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ABSTRACT

Anomaly segmentation, which localizes defective areas, is an important compo-
nent in large-scale industrial manufacturing. However, most recent researches
have focused on anomaly detection. This paper proposes a novel anomaly segmen-
tation network (AnoSeg) that can directly generate an accurate anomaly map using
self-supervised learning. For highly accurate anomaly segmentation, the proposed
AnoSeg considers three novel techniques: Anomaly data generation based on hard
augmentation, self-supervised learning with pixel-wise and adversarial losses, and
coordinate channel concatenation. First, to generate synthetic anomaly images and
reference masks for normal data, the proposed method uses hard augmentation to
change the normal sample distribution. Then, the proposed AnoSeg is trained in a
self-supervised learning manner from the synthetic anomaly data and normal data.
Finally, the coordinate channel, which represents the pixel location information, is
concatenated to an input of AnoSeg to consider the positional relationship of each
pixel in the image. The estimated anomaly map can also be utilized to improve
the performance of anomaly detection. Our experiments show that the proposed
method outperforms the state-of-the-art anomaly detection and anomaly segmen-
tation methods for the MVTec AD dataset. In addition, we compared the proposed
method with the existing methods through the intersection over union (IoU) met-
ric commonly used in segmentation tasks and demonstrated the superiority of our
method for anomaly segmentation.

1 INTRODUCTION

Anomaly segmentation is the process that localizes anomaly regions. In the real world, since the
number of anomaly data is very limited, conventional anomaly segmentation methods are trained
using only normal data. Typically, many anomaly segmentation methods are based on anomaly
detection techniques because the real dataset includes few anomaly images without the ground truth
(GT) mask. Therefore, these methods are not trained directly on pixel-level segmentation and they
are difficult to generate anomaly maps similar to GT masks.

Specifically, existing reconstruction-based methods using autoencoder (AE) (An & Cho (2015);
Baur et al. (2018); Sakurada & Yairi (2014); Chen et al. (2017); Bergmann et al. (2019)) and gen-
erative adversarial network (GAN) (Akcay et al. (2018); Deecke et al. (2018); Schlegl et al. (2017);
Zenati et al. (2018)) are trained to learn reconstruction of normal images and determine anomaly if
the test sample has the high reconstruction error for an abnormal region. However, reconstruction-
based methods often restore even non-complex anomaly regions, which degrade the performance
on both anomaly detection and segmentation. Therefore, the anomaly map in Fig. 1(b) greatly
differs from the corresponding GT mask. Alternative methods have been recently studied by us-
ing the high-level learned representation for anomaly detection and segmentation. These methods
use a pretrained model to extract a holistic representation of a given image and compare it to the
representation of a normal image. Also, several existing methods use patches, splitting a given im-
age to perform anomaly segmentation. By extracting representations from an image patch, these
methods compute the scores of the image patches and combine them to generate the final anomaly
map. Therefore, the quality of anomaly maps is highly correlated with the patch size. The unin-
formed students (US) (Bergmann et al. (2020)) in Figs. 1(c) and (d) are trained using a small patch
size (17 x 17) and a large patch size (65 x 65), respectively. Therefore, as shown in Fig. 1(d),
US65 x 65 is difficult to detect small anomaly regions. Patch SVDD (Yi & Yoon (2020)) and SPADE
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Figure 1: Comparison of anomaly maps (before thresholding) of the proposed method with the
SOTA methods in the MVTec-AD dataset. Except for the proposed method, anomaly maps of
existing methods are normalized to [0, 1].

(Cohen & Hoshen (2020)) use feature maps of multiple scales to detect anomaly regions with var-
ious sizes. However, as shown in Figs. 1(e) and (f), these methods approximately detect anomaly
regions. In addition, in GradCAM-based methods, GradCAM (Selvaraju et al. (2017)) is used to
generate anomaly maps to detect regions that influence the decision of the trained model (Kimura
et al. (2020); Venkataramanan et al. (2020)). CutPaste (Li et al. (2021)) introduces a self-supervised
framework using a simple effective augmentation that encourages the model to find local irregular-
ities. CutPaste also performs anomaly localization through GradCAM by extending the model to
use patch images after training the classifier. However, these methods are not aimed at anomaly
segmentation and detect anomaly regions using a modified anomaly detection method. Generally,
to improve the segmentation performance, a methodology that can be learned pixel-wise should be
considered. Therefore, existing methods cannot clearly detect anomalies because it is difficult that
directly use the pixel-wise loss such as a mean squared error typically used in the segmentation task.

To handle this problem, this paper proposes a new methodology that can directly learn the seg-
mentation task. The proposed anomaly segmentation network (AnoSeg) can generate an anomaly
map to segment the anomaly region that is unrelated to the normal class. The goal of AnoSeg is to
generate an anomaly map that represents the normal class region within a given image for anomaly
segmentation, unlike the existing methods to indirectly extract anomaly maps. For this goal, our
AnoSeg proposes three following approaches. First, as shown in Fig. 2, AnoSeg uses the segmenta-
tion loss directly using the synthesized data generated through hard augmentation, which generates
data shifted away from the input data distribution. Second, AnoSeg learns to generate the anomaly
map and reconstruct normal images.

Also, an adversarial loss is applied by using a generated anomaly map and an input image. Unlike
the existing GAN, the discriminator of AnoSeg determines whether the image is a normal class and
whether the anomaly map is focused on the normal region. Since the anomaly map learns the normal
sample distribution, AnoSeg has high generalization for unseen normal and anomaly regions even
with a small number of normal samples.

Third, we propose the coordinate channel concatenation using a coordinate vector based on coord-
conv (Liu et al. (2018)). Anomaly regions in a particular category often depend on the location
information of a given image. Therefore, the proposed coordinate vector helps to understand the
positional relationship of normal and anomaly regions in the input image. As a result, Fig. 1(h)
shows that the anomaly map of AnoSeg is very similar to GT even without thresholding. More-
over, we describe how to perform the anomaly detection using the generated anomaly map. By
simply extending the model using an anomaly map to the existing GAN-based method (Sabokrou
et al. (2018)), we could achieve 96.4 area under ROC curve (AUROC) for image-level localization,
which is a significant improvement over conventional state-of-the-art (SOTA) methods. As a result,
the proposed method achieves SOTA performance on the MVTec Anomaly Detection (MVTec AD)
dataset for anomaly detection and segmentation compared to conventional methods without using a
pretrained model. The main contributions of this study are summarized as follows:
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Figure 2: Overview of the training process of the proposed AnoSeg. AnoSeg generates recon-
structed images and anomaly maps. To directly generate anomaly maps, AnoSeg applies three novel
techniques: hard augmentation, adversarial learning, and coordinate channel concatenation.

• We propose a novel anomaly segmentation network (AnoSeg) to directly generate an
anomaly map. AnoSeg generates detailed anomaly maps using the holistic approaches
to maximize segmentation performance.

• The proposed anomaly map can also be used in existing anomaly detection methods to
improve the anomaly detection performance.

• In anomaly segmentation and detection, AnoSeg outperforms SOTA methods on the
MVTec AD dataset in terms of intersection over union (IoU) and AUROC. Additional
experiments using IoU metric also show that AnoSeg is robust for thresholding.

2 RELATED WORKS

Anomaly detection is a research topic that has received considerable attention. Anomaly detection
and segmentation are usually performed via unsupervised methods using the generative model for
learning the distribution of a certain class. In these methods, GAN (Goodfellow et al. (2014)) or
VAE (Kingma & Welling (2014)) learned the distribution of a certain class and used the difference
between a reconstructed image and an input for anomaly detection (An & Cho (2015); Chen et al.
(2017); Sakurada & Yairi (2014); Sabokrou et al. (2018)). In addition, initial deep learning-based
anomaly segmentation methods focused on generative models such as GAN (Schlegl et al. (2017))
and AE (Bergmann et al. (2019)). However, these approaches could have high reconstruction per-
formance for simple anomaly regions. Recently, methods using a representation of an image patch
have shown great effectiveness in anomaly detection (Yi & Yoon (2020); Cohen & Hoshen (2020)).
In Bergmann et al. (2020), US was trained to mimic a pretrained teacher by dividing an image into
patches. In recent studies (Li et al. (2021)), an activation map that visualizes the region of interest
through GradCAM (Selvaraju et al. (2017)) was applied to anomaly detection. Kimura et al. (2020)
generated an activation map using GradCAM to focus only on the reconstruction loss of the ROI.
Venkataramanan et al. (2020) improved the detection performance using an activation map in the
training process. Liznerski et al. (2021) apply one-class classification on features extracted from a
fully convolutional network and use receptive field upsampling with Gaussian smoothing to extract
anomaly map. However, in these existing methods, it is difficult to apply the loss related to anomaly
segmentation because the model does not directly generate an anomaly map by using the modified
anomaly detection method. Our method is different from the conventional methods which use Grad-
CAM to indirectly extract the activation map. Instead, the proposed method directly extracts and
supervises the anomaly map. Therefore, the proposed method discriminates between anomaly and
normal regions more accurately compared to previous methods.

3 PROPOSED METHOD: ANOSEG

The proposed AnoSeg is a “holistic” approach which incorporates three techniques: self-supervised
learning using hard augmentation, adversarial learning, and coordinate channel concatenation. The
details are explained in the following sub-sections.
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Figure 3: Our synthetic anomaly data augmentation. The synthetic anomaly data is generated by
several hard augmentations and Cutpaste (Li et al. (2021)). Synthetic anomaly data is generated by
applying a rotation, perm, color jitter, and Cutpaste for each step. Hard augmentations are applied
with a 50% chance.

3.1 SELF-SUPERVISED LEARNING USING HARD AUGMENTATION

To train anomaly segmentation directly, an image with an anomaly region and its corresponding GT
mask corresponding to the image are required. However, it is difficult to obtain these images and
GT masks in the real case. Therefore, the proposed method uses hard augmentation (Tack et al.
(2020)) and Cutpaste (Li et al. (2021)) to generate synthetic anomaly data and GT masks. Hard
augmentation refers to generating samples shifted away from the original sample distribution. As
confirmed in Tack et al. (2020), the hard augmented samples can be used as a negative samples.
Therefore, as shown in Fig. 3, we use three types of hard augmentation: rotation, perm, and color
jitter. Each augmentation is applied with a 50% chance. Then, like Cutpaste (Li et al. (2021)), the
augmented data is pasted into a random region of normal data to generate the synthetic anomaly data
and corresponding masks for segmentation. Finally, the anomaly segmentation dataset is composed
as follows:

xSeg = {xNor, xAno} , ASeg = {ANor, AAno} , (1)
where xseg is a set of normal and synthetic anomaly images, in which xNor and xAno are normal
images and synthetic anomaly images, respectively. Aseg is a set of normal and synthetic anomaly
masks, in which ANor and AAno are normal masks with all inner values set to one and synthetic
anomaly masks, respectively.

Using the anomaly segmentation dataset with a pixel-level loss, we can directly train our AnoSeg.
The anomaly segmentation loss LSeg is as follows:

LSeg = E ‖ ASeg − ÂSeg ‖1, (2)

where ÂSeg indicates the generated anomaly map (normal and anomaly classes). The generated
anomaly map has the same size as an input image and outputs a value in the range of [0, 1] for each
pixel depending on the importance of the pixel of the input image. However, since the synthetic
anomaly data are only subset of various anomaly data, it is difficult to generate a real anomaly maps
that are unseen in training phase.

3.2 ADVERSARIAL LEARNING WITH RECONSTRUCTION

To improve the generality for various anomaly data, it is important to train normal region distribution
accurately. Therefore, AnoSeg utilizes masked reconstruction loss that uses reconstruction loss only
in normal regions to learn only the distribution of normal regions and avoid bias of the distribution
of synthetic anomaly regions. Also, since the discriminator inputs a pair for an input image and its
GT masks, the discriminator and generator can focus on normal region distribution. Thus, anomaly
region cannot be reconstructed well and the detail of the anomaly map can also be improved. Loss
functions for adversarial learning are as follows:

LAdv = min
G
max
D
{E [log(D(concat(xSeg, ASeg)))] + E [log(1−D(concat(x̂Seg, ÂSeg)))]},

(3)

LRe = E ‖ xSeg ∗ASeg − x̂Seg ∗ASeg ‖1 /E ‖ ASeg ‖1, (4)
whereD,G, and concat are a discriminator, a generator, and a concatenation operation, respectively.
In Section 5, we demonstrated the effectiveness of adversarial loss.
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3.3 COORDINATE CHANNEL CONCATENATION

Figure 4: Overall process of the coordinate chan-
nel concatenation.

In the typical segmentation task, the location
information is the most important information
because normal and anomaly regions can be
changed depending on where they are located.
To provide additional location information, we
use a coordinate vector inspired by CoordConv
(Liu et al. (2018)). We first generate rank 1 ma-
trices that are normalized to [-1, 1]. Then, we
concatenate these matrices with the input image
as channels (Fig. 4). As a result, AnoSeg ex-
tracts features by considering the positional re-
lationship of the input image. In ablation study,
we demonstrated the effectiveness of coordi-
nate channel concatenation.

3.4 ANOMALY DETECTION USING PROPOSED ANOMALY MAP

Figure 5: An overview of the proposed anomaly
detection method. To obtain anomaly score, the
pair of images reconstructed from the anomaly
map and the anomaly detector (fake pair) are com-
pared with the pair of the normal mask and the
input image (real pair) using a discriminator.

In this section, we design a simple anomaly
detector that adds the proposed anomaly map
to the existing GAN-based detection method
(Sabokrou et al. (2018)). The proposed
anomaly detector performs anomaly detec-
tion by learning only normal data distribution.
We simply concatenate the input image and
anomaly map to use them as inputs of detector,
and apply both an adversarial loss and a recon-
struction loss. Then, we use the feature match-
ing loss introduced in (Salimans et al. (2016))
to stabilize the learning of the discriminator
and extract the anomaly score. We include a
detailed description of the training process for
anomaly detection in Appendix A.

In the test process (Fig. 5), the proposed
anomaly detector obtains anomaly scores using
the discriminator that has learned the normal
data distribution. We first assume that the in-
put image is normal, so the mask ANor with all
inner values set to one is used in pairs with the input image. When the input image is really normal,
a fake pair (anomaly map and reconstructed image) is similar to the real pair (normal mask and input
image), so the anomaly detector has a low anomaly score. On the other hand, when the input image
is abnormal, the fake pair is significantly different to the real pair, so it has a high anomaly score.
To compare the real and fake pair, the reconstruction loss and the feature matching loss are used as
follows:

Score = αLMSE(f(concat(xSeg, ANor)), f(concat(x̂Seg, ÂSeg))) + βLMSE(xSeg, x̂Seg), (5)

where α and β are 1 and 0.1, respectively. ANor and LMSE represent a normal GT mask and the
mean squared error, respectively.

4 EXPERIMENTAL RESULTS

4.1 EVALUATION DATASETS AND METRICS

To verify the anomaly segmentation and detection performance of the proposed method, several
evaluations were performed on the MVTec AD dataset (Bergmann et al. (2019)). For the MVTec
AD dataset, we resized both training and testing images to the size of 256 × 256, and each training
batch contains 16 images. Following the previous works (Bergmann et al. (2019); Venkataramanan
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Table 1: Performance comparison of anomaly segmentation and detection in terms of pixel-level
AUROC and image-level AUROC with the proposed method and conventional SOTA methods on
the MVTec AD dataset (Bergmann et al. (2019)). Full results for anomaly detection are added in
Table 4 of Appendix A.3.

Anomaly Segmentation (Pixel-level AUROC)

Method AEL2 CAVGA US FCDD Patch
SVDD SPADE Cutpaste Proposed

Bottle 0.86 0.89 0.94 0.97 0.98 0.98 0.98 0.99
Cable 0.86 0.85 0.91 0.90 0.97 0.97 0.90 0.99

Capsule 0.88 0.95 0.92 0.93 0.96 0.99 0.97 0.90
Carpet 0.59 0.88 0.72 0.96 0.93 0.98 0.98 0.99
Grid 0.90 0.95 0.85 0.91 0.96 0.94 0.98 0.99

Hazelnut 0.95 0.96 0.95 0.95 0.98 0.99 0.97 0.99
Leather 0.75 0.94 0.84 0.98 0.97 0.98 0.99 0.98

Metal nut 0.86 0.85 0.92 0.94 0.98 0.98 0.93 0.99
Pill 0.85 0.94 0.91 0.81 0.95 0.96 0.96 0.94

Screw 0.96 0.85 0.92 0.86 0.96 0.99 0.97 0.91
Tile 0.51 0.80 0.91 0.91 0.91 0.87 0.90 0.98

Toothbrush 0.93 0.91 0.88 0.94 0.98 0.98 0.98 0.96
Transistor 0.86 0.85 0.73 0.88 0.97 0.94 0.93 0.96

Wood 0.73 0.86 0.85 0.88 0.91 0.89 0.96 0.98
Zipper 0.77 0.94 0.91 0.92 0.95 0.97 0.99 0.98
Mean 0.82 0.89 0.88 0.92 0.96 0.96 0.96 0.97

Anomaly Detection (Image-level AUROC)
Mean 0.71 0.82 0.84 - 0.92 0.86 0.95 0.96

et al. (2020); Li et al. (2020)), we adopted the pixel-level and image-level AUROCs to quantitatively
evaluate the performance of different methods for anomaly segmentation and detection, respectively.
In addition, we used IoU to evaluate anomaly segmentation. For the measurement of IoU, a thresh-
old, which maximizes IoU, was applied in each method.

4.2 IMPLEMENTATION DETAILS

The encoder of AnoSeg consists of the convolution layers of ResNet-18 (He et al. (2016)). The
up-sampling layer of decoders consists of one transposed convolution layer and convolution layers.
Two decoders of the AnoSeg are composed of five up-sampling layers and two convolution layer
to generate an anomaly map and a reconstructed image. The structure of the anomaly detector is
the same as the AnoSeg structure except for the decoder that generates the anomaly map. Detailed
information on training process and the network architecture is described in Appendix B.

4.3 EXPERIMENTS ON THE MVTEC AD DATASET

4.3.1 COMPARED METHODS

We compared the reconstruction-based method with the proposed method using autoencoder-L2
(AEL2). GradCAM-based methods (CAVGA (Venkataramanan et al. (2020)) and Cutpaste (Li et al.
(2021))) were also compared with the proposed method. Also, we compared the proposed method
with the US Bergmann et al. (2020) using the representation of patch images. In our experiment, we
compared the US trained with a patch size of 65× 65. The proposed method is also compared with
FCDD (Liznerski et al. (2021)) using receptive field upsampling. Finally, among the embedding
similarity-based methods, the patch SVDD (Yi & Yoon (2020)) and SPADE (Cohen & Hoshen
(2020)) were also used for the performance comparison.

4.3.2 QUANTITATIVE RESULTS

We evaluated the anomaly segmentation performance between the proposed method and the ex-
isting SOTA methods mentioned in section 4.3.1 using the MVTec AD dataset. As shown in Ta-
ble 1, the proposed method consistently outperformed all other existing methods evaluated in AU-
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Figure 6: (a) Comparison on AUROC and IoU using Anomaly map and (b) mean IoU change
according to the threshold for each category. The x-axis and y-axis represent a threshold and IoU,
respectively.

Table 2: Performance comparison of anomaly segmentation in term of mean IoU with the proposed
and conventional SOTA methods on the MVTec AD dataset.

Anomaly Segmentation (IoU)
Method CAVGA US65×65 Patch SVDD SPADE Proposed
Mean 0.470 0.244 0.427 0.483 0.542

ROC. The reconstruction-based methods such as AEL2 used the reconstruction loss as the anomaly
score. AEL2 had lower performance (0.82 AUROC) compared to the proposed method. CAVGA
(Venkataramanan et al. (2020)) and Cutpaste (Li et al. (2021)) obtained anomaly maps using Grad-
CAM (Selvaraju et al. (2017)), but these anomaly maps highly depend on the classification loss.
In addition, compared to the methods using patch image representation such as US, the proposed
method achieved higher performance. As a result, AnoSeg outperformed the conventional SOTA,
such as Patch SVDD, SPADE, and Cutpaste, by 1% AUROC in anomaly segmentation.

In addition, we evaluated IoU, which is typically used as a metric for segmentation. Table 2 shows
the quantitative comparison on IoU. AnoSeg achieved the highest performance compared to other
methods in IoU. In particular, Patch SVDD and SPADE achieved 0.96 AUROC similar to AnoSeg
in the evaluation of AUROC, but had lower IoU than the proposed method. This is because, unlike
the existing method, the proposed method was directly trained for segmentation.

Additionally, we compared the AUROC and IoU metrics for the generated anomaly map in Fig. 6(a).
In general, AUROC is affected by the detection performance of the anomaly regions. False positives
for normal regions have relatively no impact on AUROC. In the Patch SVDD of Fig. 6(a), there were
abnormal regions that cannot be detected. Therefore, the anomaly map of Patch SVDD had lower
AUROC compared to other methods. Although the anomaly maps of AnoSeg and SPADE visually
show different anomaly maps, the same AUROC was calculated because most anomaly regions are
detected in anomaly maps of AnoSeg and SPADE. However, IoU was affected by false positives
in normal regions. Therefore, IoU of SPADE had lower performance compared to AUROC. The
proposed AnoSeg achieved the highest performance for both IoU and AUROC. These results shows
that the proposed method is superior in various aspects of anomaly segmentation.

We compared the anomaly detection performance between the proposed and existing methods us-
ing the method introduced in section 4.3.1. As shown in Table 1, the proposed method achieved
similar AUROC to existing SOTA methods (Full results are in Appendix A.3). Discriminator of
anomaly detector learned representations of images and anomaly maps together. Therefore, with a
simple anomaly detection method using the generated anomaly map, we achieve anomaly detection
performance similar to that of the existing SOTA.
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Figure 7: Qualitative results on the MVTec AD dataset for (first row) input image, (second row) GT
mask, and (third row) proposed anomaly map.

Table 3: Performance of various configurations on the MVTec AD dataset.

Ablation study (AUROC / IoU)
Method Base model

(Cutpaste only)
+ Hard augmentation + Adversarial

learning
+ Coordinate

channel
Mean 0.923 / 0.492 0.942 / 0.503 0.951 / 0.527 0.970 / 0.542

4.3.3 QUALITATIVE RESULTS

For the evaluation with existing methods, we visualized anomaly maps of existing and proposed
methods in Fig. 1. The output image of AEL2 (Bergmann et al. (2019)) was restored up to the
anomaly image region and it was difficult to restore high-frequency regions of the normal image.
Also, US65×65 could detect large defects, but had poor detection performance for small defects.
These results show that patch representations based methods are difficult to accurately localize de-
fects for various sizes. Patch SVDD and SPADE extracted anomaly maps using feature extractions
for different sizes to consider defects with various sizes. Therefore, the defects with different sizes
could be detected, as shown in Fig. 1. However, these anomaly maps had many false positives for
normal regions and approximately detected anomaly regions. In contrast, as shown in Fig. 7, the
proposed AnoSeg was trained to generate anomaly maps directly for anomaly segmentation using
the segmentation loss. Therefore, the proposed method generated an anomaly map more similar to
GT than the results of the existing methods as shown in Fig. 6. More comprehensive results on
defect segmentation are given in Appendix C.

4.3.4 ANALYSIS OF THRESHOLD SENSITIVITY

In this section, Patch SVDD and our AnoSeg were compared to verify the performance variation
depending on the threshold of the proposed method. IoU was measured by dividing the anomaly
score by 10000 units. Fig. 6(b) shows the performance change of AnoSeg, SPADE and Patch SVDD
according to a threshold. As shown in Fig. 6(b), the performance of AnoSeg did not significantly
change significantly for different thresholds. Therefore, the anomaly map is shown similar to the GT
mask even though thresholding was not applied in Fig. 6. On the other hand, Fig. 6(b) shows that
Patch SVDD and SPADE had a significant change in performance when the threshold is changed
around the threshold with the highest IoU. The result shows that our model is robust against thresh-
olding. By setting the threshold between 0.2 and 0.8, AnoSeg could always achieve better results
consistently than other SOTA solutions listed in Table 2.

5 ABLATION STUDY

We modified the generator structure (Section 4.2) to generate the only anomaly map and construct
the base model with only Cutpaste applied. Then, we added modules incrementally on the base
model, and evaluated with IoU and AUROC scores. The overall results show that the method using
all modules improved by 5.4% and 10.2% for AUROC and IoU, respectively, compared to the base
model. The effectiveness of each module is described below.
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Figure 8: Qualitative results of the ablation study to illustrate the performance of the anomaly seg-
mentation on the MVtec AD dataset.

Hard augmentation We used images with several hard augmentations applied to train AnoSeg
on anomaly regions. Hard augmentations generate samples away from the normal data distribu-
tion. Intuitively, synthetic anomaly data applied with hard augmentation can generate more diverse
anomaly regions than Cutpaste. Therefore, AnoSeg detected more anomaly regions than the base
model. As a result, AUROC and IOU were improved by 2.1% and 1.9% respectively.

Adversarial learning with reconstruction loss The proposed AnoSeg learns the normal region
distribution through adversarial learning. We also use masked reconstruction loss in AnoSeg to
apply reconstruction loss only for normal regions to avoid biasing synthetic anomaly regions. As
shown in a of Fig. 8(a), the base model is difficult to learn the normal data distribution. Therefore,
the reconstructed image of base model partially restores the anomaly regions, and the base model
detects anomaly regions as normal regions. In contrast, a model using adversarial learning learns
the normal data distribution and can segment between normal and abnormal regions. Therefore,
AnoSeg can generate detailed anomaly maps.

Coordinate channel concatenation To consider the additional location information while per-
forming anomaly segmentation, we concatenated coordinate channels. In Fig. 8(b), the effectiveness
of coordinate channel concatenation is confirmed. The yellow cable in the input image changes the
class property depending on the location. Therefore, these anomaly regions can be determine as nor-
mal if location information is insufficient. Because the base model that does not use the coordinate
channel lacks location information, the yellow cable, which is an abnormal area, is reconstructed
and determined as a normal area. AnoSeg provides additional location information by connecting
the coordinate channel to the input image. As a result, as shown in Fig.8(b) anomaly regions that
depend on location information were additionally detected, and AUROC and IOU were improved
by 1.9% and 2.8% respectively.

6 CONCLUSION

This paper presented a novel anomaly segmentation network to directly generate an anomaly map.
We proposed AnoSeg, a segmentation model using adversarial learning, and the proposed AnoSeg
was directly trained for anomaly segmentation using synthetic anomaly data generated through hard
augmentation. In addition, anomaly regions sensitive to positional relationships were more easily de-
tected through coordinate vectors representing the pixel position information. Hence, our approach
enabled AnoSeg to be trained to generate anomaly maps with direct supervision. We also applied
this anomaly maps to existing methods to improve the performance of anomaly detection. Exper-
imental results on the MVTec AD dataset using AUROC and IoU demonstrated that the proposed
method is a specialized network for anomaly segmentation compared to the existing methods.
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A ANOMALY DETECTION USING PROPOSED ANOMALY MAP

Here we provide detailed information for the training and loss functions of anomaly detector using
the proposed anomaly map from Section 3.4.

A.1 TRAINING PROCESS OF ANOMALY DETECTION METHOD

The proposed anomaly detection method uses an anomaly map generated from the AnoSeg along
with the input image to learn the distribution of the normal image and the anomaly map. Therefore,
the anomaly detector determines whether the anomaly map is focusing on the normal region of the
input image while determining whether the input image is a normal image. Unlike AnoSeg, the
proposed anomaly detection method does not use the synthetic anomaly xAno as a real class in
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Figure 9: Overview of the training process of the proposed anomaly detection method.

an adversarial loss because discriminator of anomaly detector only needs to learn the normal data
distribution for anomaly detection. The loss function for learning the discriminator of the anomaly
detector (LAD

Adv) is as follows:

LAD
Adv = min

G
max
D
{E [log(1−D(concat(x̂Nor, ÂNor)))]

+E [log(D(concat(xNor, ANor)))]}, (6)

where x̂Nor, ÂNor, xNor, and , ANor represent reconstructed a normal image, a anomaly map of
AnoSeg, a normal image, and a normal mask, repectively.

Also, to help estimate the normal data distribution, we propose a synthetic anomaly classification
loss that discriminates between synthetic data and normal data. As confirmed in (Odena (2016)), the
proposed synthetic anomaly classification loss improves the anomaly performance of the discrimi-
nator. This synthetic anomaly classification loss is defined as:

Lcls = E [log(1−D(concat(xAno, AAno)))] + E [log(D(concat(xNor, ANor)))].

Then, we use the feature matching loss introduced in (Salimans et al. (2016)) to stabilize the learning
of the discriminator and extract the anomaly score. The high-level representations of the normal and
reconstructed samples are expected to be identical. This loss is given as follows:

Lfea = E ‖ f(concat(xNor, ANor))− f(concat(x̂Nor, ÂNor)) ‖2,

where f(.) is the second to the last layer of the discriminator. Fig. 9 shows an overview of the
overall training process.

A.2 QUANTITATIVE EVALUATION OF ANOMALY DETECTION IN THE MVTEC AD DATASET.

We describe the performance evaluation setting of the existing method that was not included in the
main paper due to the length limitation. For performance comparison with existing methods, we used
the results from existing literature, excluding the uninformed students method (US) (Bergmann et al.
(2020)). US method is only evaluated with PRO scores for anomaly segmentation without the provi-
sion of the AUROC for the anomaly segmentation and detection. Therefore, we re-implemented the
large patch size (patch size is 65 × 65) version of the Student method and evaluated it on anomaly
detection and segmentation. Tables 4 also shows the class-wise anomaly detection performances for
the MVTec AD (AUROC) dataset.

A.3 ABLATION STUDY OF ANOMALY DETECTION METHOD

We evaluated the effectiveness of the individual components in the proposed anomaly detection
method on the MVTec AD dataset, as shown in Table 5. The base model used the same structure
as the proposed model, and only the input images were fed except for the mask. The base model
compared the features of the input image and the reconstructed image to calculate an anomaly score.
However, since the reconstructed image often had anomaly regions restored, the base model has the
low performance. The model that the feature matching loss is applied had slightly improved AUROC
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Table 4: Performance comparison of anomaly detection in terms of image-level AUROC with the
proposed method and conventional SOTA methods on the MVTec AD dataset (Bergmann et al.
(2019)).

Anomaly Detection (Image-level AUROC)

Method AEL2 CAVGA US Patch
SVDD SPADE Cutpaste Proposed

bottle 0.80 0.91 0.85 0.99 - 0.98 0.98
Cable 0.56 0.67 0.90 0.90 - 0.81 0.98

Capsule 0.62 0.87 0.82 0.77 - 0.96 0.84
Carpet 0.50 0.78 0.86 0.93 - 0.93 0.96
Grid 0.78 0.78 0.60 0.95 - 0.99 0.99

Hazelnut 0.88 0.87 0.91 0.92 - 0.97 0.98
Leather 0.44 0.75 0.73 0.91 - 1.00 0.99

Metal nut 0.73 0.71 0.58 0.94 - 0.99 0.95
Pill 0.62 0.91 0.90 0.86 - 0.92 0.87

Screw 0.69 0.78 0.90 0.81 - 0.86 0.97
Tile 0.77 0.72 0.87 0.98 - 0.93 0.98

Toothbrush 0.98 0.97 0.81 1.00 - 0.98 0.99
Transistor 0.71 0.75 0.85 0.92 - 0.96 0.96

Wood 0.74 0.88 0.68 0.92 - 0.99 0.99
Zipper 0.80 0.94 0.90 0.98 - 0.99 0.99
Mean 0.71 0.82 0.84 0.92 0.86 0.95 0.96

Table 5: Anomaly detection performance of various configurations on the MVTec AD dataset.

Ablation study (Image-level AUROC)

Method Base model + Feature matching
loss

+ Input anomaly
map

+ Anomaly
classification loss

Mean 0.812 0.842 0.943 0.961

than the base model. The proposed anomaly detection method performed anomaly detection using
input images and anomaly maps. Image-level AUROC was significantly increased by up to 15%.
Hence, the model using an anomaly map as an input performed anomaly detection more sensitive
than the conventional method using only an input image. Finally, to enhance the estimation of the
normal data distribution, we added an anomaly classification loss. This loss helps in estimating the
boundaries of the normal data distribution where synthetic anomaly data are separated.

B DETAILS ON THE NETWORK ARCHITECTURES

Table 6 shows the network structure of the proposed method. Each network is described by a list of
layers including an output shape, a kernel size, a padding size, and a stride. In addition, batch nor-
malization (BN) and activation function define whether BN is applied and which activation function
is applied, respectively. The decoder used for image reconstruction has the same structure as the
decoder for generating anomaly map, and AnoSeg uses two decoders. The structure of the proposed
anomaly detector also has the same structure as that of AnoSeg. The structure of the AnnoSeg is also
available in our code added in the supplementary material. The provided code contains pre-trained
weight.

C ANALYSIS OF THRESHOLD SENSITIVITY

In this section, we show the IoU results according to threshold changes for each category in the
MVTec AD dataset. As shown in Figs. 10, 11, and 12, compared to SPADE and Patch SVDD,
which are comparative methods, the performance difference of the proposed AnoSeg is not large
according to the change in the threshold.
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Network Layer (BN, activation
function)

Output size Kernel Stride Pad

Encoder Resnet-18 8 x 8 x 512 - - -

Decoder

Conv 1 (BN, ReLU) 8 x 8 x 512 3 x 3 1 1
ConvTr 1 (BN, ReLU) 16 x 16 x 512 4 x 4 2 1
Conv 2 (BN, ReLU) 16 x 16 x 256 3 x 3 1 1

ConvTr 2 (BN, ReLU) 32 x 32 x 256 4 x 4 2 1
Conv 3 (BN, ReLU) 32 x 32 x 128 3 x 3 1 1

ConvTr 3 (BN, ReLU) 64 x 64 x 128 4 x 4 2 1
Conv 4 (BN, ReLU) 64 x 64 x 128 3 x 3 1 1

ConvTr 4 (BN, ReLU) 128 x 128 x 128 4 x 4 2 1
Conv 5 (BN, ReLU) 128 x 128 x 128 3 x 3 1 1

ConvTr 5 (BN, ReLU) 256 x 256 x 128 4 x 4 2 1
Conv 6 (BN, ReLU) 256 x 256 x 128 3 x 3 1 1
Conv 7 (-, Sigmoid) 256 x 256 x 3 3 x 3 1 1

Discriminator

Conv 1 (-, LeakyReLU) 128 x 128 x 64 4 x 4 2 1
Conv 2 (BN, LeakyReLU) 64 x 64 x 128 4 x 4 2 1
Conv 3 (BN, LeakyReLU) 32 x 32 x 256 4 x 4 2 1
Conv 4 (BN, LeakyReLU) 16 x 16 x 512 4 x 4 2 1
Conv 5 (BN, LeakyReLU) 8 x 8 x 512 4 x 4 2 1
Conv 6 (BN, LeakyReLU) 4 x 4 x 512 4 x 4 2 1
Conv 7 (BN, LeakyReLU) 2 x 2 x 128 4 x 4 2 1

Conv 8 (-, Sigmoid) 1 x 1 x 1 4 x 4 2 1

Table 6: Architectural details of the proposed method. ConvTr denotes a transposed convolution
layer and Conv denotes a convolution layer.

D QUALITATIVE RESULTS ON THE MVTEC AD DATASET

We provided additional qualitative results of our method on the MVTec AD dataset in Figs. 13,
14, 15, 16, and 17. For each class, an Input image, a proposed anomaly map, and a GT mask are
provided. The proposed AnoSeg had the highest performance even for anomaly regions with various
sizes.
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Figure 10: IoU results for each category in the MVTec AD dataset according to the threshold change.
(Green: AnoSeg, Orange: SPADE, Blue: Patch SVDD)
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Figure 11: IoU results for each category in the MVTec AD dataset according to the threshold change.
(Green: AnoSeg, Orange: SPADE, Blue: Patch SVDD)
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Figure 12: IoU results for each category in the MVTec AD dataset according to the threshold change.
(Green: AnoSeg, Orange: SPADE, Blue: Patch SVDD)
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Figure 13: Defect segmentation on MVTec AD dataset. For each sample image, there are an input
image, the proposed anomaly map, and its GT mask from left to right.
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Figure 14: Defect segmentation on MVTec AD dataset. For each sample image, there are an input
image, the proposed anomaly map, and its GT mask from left to right.
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Figure 15: Defect segmentation on MVTec AD dataset. For each sample image, there are an input
image, the proposed anomaly map, and its GT mask from left to right.

20



Under review as a conference paper at ICLR 2022

Figure 16: Defect segmentation on MVTec AD dataset. For each sample image, there are an input
image, the proposed anomaly map, and its GT mask from left to right.

21



Under review as a conference paper at ICLR 2022

Figure 17: Defect segmentation on MVTec AD dataset. For each sample image, there are an input
image, the proposed anomaly map, and its GT mask from left to right.
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