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Abstract

In the ever-expanding landscape of academic001
research, the proliferation of ideas presents a002
significant challenge for researchers: discern-003
ing valuable ideas from the less impactful ones.004
The ability to efficiently evaluate the potential005
of these ideas is crucial for the advancement006
of science and paper review. In this work, we007
focus on idea assessment, which aims to lever-008
age the knowledge of large language models009
to assess the merit of scientific ideas. First,010
we investigate existing text evaluation research011
and define the problem of quantitative evalua-012
tion of ideas. Second, we curate and release a013
benchmark dataset from nearly four thousand014
manuscript papers with full texts, meticulously015
designed to train and evaluate the performance016
of different approaches to this task. Third, we017
establish a framework for quantifying the value018
of ideas by employing representations in a spe-019
cific layer of large language models. Experi-020
mental results show that the scores predicted021
by our method are relatively consistent with022
those of humans. Our findings suggest that the023
representations of large language models hold024
more potential in quantifying the value of ideas025
than their generative outputs, demonstrating a026
promising avenue for automating the idea as-027
sessment process.028

1 Introduction029

The rapid pace of scientific research in various030

disciplines has given rise to an overwhelming031

number of academic papers (Tabah, 1999; Born-032

mann and Mutz, 2015; Xu et al., 2023). Typically,033

ideas are commonly conveyed through these pa-034

pers, which reviewers must carefully scrutinize to035

grasp the ideas authors present. However, amidst036

the vast volume of paper submissions, the review037

process becomes slow, labor-intensive, and less pre-038

cise (Checco et al., 2021), making it a challenge039

to identify valuable ideas. Fortunately, with the040

advent of large language models (LLMs), we are041

presented with an unprecedented opportunity to 042

revolutionize how we assess the merit of scientific 043

ideas, and this work explores their use as a knowl- 044

edge tool for such evaluation. In order to make idea 045

more concrete, we take unpublished manuscripts 046

or the latest papers as the research object. 047

While the generative capabilities of LLMs have 048

been widely recognized, their potential as idea (or 049

paper) evaluative instruments has remained rela- 050

tively underexplored. Recent studies (Yuan et al., 051

2022; Liang et al., 2023; Liu and Shah, 2023; Agar- 052

wal et al., 2024) have begun to harness LLMs for 053

the automatic generation of paper reviews, aiming 054

for outputs that are both informative and emulate 055

human feedback. These efforts primarily utilize 056

the text generation capability of LLM, which are 057

highly dependent on the scale of model parame- 058

ters. For instance, Liu and Shah (2023) proves that 059

GPT-4 surpasses other open-source LLMs, such 060

as LLaMA (Touvron et al., 2023), in generating 061

reviews. Meanwhile, crafting intricate prompts 062

containing specific commands and inquiries is es- 063

sential for LLMs to produce meaningful reviews. 064

Nonetheless, LLM-generated reviews can still re- 065

flect models’ subjective biases and occasionally 066

produce hallucinated contents (Zhang et al., 2023; 067

Manakul et al., 2023). There is currently no re- 068

search that quantitatively evaluate ideas in an ob- 069

jective way. 070

According to Geva et al. (2021); Zou et al. 071

(2023), the representations of different layers in 072

LLM contain different semantic information, and in 073

some tasks, the performance of the last layer is not 074

the best. Based on this point, we suppose that the 075

representations of LLMs encapsulate a detailed and 076

nuanced comprehension of text, which can be lever- 077

aged to construct a systematic and objective frame- 078

work for the assessment of ideas. Our research thus 079

focuses on the quantitative evaluation of ideas 080

through LLMs, an approach we argue is more ob- 081

jective than generative techniques. It is worth not- 082
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ing that LLMs’ generative method is not inherently083

adept at processing numerical data (digits), which084

is also why we turn to their representations as a085

means to quantify the value of ideas. We delve into086

the latent knowledge embedded within the represen-087

tations of LLMs for this purpose. Specifically, we088

first define the problem of quantitative idea evalua-089

tion, and construct a benchmark dataset comprised090

of nearly 4k scientific manuscripts with full texts091

in the discipline of computer science. This dataset092

serves as the bedrock for training and testing vari-093

ous LLM-based approaches to idea assessment. In094

the subsequent phase of our research, we develop095

a framework for quantifying the value of ideas.096

This framework leverages the representations pro-097

duced by LLMs, which encode semantic features098

of the text in a high-dimensional space. Finally, by099

training a downstream evaluator using these rep-100

resentations, our framework can identify patterns101

and signals within these representations that align102

with the value of scientific ideas as determined by103

the distribution of expert consensus.104

We perform extensive experiments on our bench-105

mark dataset. The results reveal that the representa-106

tions generated by LLMs are inherently indicative107

of the potential value of scientific ideas, especially108

using the representations in the middle and rear109

layers, which demonstrate a high degree of con-110

sistency with human judgements. Meanwhile, we111

also found that high consistency can be achieved112

with only a small amount of data, thanks to the113

pretrained knowledge in LLMs. The contributions114

of our paper are summarized as follows:115

• We conduct a thorough investigation of cur-116

rent methods for paper (idea) assessment and117

pioneer the study of quantitative evaluation of118

scientific ideas.119

• We meticulously curate a new benchmark120

dataset, complete with human-assigned scores121

on overall quality, novelty, and correctness.122

We are making it publicly available. This123

dataset is comprised of the full texts of 3,795124

papers in PDF format.125

• We propose a new framework that quantifies126

the value of ideas by utilizing the deep repre-127

sentations produced by LLMs.128

• We conduct extensive experiments to verify129

the performance of our method. The results130

indicate that utilizing the representations from131

LLMs aligns more closely with human judg- 132

ments than using generative textual outputs of 133

LLMs when assessing the quality of ideas. 134

2 Related Work 135

Yuan et al. (2022) have explored the use of various 136

NLP techniques to produce decisive and compre- 137

hensive reviews of academic papers from multiple 138

perspectives. The work of ReviewerGPT (Liu and 139

Shah, 2023) studies the application of LLMs as 140

review assistants, focusing on tasks such as error 141

identification, checklist verification, and compara- 142

tive paper analysis. Another innovative approach 143

by researchers (Liang et al., 2023) involves an auto- 144

mated system that employs GPT-4 to create review 145

comments and suggestions for revisions, which 146

are then benchmarked against feedback from hu- 147

man reviewers. What’s more, LitLLM (Agarwal 148

et al., 2024) equips Retrieval Augmented Gener- 149

ation (RAG) module to address the hallucination 150

problem in review generation. 151

In addition to the methods mentioned above, 152

some researches rely on external data to assess 153

the quality of a paper. For instance, Thelwall 154

et al. (2023) have developed a framework that pre- 155

dicts article quality scores using a range of biblio- 156

metric and metadata indicators, including citation 157

counts, journal impact factors, and institutional 158

rankings. Similarly, KQI (Wang et al., 2023) lever- 159

ages the structure of citation networks to quantify 160

the knowledge contribution of a paper. This kind of 161

approaches, however, pertains to post-publication 162

evaluation. Unlike our approach, which is based 163

solely on the text of the paper itself, it does not 164

require information about the paper’s acceptance 165

or publication status. 166

3 Idea Assessment 167

In this work, we focus on quantitative evaluation 168

of ideas. Let D = {d1, d2, ..., dn} be a dataset 169

consisting of n scientific manuscripts (papers), 170

each representing a distinct scientific idea. The 171

direct scoring of an idea involves mapping each 172

manuscript di to a quantitative score si based on 173

a predefined criterion c ∈ C. The criterion set 174

C serves as the basis for the assessment and is 175

essential for guiding the evaluation process. It 176

can encompass various aspects of potential im- 177

pacts of an idea, such as novelty, correctness, ex- 178

citement, soundness, or alignment with current re- 179

search trends. 180
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We first define a function Ac : D → R such181

that for any manuscript di ∈ D and criterion c ∈182

C, Ac(di) produces a scalar value si ∈ R which183

quantifies the value of the idea di with respect to c.184

The quantitative evaluation of idea di with respect185

to criterion c can be expressed as:186

si = Ac(di), (1)187

where the function Ac is the evaluator that assesses188

the idea based on the text of the manuscript di and189

the specified criterion c.190

In our work, we utilize the representations of191

LLM to quantify the value of an idea. Let M be192

an LLM that transforms textual data into a high-193

dimensional representation space. We define an194

encoding function Rep : D → Rl×m such that for195

any manuscript di ∈ D, there is a hidden represen-196

tation Rep(di) ∈ Rl×m, where l is the number of197

tokens in di and m is the dimension of the repre-198

sentation space in LLM M . Now, we revise the199

evaluator function Ac : Rl×m → R that maps the200

representation to a scalar value si:201

si = Ac(Rep(di)). (2)202

The evaluator, Ac, is designed to be flexible and203

adaptable to different criteria and can be trained204

using annotated data that provide ground truth mea-205

sures of the ideas’ impact with respect to the chosen206

criterion. To the best of our knowledge, we are the207

first to quantify the value of an idea.208

4 Dataset209

To ensure that the idea evaluator is well-calibrated,210

the benchmark idea dataset D should be representa-211

tive of the scientific community and contain cutting-212

edge knowledge in academia. To this end, we have213

compiled a collection of 3,795 manuscripts that are214

available in PDF format from the International Con-215

ference on Learning Representations (ICLR) 2023.216

For the extraction of full texts from these PDFs, we217

employed GROBID (Lopez, 2009), a sophisticated218

tool for parsing academic PDF documents.219

Additionally, the metadata of these papers in-220

cludes comprehensive evaluation criteria from of-221

ficial reviewers, encompassing scores for overall222

quality, correctness, technical and empirical nov-223

elty, providing a rich ground truth for training and224

validation. It is possible that an idea is interesting225

but the paper score of a criterion such as correctness226

is low because there are flaws in the experiments.227

Therefore, in our work, we mainly investigate the 228

criterion overall quality and take it as the overall 229

score of an idea. 230

ICLR23-low-std ICLR23-all
# paper 1901 3795
overall quality 5.52 ± 0.61 5.41 ± 1.06
correctness 3.09 ± 0.44 3.09 ± 0.49
technical novelty 2.59 ± 0.43 2.59 ± 0.48
empirical novelty 2.56 ± 0.41 2.56 ± 0.47

Table 1: Statistics of benchmarks.

Considering the different consistencies of 231

human-rated data, which can have impacts on dif- 232

ferent evaluation models, we choose papers with 233

highly consistent human-rated scores from the 234

original dataset ICLR23-all and construct dataset 235

ICLR23-low-std, where the standard deviation (std) 236

of overall quality scores for each paper is relatively 237

lower. The statistics are listed in Table 1. 238

5 Methodology 239

The purpose of our method is to train an evalua- 240

tor Ac to score ideas, which consists of four steps: 241

consistency sorting, layer selection, token selection, 242

and evaluator training. Figure 1 shows the pipeline 243

of quantitative evaluation of ideas using the repre- 244

sentation of LLMs. It should be highlighted that 245

the steps of layer and token selection only exist in 246

training process, which are determined during the 247

inference process. 248

5.1 Consistency Sorting 249

In our scenario, we anticipate that models can learn 250

the rating standard from human-rated data. Specifi- 251

cally, the human-assigned scores for each paper in 252

the training set should exhibit a high level of consis- 253

tency; that is, the more uniform the scores for each 254

paper are (reflected by lower variance), the more 255

suitable the data is for model training. Therefore, 256

our method employs a consistency-based sorting 257

mechanism to construct the training and testing sets. 258

We commence by ordering the papers according 259

to the variance in human scores for a given crite- 260

rion c. Subsequently, based on a predetermined 261

threshold for training set partitioning, papers that 262

demonstrate high consistency (low variance) are 263

allocated to the training set, while the remainder 264

are designated for the testing set. This mechanism 265

facilitates a more straightforward learning process 266

for models to grasp the human rating standards. 267
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Consistency Sorting
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Machine Score: 8.2
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Decoder

Decoder
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Layer Selection
Texts

Figure 1: Pipeline of quantitative evaluation of ideas using the representations of LLMs.

Conversely, a high degree of variance in human-268

assigned scores suggests that the paper (or idea) is269

controversial, rendering the learning of standards270

from such data as potentially futile.271

5.2 Layer Selection272

As claimed by Geva et al. (2021), lower layers273

of LLMs tend to capture shallow data patterns,274

while upper layers contain more semantic knowl-275

edge. This hierarchical processing of information276

within LLMs suggests that the utility of represen-277

tations may vary across layers. Further to this,278

RepE (Zou et al., 2023) explores the relationship279

between layer depth and performance in utility es-280

timation tasks, finding that middle-layer represen-281

tations often yield the highest accuracy.282

Inspired by these findings, our approach involves283

identifying the optimal layer within an LLM that284

provides the most effective representations for con-285

structing an accurate evaluator. We hypothesize286

that a specific intermediate layer may offer the ideal287

balance between capturing fundamental linguistic288

features and the nuanced semantic understanding289

necessary for assessing the quality of scientific290

ideas. Our experiments are thus tailored to pin-291

point this layer by analyzing the performance of292

given data across all layers. Then, we leverage its293

representations to enhance the performance of our294

idea evaluation framework.295

5.3 Token Selection296

Considering that a manuscript di is composed297

of l sequential tokens, the semantic information298

of these token representations varies significantly.299

Due to the fact that most LLMs are auto-regressive300

models, the last token aggregates the attention in-301

formation of all previous tokens (Zou et al., 2023).302

With a slight abuse of notation, by default, we use303

the last token representation Rep(di,−1) ∈ Rm to 304

symbolize the entirety of the manuscript di. 305

Nevertheless, when dealing with lengthy input 306

texts, such as full-text manuscript di, there are 307

two issues with the default approach. For one 308

thing, memory optimization mechanism such as 309

vLLM (Kwon et al., 2023) should be adopted to 310

prevent GPU from running out of memory. For 311

another thing, the representation of the last token 312

may become diluted or overly abstracted owing to 313

the extensive accumulation of attention, potentially 314

leading to a loss of specific semantic details per- 315

tinent to the overall idea assessment. To address 316

these issues, we explore alternative strategies for 317

token selection that aim to maintain the richness 318

of semantic information while ensuring computa- 319

tional feasibility. 320

We consider a manuscript di to be a composition 321

of distinct sections. We select the last token repre- 322

sentations from each section, and concatenate these 323

to form a composite representation. The approach 324

allows us to capture the essence of each section. 325

Formally, if a manuscript di is divided into r sec- 326

tions, and Rep(di,j ,−1) represents the last token 327

of the jth section, then the combined representation 328

Rep(di) is given by: 329

Rep(di) =

r⊕
j=1

Rep(di,j ,−1), (3) 330

where
⊕

denotes the concatenation operation, and 331

Rep(di) is in Rr×m. Similarly, we can take into 332

account the full length of the manuscript and divide 333

it into equidistant segments based on a predefined 334

length to obtain Rep(di). By experimenting with 335

these strategies, we aim to refine our approach to 336

token selection and optimize the representation of 337

manuscript for more accurate idea assessment. 338
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5.4 Evaluator Training339

In this part, we use the pre-processed Rep(di) to340

train an idea evaluator Ac. Let si be the average341

score given by humans for manuscript di, reflect-342

ing its overall quality according to the criterion c.343

The average score serves as the ground truth in344

our training process. The evaluator Ac is instanti-345

ated as an Multilayer Perceptron (MLP) with one346

hidden layer. The MLP is tasked with learning347

the mapping from the representation space to the348

scalar scores, which takes as input the representa-349

tion Rep(di) for each manuscript di and outputs350

a predicted score ŝi. To optimize all parameters351

of the MLP, we employ the Mean Squared Error352

(MSE) loss function:353

L =
1

n

n∑
i=1

(ŝi − si)
2. (4)354

By minimizing L, the MLP learns to approxi-355

mate the human-assigned scores as closely as pos-356

sible. Through this training process, we aim to357

calibrate the evaluator Ac such that it can reliably358

predict the value of new or unseen ideas based on359

their textual representations.360

6 Experiments361

This section presents a series of experiments to ver-362

ify the performance of LLMs in the task of quanti-363

tative evaluation of ideas. Our main focus is on the364

mean value of the criteria overall quality, which is365

used as the training objective for the idea evaluator.366

Through our released benchmark and the experi-367

mental methodology, we answer the following four368

research questions (RQs):369

• RQ1: To what extent do the representations370

from LLMs correlate with human judgements371

in the evaluation of scientific ideas? Addition-372

ally, is the LLM generation method suitable373

for this task?374

• RQ2: What is the impact of choosing different375

layers and tokens for LLM representations on376

the performance of idea evaluation?377

• RQ3: How significantly does the consistency378

of human judgements influence the perfor-379

mance of LLM representations in this con-380

text?381

• RQ4: How does the size of training set impact382

the correlation between Ac evaluations and383

human judgments in idea assessment?384

6.1 Baselines 385

We categorize the baselines into three distinct 386

groups: LLM Generation, LLM Representation, 387

and Human Evaluation. The first category involves 388

LLMs generating numerical scores in response to 389

textual descriptions of ideas. This category in- 390

cludes models such as GPT-3.5-turbo, LLaMa-2- 391

7b-base (Touvron et al., 2023), and Baichuan-2-7b- 392

base (Yang et al., 2023), which are fine-tuned using 393

techniques like LoRA (Hu et al., 2021) or with full 394

parameter updates. The prompts we choose are pre- 395

sented in Appendix A. In the LLM Representation 396

category, we evaluate models like BERT (Kenton 397

and Toutanova, 2019), SciBERT (Beltagy et al., 398

2019), and RePE (Zou et al., 2023). For BERT and 399

SciBERT, we also apply our proposed framework 400

to quantify the value of ideas, with the primary 401

distinction being in the token selection strategy. 402

Specifically, we used the [CLS] token as the repre- 403

sentation of an idea, and if the length of a section 404

exceeds 512 tokens, we will divide it into equidis- 405

tant subsections to apply the token selection strat- 406

egy for BERT-like models. Moreover, we also ana- 407

lyze the performance of human evaluators through 408

randomly selecting one score from the human-rated 409

list against other scores. 410

6.2 Training Settings and Evaluation Details 411

In our implementation, our method employs 412

LLaMA-2-7b-base as the foundational model. In 413

order to make our experiments more solid and val- 414

idate our framework is model-agnostic, we also 415

use Baichuan-2-7b-base as the base model, the re- 416

sults of which are provided in Appendix C. We use 417

the grid search to find appropriate sets of hyper- 418

parameters for baselines and our proposed method. 419

For the configuration of the MLP evaluator, we 420

choose a batch size of 32, a hidden layer dimension 421

of 1024, a learning rate of 0.001, a dropout rate of 422

0.2, and employ the Adam optimizer. We limit the 423

training to 20 epochs. More detailed settings are 424

documented in Appendix B. Each experiment is ex- 425

ecuted three times with random initializations, and 426

the mean results are reported. We use the results 427

of the training set for model selection. All experi- 428

ments are first conducted to evaluate the efficacy of 429

our framework using the abstracts of papers for 430

all research questions. We also explore the effects 431

of using the full texts of papers as the training 432

inputs for the token selection in RQ2. 433

To gauge the alignment of scores generated by 434
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Method
ICLR23-low-std ICLR23-all

train: 5% train: 30% train: 5% train: 30%

corr layer corr layer corr layer corr layer

LLM Generation

LLaMA-2-Full-SFT N/A N/A N/A N/A N/A N/A N/A N/A
LLaMA-2-LoRA-SFT -0.0513 N/A 0.0820 N/A 0.0634 N/A 0.0692 N/A
Baichuan-2-LoRA-SFT 0.1391 N/A 0.2054 N/A 0.1413 N/A 0.1867 N/A
GPT-3.5-turbo 0.1290 N/A 0.1375 N/A 0.0874 N/A 0.0719 N/A

LLM Representation

BERT 0.1986 -3 0.2515 -4 0.1907 -1 0.2326 -1
SciBERT 0.2677 -3 0.3314 -3 0.2447 -2 0.2584 -3
RePE-with-prompt 0.0820 -31 0.0993 -31 0.0738 -21 0.0880 -31
RePE-no-prompt 0.1020 -1 0.0605 -31 0.0635 -2 0.0508 -2
Ours 0.3441 -20 0.3880 -9 0.2783 -1 0.3366 -4

Human Evaluation

Human 0.8175 N/A 0.7648 N/A 0.4174 N/A 0.3290 N/A

Table 2: Spearman correlations with humans of different methods on ICLR23 datasets. N/A in corr column means
its corresponding pvalue > 0.05. There is no need for LLM Generation baselines to select layers. The human
performance is evaluated by randomly selecting one score from the human-rated list against other reviews.

various methods with human-assigned scores, we435

report a widely-used metric called Spearman Cor-436

relation (Spearman, 1961). The correlation corr437

with human is defined as:438

corr = ρ([s1, s2, ..., sn], [ŝ1, ŝ2, ..., ŝn]), (5)439

where ρ is the Spearman Correlation function, si440

is the average score given by humans, and ŝi is the441

Ac predicted score for di in the testing set. Since442

Spearman correlation is invariant under affine trans-443

formations, we also provide score distribution and444

the absolute error between human-rated scores and445

our LLM representation scores in Section 6.4 and446

Appendix E.447

6.3 Comparative Experiments (RQ1)448

According to the principle of consistency sorting449

in Section 5.1, we construct training sets using the450

top 5% and top 30% ratios from ICLR23-low-std451

and ICLR23-all datasets respectively to preliminar-452

ily exclude the influence of dataset proportion on453

the conclusion, and take the rest of each dataset454

as the testing set. Table 2 shows the Spearman455

correlations with humans of different methods on456

these two datasets. We also provide indexes for the457

layers with the highest correlation.458

It can be observed that our proposed method459

achieves the best performance in all settings, where460

the performance on ICLR23-all is at most 30%461

higher than the second best method SciBERT.462

As expected, the correlation of ICLR23-low-std463

among human scores is close to 1, which is at- 464

tributed to our data partitioning strategy. It should 465

be noted that the correlation of our method on 466

ICLR23-all dataset exceed the result of humans, 467

when the training ratio is 30%, proving the feasi- 468

bility of our method and its potential ability to be 469

applied to real-world review scenarios. Moreover, 470

in terms of different layers’ performance, the mid- 471

dle and back layers of most models may achieve 472

better results. 473

For the LLM Generation baselines, the fine- 474

tuned LLaMA-2 is worse than Baichuan-2, espe- 475

cially for the LLaMA-2-Full-SFT, fine-tuned with 476

full parameters, lacking the capability of effective 477

evaluation since its pvalue > 0.05. Due to the in- 478

ability of GPT-3.5 being fine-tuned, we adopt the 479

zero-shot setting, which is only for sketchy refer- 480

ence. We also try k-shot setting for GPT-3.5, but 481

it only generates the most frequent scores from 482

the given examples. Overall, the LLM Generation 483

methods are not competent for the quantitative eval- 484

uation of ideas. By analyzing the generated results, 485

we believe there are two possible reasons. One is 486

that the amount of training data is relatively small, 487

and models are prone to overfitting. Apart from 488

that, LLM generation is not sensitive to digital num- 489

bers, and the semantic knowledge is hidden in its 490

representations, which should be guided through 491

appropriate means. 492

Furthermore, our experiment studies the degree 493

of consistency between the predicted score and that 494
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assigned by the human reviewer whose score most495

closely match the predicted one. As depicted in496

Table 3, the ICLR23-all dataset exhibits a higher497

consistency with the closest human-rated scores498

compared to the ICLR23-low-std dataset. This499

suggests that, despite the higher variance in hu-500

man scores of the ICLR23-all dataset, our proposed501

method is adept at mirroring the evaluation of the502

most similar human reviewer.503

Dataset Method Training Ratio
5% 30%

ICLR23-low-std
SciBERT 0.4299 0.5093
Ours 0.5469 0.5605

ICLR23-all
SciBERT 0.6381 0.5112
Ours 0.6462 0.5617

Table 3: Spearman correlations with the closest human-
rated score.

6.4 Score Distribution (RQ1)504

We also examine the difference (absolute error) be-505

tween human-rated scores and the predicted scores506

on ICLR23-low-std dataset. The results are shown507

in the pie chart of Figure 2. We can see that 86.8%508

paper scores generated by our method are close509

to the human-rated scores, where the differences510

between them are lower than 2. Additionally, the511

distributions are shown in the right part of Figure 2.512

The distribution of scores predicted by our idea513

evaluator is normal distribution as expected while514

the human reviewers tend to give more higher or515

lower scores. More analysis can be found in Ap-516

pendix E.517
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Figure 2: The difference (absolute error) between
human-rated scores and the predicted scores (left sub-
figure). The distributions of human-rated scores and the
predicted scores (right subfigure).

6.5 Influence of Layer Selection (RQ2)518

We analyzed the representational efficacy across519

various layers of LLM and SciBERT. As illustrated520

in Figure 3, it is evident that for both LLM and521

SciBERT, the representations from the middle to 522

later layers outperform those from other layers. Ob- 523

viously, the very last layers do not typically yield 524

the best performance. This may be attributed to 525

the specific semantic information encapsulated in 526

different layers. The last layer is inherently born 527

to facilitate generation tasks, rather than tasks that 528

require more discriminative capabilities, like clas- 529

sification or regression. 530
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Figure 3: Spearman correlations of different layers in
LLM and SciBERT.

Given the nuanced role of layer-specific repre- 531

sentations in the context of assessing the merit of 532

scientific ideas, we propose a layer selection of 533

representations for the task at hand. Specifically, 534

we advocate for the utilization of representations 535

from the layers situated in the last one-third of the 536

model’s depth. Such choice is informed by the em- 537

pirical evidence suggesting that these layers strike 538

a balance between retaining rich semantic content 539

and providing the necessary abstraction for discrim- 540

inative tasks. 541

6.6 Influence of Token Selection (RQ2) 542

In this part, we use the ICLR23-all dataset to inves- 543

tigate the influence of token selection. In terms of 544

the paper abstract inputs, we first test the correla- 545

tion results of using the last token. Subsequently, 546

we expand our scope to include both the middle 547

and last tokens (middle + last token) of the input 548

text. The findings, as presented in Table 4, indicate 549

that solely relying on the last token yields superior 550

results compared to combining it with the middle 551

token. The latter approach appears to introduce a 552

surplus of redundant information that may hinder 553

the downstream performance of evaluator. 554

When dealing with the full text of papers, we 555

implement two token selection strategies outlined 556

in Section 5.3: the amalgamation of last tokens 557

from equidistant segments and the aggregation of 558

last tokens from distinct paper sections. The ex- 559
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Figure 4: Spearman correlations varying with layers under different training ratios on ICLR23 datasets.

Token Selection Strategy Training Ratio
5% 30%

Abstract
last token 0.2783 0.3366
middle + last token 0.2162 0.2772
Full-text
segment tokens 0.1306 0.2597
section tokens 0.3258 0.3821

Table 4: Spearman correlations of different token selec-
tion strategies.

perimental outcomes suggest that merging last to-560

kens from all segments does not effectively capture561

the necessary semantic content. This is largely562

due to the fact that many segments are incomplete563

sentences, arbitrarily truncated from the original564

texts. On the other hand, the section-based strategy565

successfully compiles comprehensive information566

from each complete section. Overall, we recom-567

mend using the representations of the last tokens or568

section-based strategy to train the idea evaluator.569

6.7 Analysis of Training Set (RQ3 & RQ4)570

Figure 4 shows the Spearman correlations vary-571

ing with layers under different training ratios on572

ICLR23 datasets. Due to space limitations, we573

only present the results of odd numbered layers.574

See Appendix C for more results. The manuscript575

papers are sorted in ascending order of variance576

in their corresponding human-rated scores to parti-577

tion datasets according to the consistency sorting578

in Section 5.1.579

For ICLR23-low-std dataset, the human-rated580

scores in the dataset are highly consistent, and it581

is observed that the Spearman correlation tends to582

improve in tandem with increases in the training583

set size. Notably, when the proportion of data used584

for training surpasses the 50% threshold, the cor-585

relation between the scores predicted by our idea586

evaluator and those assigned by human experts be- 587

comes moderate, exceeding 0.4. Furthermore, our 588

analysis reveals that even a relatively small subset 589

of the data (with a training ratio of 5%) is capable 590

of yielding positive performance. 591

As to ICLR23-all dataset, the outcomes indi- 592

cate that an increase in the volume of training data 593

does not necessarily correspond to a higher align- 594

ment with human evaluations in the testing set. 595

The phenomenon can be attributed to the dimin- 596

ishing consistency of human scores as the dataset 597

expands; that is, the variance in human-assigned 598

scores grows with the size of the dataset. It be- 599

comes evident that while a larger training set gener- 600

ally provides more information, it also introduces 601

a greater diversity of human judgment, which may 602

not always be conducive to improving the ability 603

of evaluator to mimic human scoring behavior. 604

7 Conclusion and Future Work 605

The study focuses on the quantitative evaluation of 606

scientific ideas. We have reviewed existing method- 607

ologies for paper and idea evaluation and have bro- 608

ken new ground by focusing on the quantitative 609

aspect of idea evaluation. Specifically, we first in- 610

troduce a comprehensive benchmark dataset, acces- 611

sible to the research community. Then, we develop 612

a new framework that leverages the token repre- 613

sentations of specific layers in LLM to quantify 614

the value of ideas. Through rigorous experiments, 615

we demonstrate that LLM representations correlate 616

more strongly with human judgments compared to 617

generative text outputs. Additionally, in our bench- 618

mark, the predicted scores of more than 80% papers 619

are close to human-rated scores. In the future, we 620

will broaden the scope of our research to encom- 621

pass diverse disciplines with balanced data ratios, 622

including the exact and social sciences, to further 623

validate and refine our evaluative framework. 624
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Limitations625

Discipline626

The scope of our research is confined to the field of627

computer science, which may restrict the broader628

applicability of our framework. The generalization629

performance of our model across different scien-630

tific disciplines remains an open question. Future631

research endeavors should aim to adapt and vali-632

date the framework in diverse fields, ranging from633

the exact sciences to the humanities.634

Criterion635

Our experiments have primarily focused on the636

overall quality score of manuscript papers, which637

is a composite yet somewhat abstract. Important as-638

pects such as the correctness of the presented work639

and its novelty are equally critical in determining640

a paper’s impact and significance. In forthcoming641

studies, we plan to dissect these individual crite-642

ria, developing a more granular approach to idea643

evaluation.644

Model Scale645

The impact of model scale on performance is an646

aspect that has not been extensively explored in647

our research. The performance of LLMs is often648

closely tied to the number of parameters they con-649

tain; thus, models with different sizes may yield dif-650

ferent results in the task of idea evaluation. Larger651

models may have the capacity to encode more nu-652

anced representations of text, potentially leading to653

more accurate assessments of scientific ideas. Con-654

versely, they may also introduce complexities that655

do not necessarily translate to better performance,656

such as overfitting or increased computational costs.657

The trade-offs between model size, accuracy, and658

efficiency are still an area ripe for exploration.659

Ethics Statement660

The dataset used in our study consists of publicly661

available academic papers. We have ensured that662

all data was collected and handled in a manner that663

respects the privacy and intellectual property rights664

of the authors. No personal data was used, and all665

information is attributed to its original source.666

We are committed to transparency in our re-667

search process. To this end, we have made our668

benchmark dataset publicly available and have pro-669

vided detailed descriptions of our methodologies670

and experimental setups to facilitate reproducibility671

by other researchers.672

We recognize the importance of the human el- 673

ement in the evaluation of scientific ideas. Our 674

framework is designed to assist, rather than replace, 675

human judgment. We believe that the most effec- 676

tive use of our model is as a tool to support and 677

enhance the work of human reviewers, not to sup- 678

plant them. 679
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A Prompts for LLM Generation792

For the baselines involving LLM generation, we793

design a prompt to elicit the evaluation of a794

manuscript paper’s overall quality based on its795

abstract. The prompt, which demonstrated opti-796

mal performance when applied to GPT-3.5-turbo,797

is structured as follows:798

Evaluate the quality (overall quality score) of
the following manuscript paper based on its
abstract.

title: {title}

abstract: {abstract}

The score should be between 1 and 10,
with 1 being the lowest and 10 being the
highest. Just output your score, no more other
words.

799

It is important to note that while this prompt is800

most effective for GPT-3.5-turbo, its influence on801

the performance of other fine-tuned models, such802

as LLaMA-2 and Baichuan-2, is less pronounced.803

These models have been trained to adapt to the804

distribution of scores in the training set, which805

mitigates the impact of the prompt’s phrasing on806

their generative capabilities.807

B Hyper Parameters808

We first declare that the reason for using LLaMA-2809

instead of LLaMA-3 or other updated models is810

because we are concerned that new models may be811

pretrained using papers from ICLR23, resulting in812

a data leakage problem.813

Parameter Value
learning rate 2e-5
epoch 3
weight decay 0
warmup ratio 0.03
bf16 True

Table 5: Hyper-parameters of LLaMA-2-Full-SFT.

We detail the hyper-parameters for the LLM814

generation baseline, LLaMA-2-Full-SFT, in Ta-815

ble 5. Additionally, the hyper-parameters for mod-816

els trained with the LoRA technique, specifically817

LLaMA-2-LoRA-SFT and Baichuan-2-LoRA-SFT, 818

are outlined in Table 6. 819

Parameter LLaMA-2 Baichuan-2
learning rate 2e-5 2e-5
epoch 10 10
weight decay 0 0
warmup ratio 0 0
bf16 True True
LoRA modules q_proj, v_proj W_pack
LoRA r 8 16
LoRA alpha 16 32
LoRA dropout 0.05 0.1

Table 6: Hyper-parameters of LLaMA-2-LoRA-SFT
and Baichuan-2-LoRA-SFT.

For the representation-based evaluation method 820

RePE (Zou et al., 2023), we employ Principal Com- 821

ponent Analysis (PCA) as the embedding evalua- 822

tion mechanism, in line with the recommendations 823

provided in the original paper. 824

C Expanded Results 825

Building upon the experimental setup detailed in 826

Section 6.2, we examine the performance across 827

all layers of the foundational model, LLaMA-2- 828

7b-base. The detailed Spearman correlation results, 829

which consider the full spectrum of layers under 830

various training ratios, are illustrated in Figure 5 831

for the ICLR23-low-std dataset and in Figure 6 for 832

the ICLR23-all dataset. 833

In our pursuit to validate the robustness of our 834

findings, we conducted parallel experiments using 835

Baichuan-2-7b-base as an alternative base model. 836

The corresponding Spearman correlation results 837

are depicted in Figure 7 and Figure 8. The patterns 838

observed with Baichuan-2-7b-base are found to be 839

in harmony with those from the LLaMA-2-7b-base 840

model, lending credence to the consistency and 841

reliability of our conclusions. 842

The experiments across different models not 843

only reinforces the validity of our initial observa- 844

tions but also suggests that the underlying phe- 845

nomena we have identified are model-agnostic to a 846

certain extent. Such findings are indicative of the 847

potential generalizability of our framework, hinting 848

at its applicability across a variety of LLMs. Fu- 849

ture work may delve deeper into the comparative 850

analysis of additional models, further expanding 851

our understanding of the relationship between the 852

base model and the efficacy of idea evaluation. 853
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D Case Study854

We list four cases to show the performance and855

drawbacks of our method in Table 7. All these856

cases are selected from the domain of reinforce-857

ment learning. The first two cases are correctly858

predicted, and the human-rated scores and LLM859

representation scores are very close. As to the third860

case, although our method gives an overestimated861

score, the final score is not enough to make it ac-862

ceptable. The fourth case is underestimated. One863

possible reason is that in such cases, our method864

may lack more contextual information to make a de-865

cision, such as tables and figures in papers, which866

is also something we need to consider in the future.867

E Domain Analysis868

To see how our method rates ideas on popular top-869

ics or less trendy domains, we analyze the score870

distributions and differences between human-rated871

scores and LLM representation scores in 14 do-872

mains divided by ICLR-2023 program committee.873

The results are shown in Table 8. On the whole, the874

differences in mean scores of most domains are less875

than 10%. However, there are three domains (The-876

ory, Neuroscience and Cognitive Science, Infras-877

tructure) where the mean values of human-rated878

scores are relatively higher than average, and the879

differences exceed 10%. We believe these three do-880

mains are distinguished from other domains since881

others frequently focus on Learning and Optimiza-882

tion, which makes our evaluator overfitting on these883

data. Therefore, it is necessary to train a domain-884

specific evaluator, while also maintaining a balance885

in the content of the dataset. We will address these886

issues in our future work.887

F Frequently Asked Questions888

Numerical Processing Limitations in LLMs889

A critical issue faced by LLMs is their inherent dif-890

ficulty in processing numerical data, such as digits.891

This limitation stems from the finite-sized vocabu-892

lary and tokenization strategies used by these mod-893

els, affecting both encoder and decoder architec-894

tures. This impacts the ability to perform tasks that895

require precise numerical understanding. There-896

fore, we leverage the deep, contextual representa-897

tions within LLMs to quantify the value of scien-898

tific ideas. These representations encapsulate rich899

semantic and contextual information that extends900

beyond the superficial token sequences.901

Our approach diverges significantly from the 902

strategy of merely adding task-specific heads to the 903

model. Instead, our approach involves a strategic 904

selection of layers and tokens. By leveraging the 905

hierarchical processing capabilities of LLMs, we 906

can harness the most relevant and informative fea- 907

tures for idea evaluation. This approach contrasts 908

with using the entire weight set of the LLM (adding 909

head to LLM), which might not be as efficient or 910

effective for capturing the specific attributes neces- 911

sary for assessing the value of scientific ideas. 912

Framework 913

The current design of our framework shows con- 914

siderable promise in the automated assessment of 915

scientific ideas, yet there are avenues for further 916

enhancing the evaluator’s performance. The quan- 917

titative assessment of scientific ideas is inherently 918

complex, involving a blend of objective metrics and 919

subjective judgments. Our method, leveraging the 920

representations of large language models, demon- 921

strates the potential to approximate human judg- 922

ment to a significant degree, which will provide 923

human reviewers with an objective score, rather 924

than replacing them to give subjective comments 925

from multiple perspectives. 926
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Title SMART: Self-supervised Multi-task pretrAining with contRol Transformers

Abstract

Self-supervised pretraining has been extensively studied in language and vision domains,

where a unified model can be easily adapted to various downstream tasks by

pretraining representations without explicit labels. When it comes to sequential

decision-making tasks, however, it is difficult to properly design such a pretraining

approach that can cope with both high-dimensional perceptual information and the

complexity of sequential control over long interaction horizons ...

Scores Human-rated Score: 7.50 LLM Representation Score: 7.22

Title Ensemble Homomorphic Encrypted Data Classification

Abstract

Homomorphic encryption (HE) is encryption that permits users to perform computations

on encrypted data without first decrypting it. HE can be used for privacy-preserving

outsourced computation and analysis, allowing data to be encrypted and outsourced to

commercial cloud environments for processing while encrypted or sensitive data.

HE enables new services by removing privacy barriers inhibiting data sharing or

increasing the security of existing services ...

Scores Human-rated Score: 1.50 LLM Representation Score: 1.61

Title Comparative Analysis between Vision Transformers and CNNs from Neuroscience

Abstract

Neuroscience has provide many inspirations for the development of artificial intelligence,

especially for neural networks for computer vision tasks. Recent research on animals’

visual systems builds the connection between neural sparsity and animals’ levels of

evolution, based on which comparisons between two most influential vision architecture,

Transformer and CNN, are carried out. In particular, the sparsity of attentions in

Transformers is comprehensively studied, and previous knowledge on sparsity of ...

Scores Human-rated Score: 2.50 LLM Representation Score: 4.80 (Over Estimated)

Title Neural Causal Models for Counterfactual Identification and Estimation

Abstract

Evaluating hypothetical statements about how the world would be had a different course

of action been taken is arguably one key capability expected from modern AI systems.

Counterfactual reasoning underpins discussions in fairness, the determination of blame

and responsibility, credit assignment, and regret. In this paper, we study the evaluation

of counterfactual statements through neural models ...

Scores Human-rated Score: 7.33 LLM Representation Score: 5.21 (Under Estimated)

Table 7: Case study of the comparision between human-rated scores and LLM representation scores
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Figure 5: Spearman correlations varying with layers under different training ratios of LLaMA-2-7b-base on
ICLR23-low-std dataset.
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Figure 6: Spearman correlations varying with layers under different training ratios of LLaMA-2-7b-base on
ICLR23-all dataset.
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Figure 7: Spearman correlations varying with layers under different training ratios of Baichuan-2-7b-base on
ICLR23-low-std dataset.
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Figure 8: Spearman correlations varying with layers under different training ratios of Baichuan-2-7b-base on
ICLR23-all dataset.
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