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Abstract

In the ever-expanding landscape of academic
research, the proliferation of ideas presents a
significant challenge for researchers: discern-
ing valuable ideas from the less impactful ones.
The ability to efficiently evaluate the potential
of these ideas is crucial for the advancement
of science and paper review. In this work, we
focus on idea assessment, which aims to lever-
age the knowledge of large language models
to assess the merit of scientific ideas. First,
we investigate existing text evaluation research
and define the problem of quantitative evalua-
tion of ideas. Second, we curate and release a
benchmark dataset from nearly four thousand
manuscript papers with full texts, meticulously
designed to train and evaluate the performance
of different approaches to this task. Third, we
establish a framework for quantifying the value
of ideas by employing representations in a spe-
cific layer of large language models. Experi-
mental results show that the scores predicted
by our method are relatively consistent with
those of humans. Our findings suggest that the
representations of large language models hold
more potential in quantifying the value of ideas
than their generative outputs, demonstrating a
promising avenue for automating the idea as-
sessment process.

1 Introduction

The rapid pace of scientific research in various
disciplines has given rise to an overwhelming
number of academic papers (Tabah, 1999; Born-
mann and Mutz, 2015; Xu et al., 2023). Typically,
ideas are commonly conveyed through these pa-
pers, which reviewers must carefully scrutinize to
grasp the ideas authors present. However, amidst
the vast volume of paper submissions, the review
process becomes slow, labor-intensive, and less pre-
cise (Checco et al., 2021), making it a challenge
to identify valuable ideas. Fortunately, with the
advent of large language models (LLMs), we are

presented with an unprecedented opportunity to
revolutionize how we assess the merit of scientific
ideas, and this work explores their use as a knowl-
edge tool for such evaluation. In order to make idea
more concrete, we take unpublished manuscripts
or the latest papers as the research object.

While the generative capabilities of LLMs have
been widely recognized, their potential as idea (or
paper) evaluative instruments has remained rela-
tively underexplored. Recent studies (Yuan et al.,
2022; Liang et al., 2023; Liu and Shah, 2023; Agar-
wal et al., 2024) have begun to harness LLMs for
the automatic generation of paper reviews, aiming
for outputs that are both informative and emulate
human feedback. These efforts primarily utilize
the text generation capability of LLM, which are
highly dependent on the scale of model parame-
ters. For instance, Liu and Shah (2023) proves that
GPT-4 surpasses other open-source LL.Ms, such
as LLaMA (Touvron et al., 2023), in generating
reviews. Meanwhile, crafting intricate prompts
containing specific commands and inquiries is es-
sential for LLMs to produce meaningful reviews.
Nonetheless, LLM-generated reviews can still re-
flect models’ subjective biases and occasionally
produce hallucinated contents (Zhang et al., 2023;
Manakul et al., 2023). There is currently no re-
search that quantitatively evaluate ideas in an ob-
jective way.

According to Geva et al. (2021); Zou et al.
(2023), the representations of different layers in
LLM contain different semantic information, and in
some tasks, the performance of the last layer is not
the best. Based on this point, we suppose that the
representations of LLMs encapsulate a detailed and
nuanced comprehension of text, which can be lever-
aged to construct a systematic and objective frame-
work for the assessment of ideas. Our research thus
focuses on the quantitative evaluation of ideas
through LLMs, an approach we argue is more ob-
jective than generative techniques. It is worth not-



ing that LLMs’ generative method is not inherently
adept at processing numerical data (digits), which
is also why we turn to their representations as a
means to quantify the value of ideas. We delve into
the latent knowledge embedded within the represen-
tations of LL.Ms for this purpose. Specifically, we
first define the problem of quantitative idea evalua-
tion, and construct a benchmark dataset comprised
of nearly 4k scientific manuscripts with full texts
in the discipline of computer science. This dataset
serves as the bedrock for training and testing vari-
ous LL.M-based approaches to idea assessment. In
the subsequent phase of our research, we develop
a framework for quantifying the value of ideas.
This framework leverages the representations pro-
duced by LLMs, which encode semantic features
of the text in a high-dimensional space. Finally, by
training a downstream evaluator using these rep-
resentations, our framework can identify patterns
and signals within these representations that align
with the value of scientific ideas as determined by
the distribution of expert consensus.

We perform extensive experiments on our bench-
mark dataset. The results reveal that the representa-
tions generated by LLMs are inherently indicative
of the potential value of scientific ideas, especially
using the representations in the middle and rear
layers, which demonstrate a high degree of con-
sistency with human judgements. Meanwhile, we
also found that high consistency can be achieved
with only a small amount of data, thanks to the
pretrained knowledge in LLMs. The contributions
of our paper are summarized as follows:

* We conduct a thorough investigation of cur-
rent methods for paper (idea) assessment and
pioneer the study of quantitative evaluation of
scientific ideas.

* We meticulously curate a new benchmark
dataset, complete with human-assigned scores
on overall quality, novelty, and correctness.
We are making it publicly available. This
dataset is comprised of the full texts of 3,795
papers in PDF format.

* We propose a new framework that quantifies
the value of ideas by utilizing the deep repre-
sentations produced by LLMs.

* We conduct extensive experiments to verify
the performance of our method. The results
indicate that utilizing the representations from

LLMs aligns more closely with human judg-
ments than using generative textual outputs of
LLMs when assessing the quality of ideas.

2 Related Work

Yuan et al. (2022) have explored the use of various
NLP techniques to produce decisive and compre-
hensive reviews of academic papers from multiple
perspectives. The work of ReviewerGPT (Liu and
Shah, 2023) studies the application of LLMs as
review assistants, focusing on tasks such as error
identification, checklist verification, and compara-
tive paper analysis. Another innovative approach
by researchers (Liang et al., 2023) involves an auto-
mated system that employs GPT-4 to create review
comments and suggestions for revisions, which
are then benchmarked against feedback from hu-
man reviewers. What’s more, LitLLM (Agarwal
et al., 2024) equips Retrieval Augmented Gener-
ation (RAG) module to address the hallucination
problem in review generation.

In addition to the methods mentioned above,
some researches rely on external data to assess
the quality of a paper. For instance, Thelwall
et al. (2023) have developed a framework that pre-
dicts article quality scores using a range of biblio-
metric and metadata indicators, including citation
counts, journal impact factors, and institutional
rankings. Similarly, KQI (Wang et al., 2023) lever-
ages the structure of citation networks to quantify
the knowledge contribution of a paper. This kind of
approaches, however, pertains to post-publication
evaluation. Unlike our approach, which is based
solely on the text of the paper itself, it does not
require information about the paper’s acceptance
or publication status.

3 1Idea Assessment

In this work, we focus on quantitative evaluation
of ideas. Let D = {di,ds,...,d,} be a dataset
consisting of n scientific manuscripts (papers),
each representing a distinct scientific idea. The
direct scoring of an idea involves mapping each
manuscript d; to a quantitative score s; based on
a predefined criterion ¢ € C. The criterion set
C serves as the basis for the assessment and is
essential for guiding the evaluation process. It
can encompass various aspects of potential im-
pacts of an idea, such as novelty, correctness, ex-
citement, soundness, or alignment with current re-
search trends.



We first define a function A, : D — R such
that for any manuscript d; € D and criterion ¢ €
C, A.(d;) produces a scalar value s; € R which
quantifies the value of the idea d; with respect to c.
The quantitative evaluation of idea d; with respect
to criterion c¢ can be expressed as:

si = Ac(d), ey

where the function A, is the evaluator that assesses
the idea based on the text of the manuscript d; and
the specified criterion c.

In our work, we utilize the representations of
LLM to quantify the value of an idea. Let M be
an LLM that transforms textual data into a high-
dimensional representation space. We define an
encoding function Rep : D — R*™ such that for
any manuscript d; € D, there is a hidden represen-
tation Rep(d;) € R™, where [ is the number of
tokens in d; and m is the dimension of the repre-
sentation space in LLM M. Now, we revise the
evaluator function A, : R™™ — R that maps the
representation to a scalar value s;:

si = Ac(Rep(d;)). (2)

The evaluator, A, is designed to be flexible and
adaptable to different criteria and can be trained
using annotated data that provide ground truth mea-
sures of the ideas’ impact with respect to the chosen
criterion. To the best of our knowledge, we are the
first to quantify the value of an idea.

4 Dataset

To ensure that the idea evaluator is well-calibrated,
the benchmark idea dataset D should be representa-
tive of the scientific community and contain cutting-
edge knowledge in academia. To this end, we have
compiled a collection of 3,795 manuscripts that are
available in PDF format from the International Con-
ference on Learning Representations (ICLR) 2023.
For the extraction of full texts from these PDFs, we
employed GROBID (Lopez, 2009), a sophisticated
tool for parsing academic PDF documents.
Additionally, the metadata of these papers in-
cludes comprehensive evaluation criteria from of-
ficial reviewers, encompassing scores for overall
quality, correctness, technical and empirical nov-
elty, providing a rich ground truth for training and
validation. It is possible that an idea is interesting
but the paper score of a criterion such as correctness
is low because there are flaws in the experiments.

Therefore, in our work, we mainly investigate the
criterion overall quality and take it as the overall
score of an idea.

ICLR23-low-std  ICLR23-all
# paper 1901 3795
overall quality 5.52 + 0.61 5.41 + 1.06
correctness 3.09 £0.44 3.09 £ 0.49
technical novelty 2.59 +0.43 2.59 + 0.48
empirical novelty 2.56 £0.41 2.56 £0.47

Table 1: Statistics of benchmarks.

Considering the different consistencies of
human-rated data, which can have impacts on dif-
ferent evaluation models, we choose papers with
highly consistent human-rated scores from the
original dataset ICLR23-all and construct dataset
ICLR23-low-std, where the standard deviation (std)
of overall quality scores for each paper is relatively
lower. The statistics are listed in Table 1.

S Methodology

The purpose of our method is to train an evalua-
tor A, to score ideas, which consists of four steps:
consistency sorting, layer selection, token selection,
and evaluator training. Figure 1 shows the pipeline
of quantitative evaluation of ideas using the repre-
sentation of LLMs. It should be highlighted that
the steps of layer and token selection only exist in
training process, which are determined during the
inference process.

5.1 Consistency Sorting

In our scenario, we anticipate that models can learn
the rating standard from human-rated data. Specifi-
cally, the human-assigned scores for each paper in
the training set should exhibit a high level of consis-
tency; that is, the more uniform the scores for each
paper are (reflected by lower variance), the more
suitable the data is for model training. Therefore,
our method employs a consistency-based sorting
mechanism to construct the training and testing sets.
We commence by ordering the papers according
to the variance in human scores for a given crite-
rion c. Subsequently, based on a predetermined
threshold for training set partitioning, papers that
demonstrate high consistency (low variance) are
allocated to the training set, while the remainder
are designated for the testing set. This mechanism
facilitates a more straightforward learning process
for models to grasp the human rating standards.
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Figure 1: Pipeline of quantitative evaluation of ideas using the representations of LLMs.

Conversely, a high degree of variance in human-
assigned scores suggests that the paper (or idea) is
controversial, rendering the learning of standards
from such data as potentially futile.

5.2 Layer Selection

As claimed by Geva et al. (2021), lower layers
of LLMs tend to capture shallow data patterns,
while upper layers contain more semantic knowl-
edge. This hierarchical processing of information
within LLMs suggests that the utility of represen-
tations may vary across layers. Further to this,
RepE (Zou et al., 2023) explores the relationship
between layer depth and performance in utility es-
timation tasks, finding that middle-layer represen-
tations often yield the highest accuracy.

Inspired by these findings, our approach involves
identifying the optimal layer within an LLM that
provides the most effective representations for con-
structing an accurate evaluator. We hypothesize
that a specific intermediate layer may offer the ideal
balance between capturing fundamental linguistic
features and the nuanced semantic understanding
necessary for assessing the quality of scientific
ideas. Our experiments are thus tailored to pin-
point this layer by analyzing the performance of
given data across all layers. Then, we leverage its
representations to enhance the performance of our
idea evaluation framework.

5.3 Token Selection

Considering that a manuscript d; is composed
of [ sequential tokens, the semantic information
of these token representations varies significantly.
Due to the fact that most LLMs are auto-regressive
models, the last token aggregates the attention in-
formation of all previous tokens (Zou et al., 2023).
With a slight abuse of notation, by default, we use

the last token representation Rep(d;, —1) € R™ to
symbolize the entirety of the manuscript d;.

Nevertheless, when dealing with lengthy input
texts, such as full-text manuscript d;, there are
two issues with the default approach. For one
thing, memory optimization mechanism such as
vLLM (Kwon et al., 2023) should be adopted to
prevent GPU from running out of memory. For
another thing, the representation of the last token
may become diluted or overly abstracted owing to
the extensive accumulation of attention, potentially
leading to a loss of specific semantic details per-
tinent to the overall idea assessment. To address
these issues, we explore alternative strategies for
token selection that aim to maintain the richness
of semantic information while ensuring computa-
tional feasibility.

We consider a manuscript d; to be a composition
of distinct sections. We select the last token repre-
sentations from each section, and concatenate these
to form a composite representation. The approach
allows us to capture the essence of each section.
Formally, if a manuscript d; is divided into r sec-
tions, and Rep(d; ;, —1) represents the last token
of the j*" section, then the combined representation
Rep(d;) is given by:

Rep(d;) = €D Rep(di j, —1), 3)
j=1

where € denotes the concatenation operation, and
Rep(d;) is in R"™*™. Similarly, we can take into
account the full length of the manuscript and divide
it into equidistant segments based on a predefined
length to obtain Rep(d;). By experimenting with
these strategies, we aim to refine our approach to
token selection and optimize the representation of
manuscript for more accurate idea assessment.



5.4 Evaluator Training

In this part, we use the pre-processed Rep(d;) to
train an idea evaluator A.. Let s; be the average
score given by humans for manuscript d;, reflect-
ing its overall quality according to the criterion c.
The average score serves as the ground truth in
our training process. The evaluator A, is instanti-
ated as an Multilayer Perceptron (MLP) with one
hidden layer. The MLP is tasked with learning
the mapping from the representation space to the
scalar scores, which takes as input the representa-
tion Rep(d;) for each manuscript d; and outputs
a predicted score §;. To optimize all parameters
of the MLP, we employ the Mean Squared Error
(MSE) loss function:

L==) (3 —s) 4)
i=1

By minimizing £, the MLP learns to approxi-
mate the human-assigned scores as closely as pos-
sible. Through this training process, we aim to
calibrate the evaluator A, such that it can reliably
predict the value of new or unseen ideas based on

their textual representations.

6 Experiments

This section presents a series of experiments to ver-
ify the performance of LLMs in the task of quanti-
tative evaluation of ideas. Our main focus is on the
mean value of the criteria overall quality, which is
used as the training objective for the idea evaluator.
Through our released benchmark and the experi-
mental methodology, we answer the following four
research questions (RQs):

* RQ1: To what extent do the representations
from LLMs correlate with human judgements
in the evaluation of scientific ideas? Addition-
ally, is the LLM generation method suitable
for this task?

* RQ2: What is the impact of choosing different
layers and tokens for LLM representations on
the performance of idea evaluation?

* RQ3: How significantly does the consistency
of human judgements influence the perfor-
mance of LLM representations in this con-
text?

* RQ4: How does the size of training set impact
the correlation between A, evaluations and
human judgments in idea assessment?

6.1 Baselines

We categorize the baselines into three distinct
groups: LLM Generation, LLM Representation,
and Human Evaluation. The first category involves
LLMs generating numerical scores in response to
textual descriptions of ideas. This category in-
cludes models such as GPT-3.5-turbo, LL.aMa-2-
7b-base (Touvron et al., 2023), and Baichuan-2-7b-
base (Yang et al., 2023), which are fine-tuned using
techniques like LoRA (Hu et al., 2021) or with full
parameter updates. The prompts we choose are pre-
sented in Appendix A. In the LLM Representation
category, we evaluate models like BERT (Kenton
and Toutanova, 2019), SciBERT (Beltagy et al.,
2019), and RePE (Zou et al., 2023). For BERT and
SciBERT, we also apply our proposed framework
to quantify the value of ideas, with the primary
distinction being in the token selection strategy.
Specifically, we used the [C'LS] token as the repre-
sentation of an idea, and if the length of a section
exceeds 512 tokens, we will divide it into equidis-
tant subsections to apply the token selection strat-
egy for BERT-like models. Moreover, we also ana-
lyze the performance of human evaluators through
randomly selecting one score from the human-rated
list against other scores.

6.2 Training Settings and Evaluation Details

In our implementation, our method employs
LLaMA-2-7b-base as the foundational model. In
order to make our experiments more solid and val-
idate our framework is model-agnostic, we also
use Baichuan-2-7b-base as the base model, the re-
sults of which are provided in Appendix C. We use
the grid search to find appropriate sets of hyper-
parameters for baselines and our proposed method.
For the configuration of the MLP evaluator, we
choose a batch size of 32, a hidden layer dimension
of 1024, a learning rate of 0.001, a dropout rate of
0.2, and employ the Adam optimizer. We limit the
training to 20 epochs. More detailed settings are
documented in Appendix B. Each experiment is ex-
ecuted three times with random initializations, and
the mean results are reported. We use the results
of the training set for model selection. All experi-
ments are first conducted to evaluate the efficacy of
our framework using the abstracts of papers for
all research questions. We also explore the effects
of using the full texts of papers as the training
inputs for the token selection in RQ2.

To gauge the alignment of scores generated by



‘ ICLR23-low-std ‘ ICLR23-all
Method . . . .

| train: 5% train: 30% | train: 5% train: 30%

|  corr layer corr layer | corr layer corr layer

LLM Generation
LLaMA-2-Full-SFT N/A N/A N/A N/A N/A N/A N/A N/A
LLaMA-2-LoRA-SFT -0.0513 N/A 0.0820 N/A 0.0634 N/A 0.0692 N/A
Baichuan-2-LoRA-SFT 0.1391 N/A 0.2054 N/A 0.1413 N/A 0.1867 N/A
GPT-3.5-turbo 0.1290 N/A 0.1375 N/A 0.0874 N/A 0.0719 N/A
LLM Representation
BERT 0.1986 -3 0.2515 -4 0.1907 -1 0.2326 -1
SciBERT 0.2677 -3 0.3314 -3 0.2447 -2 0.2584 -3
RePE-with-prompt 0.0820 -31 0.0993 -31 0.0738 -21 0.0880 -31
RePE-no-prompt 0.1020 -1 0.0605 -31 0.0635 -2 0.0508 -2
Ours 0.3441 -20 0.3880 -9 0.2783 -1 0.3366 -4
Human Evaluation

Human ‘ 0.8175 N/A 0.7648 N/A ‘ 0.4174 N/A 0.3290 N/A

Table 2: Spearman correlations with humans of different methods on ICLR23 datasets. N/A in corr column means
its corresponding pvalue > 0.05. There is no need for LLM Generation baselines to select layers. The human
performance is evaluated by randomly selecting one score from the human-rated list against other reviews.

various methods with human-assigned scores, we
report a widely-used metric called Spearman Cor-
relation (Spearman, 1961). The correlation corr
with human is defined as:

corr = p([$1,52, .-y Snl, [51, 82, -, 8n)),  (5)

where p is the Spearman Correlation function, s;
is the average score given by humans, and 3; is the
A, predicted score for d; in the testing set. Since
Spearman correlation is invariant under affine trans-
formations, we also provide score distribution and
the absolute error between human-rated scores and
our LLM representation scores in Section 6.4 and
Appendix E.

6.3 Comparative Experiments (RQ1)

According to the principle of consistency sorting
in Section 5.1, we construct training sets using the
top 5% and top 30% ratios from ICLR23-low-std
and ICLR23-all datasets respectively to preliminar-
ily exclude the influence of dataset proportion on
the conclusion, and take the rest of each dataset
as the testing set. Table 2 shows the Spearman
correlations with humans of different methods on
these two datasets. We also provide indexes for the
layers with the highest correlation.

It can be observed that our proposed method
achieves the best performance in all settings, where
the performance on ICLR23-all is at most 30%
higher than the second best method SciBERT.
As expected, the correlation of ICLR23-low-std

among human scores is close to 1, which is at-
tributed to our data partitioning strategy. It should
be noted that the correlation of our method on
ICLR23-all dataset exceed the result of humans,
when the training ratio is 30%, proving the feasi-
bility of our method and its potential ability to be
applied to real-world review scenarios. Moreover,
in terms of different layers’ performance, the mid-
dle and back layers of most models may achieve
better results.

For the LLM Generation baselines, the fine-
tuned LLaMA-2 is worse than Baichuan-2, espe-
cially for the LLaMA-2-Full-SFT, fine-tuned with
full parameters, lacking the capability of effective
evaluation since its pvalue > 0.05. Due to the in-
ability of GPT-3.5 being fine-tuned, we adopt the
zero-shot setting, which is only for sketchy refer-
ence. We also try k-shot setting for GPT-3.5, but
it only generates the most frequent scores from
the given examples. Overall, the LLM Generation
methods are not competent for the quantitative eval-
uation of ideas. By analyzing the generated results,
we believe there are two possible reasons. One is
that the amount of training data is relatively small,
and models are prone to overfitting. Apart from
that, LLM generation is not sensitive to digital num-
bers, and the semantic knowledge is hidden in its
representations, which should be guided through
appropriate means.

Furthermore, our experiment studies the degree
of consistency between the predicted score and that



assigned by the human reviewer whose score most
closely match the predicted one. As depicted in
Table 3, the ICLR23-all dataset exhibits a higher
consistency with the closest human-rated scores
compared to the ICLR23-low-std dataset. This
suggests that, despite the higher variance in hu-
man scores of the ICLR23-all dataset, our proposed
method is adept at mirroring the evaluation of the
most similar human reviewer.

Training Ratio
D Meth
ataset ethod 59, 30%
SGiBERT 04299  0.5093
ICLR23-low-
CLR23-low=std ) 1rs 0.5469  0.5605
SGiBERT 06381 05112
ICLR23-all
a Ours 0.6462  0.5617

Table 3: Spearman correlations with the closest human-
rated score.

6.4 Score Distribution (RQ1)

We also examine the difference (absolute error) be-
tween human-rated scores and the predicted scores
on ICLR23-low-std dataset. The results are shown
in the pie chart of Figure 2. We can see that 86.8 %
paper scores generated by our method are close
to the human-rated scores, where the differences
between them are lower than 2. Additionally, the
distributions are shown in the right part of Figure 2.
The distribution of scores predicted by our idea
evaluator is normal distribution as expected while
the human reviewers tend to give more higher or
lower scores. More analysis can be found in Ap-
pendix E.

1-2 300

Ours
Human

>2 250

35.9%

13.2% 200

Scores

Figure 2: The difference (absolute error) between
human-rated scores and the predicted scores (left sub-
figure). The distributions of human-rated scores and the
predicted scores (right subfigure).

6.5 Influence of Layer Selection (RQ2)

We analyzed the representational efficacy across
various layers of LLM and SciBERT. As illustrated
in Figure 3, it is evident that for both LLM and

SciBERT, the representations from the middle to
later layers outperform those from other layers. Ob-
viously, the very last layers do not typically yield
the best performance. This may be attributed to
the specific semantic information encapsulated in
different layers. The last layer is inherently born
to facilitate generation tasks, rather than tasks that
require more discriminative capabilities, like clas-
sification or regression.

—e— Train:5%, ICLR23-low-std
—¥— Train:5%, ICLR23-all

—e— Train:30%, ICLR23-low-std
Train:30%, ICLR23-all
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Figure 3: Spearman correlations of different layers in
LLM and SciBERT.

Given the nuanced role of layer-specific repre-
sentations in the context of assessing the merit of
scientific ideas, we propose a layer selection of
representations for the task at hand. Specifically,
we advocate for the utilization of representations
from the layers situated in the last one-third of the
model’s depth. Such choice is informed by the em-
pirical evidence suggesting that these layers strike
a balance between retaining rich semantic content
and providing the necessary abstraction for discrim-
inative tasks.

6.6 Influence of Token Selection (RQ2)

In this part, we use the ICLR23-all dataset to inves-
tigate the influence of token selection. In terms of
the paper abstract inputs, we first test the correla-
tion results of using the last token. Subsequently,
we expand our scope to include both the middle
and last tokens (middle + last token) of the input
text. The findings, as presented in Table 4, indicate
that solely relying on the last token yields superior
results compared to combining it with the middle
token. The latter approach appears to introduce a
surplus of redundant information that may hinder
the downstream performance of evaluator.

When dealing with the full text of papers, we
implement two token selection strategies outlined
in Section 5.3: the amalgamation of last tokens
from equidistant segments and the aggregation of
last tokens from distinct paper sections. The ex-
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Figure 4: Spearman correlations varying with layers under different training ratios on ICLR23 datasets.

. Training Ratio

Token Selection Strategy 59, 30%
Abstract

last token 0.2783 0.3366
middle + last token 0.2162 0.2772
Full-text

segment tokens 0.1306 0.2597
section tokens 0.3258 0.3821

Table 4: Spearman correlations of different token selec-
tion strategies.

perimental outcomes suggest that merging last to-
kens from all segments does not effectively capture
the necessary semantic content. This is largely
due to the fact that many segments are incomplete
sentences, arbitrarily truncated from the original
texts. On the other hand, the section-based strategy
successfully compiles comprehensive information
from each complete section. Overall, we recom-
mend using the representations of the last tokens or
section-based strategy to train the idea evaluator.

6.7 Analysis of Training Set (RQ3 & RQ4)

Figure 4 shows the Spearman correlations vary-
ing with layers under different training ratios on
ICLR23 datasets. Due to space limitations, we
only present the results of odd numbered layers.
See Appendix C for more results. The manuscript
papers are sorted in ascending order of variance
in their corresponding human-rated scores to parti-
tion datasets according to the consistency sorting
in Section 5.1.

For ICLR23-low-std dataset, the human-rated
scores in the dataset are highly consistent, and it
is observed that the Spearman correlation tends to
improve in tandem with increases in the training
set size. Notably, when the proportion of data used
for training surpasses the 50% threshold, the cor-
relation between the scores predicted by our idea

evaluator and those assigned by human experts be-
comes moderate, exceeding 0.4. Furthermore, our
analysis reveals that even a relatively small subset
of the data (with a training ratio of 5%) is capable
of yielding positive performance.

As to ICLR23-all dataset, the outcomes indi-
cate that an increase in the volume of training data
does not necessarily correspond to a higher align-
ment with human evaluations in the testing set.
The phenomenon can be attributed to the dimin-
ishing consistency of human scores as the dataset
expands; that is, the variance in human-assigned
scores grows with the size of the dataset. It be-
comes evident that while a larger training set gener-
ally provides more information, it also introduces
a greater diversity of human judgment, which may
not always be conducive to improving the ability
of evaluator to mimic human scoring behavior.

7 Conclusion and Future Work

The study focuses on the quantitative evaluation of
scientific ideas. We have reviewed existing method-
ologies for paper and idea evaluation and have bro-
ken new ground by focusing on the quantitative
aspect of idea evaluation. Specifically, we first in-
troduce a comprehensive benchmark dataset, acces-
sible to the research community. Then, we develop
a new framework that leverages the token repre-
sentations of specific layers in LLM to quantify
the value of ideas. Through rigorous experiments,
we demonstrate that LLM representations correlate
more strongly with human judgments compared to
generative text outputs. Additionally, in our bench-
mark, the predicted scores of more than 80% papers
are close to human-rated scores. In the future, we
will broaden the scope of our research to encom-
pass diverse disciplines with balanced data ratios,
including the exact and social sciences, to further
validate and refine our evaluative framework.



Limitations

Discipline

The scope of our research is confined to the field of
computer science, which may restrict the broader
applicability of our framework. The generalization
performance of our model across different scien-
tific disciplines remains an open question. Future
research endeavors should aim to adapt and vali-

date the framework in diverse fields, ranging from
the exact sciences to the humanities.

Criterion

Our experiments have primarily focused on the
overall quality score of manuscript papers, which
is a composite yet somewhat abstract. Important as-
pects such as the correctness of the presented work
and its novelty are equally critical in determining
a paper’s impact and significance. In forthcoming
studies, we plan to dissect these individual crite-
ria, developing a more granular approach to idea
evaluation.

Model Scale

The impact of model scale on performance is an
aspect that has not been extensively explored in
our research. The performance of LLMs is often
closely tied to the number of parameters they con-
tain; thus, models with different sizes may yield dif-
ferent results in the task of idea evaluation. Larger
models may have the capacity to encode more nu-
anced representations of text, potentially leading to
more accurate assessments of scientific ideas. Con-
versely, they may also introduce complexities that
do not necessarily translate to better performance,
such as overfitting or increased computational costs.
The trade-offs between model size, accuracy, and
efficiency are still an area ripe for exploration.

Ethics Statement

The dataset used in our study consists of publicly
available academic papers. We have ensured that
all data was collected and handled in a manner that
respects the privacy and intellectual property rights
of the authors. No personal data was used, and all
information is attributed to its original source.

We are committed to transparency in our re-
search process. To this end, we have made our
benchmark dataset publicly available and have pro-
vided detailed descriptions of our methodologies
and experimental setups to facilitate reproducibility
by other researchers.

We recognize the importance of the human el-
ement in the evaluation of scientific ideas. Our
framework is designed to assist, rather than replace,
human judgment. We believe that the most effec-
tive use of our model is as a tool to support and
enhance the work of human reviewers, not to sup-
plant them.
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A Prompts for LLM Generation

For the baselines involving LLM generation, we
design a prompt to elicit the evaluation of a
manuscript paper’s overall quality based on its
abstract. The prompt, which demonstrated opti-
mal performance when applied to GPT-3.5-turbo,
is structured as follows:

Evaluate the quality (overall quality score) of
the following manuscript paper based on its
abstract.

title: {title}

abstract: {abstract}

The score should be between 1 and 10,
with 1 being the lowest and 10 being the

highest. Just output your score, no more other
words.

It is important to note that while this prompt is
most effective for GPT-3.5-turbo, its influence on
the performance of other fine-tuned models, such
as LLaMA-2 and Baichuan-2, is less pronounced.
These models have been trained to adapt to the
distribution of scores in the training set, which
mitigates the impact of the prompt’s phrasing on
their generative capabilities.

B Hyper Parameters

We first declare that the reason for using LLaMA-2
instead of LLaMA-3 or other updated models is
because we are concerned that new models may be
pretrained using papers from ICLR23, resulting in
a data leakage problem.

Parameter Value
learning rate 2e-5
epoch 3
weight decay 0
warmup ratio 0.03
bf16 True

Table 5: Hyper-parameters of LLaMA-2-Full-SFT.

We detail the hyper-parameters for the LLM
generation baseline, LLaMA-2-Full-SFT, in Ta-
ble 5. Additionally, the hyper-parameters for mod-
els trained with the LoRA technique, specifically
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LLaMA-2-LoRA-SFT and Baichuan-2-LoRA-SFT,
are outlined in Table 6.

Parameter LLaMA-2 Baichuan-2
learning rate 2e-5 2e-5

epoch 10 10

weight decay 0 0

warmup ratio 0 0

bf16 True True

LoRA modules q_proj, v_proj W_pack
LoRAr 8 16

LoRA alpha 16 32

LoRA dropout  0.05 0.1

Table 6: Hyper-parameters of LLaMA-2-LoRA-SFT
and Baichuan-2-LoRA-SFT.

For the representation-based evaluation method
RePE (Zou et al., 2023), we employ Principal Com-
ponent Analysis (PCA) as the embedding evalua-
tion mechanism, in line with the recommendations
provided in the original paper.

C Expanded Results

Building upon the experimental setup detailed in
Section 6.2, we examine the performance across
all layers of the foundational model, LLaMA-2-
7b-base. The detailed Spearman correlation results,
which consider the full spectrum of layers under
various training ratios, are illustrated in Figure 5
for the ICLR23-low-std dataset and in Figure 6 for
the ICLR23-all dataset.

In our pursuit to validate the robustness of our
findings, we conducted parallel experiments using
Baichuan-2-7b-base as an alternative base model.
The corresponding Spearman correlation results
are depicted in Figure 7 and Figure 8. The patterns
observed with Baichuan-2-7b-base are found to be
in harmony with those from the LLaMA-2-7b-base
model, lending credence to the consistency and
reliability of our conclusions.

The experiments across different models not
only reinforces the validity of our initial observa-
tions but also suggests that the underlying phe-
nomena we have identified are model-agnostic to a
certain extent. Such findings are indicative of the
potential generalizability of our framework, hinting
at its applicability across a variety of LLMs. Fu-
ture work may delve deeper into the comparative
analysis of additional models, further expanding
our understanding of the relationship between the
base model and the efficacy of idea evaluation.



D Case Study

We list four cases to show the performance and
drawbacks of our method in Table 7. All these
cases are selected from the domain of reinforce-
ment learning. The first two cases are correctly
predicted, and the human-rated scores and LLM
representation scores are very close. As to the third
case, although our method gives an overestimated
score, the final score is not enough to make it ac-
ceptable. The fourth case is underestimated. One
possible reason is that in such cases, our method
may lack more contextual information to make a de-
cision, such as tables and figures in papers, which
is also something we need to consider in the future.

E Domain Analysis

To see how our method rates ideas on popular top-
ics or less trendy domains, we analyze the score
distributions and differences between human-rated
scores and LLM representation scores in 14 do-
mains divided by ICLR-2023 program committee.
The results are shown in Table 8. On the whole, the
differences in mean scores of most domains are less
than 10%. Howeyver, there are three domains (7he-
ory, Neuroscience and Cognitive Science, Infras-
tructure) where the mean values of human-rated
scores are relatively higher than average, and the
differences exceed 10%. We believe these three do-
mains are distinguished from other domains since
others frequently focus on Learning and Optimiza-
tion, which makes our evaluator overfitting on these
data. Therefore, it is necessary to train a domain-
specific evaluator, while also maintaining a balance
in the content of the dataset. We will address these
issues in our future work.

F Frequently Asked Questions

Numerical Processing Limitations in LLMs

A critical issue faced by LLMs is their inherent dif-
ficulty in processing numerical data, such as digits.
This limitation stems from the finite-sized vocabu-
lary and tokenization strategies used by these mod-
els, affecting both encoder and decoder architec-
tures. This impacts the ability to perform tasks that
require precise numerical understanding. There-
fore, we leverage the deep, contextual representa-
tions within LLMs to quantify the value of scien-
tific ideas. These representations encapsulate rich
semantic and contextual information that extends
beyond the superficial token sequences.
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Our approach diverges significantly from the
strategy of merely adding task-specific heads to the
model. Instead, our approach involves a strategic
selection of layers and tokens. By leveraging the
hierarchical processing capabilities of LLMs, we
can harness the most relevant and informative fea-
tures for idea evaluation. This approach contrasts
with using the entire weight set of the LLM (adding
head to LLM), which might not be as efficient or
effective for capturing the specific attributes neces-
sary for assessing the value of scientific ideas.

Framework

The current design of our framework shows con-
siderable promise in the automated assessment of
scientific ideas, yet there are avenues for further
enhancing the evaluator’s performance. The quan-
titative assessment of scientific ideas is inherently
complex, involving a blend of objective metrics and
subjective judgments. Our method, leveraging the
representations of large language models, demon-
strates the potential to approximate human judg-
ment to a significant degree, which will provide
human reviewers with an objective score, rather
than replacing them to give subjective comments
from multiple perspectives.



Title

Abstract

Scores

SMART: Self-supervised Multi-task pretrAining with contRol Transformers
Self-supervised pretraining has been extensively studied in language and vision domains,
where a unified model can be easily adapted to various downstream tasks by

pretraining representations without explicit labels. When it comes to sequential
decision-making tasks, however, it is difficult to properly design such a pretraining
approach that can cope with both high-dimensional perceptual information and the
complexity of sequential control over long interaction horizons ...

Human-rated Score: 7.50 LLM Representation Score: 7.22

Title

Abstract

Scores

Ensemble Homomorphic Encrypted Data Classification

Homomorphic encryption (HE) is encryption that permits users to perform computations
on encrypted data without first decrypting it. HE can be used for privacy-preserving
outsourced computation and analysis, allowing data to be encrypted and outsourced to
commercial cloud environments for processing while encrypted or sensitive data.

HE enables new services by removing privacy barriers inhibiting data sharing or
increasing the security of existing services ...

Human-rated Score: 1.50 LLM Representation Score: 1.61

Title

Abstract

Scores

Comparative Analysis between Vision Transformers and CNNs from Neuroscience
Neuroscience has provide many inspirations for the development of artificial intelligence,
especially for neural networks for computer vision tasks. Recent research on animals’
visual systems builds the connection between neural sparsity and animals’ levels of
evolution, based on which comparisons between two most influential vision architecture,
Transformer and CNN, are carried out. In particular, the sparsity of attentions in
Transformers is comprehensively studied, and previous knowledge on sparsity of ...

Human-rated Score: 2.50 LLM Representation Score: 4.80 (Over Estimated)

Title

Abstract

Scores

Neural Causal Models for Counterfactual Identification and Estimation

Evaluating hypothetical statements about how the world would be had a different course
of action been taken is arguably one key capability expected from modern Al systems.
Counterfactual reasoning underpins discussions in fairness, the determination of blame
and responsibility, credit assignment, and regret. In this paper, we study the evaluation
of counterfactual statements through neural models ...

Human-rated Score: 7.33 LLM Representation Score: 5.21 (Under Estimated)

Table 7: Case study of the comparision between human-rated scores and LLM representation scores
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Figure 5: Spearman correlations varying with layers under different training ratios of LLaMA-2-7b-base on
ICLR23-low-std dataset.
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Figure 6: Spearman correlations varying with layers under different training ratios of LLaMA-2-7b-base on
ICLR23-all dataset.
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Figure 7: Spearman correlations varying with layers under different training ratios of Baichuan-2-7b-base on
ICLR23-low-std dataset.
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ICLR23-all dataset.
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