lower bounds in the literature
as a potential future direction, given the long line of work on upper bounds for private linear regression.
Acknowledging the above issues with existing bounds, throughout the paper we'll use the lower bound of
Bassily et al. (2014) as a benchmark for the cost to accuracy of takingl > 1, and in settings in which the
bounds for PRIMO match this lower bound we will say we have �PRIMO for Free.�

Given any ("; � )-DP algorithm for computing wj privately, we can use it as a sub-routine to solve PRIMO by
simply running it l times to compute each column ofW . Hence by running any of the optimal algorithms (for
exampleSSPVu & Slavkovic (2009)) l times with parameters "0 � "=

p
l; � 0 � �=l , by advanced composition

for di�erential privacy Dwork & Roth (2014) we can achieve MSE, subject to ("; � )-DP:

� = ~O(

p
ld(jjX jj 2

2jjWjj 2
2 + jjX jj 2jjWjj 2jYj
n"

); (4)

where the ~O hides factors oflog( 1
� ). So for a �xed privacy budget " , this naive baseline is a factor of

p
l worse

than in the standard private regression setting wherel = 1 .

Further background on private query release for linear and low-sensitivity queries (relevant to our techniques
in Section 5) under l1 and l2 error, and on sub-sampled linear regression (Subsection 7.7) is included in the
Appendix.

3 Results

The primary contribution of this work is to introduce the novel Private Regression in Multiple Outcomes
(PRIMO) problem, and to provide a class of algorithms that trade o� accuracy, privacy, and computation. In
addition to introducing the PRIMO problem, to our knowledge we are the �rst to apply private query release
methods to linear regression (Section 5). We also provide a compelling practical application of our algorithms
to the problem of genomic risk prediction with multiple phenotypes using data from The 1000 Genomes
Project Fairley et al. (2019) and The Database of Genotypes and Phenotypes Mailman et al. (2007).

Algorithm 1 is our meta-algorithm for the PRIMO problem, and has two variants, ReuseCovGausswhich
corresponds toM = GaussMech, and ReuseCovProj, which corresponds toM = Algorithm 2. Algorithm 2
itself has two variants, which correspond to the label private setting (GaussProjX ), and to the feature private
setting (GaussProjY ) respectively. For any given setting of the problem parameters (n; l; d; jjX jj 2; jjW jj2; jYj )
one of these variants achieves superior performance, in terms of the upper bound we can prove on the error� .
Which variant achieves the lowest� depends on the value ofl relative to the other parameters, and the type
of DP (Full, Feature, or Label) required. In Table 1 we summarize the theoretical upper bound on� achieved
by the best PRIMO variant in each setting. In Sections 4, 5 we prove these upper bounds for each variant.

In Section 4 we adapt the previously proposed su�cient statistics perturbation ( SSP) algorithm of Vu &
Slavkovic (2009); Foulds et al. (2016) into theReuseCovGaussAlgorithm. Via a novel accuracy analysis of
SSPfor the case when the privacy levels forE1; E2i di�er in Equation 2 (Theorem 1), we show that since the
noisy covariance matrix is reused across the regressions (as it only depends onX ), by allocating the majority
of our privacy budget to computing this term, we are able to obtain PRIMO for Free when l is su�ciently
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Guarantees ofReuseCov
# l of regressions � = MSE cost(l ) M Privacy

l < min( np
d
; jjX jj 2

2 jjWjj 2
2

jYj 2 ) ~O
� p

djjX jj 2
2 jj ŵ jj 2

2
n

�
1 Gauss Full

DP

l 2 ( jjX jj 2
2 jjWjj 2

2
jYj 2 ; np

d
) ~O

�
jj ŵ jj 2

p
ld jYjjjX jj 2

n

� p
l Gauss Full

DP

l > np
d
; n <

p
djjX jj 2

2 jjWjj 2
2

jYj 2
~O

� p
djjX jj 2

2 jj ŵ jj 2
2

n

�
1 Proj Y Feature

DP

l > np
d
; n >

p
djjX jj 2

2 jjWjj 2
2

jYj 2
~O

�
jj ŵ jj 2 d1= 4 jYjjjX jj 2p

n

� p
n

d1= 4 Proj Y Feature
DP

l > n
2
3 ~O

�
jj ŵjj2

jX jjj Y jj 2
p

dp
nl 1= 4

�
l1=4p

n Proj X Label
DP

Table 1: In the table above cost(l ) is the ratio of the PRIMO MSE � to the lower bound in Equation 3, and
M denotes the mechanism used to compute the association termX T Y in Algorithm 1.

small. This happens because the error term is dominated by the error in computing the noisy covariance
matrix, which does not depend onl, rather than the error from computing the noisy association term (row

1 of Table 1). When l > jjX jj 2
2 jjWjj 2

2
jYj 2 , the asymptotic error of ReuseCovGaussis dominated by the error in

computing the noisy association term, which has a
p

l dependence in the error onl (row 2 of Table 1). Given
this, it is natural to ask if, under parameter regimes where the error from the association term dominates,
can we obtain improved dependence of� on l over the

p
l given by ReuseCovGauss?

We answer this question in the a�rmative in Section 5 with the introduction of the ReuseCovProj algorithms.
The key idea is that instead of privately computing 1

n X T Y via the Gaussian Mechanism (Lemma 1), which
necessarily has error that scales like

p
l, in the setting where either X or Y are not considered private,

projecting the noisy value 1
n X T Y + N (0; � 2) returned by the Gaussian Mechanism onto the space of feasible

values that the non-private quantity 1
n X T Y could take (Line 5 of Algorithm 2), can reduce the error for

su�ciently large l. This set of �feasible� values is the image of the domain ofY under X T when X is
considered public, and it is the image of the domain ofX under Y T when Y is considered public. The
assumption that either X or Y are public are critical to these algorithms, as computing the projection depends
on the space we are projecting into in a way that would not be easily privatized. The setting whereX is
public and Y is private corresponds to feature DP, and the setting whereX is public and Y is public is label
di�erential privacy. In rows 3 � 5 in Table 1 we summarise the guarantees of Theorems 3,4 that characterize
the accuracy in these settings. In both the Feature DP and Label DP settings, the projection improves the
dependence in the error onl; d, at the cost of a factor of

p
n in the denominator. As a result, until l; d are

su�ciently large relative to n we'd expect the projection to actually increase error. We discuss these bounds
further in Section 5.

In Section 6, we implement ourReuseCovGaussand ReuseCovProj algorithms using SNP data from two of
the most common genomic databases Mailman et al. (2007); Fairley et al. (2019). We compare our algorithms
to each other, and to the non-private baseline. In both settings we reach the surprising conclusion that
even for relatively small values ofl = 11; 100, much smaller than the theory would predict, ReuseCovProj
outperforms ReuseCovGauss. Moreover, ReuseCovProj is able to achieve non-trivial MSE (as measured by
R2) for very large values of l , as predicted by Theorem 3. We also compare both algorithms to the baseline
of running a single private regressionl times (via DP-SGDBassily et al. (2019)) and composing the privacy
loss. DP-SGDperforms signi�cantly worse than any PRIMO algorithm unless we are in the setting of Row 2
in Table 1 where we expect no bene�t fromReuseCovGaussor ReuseCovProj over SSP, consistent with the
theory.
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4 Full DP: The ReuseCovGaussAlgorithm

We start by presenting our �rst algorithm for PRIMO, ReuseCovGauss, which corresponds to Algorithm 1
with M = GaussMech. To understand the intuition behind ReuseCovGauss, we start from the analysis of the
ridge regression variant ofSSPin Wang (2018). Equation 13 in Wang (2018) shows that if ~wi is the noisy
ridge regressor output bySSP, and wi � is the (non-private) OLS estimator, then w.p. 1 � � :

f ( ~wi ) � f (wi � ) = ~O

0

B
@

d
�� 2 jjX jj 2

2jYj2

| {z }
association error term

+
d

�� 2 jjX jj 4
2jjWjj 2

2
| {z }

covariance error term

1

C
A + � jjWjj 2

2| {z }
error due to ridge penalty

(5)

Inspecting these terms, we see that whenjjX jj 2jjWjj 2 � jjYjj 2 the error is dominated by the covariance error
term, which is the error due to random noise injected when privately computingX T X , rather than the
association error term, which is error due to random noise injected when privately computingX T yi . We now
turn back to our PRIMO setting, and imagine independently applying SSPto solve each of ouri = 1 : : : l
regression problems. By the lower bounds in Bassily et al. (2014), given a �xed privacy budget this incurs
at least a

p
l multiplicative blow up in error. However, we notice that when our private linear regression

subroutine is an SSPvariant, this naive scheme of runningl independent copies ofSSPis grossly wasteful.
Since theX matrix is shared across all the regressions, we can simply compute our noisy estimate ofX T X
once, and then reuse it across all the regressions. Combining these two observations, we present Algorithm 1.
M can be any(�=2; �=2)-DP algorithm for estimating X T Y, but when M = GaussMechwe call Algorithm 1
ReuseCovGauss.

Algorithm 1 Input: n; �; X 2 X n � Rd� n , Y = [ y1; : : : yl ] 2 Y l � n ; privacy params: �; �
ReuseCov

1: Draw E1 � Nd(d+1) =2(0; � 2
1); where � 1 = 1

n c(�; � )jjX jj 2
2

2: Compute Î = ( 1
n X T X + E1 + �I )

3: Draw ĝ = [ ĝ1; : : : ĝl ] � M (�=2; �=2; X; Y ) . M = GaussMechor Algorithm 2
4: for i = 1 : : : l
5: Set ~wi = Î � 1ĝi . In practice computed via Î = QR(Algorithm 3)
6: end for
7: Return ~W = [ ~w1; : : : ~wl ]

Theorem 1. With M = GaussMech(�=2; �=2; � = 1
n

p
l jjX jj 2jYj ), Algorithm 1 is an (�; �; �; � ) solution to

the PRIMO problem with

� = ~O

 

jj ŵjj2

r
djjX jj 4

2jj ŵjj2
2

n2 +
ldjYj2jjX jj 2

2

n2

!

; (6)

where jj ŵjj2
2 = 1

l jjW � jj2
F , and ~O omits terms polynomial in 1

� ; log(1=� ); log(1=� ).

Proof. The privacy proof follows from a straightforward application of the Gaussian mechanism. We note
that releasing eachĝi privately, is equivalent to computing X T Y + E2, where E2 � Nd� l (0; � 2

2). Now
it is easy to compute l-sensitivity �( f ) of f (X ) = X T Y. Fix an individual i , and an adjacent dataset
X 0 = X=f x i ; yi g [ f x0

i ; y0
i g. Then f (X ) � f (X 0) = � V = [ yi 1x i � y0

i 1x0
i 1; : : : yil x i � y0

il x0
il ]. Then:

jj f (X ) � f (X 0)jj2 =
q

jj � V jj2
F =

vu
u
t

lX

j =1

jj yij x i � y0
ij x0

ij jj2
2 �

q
l � 4jjX jj 2

2jjYjj 2
2 = 2

p
l jjX jj 2jjYjj 2

Hence setting� 2 = c(�; � )2
p

l jjX jj 2jjYjj 2=� by the Gaussian mechanism Dwork & Roth (2014) publishingĝ
satis�es (�=2; �=2) � DP . Similarly if g = X T X , �( g) � jj X jj2

2, and so setting � 1 = c(�; � )jjX jj2
2=�, means

publishing Î is (�=2; �=2)-DP. By basic composition for DP, the entire mechanism is(�; � )-DP.
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To prove the accuracy bound we follow the general proof technique developed in Wang (2018) analysing
the accuracy guarantees of the ridge regression variant ofSSPin the case� min (X T X ) = 0 , adding some
mathematical detail to their exposition, and doing the appropriate book-keeping to handle our setting where
the privacy level (as a function of the noise level) guaranteed byE1 and E2 di�er. The reader less interested
in these details can skip to Equation 11 below for the punchline.

Fix a speci�c index i 2 [l ], and let y = yi . We will analyze the prediction error of ~wi e.g. f ( ~wi ) � f (w�
i ).

Then the following result is stated in Wang (2018) for which provide a short proof:

Lemma 2 (Wang (2018)).

f ( ~wi ) � f (wi � ) =
1
n

(jjy � X ~wi jj2 � jj y � Xw i � jj ) =
1
n

jj ~wi � wi � jj2
X T X

Proof. We note that all derivatives of orders higher than 2 of f (w) = 1
n jj y � Xw jj2 are zero, and that

r f w i � = 0 by the optimality of wi � . We also note that the Hessianr 2f w = 1
n X T X at all points w. Then by

the Taylor expansion of f (w) around wi � :

f ( ~wi ) = f (wi � ) + ( ~wi � wi � ) � r f w i � +
1
n

( ~wi � wi � )0X T X ( ~wi � wi � )

Which using r f w i � = 0 and rearranging terms gives the result.

Now Corollary 7 in the Appendix of Wang (2018) states (without proof) the below identity, which we provide
a proof of for completeness in Lemma 9 in the Appendix:

~wi � wi � = ( � X T X + �I + E1) � 1E1wi � � � (X T X + �I + E1) � 1wi � + ( X T X + �I + E1) � 1E2 (7)

Hence, still following Wang (2018), for any psd matrix A, jj ~wi � wi � jj2
A �

3jj (X T X + �I + E1) � 1E1wi � jj2
A + 3 � 2jj (X T X + �I + E1) � 1wi � jj2

A + 3 jj (X T X + �I + E1) � 1E2jj2
A (8)

Lemma 3 (Wang (2018)). With probability 1 � � , jjE1jj2 � (� min (X T X ) + � )=2, and hence

X T X + �I + E1 � :5(X T X + �I )

We also remark that jjBy jj2
A = ( By)T ABy = jjyjj2

B T AB for any vector y, and matrices A; B .

Hence, Inequality 8, with A = X T X can be further simpli�ed to:

3jj (X T X + �I + E1) � 1E1wi � jj2
A + 3 � 2jj (X T X + �I + E1) � 1wi � jj2

A + 3 jj (X T X + �I + E1) � 1E2jj2
A �

O
�

jjE1wi � jj2
(X T X + �I + E 1 ) � 1 + � 2jjwi � jj2

(X T X + �I + E 1 ) � 1 + jjE2jj2
(X T X + �I + E 1 ) � 1

�
�

(Lemma 3) O
�

jjE1wi � jj2
(X T X + �I ) � 1 + � 2jjwi � jj2

(X T X + �I ) � 1 + jjE2jj2
(X T X + �I ) � 1

�
(9)

By basic properties of the trace we have:tr (( �I + X T X ) � 1) � d� max (�I + X T X � 1) = d
� min ( �I + X T X ) =

d
( � min + � ) , and jjwi � jj2

(X T X + �I ) � 1 � jj w i � jj 2
2

� . Continuing from Wang (2018) by their Lemma 6, we can bound
eachjjE1wi � jj2

(X T X + �I ) � 1 and jjE2jj2
(X T X + �I ) � 1 .

Lemma 4 (Wang (2018)). Let w 2 Rd and let E a symmetric Gaussian matrix where the upper triangular
region is sampled fromN (0; � 2) and let A be any psd matrix. Then with probability1 � � :

jjEwjj2
A � � 2tr (A)jjwjj2

2 log(2d2=� )

Then recalling that:

7
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ˆ � 2
1 = ~O(jjX jj 4

2=�2)

ˆ � 2
2 = ~O(l jjX jj 2

2jYj2=�2)

Plugging into Lemma 4, and bringing it all together we get:

n � jf ( ~wi ) � f (wi � )j � jj wi � � ~wi jjX T X =

O
�

jjE1wi � jj2
(X T X + �I ) � 1 + � 2jjwi � jj2

(X T X + �I ) � 1 + jjE2jj2
(X T X + �I ) � 1

�
=

~O
�

d
� min + �

jjwi � jj2
2(jjX jj 4

2=�2) log(2d2=� ) + � jjwi � jj2
2 +

d
� min + �

l jjX jj 2
2jYj2=�2 log(2d2=� )

�
(10)

Upper bounding Equation 10 by taking � min = 0 , we minimize over � setting

� = ~O

 
1
�

p
d log(2d2=� )jjX jj2

s

jjX jj 2
2 +

l jYj2

jjwi � jj2
2

!

=)

jf ( ~wi ) � f (wi � )j = ~O
�

1
n�

p
d log(2d2=� )jjX jj2

q
jjX jj 2

2jjwi � jj4
2 + l jYj2jjwi � jj2

2

�
(11)

Now if we are in the � � small regime, we havejYj � � jjX jj 2jjwi � jj2, and so

l jYj2w2
i � � l� 2jjX jj 2

2jjwi � jj2
4;

which reduces Equation 11 to:

jf ( ~wi ) � f (wi � )j = ~O
�

1
n�

p
d log(2d2=� )jjX jj2

2jjwi � jj2
2(�

p
l)

�
;

as desired.

Inspecting Theorem 1, we see that whenl < min( np
d
; jjX jj 2

2 jjWjj 2
2

jYj 2 ), Algorithm 1 with M the Gaussian

mechanism achieves error~O
� p

djjX jj 2
2 jj ŵ jj 2

2
n

�
. Since this matches the lower bound in Equation 3 for a single

private regression in this case we say that we have achieved �PRIMO for Free!�

5 Improved Algorithms for Large l

The improvement of ReuseCovGaussover the naive PRIMO baseline in the previous section only applies in
the parameter regime where the asymptotic error in Equation 5 is dominated by the covariance error term. In
the regime where the association error term dominates,ReuseCovGaussstill incurs a

p
l multiplicative factor

in the error term, which does not improve over the baseline. In this section we show that if we are willing to
relax from full DP to either feature DP or label DP, we can improve the dependence onl. Speci�cally, via a
reduction from privately computing the association term to computing the image of a private vector under a
public matrix, under feature DP we can obtain improved bounds for PRIMO when l > np

d
(Subsection 5.1),

and under label di�erential privacy we obtain improved bounds whenl > n 2=3 (Subsection 5.2). In these
cases, we obtain the surprising result that the MSE� has no explicit asymptotic dependence onl.
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Algorithm 2 Input: X 2 X n � (Rd)n , Y = [ y1; : : : yl ] 2 Y l � n ; privacy params: �; � .
GaussProjY

1: Let r = c(�; � ) 1
n supi jj yi jj2jjX jj 2

2: Samplew � N (0; 1)dl

3: Let ~g = g + rw , where g = 1
n X T Y . Up to this point this is just GaussMech

4: Formulate C = C(Y) 2 1
n Ydl � dn ; vec(X ). . C is only used in the projection step

5: Let ĝ = argming2 K jjg � ~gjj2
2, where K = C(

p
njjX jj 2B1).

5.1 PRIMO Under Feature Di�erential Privacy

Let us reconsider the problem of privately computing the association term1
n X T Y where Y 2 Y n � l , X 2

X n � Rn � d, and Y is considered public, soM is only constrained to be feature DP. Let vec(X ) =
(x11; : : : ; x1n ; x21; : : : xd1; : : : xdn ) 2 Rnd . Then since 1

n X T Y is linear in every entry of X , there exists a
matrix C(Y ) 2 1

n Ydl � dn such that 1
n X T Y = C � vec(X ). We explicitly derive an expression for C in

Subsection 7.4 of the Appendix. Note that jjvec(X )jj2
2 � njjX jj 2

2, hence 1
n X T Y 2 C(

p
njjX jj 2B1), where

B1 = f x 2 Rnd : jj xjj2 � 1g.

Algorithm 2 is our projection-based subroutine for privately computing 1
n X T Y, which we call GaussProjY .

We �rst state the squared error of GaussProjY in Theorem 2, and then translate this error into the PRIMO
error of ReuseCovProjY (Algorithm 1 with M = Algorithm 2) in Theorem 3. The crux of the proof is
Lemma 6 from Nikolov et al. (2013), which uses a geometric argument to bound the error after the projection.

Theorem 2. Let ĝ; g as in Line 4 of Algorithm 2. Then with probability 1 � � :

jjg � ĝjj2
2 = O

 
l
p

dc(�; � )
p

log(2=� )jYj2jjX jj 2
2

n

!

Proof. M is (�; � ) di�erentially private by the Gaussian Mechanism and post-processing Dwork & Roth
(2014). So we focus on the high probability accuracy bound. By Lemma 4 from Nikolov et al. (2013) we have,
letting K; r; w as de�ned in Algorithm 2, that:

jj ĝ � gjj2
2 � 4jj rw jjK � = r sup

x 2 K
x � w (12)

Using the fact that the l2 norm is self-dual, we have:

jj ĝ � gjj2
2 � 4r jjwjjK � � 4r jjX jj 2

p
n sup

z2 B 1

(Cz) � w = 4 r jjX jj 2
p

njjCT wjj2 (13)

So in order to bound jj ĝ � gjj2
2 with high probability it su�ces to bound jjCT wjj2 with high probability. This

is the content of the Hanson-Wright Inequality for anisotropic random variables Vershynin (2019).

Lemma 5 (Vershynin (2019)). Let CT an m � n matrix, and X � N (0; 1)n 2 Rn . Then for a �xed constant
c > 0:

P[ j jj CT X jj � jj CjjF j > t ] � 2exp(
� ct2

jjCjjF
)

Lemma 5 shows thatjjCT wjj2 = O(jjCjjF
p

log(2=� )) with probability 1 � � . Given xkj 2 X , let m = ( k �
1)n + j be the corresponding column ofC, and let cm denote this column. Then jjcm jj2 = 1

n jj (y1j ; : : : ylj )jj2 =

1
n jj yj jj2 �

p
l

n . HencejjCjjF =

p
d
P n

i =1
jj y i jj 2

2

n .

9
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Plugging in the value of r gives, with probability 1 � � :

1
dl

E[jj ĝ � gjj2
2] = O

 
1
dl

�
p

njjX jj 2

p
d

P n
i =1 jj yi jj2

2

n

p
log(2=� ) �

c(�; � )jjX jj 2 supi jj yi jj2

n

!

(14)

= O

0

@
c(�; � )

p
log(2=� )

q
1
n

P n
i =1 jj yi jj2

2 supi jj yi jj2jjX jj 2
2

nl
p

d

1

A ; (15)

Since both terms involving Y in the numerator are �
p

l jYj the bound follows. We note that sinceY is
public, in practice we can compute these terms rather than usingjYj , the worst case bound.

Notice that the mean squared error of the Gaussian mechanism without the projection isO(r 2) = O( l jjX jj 2
2 jYj 2

n 2 ),
which for l

p
d � n is strictly larger than the error of the projection mechanism. We also note that the bound

in Theorem 2 is strictly better than the error given by applying the Median Mechanism algorithm of Blum
et al. (2011) for low-sensitivity queries, which is tailored for l1 error, and which also requires discreteX .
For example, whenY = f 0; 1g; X = f 0; 1gd, then jYj = 1 ; jjX jj 2 =

p
d, and so Theorem 2 gives a bound of

~O(
p

d
n ), whereas the Median Mechanism gives~O( d2= 3 log( dl )2

n 2= 3 ) for the mean squared error. We now state the
accuracy guarantees ofReuseCovProjY . The proof follows the proof of Theorem 1, substituting the bound
from Theorem 2 into the jjE2jj2

2 term in Equation 7. We defer the full proof to the Appendix.

Theorem 3. Let A denote the variant of Algorithm 1 with M = GaussProjY (X; Y; �= 2; �=2). Then A is an
(�; �; �; � ) solution to the feature DP PRIMO problem with

� = ~O

0

@jj ŵjj2

s
djj ŵjj2

2(jjX jj 4
2)

n2 +

p
djYj2jjX jj 2

2

n

1

A ;

where ~O omits terms polynomial in 1
� ; log(1=� ); log(1=� ).

Inspecting Theorem 3 in the l > np
d

regime where the projection improves the error over the Gaussian

Mechanism, whenn <
p

djjX jj 2
2 jjWjj 2

2
jYj 2 is not too large, the dominant term in the error is ~O

� p
djjX jj 2

2 jj ŵ jj 2
2

n

�
;

which matches the lower bound 3, and so we achieve PRIMO for Free! Whenn is su�ciently large the

dominant error term is ~O
�

jj ŵ jj 2 d1= 4 jYjjjX jj 2p
n

�
which is a factor of n

d1= 4 worse than the lower bound.

5.2 PRIMO Under Label Di�erential Privacy

The setting where X is public and Y is considered private is strictly easier to satisfy than setting in which
they are both considered private, and in particular in order for Algorithm 1 to satisfy label DP, we only
need to add noise to terms that involveY . Thus we can computeÎ in Line 2 of Algorithm 1 exactly without
adding any noiseE1. We still need to compute the association term 1

n X T Y privately in Y , where now the
privacy guarantee holds over rows ofY rather than rows of X . Computing 1

n X T Y privately is equivalent to
computing 1

n Y T
l � n X n � d, where we've added subscripts indicating the dimensions of the matrices. Then by

direct analogy to the previous section, we can compute1
n X T Y via Algorithm 2, where Theorem 2 holds by

switching X and Y , and d; l. We call this variant of Algorithm 2 GaussProjX . Thus invoking Theorem 2 the
error in computing the association term is with probability 1 � � :

jjg � ĝjj2
2 = O

 
c(�; � )

p
log(2=� )jX j 2jjY l jj2

2d
p

l
n

!

(16)

The error in Equation 16 improves over the error given byM = GaussMechwhen O( d
p

l
n ) < O ( dl 2

n 2 ) =)
l > n

2
3 , which we summarise in row5 of Figure 1. Interestingly, in contrast to the public label setting, this

condition has no dependence on the dimensiond. Substituting Equation 16 into Equation 7 with E1 = 0
since we are in the label-private setting and don't have to add noise to the covariance matrix, we can optimize
over � to get:

10
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Theorem 4. Let A denote the label-private variant of Algorithm 1 with E1 = 0 ; M =
GaussProjX (X; Y; �= 2; �=2). Then A is an (�; �; �; � ) solution to the label DP PRIMO problem with

� = ~O

 

jj ŵjj2
jX jjjY l jj2

p
d

nl 1=4

!

We remark that while the form of Theorem 4 appears to suggest that the MSE decreases with increasingl,
which is counterintuitive, l actually appears in the numerator through jjY l jj2 = O(jYj

p
l), giving MSE with

(mild) dependenceO(l1=4) on l .

5.3 Computational E�ciency

In this section we discuss the computational complexity of Algorithm 1 which can be broken down into3
components:

ˆ Step 1: Forming X T X

ˆ Step 2: In the case whereM is the projection algorithm, Line 5 in Algorithm 2:

ĝ = [ ĝ1; : : : ĝl ] = argming2 C (
p

n jjX jj 2 B 1 ) jjg � ~gjj2
2

ˆ Step 3: the cost of computing Î � 1ĝi = ( X T X + �I + E1) � 1ĝi 8i 2 [l ]

Step 1 forming the covariance matrix X T X is a matrix multiplication of two d � n matrices, which can be
done via the naive matrix multiplication in time O(nd2), and via a long-line of �fast� matrix multiplication
algorithms in time O(d2+ � (n ) ); For example if n < d :3 it can be done in time that is essentially O(d2) Gall
(2012). Step2 corresponds to minimizing a quadratic over a sphere. SettingA = CT C 2 Rdn � dn ; b = 2CT ~g 2
Rdl , then ĝ = Cx, where x 2 Rnd is the minimizer of:

min
x 2 B 1

x t Ax � bt x (17)

s.t. jj xjj2 �
p

njjX jj 2 (18)

Now, given the spectral decomposition ofA = U� UT , and the coordinates ofb in the eigenbasisUT b, Lemma
2:2 in Hager (2001) gives a simple closed form forx that computes each coordinate in constant time. Since
there are nd coordinates ofx, this incurs an additional additive factor of O(nd) in the complexity, which is
dominated by the cost of diagonalizingA. So the complexity of this step is the complexity of diagonalizing
A = CT C, or equivalently �nding the right singular vectors of C, plus the complexity of computing UT b. This
is seemingly bad news, asC 2 Rdn � dl is a very high-dimensional matrix, and the complexity for computing
the SVD of C without any assumptions about its structure is O(d3ln min(l; n )) Golub & Van Loan (1996).
However, it is evident from the construction of C in Subsection 5 that C = I d 
 1

n Y T ; where 
 is the
Kronecker product. In Appendix 7.6 we show that using properties of the Kronecker product, we can compute
the SVD(C) in the same time as computing SVD(Y), or O(nl min(n; l )) . UT b can be computed in time
O(nld) using similar tricks based on the Kronecker decomposition ofC.

Finally, Step 3 can be completed by solving the equationÎ ŵi = ĝi ; i = 1 : : : l via the conjugate gradient
method, which takes time O(
 (Î )d2 log(1=�)) to compute an � -approximate solution Mahoney (2011) where

 (Î ) is the condition number. We note that this has to be done separately for eachi = 1 : : : l giving total
time O(l � 
 (Î )d2 log(1=�)) . Alternatively, an exact solution Î � 1ĝi can be computed directly using the QR
decomposition of the matrix Î . The decomposition Î = QR can be computed in timeO(d3) Mahoney (2011)
and does not depend on thêgi , after which using Rŵi = QT ĝi , ŵi can be computed in time O(d2) via
backward substitution. This gives a total time complexity of O(d3 + ld2). So if d and 1


 ( Î )
are su�ciently

small relative to l , e.g. if l = ~
( d=(
 (Î ))) , it will be faster to use the QR decomposition based method.

Putting this all together we have:

11
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Theorem 5. The complexity of Algorithm 3 is O(max(min( nl 2; n2l ); nld; nd2; ld2; d3)) .

We summarize these algorithmic changes toReuseCovProj in Algorithm 3. Theorem 5 shows that when
n > d > l , the complexity of Algorithm 3 is O(nd2) or the cost of forming the covariance matrix. This
motivates the results in Subsection 7.7 of the Appendix where we show how sub-samplings < n points and
using matrix Cherno� bounds can improve this to O(sd2).

6 Experiments

Datasets. We evaluate the accuracy of our algorithmsReuseCovGaussand ReuseCovProjX on the task of
genomic risk prediction using realX data from two of the largest publicly available databases, and simulated
outcomesY so that we can easily vary the number of outcomesl. In addition, in Appendix 7.8 we include
experiments on two additional datasets over smaller values ofl , one constructed by sub-sampling MNIST
Deng (2012) and generating synthetic outcomes from a noisy linear model, and the other from entirely
synthetic Gaussian data with outcomes generated either from a2-layer MLP or a noisy linear model.

The genomic datasets are from two sources: the 1000 Genomes project (1KG) Fairley et al. (2019), and the
Database of Genomes and Phenotypes Mailman et al. (2007) (accession phs000688.v1.p1). The datasets
contain n = 5008; 6042haplotypes at d = 78961; 16721SNPs, respectively. Whenever experiments are run
with a �xed value of d < 78961; 16721, we have randomly sub-sampledd SNPs without replacement. In order
to vary the number of phenotypes l we generate synthetic phenotype data using our haplotype dataset. After
centering our haplotype matrix X by subtracting o� the row means we generate synthetic phenotypesyi for
i = 1 : : : l by generating a random� i � N (0; I dp

d
); yij � � i � x j + N (0; 1): In order to evaluate our algorithms

at larger values of n than exist in our genomic datasets, we train a GAN on the dbGaP dataset follow-
ing Olagoke et al. (2023), and use it to generate synthetic samples to simulate having up to a million data points.

Experimental Details. For a given dataset and setting of (n; d; l ) we run ReuseCovProjX and
ReuseCovGauss10 di�erent times, and calculate the resulting average MSE. We study two di�erent regimes,
one wheren is of moderate size corresponding to real genomic datasets,d is small, and l is varied from 1 to
1e5 (Figure 2). The other regime models the scenario where in the near future genomic databases will have
millions of individuals (e.g. UK Biobank already has > 400000samples Privé (2022)), generatingn = 1e6
samples from the GAN trained on dbGaP and again varyingl from 1 to 1e5 (Figure 4). Note that we do not
have experiments with larger values ofd for computational reasons; as discussed in Section 7.6 the runtime of
both algorithms is quadratic in d.

Rather than plotting the MSE � directly, in Figure 2 we plot the coe�cient of determination R2, which
is equivalent in that R2 = 1 � �

1
nl SS tot

. We use R2 because it is easier to interpret given that achieving

error better than the constant predictor implies R2 2 (0; 1]. In Figures 3d,4 we also visualize the results
using a di�erent metric, the log of the ratio of the MSE of the private predictor to the MSE of the optimal
non-private predictor, where a larger ratio indicates a greater multiplicative error.

Realistic n, varying l. We �nd that for values of l starting as small as11 for 1KG and 101 for dbGaP,
ReuseCovProjX achieves higherR2 than ReuseCovGauss, and is able to achieve non-trival R2 for large l,
which is consistent with our Theorem 3. For l < 11 on 1KG and l < 101 on dbGaP, ReuseCovGaussachieves
higher R2. In addition to being consistent with the theory, this is intuitive; when l is small the bias induced
by the projection outweighs the reduction in the overall noise. Figures 2a, 2b show that forl > 101; 801 on
1KG and dbGaP respectively ReuseCovGausshas negativeR2 � by contrast, zooming in on the R2 curve
for ReuseCovProj in Figures 2c, 2d we are able to achieve non-trivialR2 at all values of l , and see minimal
increase in error asl increases.

Large n, varying l . Our upper bounds suggest that for large values ofn, ReuseCovGausswill outperform
ReuseCovProjX , and that the MSE should increase polynomially with increasingl, or equivalently linearly
in log l when we take the log ratio. Both of these trends can be seen in Figure 4(a). Given that the relative
performance ofReuseCovProjX is improving as l increases, we expect that for larger values ofl that were
computationally prohibitive to run at such large n, ReuseCovProjX would again be the superior algorithm.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Each R2 value is averaged over10 iterations. The shaded area around the lines indicates
the error bars for the R2 value at a given value of (l; d). In Figures (a)-(d) we plot the average R2 for
d = 25; l = (1 ; 11; 101; 201; 401; 601; 801; 1001); �xing (�; � ) = (5 ; 1

n 2 ) with n = 5008; 6042. In Figures (e)-(f)
we showl up to 1e5.
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(a) (b)

(c) (d)

Figure 3: Comparing the log of the ratio of the squared loss of the private estimator to the square loss
of the OLS estimator. Each value is averaged over 10 iterations. The shaded area around the lines
indicates the error bars at the given value of l . (a) and (b) range l up to 100; 000, (c) and (d) show
l = (1 ; 11; 101; 201; 401; 601; 801; 1001) while we �xed d = 25 and (�; � ) = (5 ; 1

n 2 ) with n = 5008; 6042for 1000
Genomes and dbGaP respectively

Additional Ablations . In the setting where l < np
d

(Row 2 of Table 1), theory suggests our algorithms
should not outperform naive composition of private regressions. Since private regression methods likeDP-SGD
Bassily et al. (2019) are known to equal or outperformSSP, our ReuseCovalgorithms which are variants of
SSPmight actually perform worse than composingDP-SGDacrossl regressions. We construct such a dataset
and show this is in fact the case in Figure 6 in the Appendix.

The experiments above on genomic data generate outcomesY from a noisy linear model; in Figure 5 in the
Appendix we show that generating outcomes from a2-layer MLP with noise doesn't change the relative
ordering of the algorithms by performance.

6.1 Limitations

There are 3 main criticisms that can be levied at the results in this paper. The �rst is that the reductions in
error in the feature DP and label DP settings due to projection in Lines 3 � 5 of Figure 1 rely on su�ciently
large l : l > np

d
; l > n 2=3 respectively. As a result, there are practical settings wheren is particularly large
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(a) (b)

Figure 4: (a) shows the log of the ratio of the squared loss of the private estimator to the square loss
of the OLS estimator and (b) shows theR2 values. For both of these, the value was averaged over10
iterations. The shaded area around the lines indicates the error bars at a given value ofl . We plot this for
l = (1 ; 10; 25; 100; 500; 1000; 5000) with d = 25, (�; � ) = (5 ; 1

n 2 ) and n = 5 � 1e5on a synthetic dbGaP dataset.

or l is small where the theory does not suggestReuseCovProj will outperform ReuseCovGauss. The second
critique is that this improvement requires us relaxing our notion of DP to label or feature DP. In settings
where both X and Y are highly sensitive, if we want to guarantee full DP ReuseCovGausswould be is our
only option. Finally, all of our algorithms are variants of SSPVu & Slavkovic (2009), which has complexity
that scales super-linearly ind due to forming the covariance matrix X T X . For high-dimensional regression
settings algorithms like private SGD are preferred due to their scalability Chaudhuri et al. (2011). With
respect to the �rst critique, we note that in common settings, like in genomics, d can be very large relative
to n, and so np

d
can be quite small in practice. For example, in the popular Fairley et al. (2019) dataset

used in the experiments,n = 5008, and d = 78961, and so np
d

� 17. Similiarly, if n is of modest size, it is

plausible that l > n 2=3. We also note that our experimental results show that the projection improves error
at values of l much smaller than the theory would suggest, making this algorithm the practical choice for
values of l as small as11! Finally, the ReuseCovGuassAlgorithm is itself also a contribution of this work.
On the issue of scalability, in Subsection 5.3 we discuss how whenn > d > l , the computational complexity
of the ReuseCovGaussalgorithm is the cost of computing the covariance matrix X T X , which is O(nd2),
which we improve to O(sd2) if we uses points to sketch the covariance matrix (Appendix 7.7). Despite these
improvements, the computational complexity of our methods is still super-linear in d.

Obtaining versions of PRIMO that scale for large values ofd, and that do not require relaxing full DP in
order to improve the dependence onl as we do in Section 5, are exciting directions for future work.
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