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Adversarial Training Should Be Cast as a Non-Zero-Sum Game
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Abstract
One prominent approach toward resolving the ad-
versarial vulnerability of deep neural networks is
the two-player zero-sum paradigm of adversarial
training, in which predictors are trained against
adversarially-chosen perturbations of data. De-
spite the promise of this approach, algorithms
based on this paradigm have not engendered suffi-
cient levels of robustness, and suffer from patho-
logical behaviour like robust overfitting. To un-
derstand this shortcoming, we first show that the
commonly used surrogate-based relaxation used
in adversarial training algorithms voids all guaran-
tees on the robustness of trained classifiers. The
identification of this pitfall informs a novel non-
zero-sum bilevel formulation of adversarial train-
ing, wherein each player optimizes a different ob-
jective function. Our formulation naturally yields
a simple algorithmic framework that matches and
in some cases outperforms state-of-the-art attacks,
attains comparable levels of robustness to stan-
dard adversarial training algorithms, and does not
suffer from robust overfitting.

1. Introduction
A longstanding disappointment in the machine learning
(ML) community is that deep neural networks (DNNs) re-
main vulnerable to seemingly innocuous changes to their
input data including nuisances in visual data (Hendrycks &
Dietterich, 2019; Robey et al., 2020; Eykholt et al., 2018),
sub-populations (Santurkar et al., 2021; Sohoni et al., 2020;
Koh et al., 2021), and distribution shifts (Xiao et al., 2021;
Arjovsky et al., 2019; Sagawa et al., 2020). Prominent
amongst these vulnerabilities is the setting of adversar-
ial examples, wherein it has been conclusively shown that
imperceptible, adversarially-chosen perturbations can fool
state-of-the-art classifiers parameterized by DNNs (Szegedy
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et al., 2013; Biggio et al., 2013; 2012; Carlini & Wagner,
2017). In response, a plethora of research has proposed
so-called adversarial training (AT) algorithms (Huang et al.,
2015; Wong & Kolter, 2018; Kurakin et al., 2017; Madry
et al., 2018; Goodfellow et al., 2015), which are designed to
improve robustness against adversarial examples.

AT is ubiquitously formulated as a two-player zero-sum
game, where both players—often referred to as the defender
and the adversary—respectively seek to minimize and max-
imize the classification error. However, this zero-sum game
is not implementable in practice as the discontinuous nature
of the classification error is not compatible with first-order
optimization algorithms. To bridge this gap between the-
ory and practice, it is commonplace to replace the classi-
fication error with a smooth surrogate loss (e.g., the cross-
entropy loss) which is amenable to gradient-based optimiza-
tion (Madry et al., 2018; Zhang et al., 2019). And while
this seemingly harmless modification has a decades-long
tradition in the ML literature due to the guarantees it im-
parts on non-adversarial objectives (Bartlett et al., 2006;
Shalev-Shwartz & Ben-David, 2014; Roux, 2017), there is a
pronounced gap in the literature regarding the implications
of this relaxation on the standard formulation of AT.

As the field of robust ML has matured, surrogate-based
AT algorithms (see, e.g., (Madry et al., 2018; Zhang et al.,
2019; Goodfellow et al., 2015; Wang et al., 2020)) have col-
lectively ushered in significant progress toward designing
stronger attacks and obtaining more robust defenses (Croce
et al., 2020a). However, despite these advances, recent
years have witnessed a plateau in robustness measures on
leaderboards such as RobustBench, resulting in the widely
held beliefs that robustness and accuracy may be irreconcil-
able (Tsipras et al., 2019a; Dobriban et al., 2020; Javanmard
et al., 2020) and that robust generalization requires signif-
icantly more data (Schmidt et al., 2018; Chen et al., 2020;
Stutz et al., 2019). Moreover, various phenomena such as ro-
bust overfitting (Rice et al., 2020) and insufficient robustness
evaluation (Carlini et al., 2019) have indicated that progress
has been overestimated (Croce & Hein, 2020). To combat
these pitfalls, state-of-the-art algorithms increasingly rely on
ad-hoc regularization schemes (Kannan et al., 2018; Zhang
et al., 2019; Chan et al., 2020; Hoffman et al., 2019; Finlay
et al., 2018), weight perturbations (Wu et al., 2020; Sun
et al., 2021; Foret et al., 2020), and heuristics such as multi-
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Adversarial Training as a Non-Zero-Sum Game

ple restarts (Madry et al., 2018), carefully crafted learning
rate schedules (Rice et al., 2020), and convoluted stopping
conditions (Croce & Hein, 2020), all of which contribute
to a growing literature concerned with identifying flaws in
various AT schemes (Latorre et al., 2023).

Motivated by these challenges, we argue that the pervasive
surrogate-based zero-sum approach to AT suffers from a
fundamental flaw. Our analysis of the standard minimax
formulation of AT reveals that maximizing a surrogate like
the cross-entropy provides no guarantee that the the clas-
sification error will increase, resulting in weak adversaries
and ineffective AT algorithms. In identifying this shortcom-
ing, we prove that to preserve guarantees on the optimality
of the classification error objective, the defender and the
adversary must optimize different objectives, resulting in a
non-zero-sum game. This leads to a novel, yet natural bilevel
formulation (Bard, 2013) of AT in which the defender mini-
mizes an upper bound on the classification error, while the
attacker maximizes a continuous reformulation of the clas-
sification error. We then propose an algorithm based on our
formulation which is free from ad hoc optimization tech-
niques. Our empirical evaluations reveal that our approach
matches the test robustness achieved by the state-of-the-art,
yet highly heuristic approaches such as AutoAttack, and
that it eliminates the problem of robust overfitting.

Contributions. We summarize our contributions as follows.

• New formulation for adversarial robustness. Start-
ing from the discontinuous minmax formulation of AT
WRT the 0-1 loss, we derive a novel continuous bilevel
optimization formulation, the solution of which guaran-
tees improved robustness against the optimal adversary.

• New adversarial training algorithm. We derive a
new, heuristic-free algorithm (Algorithm 2) based on
our bilevel formulation, and show that offers strong
robustness on CIFAR-10.

• Elimination of robust overfitting. Without the need of
heuristic modifications, our algorithm does not suffer
from robust overfitting (RO). This suggest that RO is an
artifact of the use of improper surrogates in the original
AT paradigm, and that the use of a correct optimization
formulation is enough to solve it.

• State-of-the-art robustness evaluation. We show that
our proposed optimization objective for the adversary
yields a simple algorithm that matches the performance
of the state-of-the-art, yet highly complex AutoAttack
method, on classifiers trained on CIFAR-10.

2. Promises and pitfalls of adversarial training
2.1. Preliminaries: Training DNNs with surrogate losses

We consider a k-way classification setting, wherein data ar-
rives as instance-label pairs (X,Y ) drawn i.i.d. from an un-

known distributionD taking support overX×Y ⊆ Rd×[K],
where [K] := {1, . . . ,K}. Given a suitable hypothesis
class F , one goal in this setting is to select an element
f ∈ F which correctly predicts the label Y of a correspond-
ing instance X . In practice, this hypothesis class F often
comprises functions fθ : Rd → RK which are parameter-
ized by a vector θ ∈ Θ ⊂ Rp, as is the case when training
DNNs. In this scenario, the problem of learning a classifier
that correctly predicts Y from X can written as follows:

min
θ∈Θ

E
{
argmax

i∈[K]

fθ(X)i ̸= Y

}
(1)

Here fθ(X)i denotes the ith component of the logits vector
fθ(X) ∈ RK and we use the notation {A} to denote the
indicator function of an event A, i.e., {A} := IA(·). In this
sense, {argmaxi∈[K] fθ(X)i ̸= Y } denotes the classifica-
tion error of fθ on the pair (X,Y ).

Prominent among the barriers to solving (1) in practice is the
fact that the classification error is a discontinuous function
of θ, which in turn renders continuous first-order methods
(e.g., gradient descent) intractable. Fortunately, this pitfall
can be resolved by minimizing a surrogate loss function
ℓ : [k]× [k]→ R in place of the classification error (Shalev-
Shwartz & Ben-David, 2014). For minimization problems,
surrogate losses are chosen to be differentiable upper bounds
of the classification error of fθ, in the sense that{

argmax
i∈[K]

fθ(X)i ̸= Y

}
≤ ℓ(fθ(X), Y ). (2)

This inequality gives rise to the following differentiable
counterpart of (1) which is amenable to minimization via
first-order methods:

min
θ∈Θ

E ℓ(fθ(X), Y ). (3)

Crucially, the inequality in (2) guarantees that the problem
in (3) provides a solution that decreases the classification
error (Bartlett et al., 2006), which, as discussed above, is
the primary goal in supervised classification.

2.2. The pervasive setting of adversarial examples

For common hypothesis classes, it is well-known that clas-
sifiers obtained by solving (3) are sensitive to seemingly
benign changes to their input data. Among these vulner-
abilities, perhaps the most well-studied is the setting of
adversarial examples, wherein a plethora of research has
demonstrated that state-of-the-art classifiers can be fooled
by small, adversarially-chosen perturbations (Szegedy et al.,
2013; Biggio et al., 2013; 2012; Carlini & Wagner, 2017).
In other words, given an instance label pair (X,Y ), it is
relatively straightforward to find perturbations η ∈ Rd with
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small norm ||η|| ≤ ϵ for some fixed ϵ > 0 such that the
following equations simultaneously hold.

argmax
i∈[K]

fθ(X)i = Y (4)

argmax
i∈[K]

fθ(X + η)i ̸= argmax
i∈[K]

fθ(X)i (5)

The task of finding such perturbations η which cause the
classifier fθ to misclassify perturbed data points X + η can
be compactly cast as the following maximization problem:

η⋆ ∈ argmax
η:∥η∥≤ϵ

{
argmax

i∈[K]

fθ(X + η)i ̸= Y

}
(6)

Here, if both of the expressions in (4) hold for the perturba-
tion η = η⋆, then the perturbed instance X + η⋆ is called
an adversarial example for fθ with respect to (X,Y ).

Due to prevalence of adversarial examples, there has been
pronounced interest in solving the robust analog of (1),
which is designed to find classifiers that are insensitive
to small perturbations. This robust analog is ubiquitously
written as the following a two-player zero-sum game with
respect to the discontinuous classification error:

min
θ∈Θ

E
[

max
η:∥η∥≤ϵ

{
argmax

i∈[K]

fθ(X + η)i ̸= Y

}]
(7)

An optimal solution θ⋆ for (7) yields a model fθ⋆ that
achieves the lowest possible classification error despite the
presence of adversarial perturbations. For this reason, this
problem—wherein the interplay between the maximization
over η and the minimization over θ comprises a two-player
zero-sum game— is the starting point for numerous algo-
rithms which aim to improve robustness.

2.3. Surrogate-based approaches to robustness

As discussed in § 2.1, the discontinuity of the classification
error complicates the task of finding adversarial examples,
as in (6), and of training against these perturbed instances,
as in (7). One appealing approach toward overcoming this
pitfall is to simply deploy a surrogate loss in place of the
classification error inside (7), which gives rise to the follow-
ing pair of optimization problems:

η⋆ ∈ argmax
η:||η||≤ϵ

ℓ(fθ(X + η), Y ) (8)

min
θ∈Θ

E
[

max
η:∥η∥≤ϵ

ℓ(fθ(X + η), Y )

]
(9)

Indeed, this surrogate-based approach is pervasive in prac-
tice. Madry et al.’s seminal paper on the subject of adversar-
ial training employs this formulation (Madry et al., 2018),
which has subsequently been used as the starting point for
numerous AT schemes (Wong & Kolter, 2018; Kurakin et al.,
2017; Madry et al., 2018; Goodfellow et al., 2015).

Pitfalls of surrogate-based optimization. Despite the in-
tuitive appeal of this paradigm, surrogate-based adversarial
attacks are known to overestimate robustness (Mosbach
et al., 2018; Croce et al., 2020b; Croce & Hein, 2020), and
standard adversarial training algorithms are known to fail
against strong attacks. Furthermore, this formulation suffers
from pitfalls such as robust overfitting (Rice et al., 2020)
and trade-offs between robustness and accuracy (Tsipras
et al., 2019b). To combat these shortcomings, empirical
adversarial attacks and defenses have increasingly relied on
heuristics such as multiple restarts and variable learning rate
schedules (Croce & Hein, 2020) resulting in a widening gap
between the theory and practice of adversarial learning. In
the next section, we argue that these pitfalls can be attributed
to the fundamental limitations of (9).

3. Non-zero-sum adversarial training
3.1. Limitations of surrogates in adversarial learning

From an optimization perspective, the surrogate-based ap-
proaches to adversarial evaluation and training outlined in
§ 2.3 engenders two fundamental limitations.

Limitation I: Weak attackers. In the adversarial evalu-
ation problem of (8), the adversary maximizes an upper
bound on the classification error. This means that any solu-
tion η⋆ to (8) is not guaranteed to increase the classification
error in (6), resulting in weakened adversaries which are
misaligned with the goal of finding adversarial examples.
Indeed, when the surrogate is an upper bound on the classi-
fication error, the only conclusion about the perturbation η⋆

obtained from (8) and its true objective (6) is:{
argmax

i∈[K]

fθ(X+η⋆)i ̸= Y

}
≤ max

η:||η||≤ϵ
ℓ(fθ(X+η), Y )

(10)
Notably, the RHS of (10) can be arbitrarily large while the
LHS can simultaneously be equal to zero, i.e., solving (8)
can fail to produce an adversarial example, even at optimal-
ity. Thus, while it is known empirically that attacks based
on (8) tend to overestimate robustness (Croce & Hein, 2020;
Gowal et al., 2019), we show that this is evident a priori.

Limitation II: Ineffective defenders. Because attacks
which seek to maximize upper bounds on the classifica-
tion error are not proper surrogates for the classification
error (c.f., Limitation I), training a model fθ on such pertur-
bations does not guarantee any improvement in robustness.
Therefore, AT algorithms which seek to solve (9) are ineffec-
tive in that they do not optimize the worst-case classification
error. Thus, it should not be surprising that robust overfitting
(Rice et al., 2020) occurs for models trained to solve eq. (9).

Both of these limitations arise directly by virtue of rewrit-
ing (8) and (9) with the surrogate loss ℓ. Therefore, to
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summarize, there is a distinct tension between the efficient,
yet misaligned paradigm of surrogate-based AT with the
principled, yet intractable paradigm of minimax optimiza-
tion on the classification error. In the remainder of this
section, we resolve this tension by decoupling the optimiza-
tion problems of the adversary and the training algorithm.

3.2. Decoupling adversarial attacks and defenses

Our starting point is the two-player zero-sum formulation
in (7). Observe that this minimax optimization problem can
be equivalently cast as a bilevel optimization problem1:

min
θ∈Θ

E
{
argmax

i∈[K]

fθ(X + η⋆)i ̸= Y

}
(11)

subject to η⋆ ∈ argmax
η: ∥η∥≤ϵ

{
argmax

i∈[K]

fθ(X + η)i ̸= Y

}
(12)

While this problem still constitutes a zero-sum game, the
role of the attacker (the constraint in (12)) and the role of the
defender (the objective in (11)) are now decoupled. From
this perspective, the tension engendered by introducing sur-
rogate losses is laid bare: the attacker ought to maximize a
lower bound of the classification error (c.f., Limitation I),
whereas the defender ought to minimize an upper bound
on the classification error (c.f., Limitation II). This implies
that to preserve guarantees on optimality, the attacker and
defender must optimize separate objectives. In what follows,
we discuss these objectives for both players in detail.

The attacker’s objective. We first address the role of the
attacker. To do so, we define the negative margin Mθ(X,Y ),
Mθ : X × Y → Rk of the classifier fθ as follows:

Mθ(X,Y )j ≜ fθ(X)j − fθ(X)Y (13)

We call Mθ(X,Y ) the negative margin because a positive
value of (13) corresponds to a misclassification. As we show
in the following proposition, the negative margin function
(which is differentiable) provides an alternative characteri-
zation of the classification error.

Proposition 1. Given data (X,Y ), let η⋆ denote any maxi-
mizer of Mθ(X + η, Y )j over the classes j ∈ [K] − {Y }
and perturbations η ∈ Rd satisfying ||η|| ≤ ϵ, i.e.,

(j⋆, η⋆) ∈ argmax
j∈[K]−{Y }, η: ||η||≤ϵ

Mθ(X + η, Y )j . (14)

Then if Mθ(X + η⋆, Y )j⋆ > 0, η⋆ induces a misclassifica-
tion and satisfies the constraint in (12), so X + η⋆ is an
adversarial example. Otherwise, if Mθ(X + η⋆, Y )j⋆ ≤ 0,

1To be precise, the optimal value η⋆ in (17) is a function of
(X,Y ), i.e., η⋆ = η⋆(X,Y ), and the constraint must hold for
almost every (X,Y ) ∼ D.

then any η : ||η|| < ϵ satisfies (12), and no adversarial
example exists for the pair (X,Y ). In summary, if η⋆ is as
in (14), then η⋆ solves the lower level problem in (12).

We present a proof in appendix C2. Proposition 1 implies
that the non-differentiable constraint in (12) can be equiva-
lently recast as an ensemble of K differentiable optimiza-
tion problems that can be solved independently. This can
collectively be expressed as

η⋆ ∈ argmax
η: ||η||<ϵ

max
j∈[K]−{Y }

Mθ(X + η, Y )j . (15)

Note that this does not constitute a relaxation; (12) and (15)
are equivalent optimization problems. However, as (15) is
differentiable almost everywhere, the attacker can maximize
the classification error directly using first-order methods.

The defender’s objective. Next, we consider the role of the
defender. To handle the discontinuous upper-level problem
in (11), note that this problem is equivalent to a perturbed
version of the supervised learning problem in (1). As dis-
cussed in § 2.1, the strongest results for problems of this
kind have historically been achieved via a surrogate-based
relaxation. Subsequently, replacing the 0-1 loss with a differ-
entiable upper bound like the cross-entropy is a principled,
guarantee-preserving approach for the defender.

3.3. Putting the pieces together: Non-zero-sum AT

By combining the disparate problems discussed in the pre-
ceeding section, we arrive at a novel non-zero-sum (almost-
everywhere) differentiable formulation of AT:

min
θ∈Θ

E ℓ(fθ(X + η⋆), Y ) (16)

subject to η⋆ ∈ argmax
η: ∥η∥≤ϵ

max
j∈[K]−{Y }

Mθ(X + η, y)j

(17)

Notice that the second level of this bilevel problem remains
non-smooth due to the maximization over the classes j ∈
[K]− {Y }. To impart smoothness on the problem without
relaxing the constraint, observe that we can equivalently
solve K−1 distinct smooth problems in the second level for
each sample (X,Y ), resulting in the following equivalent
optimization problem:

min
θ∈Θ

E ℓ(fθ(X + η⋆j⋆), Y ) (18)

subject to η⋆j ∈ argmax
η: ∥η∥≤ϵ

Mθ(X + η, y)j ∀j (19)

j⋆ ∈ argmax
j∈[K]−{Y }

Mθ(x+ η⋆j , y)j (20)

2This result is similar in spirit to (Gowal et al., 2019, Theorem
3.1), although this prior result only holds for linear functions,
whereas Proposition 1 holds for arbitrary functions.
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Hence, in (20), we first obtain one perturbation η⋆j per class
which maximizes the negative margin Mθ(X + η⋆j , Y ) for
that particular class. Next, in (19), we select the class index
j⋆ corresponding to the perturbation η⋆j that maximized
the negative margin. And finally, in the upper level, the
surrogate minimization over θ ∈ Θ is on the perturbed data
pair (X+η⋆j⋆ , Y ). The result is a non-zero-sum formulation
for AT that is amenable to gradient-based optimization, and
preserves the optimality guarantees engendered by surrogate
loss minimization without weakening the adversary.

4. Algorithms
Given the non-zero-sum formulation of AT in the previ-
ous section, the next question is how one should solve this
bilevel optimization problem in practice. Our starting point
is the empirical version of this bilevel problem, wherein we
assume access to a finite dataset {(xi, yi)}ni=1 of n instance-
label pairs sampled i.i.d. from D.

min
θ∈Θ

1

n

n∑
i=1

ℓ(fθ(xi + η⋆ij⋆), yi) (21)

subject to η⋆ij ∈ argmax
η:∥η∥≤ϵ

Mθ(xi + η, yi)j ∀i, j (22)

j⋆ ∈ argmax
j∈[K]−{yi}

Mθ(xi + η⋆ij , yi)j ∀i (23)

To solve this empirical problem, we adopt a stochastic opti-
mization based approach. That is, we first iteratively sample
mini-batches from our dataset uniformly at random, and
then obtain adversarial perturbations by solving the lower
level problems in (22) and (23). Note that given the differen-
tiability of the negative margin, the lower level problems can
be solved iteratively with generic optimizers. This proce-
dure is summarized in Algorithm 1, which we call the BEst
Targeted Attack (BETA), given that it directly maximizes the
classification error.

After obtaining such perturbations, we calculate the per-
turbed loss in (21), and then differentiate through this loss
with respect to the model parameters. By updating the
model parameters θ in the negative direction of this gradi-
ent, our algorithm seeks classifiers that are robust against
perturbations found by BETA. We call the full adversarial
training procedure based on this attack BETA Adversarial
Training (BETA-AT), as it invokes BETA as a subroutine;
see Algorithm 2 for details.

Smoothing the lower level. One potential limitation of the
BETA-AT algorithm introduced in Algorithm 2 is its sample
efficiency: BETA computes one adversarial perturbation
per class, but only one of these perturbations is chosen
for the upper level of the bilevel formulation (21). In this
way, one could argue that there is wasted computational
effort in discarding perturbations that achieve high values
of the negative margin (13). This potential shortcoming

is a byproduct of the non-smoothness of the max operator
in (23). Fortunately, we can alleviate this limitation by using
smooth under-approximations of the max (e.g., the softmax
function), which is continuously differentiable. We explore
this scheme in Appendix D.

5. Experiments
In this section, we evaluate the performance of BETA
and BETA-AT on CIFAR-10 (Krizhevsky et al., 2009).
Throughout, we consider a range of AT algorithms, includ-
ing PGD (Madry et al., 2018), FGSM (Goodfellow et al.,
2015), TRADES (Zhang et al., 2019), MART (Wang et al.,
2020), as well as a range of adversarial attacks, including
APGD and AutoAttack (Croce & Hein, 2020). We consider
the standard perturbation budget of ϵ = 8/255, and all train-
ing and test-time attacks use a step size of α = 2/255. For
both TRADES and MART, we set the trade-off parameter
λ = 5, which is consistent with the original implementa-
tions (Wang et al., 2020; Zhang et al., 2019).

The bilevel formulation eliminates robust overfitting. Ro-
bust overfitting occurs when the robust test accuracy peaks
immediately after the first learning rate decay, and then falls
significantly in subsequent epochs as the model continues to
train (Rice et al., 2020). This is illustrated in Figure 1a, in
which we plot the learning curves (i.e., the clean and robust
accuracies for the training and test sets) for a ResNet-18 (He
et al., 2016) model trained using 10-step PGD against a 20-
step PGD adversary. Notice that after the first learning rate
decay step at epoch 100, the robust test accuracy spikes, be-
fore dropping off in subsequent epochs. On the other hand,
BETA-AT does not suffer from robust overfitting, as shown
in Figure 1b. We argue that this strength of our method is
a direct result of our bilevel formulation, in which we train
against a proper surrogate for the classification error.

BETA-AT outperforms baselines on the last iterate. We
next compare the performance of ResNet-18 models trained
using four different AT algorithms: FGSM, PGD, TRADES,
MART, and BETA. PGD, TRADES, and MART used a 10-
step adversary at training time. At test time, the models
were evaluated against five different adversaries: FGSM,
10-step PGD, 40-step PGD, 10-step BETA, and APGD. We
report the performance of two different checkpoints for each
algorithm: the best performing checkpoint chosen by early
stopping on a held-out validation set, and the performance of
the last checkpoint from training. Note that while BETA per-
forms comparably to the baseline algorithms with respect to
early stopping, it outperforms these algorithms significantly
when the test-time adversaries attack the last checkpoint
of training. This owes to the fact that BETA does not suf-
fer from robust overfitting, meaning that the last and best
checkpoints perform similarly.
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(a) PGD10 learning curves.
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(b) BETA-AT10 learning curves.

Figure 1: BETA does not suffer from robust overfitting. We plot the learning curves against a PGD20 adversary for
PGD10 and BETA-AT10. Observe that although PGD displays robust overfitting after the first learning rate decay step,
BETA-AT does not suffer from this pitfall.

Table 1: Adversarial performance on CIFAR-10. Ttest accuracies of various AT algorithms on the CIFAR-10 dataset.

Training
algorithm

Test accuracy

Clean FGSM PGD10 PGD40 BETA10 APGD

Best Last Best Last Best Last Best Last Best Last Best Last

FGSM 81.96 75.43 94.26 94.22 42.64 1.49 42.66 1.62 40.30 0.04 41.56 0.00
PGD10 83.71 83.21 51.98 47.39 46.74 39.90 45.91 39.45 43.64 40.21 44.36 42.62

TRADES10 81.64 81.42 52.40 51.31 47.85 42.31 47.76 42.92 44.31 40.97 43.34 41.33
MART10 78.80 77.20 53.84 53.73 49.08 41.12 48.41 41.55 44.81 41.22 45.00 42.90

BETA-AT5 87.02 86.67 51.22 51.10 44.02 43.22 43.94 42.56 42.62 42.61 41.44 41.02
BETA-AT10 85.37 85.30 51.42 51.11 45.67 45.39 45.22 45.00 44.54 44.36 44.32 44.12
BETA-AT20 82.11 81.72 54.01 53.99 49.96 48.67 49.20 48.70 46.91 45.90 45.27 45.25

BETA matches the robustness estimate of AutoAttack.
AutoAttack is a state-of-the-art adversarial attack which is
widely used to estimate the robustness of trained models
on leaderboards such as RobustBench (Croce et al., 2020a;
Croce & Hein, 2020). In brief, AutoAttack comprises a
collection of four disparate attacks and involves several
heuristics, including multiple restarts and variable stopping
conditions. In Table 2, we compare the performance of the
top-performing models on RobustBench against AutoAt-
tack, APGD-T, and BETA with RMSprop. Both APGD-T
and BETA used thirty steps, whereas we used the default
implementation of AutoAttack, which runs for 100 itera-
tions. We also recorded the gap between AutoAttack and
BETA. Notice that the 30-step BETA—a heuristic-free algo-
rithm derived from our bilevel formulation of AT—performs
almost identically to AutoAttack, despite the fact that Au-
toAttack runs for significantly more iterations and uses five
restarts, which endows AutoAttack with an unfair com-
putational advantage. That is, excepting for a negligible
number of samples, BETA matches the robustness estimate

Table 2: Estimated ℓ∞ robustness (robust test accuracy).
BETA+RMSprop (ours) vs APGD-targeted (APGD-T) vs
AutoAttack (AA). CIFAR-10. BETA and APGD-T use 30
iterations + single restart. ϵ = 8/255. AA uses 4 different
attacks with 100 iterations and 5 restarts.

Model BETA APGD-T AA BETA/AA gap Architecture

Wang et al. (2023) 70.78 70.75 70.69 0.09 WRN-70-16
Wang et al. (2023) 67.37 67.33 67.31 0.06 WRN-28-10
Rebuffi et al. (2021) 66.75 66.71 66.58 0.17 WRN-70-16
Gowal et al. (2021) 66.27 66.26 66.11 0.16 WRN-70-16
Huang et al. (2022) 65.88 65.88 65.79 0.09 WRN-A4
Rebuffi et al. (2021) 64.73 64.71 64.64 0.09 WRN-106-16
Rebuffi et al. (2021) 64.36 64.27 64.25 0.11 WRN-70-16
Gowal et al. (2021) 63.58 63.45 63.44 0.14 WRN-28-10
Pang et al. (2022) 63.38 63.37 63.35 0.03 WRN-70-16

of AutoPGD-targeted and AutoAttack, despite using an off-
the-shelf optimizer.
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A. Additional related work
Robust overfitting. Several recent papers (see, e.g., (Rebuffi et al., 2021; Chen et al., 2021; Yu et al., 2022; Dong et al.,
2022; Wang et al., 2020; Lee et al., 2020)) have attempted to explain and resolve robust overfitting (Rice et al., 2020).
However, none of these works point to a fundamental limitation of adversarial training as the cause of robust overfitting.
Rather, much of this past work has focused on proposing heuristics for algorithms specifically designed to reduce robust
overfitting, rather than to improve adversarial training. In contrast, we posit that the lack of guarantees of the zero-sum
surrogate-based AT paradigm (Madry et al., 2018) is at fault, as this paradigm is not designed to maximize robustness with
respect to classification error. And indeed, our empirical evaluations in the previous section confirm that our non-zero-sum
formulation eliminates robust overfitting.

Estimating adversarial robustness. There is empirical evidence that attacks based on surrogates (e.g., PGD) overestimate
the robustness of trained classifiers (Croce & Hein, 2020; Croce et al., 2020b; Gowal et al., 2019). Indeed, this evidence
served as motivation for the formulation of more sophisticated attacks like AutoAttack (Croce & Hein, 2020), which
empirically tend to provide more accurate estimates of robustness. In contrast, we provide solid, theoretical evidence
that commonly used attacks overestimate robustness due to the misalignment between standard surrogate losses and the
adversarial classification error. Moreover, we show that optimizing the BETA objective with a standard optimizer (e.g.,
RMSprop) achieves the same robustness as AutoAttack without employing ad hoc training procedures such as multiple
restarts. convoluted stopping conditions, or adaptive learning rates.

One notable feature of past work is an overservation made in (Gowal et al., 2019), which finds that multitargeted attacks
tend to more accurately estimate robustness. However, their theoretical analysis only applies to linear functions, whereas our
work extends these ideas to the nonlinear setting of DNNs. Moreover, (Gowal et al., 2019) do not explore training using
a multitargeted attack, whereas we show that BETA-AT is an effective AT algorithm that mitigates the impact of robust
overfitting.

Bilevel formulations of AT. Prior to our work, (Zhang et al., 2022) proposed a different pseudo-bilevel3 formulation for
AT, wherein the main objective was to justify the Fast AT algorithm introduced in (Wong et al., 2020). More specifically,
the formulation in (Zhang et al., 2022) is designed to produce solutions that coincide with the iterates of Fast AT by
linearizing the attacker’s objective. In contrast, our bilevel formulation appears naturally following principled relaxations of
the intractable classification error AT formulation. In this way, the formulation in (Zhang et al., 2022) applies only in the
context of Fast AT, whereas our formulation deals more generally with the task of adversarial training.

3In a strict sense, the formulation of (Zhang et al., 2022) is not a bilevel problem. In general, the most concise way to write a bilevel
optimization problem is minθ f(θ, δ

⋆(θ)) subject to δ⋆(θ) ∈ argmax g(θ, δ). In such problems the value δ⋆(θ) only depends on θ, as
the objective function g(θ, ·) is then uniquely determined. This is not the case in (Zhang et al., 2022, eq. (7)), where an additional variable
z appears, corresponding to the random initialization of Fast-AT. Hence, in (Zhang et al., 2022) the function g(θ, ·) is not uniquely defined
by θ, but is a random function realized at each iteration of the algorithm. Thus, it is not a true bilevel optimization problem in the sense of
the textbook definition (Bard, 2013).
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Algorithm 1 Best Targeted Attack (BETA)

Input: Data-label pair (x, y), perturbation size ϵ, model fθ, number of classes K, iterations T
Output: Adversarial perturbation η⋆

for j ∈ 1, . . . ,K do
ηj ← Unif[max(X − ϵ, 0),min(X + ϵ, 1)] {(}assume images in [0, 1]d)

end for
for t = 1, . . . , T do

for j ∈ 1, . . . ,K do
ηj ← OPTIM(ηj ,∇ηiMθ(x+ ηj , y)j) {(}optimizer step, e.g., RMSprop)
ηj ← ΠBϵ(X)∩[0,1]d(ηj)

end for
end for j⋆ ← argmaxj∈[K]−{y} Mθ(x+ ηj , y)

Algorithm 2 BETA Adversarial Training (BETA-AT)

Input: Dataset (X,Y ) = (xi, yi)
n
i=1, perturbation size ϵ, model fθ, number of classes K, iterations T , attack iterations T ′

Output: Robust model fθ⋆

for t ∈ 1, . . . , T do
Sample i ∼ Unif[n] η⋆ ← BETA(xi, yi, ϵ, fθ, T

′)
L(θ)← ℓ(fθ(xi + η⋆), yi)
θ ← OPTIM(θ,∇L(θ))

end for

B. Pseudocode for BETA
In this appendix, we provide the pseudocode for BETA in Algorithms 1 and 2.



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Adversarial Training as a Non-Zero-Sum Game

C. Proof of proposition 1
Suppose there exists η̂ satisfying ||η̂|| ≤ ϵ such that for some j ∈ [K], j ̸= Y we have Mθ(X + η̂, Y )j > 0, i.e., assume

max
j∈[K]−{Y }, η:∥η∥≤ϵ

Mθ(X + η, Y )j > 0 (24)

for such η̂ and such j we have fθ(X + η̂)j > fθ(X + η̂)Y and thus argmaxj∈[K] fθ(X + η̂)j ̸= Y . Hence, such η̂ induces
a misclassification error i.e.,

η̂ ∈ argmax
η:∥η∥2≤ϵ

{
argmax
j∈[K]

fθ(X + η)j ̸= Y

}
(25)

In particular if

(j⋆, η⋆) ∈ argmax
j∈[K]−{Y }, η:∥η∥≤ϵ

Mθ(X + η, Y )j ⇒ η⋆ ∈ argmax
η:∥η∥2≤ϵ

{
argmax
j∈[K]

fθ(X + η)j ̸= Y

}
(26)

Otherwise, assume

max
j∈[K]−{Y }, η:∥η∥≤ϵ

Mθ(X + η, Y )j < 0, (27)

then for all η : ||η|| < ϵ and all j ̸= Y we have fθ(X + η)j < fθ(X + η)Y , so that argmaxj∈[K] fθ(x + η)j = Y i.e.,
there is no adversarial example in the ball. In this case for any η, in particular In particular if

(j⋆, η⋆) ∈ argmax
j∈[K]−{Y }, η:∥η∥≤ϵ

Mθ(X + η, Y )j (28)

Then

0 =

{
argmax
j∈[K]

fθ(X + η⋆)j ̸= Y

}
= max

η:∥η∥2≤ϵ

{
argmax
j∈[K]

fθ(X + η)j ̸= Y

}
(29)

In conclusion, the solution

(j⋆, η⋆) ∈ argmax
j∈[K]−{Y }, η:∥η∥≤ϵ

Mθ(X + η, Y )j (30)

always yields a maximizer of the misclassification error.
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Adversarial Training as a Non-Zero-Sum Game

D. Smooth reformulation of the lower level
First, note that the problem in eqs. (21) to (23) is equivalent to

min
θ∈Θ

1

n

n∑
i=1

K∑
j=1

λ⋆
ijℓ(fθ(xi + η⋆ij), yi)

subject to λ⋆
ij , η

⋆
ij ∈ argmax

∥ηij∥≤ϵ
λij≥0,∥λi∥1=1,λiy=0

K∑
j=1

λijMθ(xi + ηij , yi)j ∀i ∈ [n]

(31)

This is because the maximum over λi in eq. (31) is always attained at the coordinate vector ej such that Mθ(xi + η⋆ij , yi) is
maximum.

An alternative is to smooth the lower level optimization problem by adding an entropy regularization:

max
η:∥η∥≤ϵ

max
j∈[K]−{y}

Mθ(x+ ηj , y)j = max
η:∥η∥≤ϵ

max
λ≥0,∥λ∥1=1,λy=0

⟨λ,Mθ(x+ ηj , y)
K
j=1⟩

≥ max
η:∥η∥≤ϵ

max
λ≥0,∥λ∥1=1,λy=0

⟨λ,Mθ(x+ ηj , y)
K
j=1⟩ −

1

µ

K∑
j=1

λj log(λj)

= max
η:∥η∥≤ϵ

1

µ
log

 K∑
j=1
j ̸=y

eµMθ(X+η,y)j


(32)

where µ > 0 is some temperature constant. The inequality here is due to the fact that the entropy of a discrete probability λ
is positive. The innermost maximization problem in (32) has the closed-form solution:

λ⋆
j =

eµMθ(x+ηj ,y)j∑K
j=1
j ̸=y

eµMθ(x+ηj ,y)j
: j ̸= y, λ⋆

y = 0 (33)

Hence, after relaxing the second level maximization problem following eq. (32), and plugging in the optimal values for λ
we arrive at:

min
θ∈Θ

1

n

n∑
i=1

K∑
j=1
j ̸=yi

eµMθ(xi+ηij ,yi)j∑K
j=1
j ̸=yi

eµMθ(xi+ηij ,yi)j
ℓ(fθ(xi + η⋆ij), yi)

subject to η⋆ij ∈ argmax
∥ηij∥≤ϵ

Mθ(xi + ηij , yi)j ∀i ∈ [n], j ∈ [K]

(34)

min
θ∈Θ

1

n

n∑
i=1

K∑
j=1
j ̸=yi

eµMθ(xi+η⋆
ij ,yi)j∑K

j=1
j ̸=yi

eµMθ(xi+η⋆
ij ,yi)j

ℓ(fθ(xi + η⋆ij), yi) (35)

subject to η⋆ij ∈ argmax
η:∥η∥≤ϵ

Mθ(xi + η, yi)j ∀i ∈ [n] (36)

In this formulation, both upper- and lower-level problems are smooth (barring the possible use of nonsmooth components like
ReLU). Most importantly (I) the smoothing is obtained through a lower bound of the original objective in eqs. (22) and (23),
retaining guarantees that the adversary will increase the misclassification error and (II) all the adversarial perturbations
obtained for each class now appear in the upper level (35), weighted by their corresponding negative margin. In this way,
we make efficient use of all perturbations generated: if two perturbations from different classes achieve the same negative
margin, they will affect the upper-level objective in fair proportion. This formulation gives rise to algorithm 3.
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Adversarial Training as a Non-Zero-Sum Game

Algorithm 3 Smooth BETA Adversarial Training (SBETA-AT)

Input: Dataset (X,Y ) = (xi, yi)
n
i=1, perturbation size ϵ, model fθ, number of classes K, iterations T , attack iterations

T ′, temperature µ > 0
Output: Robust model fθ⋆

for t ∈ 1, . . . , T do
Sample i ∼ Unif[n]
Initialize ηj ∼ Unif[max(0, xi − ϵ),min(xi + ϵ, 1)],∀j ∈ [K]
for j ∈ 1, . . . ,K do

for t ∈ 1, . . . , T ′ do
ηj ← OPTIM(ηj ,∇ηMθ(xi + ηj , yi)j) {(}attack optimizer step, e.g., RMSprop)
ηj ← ΠBϵ(xi)∩[0,1]d(ηj) {(}projection onto valid perturbation set)

end for
end for
Compute L(θ) =

∑K
j=1,j ̸=yi

eµMθ(xi+ηj,yi)j∑K
j=1,j ̸=yi

eµMθ(xi+ηj,yi)j
ℓ(fθ(xi + ηj), yi)

θ ← OPTIM(θ,∇L(θ)) {(}model optimizer step)
end for
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