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Robots need to be equipped with general-purpose hardware
that is robust to model inaccuracies, sensor latencies, or
perception failures so that they can perform complex tasks
in unstructured environments. Intelligence that adapts to these
deficiencies and even reasons about perturbations does not just
have to reside in the robot’s software.

Mechanical intelligence—the passive, mechanical response
of systems leveraging properties such as compliance, differ-
entials, kinematics, or constraints—embedded in the robot’s
hardware can absorb the slack and display intricate behaviors.
As these mechanisms interact with the world, morphing and
adapting as they go, they also gather information that can
better inform the control actions of the system. Observing
the adaptable behavior of mechanically intelligent systems
replaces the data otherwise obtained through dedicated sensor
arrays. But the hardware for intelligent robot systems cannot
be developed in isolation from the algorithms and policies that
operate it, and we need to integrate the design optimization of
these mechanically smart architectures with the software.

My research vision is to design intelligence into robot
agents so that they can perform complex tasks with limited
data and basic models, while acquiring information from their
interactions with the environment.

I. CONTRIBUTED RESEARCH

A. Simplify: Mechanisms for Low-Level Control and Planning

Robot manipulation is traditionally done by grasping an ob-
ject with a parallel jaw gripper, and object motions are brought
about by the robot arm [15]. Dexterous skills with parallel jaw
grippers may be possible with highly sophisticated control, but
in-hand manipulation can be more efficient, safe, and accurate
[17]. However, in-hand motions are incredibly challenging to
execute because robot hands are often composed of anthro-
pomorphic fingers with serial, fully actuated joints [32, 13].
These hands have many kinematic redundancies and require
complex control logic that relies on a multitude of sensors.
If there is insufficient sensor data, actuation latencies, or
modeling inaccuracies, the object will be dropped. As a result,
these hand designs limit in-hand manipulation paradigms to
strictly controlled settings [3, 16].

Robot hands can instead be designed with mechanisms
that take care of the low-level control goals such as grasp
stability, contact dynamics, and robustness to perturbations –
all without needing additional sensing or control. Passively
adaptable mechanisms like underactuated fingers have been
used widely in robot hands [1, 24, 11], and I have extended
this work to design grippers that can blindly fixture unknown

Fig. 1. Parallel mechanism-based hands can manipulate a variety of unknown
objects over large workspaces even with simple open-loop control [27, 21].

objects with form closure guarantees [28], and in the finger
design of a motor-augmented wrist orthotic device for people
with spinal cord injuries [22].

I have also developed robot hand designs that kinematically
embed motion into the hand topology in order to carry out
open-loop in-hand manipulation of unknown objects over large
workspace. My work has leveraged parallel architectures –
where several independent kinematic chains link the end-
effector to the base. The hand-object system is analogous to a
parallel manipulator (the platform is similar to the object, the
legs to the fingers, and the base to the palm) [4, 5], and in-hand
motions have to contend with the kinematics of closed-loop
chains formed by the fingers post-grasp. I have shown robot
hands that are based on parallel architectures such as Stewart
platforms [21] and spherical mechanisms [26, 27] have large
manipulation envelopes with basic open-loop control and no
tactile or visual sensing.

These mechanically smart architectures off-load some ma-
nipulation subgoals requiring lower-level, high-bandwidth
control to the mechanism itself, while still having enough
dexterity to execute higher-level objectives of reaching target
object poses and even allow longer-horizon planning through
finger-gaiting. Designing hand architectures to take on the low-
level functions through mechanisms that absorb the slack al-
lows robot systems to be far more generalizable and complete
complex tasks in human environments.

B. Inform: Mechanically Intelligent Information-Rich Systems

Robot systems may still need to close the feedback loop
to adapt to novel objects, plan trajectories online, or update
estimated system models [7, 34]. When these mechanically
intelligent systems take on low-level control functions, feed-
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Fig. 2. Simple 6-axis FT sensor with a single, inexpensive RGB camera and
mechanical amplifications (left) [31]. Motion optimization framework used to
analyze unified arm and hand manipulation (right) [30].

back information is embedded in the passive response of these
systems, instead of the data from dedicated sensor arrays. For
example, compliant hands deflect under external forces that
correlate to the magnitude/direction of that force. As such, this
information is not “lost,” and in fact, systems can be designed
to perceive and gather data while interacting with the world
[9]. Moreover, since these adaptive mechanisms can be more
robust to disturbances, they can explore novel environments
through contacts without task-critical failures.

One of the simplest methods of obtaining this high-
dimensional information is through vision. Passive elastic
systems are incredibly rich in visual information under forces
[33], which can further augment recent algorithms that learn
robot policies directly from images. We showed an imple-
mentation of using purely mechanical features to extract
accurate 6-axis force/torque data without needing any signal
conditioning or amplification, and with a simple linear cali-
bration model [31]. This sensor consists of one inexpensive
RGB camera module that tracks fiducial markers, and its
components are easy to fabricate or obtained off-the-shelf.
The flexure structure and angled mirrors in the sensor are
designed to mechanically amplify the perceived motion of the
markers in the camera view, resulting in a sensor that can
resolve forces/torques within 1.5% relative to a commercial
sensor. This work used design to mechanically program signal
amplification in a standalone sensor device, although it can be
directly incorporated into robot hands and arms, such as for
distributed measurement of forces in whole-body tasks [14].

C. Integrate: Unifying Architecture and Motion Optimization

The design of robot hardware is inextricably coupled with
its control and planning algorithms, and unifying the choice
of mechanical architecture with the control optimization can
significantly improve the robot’s ability to complete the target
task [25]. For example, rotational dexterity might be more
important in a robot hand for bulb screwing in tight spaces.
But on a manufacturing floor, a simple parallel jaw gripper
may suffice on a 6-axis arm. My work has looked at coordi-
nating robot arm and hand motions in order to leverage the

capabilities of both subsystems, and subsequently analyze how
well different hands perform on various manipulation tasks
and environments [30]. The motion optimization frameworks
we developed resolve the kinematic redundancy of adding
dexterous hands to robot arms and synthesize a series of
configuration states over the entire manipulation system. The
resulting arm-hand motions are optimized for performance
metrics of the overall system (e.g. pose accuracy, collision
avoidance), while also achieving individual arm and hand
subsystem goals (e.g. joint limits, manipulability, hand action
costs). So, integrating the hand architecture into trajectory
planning allows us to evaluate hand hardware and improve
the resulting unified arm-hand manipulation motions [20].

II. FUTURE DIRECTIONS

Mechanical Control Pathways. Using mechanically smart
architectures that adapt to uncertainties and perturbations
is somewhat similar to the notion of manipulation funnels
[19]. Subsequent works sequentially composed controllers for
actuated systems with integrated sensors [6, 18]. Active control
systems are certainly more easily programmable, but analytical
methods need explicit model dynamics, and data-driven meth-
ods require a lot of compute and may still have limited real-
world generalizability. I plan to explore how mechanisms that
leverage physical constraints and take over low-level control
can chain together skills for emergent behaviors [2, 23].

Co-optimizing Architecture and Policy. Co-design of hard-
ware and control has seen recent developments [8, 12, 35].
These works incorporate design iterations and simulation into
policy learning, although the parameters are simplified and
limited (actuator attributes, stiffness, link lengths/angles), and
the general kinematics of the systems are explored less (num-
ber and placement of links, joints). Extending our prior work
on unifying design and motion optimization, hardware can be
co-optimized with long-horizon policy to know what features
– motion primitives, dexterity level, sensor information – need
to be designed into the system for different task environments.

Architectures for Compute-Intensive Tasks. Applications re-
quiring accurate local contact estimations, fast and dynamic
motions, high number of contact instances, or interaction
with soft or deformable materials can become computationally
intractable. These challenges are exacerbated by hardware
that struggles with over-constraints and poor manipulability.
I plan to address the high-dimensionality, high-resolution,
high-frequency response requirements of these problems with
mechanically intelligent hardware paired with basic models
and limited data [10].

Open-source Robot Hardware. Open-source hardware has
high barriers in replicating physical components, compre-
hensive documentation, and long-term support. Our review
paper highlighted the key benefits of open-source hardware
for both the developers and the robotics community, as well
as outlined best practices in sharing hardware projects [29].
I aim to continue disseminating research products as open-
source projects and exemplify best practices that enable easy
replication and reproducibility.



REFERENCES

[1] Sylvain Abondance, Clark B Teeple, and Robert J Wood.
A dexterous soft robotic hand for delicate in-hand ma-
nipulation. IEEE Robotics and Automation Letters, 5(4):
5502–5509, 2020.

[2] Aditya Bhatt, Adrian Sieler, Steffen Puhlmann, and
Oliver Brock. Surprisingly robust in-hand manipulation:
An empirical study. In Robotics: Science and Systems
(RSS) 2021, 2021.

[3] Antonio Bicchi. Hands for dexterous manipulation and
robust grasping: A difficult road toward simplicity. IEEE
Transactions on robotics and automation, 16(6):652–
662, 2000.

[4] Antonio Bicchi and Domenico Prattichizzo. Manipula-
bility of cooperating robots with unactuated joints and
closed-chain mechanisms. IEEE transactions on robotics
and automation, 16(4):336–345, 2000.
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