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Abstract
This paper aims to better understand shortcut
learning through the lens of the learning dynam-
ics of the internal neurons during the training pro-
cess. We make the following observations: (1)
While previous works treat shortcuts as synony-
mous with spurious correlations, we emphasize
that not all spurious correlations are shortcuts. We
show that shortcuts are only those spurious fea-
tures that are “easier” than the core features. (2)
We build upon this premise and use instance dif-
ficulty methods (like Prediction Depth (Baldock
et al., 2021)) to quantify “easy” and to identify
this behavior during the training phase. (3) We
empirically show that shortcut learning can be
detected by observing the learning dynamics of
the DNN’s early layers. In other words, easy fea-
tures learned by the initial layers of a DNN early
during the training are potential shortcuts. We
verify our claims on medical and vision datasets,
both simulated and real, and justify the empirical
success of our hypothesis by showing the theoret-
ical connections between Prediction Depth and
information-theoretic concepts like V-usable in-
formation (Ethayarajh et al., 2021). Lastly, our
experiments show the insufficiency of monitoring
only accuracy plots during training (as is common
in machine learning pipelines). We highlight the
need for monitoring early training dynamics using
example difficulty metrics.

1. Introduction
Geirhos et al. (2020) define shortcuts as spurious corre-
lations that exist in standard benchmarks but fail to hold
in real-world settings. The emphasis on shortcuts be-
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Figure 1. The causal view of shortcut learning is insufficient. If
x can predict s, and y is not causally related to s on the test data,
then s is viewed as a shortcut. (A) The figure shows two scenarios
for even-odd classification. In scenario 1, all even numbers have
a spurious composite number (located at the top-left), and odd
numbers have a prime number. In scenario 2, all odd numbers have
a spurious white patch. The spurious white patch (prime number)
is an easy (hard) feature, so the model uses (ignores) it. This shows
not all spurious correlations are shortcuts.

ing synonymous with spurious correlations has led to the
widespread adoption of viewing shortcut learning as a dis-
tribution shift problem (Bellamy et al., 2022; Wiles et al.,
2021; Adnan et al., 2022; Kirichenko et al., 2022). While
the distribution shift explains part of the story, we emphasize
that what is equally important for shortcut learning is the
difficulty of the spurious features themselves (see Fig-1).

The premises that support our hypothesis are as follows:
(P1) Shortcuts are only those spurious features that are “eas-
ier” to learn than the core features (see Fig-1). (P2) Initial
layers of a DNN tend to learn easy features, whereas the later
layers tend to learn the harder ones (Zeiler & Fergus, 2014;
Baldock et al., 2021). (P3) Easy features are learned much
earlier than the harder ones during training (Mangalam &
Prabhu, 2019; Rahaman et al., 2019). Premises (P1-3) lead
us to conjecture that: “Easy features learned by the initial
layers of a DNN early during the training are potential
shortcuts.”

We make the following observations. First, when the spuri-
ous features are known, the paper sheds light on when and
if we should be concerned about learning shortcuts. Sec-
ond, when the spurious feature is unknown a priori, but a
human user has an intuition about the difficulty of the task
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in comparison to some reference tasks, the proposed met-
ric can be used to detect shortcut learning patterns during
training (figure-4). Third, we empirically show that our hy-
pothesis works well on medical and vision datasets (sections-
3.2,A.6), both simulated and real, regardless of the DNN
architecture used. We justify this empirical success by the-
oretically connecting prediction depth with information-
theoretic concepts like V-usable information (Ethayarajh
et al., 2021) (sections-2,A.1). Lastly, our experiments high-
light that monitoring only accuracy during training is insuf-
ficient, and we need to monitor the learning dynamics of the
model using instance difficulty metrics to detect shortcut
learning (section-A.4). This could save time and compu-
tational costs and help develop reliable models that do not
rely on spurious features.

2. Background and Methodology
Let Ptr and Pte be the training and test distributions defined
over the random variables X (input), y (label), and s (latent
spurious feature).

Definition-1 (Spurious Feature s): A latent feature s is
called spurious if it is correlated with label y in the training
data but not in the test data. Specifically, the joint probability
distributions Ptr and Pte can be factorized as follows.

Ptr(X,y, s) = Ptr(X|s,y)Ptr(s|y)Ptr(y)

Pte(X,y, s) = Ptr(X|s,y)Pte(s)Ptr(y).

The variable s appears to be causally related to y but is not.
This is shown in Fig-1.

Definition-2 (Task Difficulty Ψ): Let ΨP
M(X → y) in-

dicates the difficulty of predicting X → y for a model
M, where X,y ∼ P . Consider a joint distribution
(X,y, t) ∼ P for two tasks, t, and y. Then, ΨP

M(X →
y) > ΨP

M(X → t) indicates that the task X → y is harder
than X → t for a given model M.

Definition-3 (Shortcut): The spurious feature s is a poten-
tial shortcut for model M iff ΨPtr

M (X → y) > ΨPtr

M (X →
s). In other words, given the input X, predicting spurious
feature s is easier for M than predicting the true label y.

The definitions make it clear that “shortcut” is not just re-
lated to the dataset alone but is also closely tied to the model
and the task. What is a shortcut for one model may not
be so for another. We now explain two metrics (Prediction
Depth and V-Usable Information) to measure ΨP

M. We use
a binary classification setting to explain the concepts used
in this section.

Notion of Prediction Depth: The PD is defined by build-
ing k-NN classifiers on the embedding layers of the model.

The PD is simply the earliest layer after which all subse-
quent k-NN predictions remain the same (0 or 1) (Baldock
et al., 2021). See Appendix-A.8 for more details. Figure-2
illustrates how to read the PD plots used in our experiment.

Notion of V-Usable Information: The Mutual Informa-
tion between input and output, I(X;Y ), is invariant with re-
spect to lossless encryption of the input, i.e., I(τ(X);Y ) =
I(X;Y ). Such a definition assumes unbounded computa-
tion and is counter-intuitive to define task difficulty as heavy
encryption of X does not change the task difficulty. The no-
tion of “Usable Information” introduced by Xu et al. (2020)
assumes bounded computation based on the model family
V under consideration. Usable information is measured
under a framework called predictive V-information (Xu
et al., 2020). Ethayarajh et al. (2021) introduce pointwise
V-information (PVI) for measuring example difficulty.

PVI(x→ y) = − log2 g[ϕ](y) + log2 g
′[x](y), (1)

s.t. g, g′ ∈ V

The function g is trained on (ϕ, y) input-label pairs, where
ϕ is a null input that provides no information about the label
y. g′ is trained on (x, y) pairs from the training data. Lower
PVI instances are harder for V and vice-versa.

Proposition 1: (Informal) Consider two datasets:
Ds ∼ Ptr(X,y) with spurious features and
Di ∼ Pte(X,y) without them. For some mild assumptions
on PD (see Appendix-A.1), if the mean PD of Ds is less
than the mean PD of Di, then the Vcnn-usable-information
for Ds is larger than the Vcnn-usable-information for Di:
IDs

Vcnn
(X → Y ) > IDi

Vcnn
(X → Y ).

See proof in Appendix-A.1. The proposition intuitively im-
plies that a sufficient gap between the mean PD of spurious
and core features can cause the model to learn spurious fea-
tures instead of core ones. This proposition justifies using
the PD metric to detect shortcut learning, as demonstrated
in the following experiments.

3. Experiments
3.1. Not all spurious correlations are shortcuts

Fig-3 shows the Dominoes binary dataset (Kirichenko et al.,
2022) with images of size 64 × 32. We create three pairs
of datasets, with both easy and hard spurious features rel-
ative to the shared core feature (see Table-1). The classes
used are 0,1 for MNIST and SVHN, coat,dress for FMNIST,
and airplane, automobile for CIFAR10. Additionally, we
include two classes from Kuzushiji-MNIST (KMNIST) and
introduce a modified dataset called KMNpatch, which in-
corporates a spurious white patch (5x5 in top-left corner)



Shortcut Learning Through the Lens of Training Dynamics

Training Progress

undefined

PD

∞ ∞

samples

migrating

∞

Easy samples in early 

layers

challenging samples in 

later layers

Figure 2. Examples of PD plots (for DenseNet-121) at different stages of the training. The red bar indicates samples with undefined
PD, and the dotted vertical line shows the mean PD. The undefined samples (shown in red) slowly accumulate in layer 88 as training
progresses. This is because the model needs more time to learn harder samples that accumulate at higher prediction depth, i.e., later layers.
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Figure 3: Dominoes Dataset

Table 1: Results for the Dominoes experiment averaged across 4-runs. Numbers

in bracket show mean-PD (dataset difficulty). Core-only accuracy indicates the

model’s reliance on core features. Models achieve high core-only accuracy when

spurious features are harder than core features.

perfectly correlated with the target for one of the KMNIST
classes. The ranking of dataset difficulty based on mean-
PD is: KMNpatch(1.1) < MNIST(2.2) < FMNIST(3.9) <
KMNIST(5) < SVHN(5.9) < CIFAR10(6.8). ResNet18 is
used to measure test accuracy (sampled from same distribu-
tion) and core-only accuracy (by masking spurious feature).
Higher core-only accuracy indicates lower reliance on spu-
rious features.

Table 1 shows high test accuracy on all datasets. When
spurious feature is harder to learn than core, the model
heavily relies on core features (high core-only accuracy
>98%). When spurious feature is easier than core, the
model leverages them, causing the core-only accuracy to
drop to random chance ( 50%). The KMNpatch-MN results
show significantly higher core-only accuracy ( 69%) and
standard deviation (explanation in Appendix-A.9). This
shows that spurious features harder than core fail to act as a
shortcuts.

3.2. Monitoring Initial Layers Can Reveal Suspicious
Shortcut Learning Activity

Synthetic Shortcut on Toy Dataset: We demonstrate our
method on the Kuzushiji-MNIST (KMNIST) (Clanuwat
et al., 2018) dataset with ten classes and images of size
28×28. We insert a white patch (spurious feature) at a class-

specific location and train VGG16 models on the KMNIST
with a patch shortcut (Msh) and another on the original
KMNIST without the patch (Morig).

Fig-4 shows that introducing the white patch makes KM-
NIST easier than even MNIST for Msh (see Fig - 4A & 4D).
The white patch is an easy feature, and hence the model only
needs a single layer to detect it. The Grad-CAM maps for
the layer-1 show that Msh focuses mainly on the patch (see
Fig-4D), and hence the test accuracy on the original KM-
NIST images is very low (∼8%). The PD plot for Morig

(see Fig-4E) is not as skewed toward lower depth as the plot
for Msh. This is expected as Morig is not looking at the
spurious patch and therefore utilizes more layers to make
the prediction. The mean PD for Morig suggests that the
original KMNIST is harder than Fashion-MNIST but easier
than CIFAR10. Morig also achieves a higher test accuracy
(∼98%).

Real Shortcut on Medical Dataset: For this experiment,
we use the NIH dataset (Wang et al., 2017a) which has
the popular chest drain spurious feature (for Pneumothorax
detection) (Oakden-Rayner et al., 2020). Chest drains are
used to treat positive Pneumothorax cases and are therefore
positively correlated with Pneumothorax and can be used
by the deep learning model (Oakden-Rayner et al., 2020).
We train a DenseNet121 model (Mnih) for Pneumothorax



Shortcut Learning Through the Lens of Training Dynamics

Axis of Difficulty

HighLow

(A) MNIST (B) FMNIST (C) CIFAR 10

GradCam of

Layer 1(D) KMNIST w/ shortcut (E) KMNIST w/o shortcut

Figure 4. The datasets are ordered based on their difficulty (measured using mean PD shown by dotted vertical lines): KMN w/ sh.(1.1) <
MNIST(2.2) < FMNIST(3.9) < KMN w/o sh.(5) < SVHN(5.9) < CIFAR10(6.8). The bottom row shows the effect of the shortcut on the
KMNIST dataset. The yellow region on the axis indicates the expected difficulty of classifying KMNIST. While the original KMNIST lies
in the yellow region, the shortcut significantly reduces the task difficulty. The Grad-CAM shows that the model focuses on the spurious
patch.
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Figure 5. Shortcut learning on NIH dataset. (A) PD plot for DenseNet-121 trained on NIH shows prominent peaks in the initial layers. (B,
C) Grad-CAM reveals that the initial layers use irrelevant artifacts and chest drains as shortcuts for classification. (D) The chest drain
spurious feature affects the AUC performance of the model. The X-axis (Y-axis) shows the false positive (true positive) rate.

detection on NIH images of size 128× 128. See Appendix-
A.7 for more details.

Fig-5A shows the PD plot for Mnih. We see suspicious
peaks at the initial layers. Pneumothorax classification is
challenging even for radiologists; hence, peaks at the initial
layers raise suspicion. The Grad-CAM maps in Figs-5B &
5C reveal that the initial layers look at irrelevant artifacts
and chest drains in the image. This provides evidence for
shortcut learning happening in the initial layers. Fig-5D
shows that the AUC performance is 0.94 when the diseased
patients have a chest drain and 0.74 when they don’t. In
both cases, the set of healthy patients remains the same.
This observation is consistent with the findings of Oakden-
Rayner et al. (2020) and indicates that the model looks at
chest drains to classify positive Pneumothorax cases.

The above experiments demonstrate how a peak located in
the initial layers of the PD plot should raise suspicion, es-
pecially when the classification task is challenging. Visual-

ization techniques like Grad-CAM can further help identify
the shortcuts being learned by the model. This approach
works well even for realistic and challenging spurious fea-
tures (like chestdrains), as shown above. The appendix
shows additional results on vision datasets (A.6), how short-
cuts can be detected early during training (A.4), and how
datasets with easy spurious features have more “usable in-
formation” (Ethayarajh et al., 2021) (A.5).

4. Conclusion
“Potential shortcuts can be found by monitoring the easy
features learned by the initial layers of a DNN early during
the training.” We validate this hypothesis on real medical
and vision datasets. We also show that shortcuts are also
learned quite early during the training. Further, we show
a theoretical connection between PD and V-information
to support our empirical results. Datasets with spurious
features have more V-information causing the model to



Shortcut Learning Through the Lens of Training Dynamics

learn the shortcut. Lastly, relying only on accuracy plots
is insufficient, and we need to monitor instance difficulty
metrics during training to detect shortcut learning patterns.
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A. Appendix
A.1. Proof of Proposition-1

Proposition A.1. Given two datasets, Ds with spurious features and Di without them, we assume the following:

1. (Well-Trained Model Assumption) The part of the network from any representation to the label is one of the functions
that compute V-information.

2. (Function Class Complexity Assumption) Assume that there exists a K ∈ {1, N} such that Vcnn of depth N −K is
deep enough to be a strictly larger function class than Vknn with a fixed neighbor size (29 in this paper). Assume that
this Vknn is a larger function class than a linear function.

3. (Controlled Confidence Growth Assumption) For both datasets D ∈ {Ds, Di}, assume that the for all k ∈ {1, · · · , N},

τ ≤ ID
Vknn

(ϕk)− ID
Vknn

(ϕk−1) ≤ ϵ

4. (Prediction Depth Separation Assumption) Let L be an integer such that, L ≤ K and L < N −
ψmaxy (− log p(Y = y)). Note that p(Y = y) is simply the prevalence of class y. Let there exist a gap in pre-
diction depths of samples in Ds and Di: ψ ∈ (0, 0.5) such that 1− ψ fraction of Ds has prediction depth ≤ L and
1− ψ fraction of Di has prediction depth > K.

Then, for a model class of N -layer CNNs, we show that the Vcnn-information for Ds is greater than Vcnn-information for
Di:

IDs

Vcnn
(X → Y ) ≥ IDi

Vcnn
(X → Y )

Proof. Before proceeding to the proof, we attempt to justify and reason about the above assumptions.

Assumption-1 states a property of trained neural networks in the context of usable information. Let f(X) be a trained
neural network. Consider splitting the network into the representation ϕk(X) at the kth layer and the rest of the network
as a function applied to ϕk(X): i.e., f(X) = fk ◦ ϕk(X). Then we assume that fk(·) is the function that achieves the
Vcnn of size(n-k)-information between ϕk(X) and Y (Ethayarajh et al., 2021; Xu et al., 2020). The function that computes
V-information must achieve a minimum cross-entropy (Ethayarajh et al., 2021). So if we train f(X) by minimizing the
cross-entropy loss, fk(.) must converge to a function that achieves the Vcnn of size(n-k)-information between ϕk(X) and Y .

Assumption-2 implies that the CNN class in Vcnn is deep enough such that the network after theKth layer can approximate a
k-NN classifier with 29 neighbors; (K here is same as the K in assumption-4). This is also a reasonable assumption (Chaud-
huri & Dasgupta, 2014; Gühring et al., 2020). Chaudhuri & Dasgupta (2014) lower bounds the error for k-NN classifiers for
a fixed k, and Gühring et al. (2020) shows the depth expressivity of CNN classifiers. Assumption-3 states that the difference
in Vknn-information between intermediate layers does not explode indefinitely and thus can be bounded by some positive
quantities τ and ϵ.

Assumption-4 is also easily satisfied. For example, if the smallest prevalence class in the dataset has a prevalence greater
than 1

1000 , then assumption-4 boils down to saying L < N − 0.5 ∗maxy (− log p(Y = y)) = N − 3.45, where L is the
low PD value caused by spurious features in Ds, and N is the total number of layers in the CNN. All our datasets satisfy the
class prevalence > 1

1000 constraint. Even diseases like pneumothorax which are rare, have a class prevalence of at least 1
30

in both NIH and MIMIC-CXR. And L < N − 3.45 is easily satisfied in all our experiments. For e.g., see Fig-5 where 80%
(or 1− ψ = 0.8) of the samples have PD ≤ 16. So L = 16, N = 121(for Densenet-121) easily satisfies 16 < 121− 3.45.

Now we elaborate on the proof of the proposition given the four assumptions. We proceed in two parts: first, we lower
bound Vcnn-information for Ds, and then we upper bound Vcnn for Di.

Assumption 3 implies:

(B −A)τ ≤
B∑

k=A

τ ≤ ID
Vknn

(ϕk)− ID
Vknn

(ϕk−1) ≤ (B −A)ϵ

Note: (A,B) are just placeholders for the min and max indices over which the summation is defined. They are replaced by
(L+ 1,K) and (K + 1, N) below while trying to lower bound IDs

Vcnn
and upper bound IDi

Vcnn
respectively.



Shortcut Learning Through the Lens of Training Dynamics

PD - PVI connection. Note that by definition, when the prediction depth is k for a sample X , then PV Iknn(ϕk(X)) ≥ δ
but PV Iknn(ϕk−1(X)) < δ. This follows from how we compute PD (see Section-2 in the main paper, and Appendix-A.8).

Lower bounding IDs

Vcnn

IDs

Vcnn
= IDs

Vcnn of depth N−K
(ϕK) {Assumption-1}

≥ IDs

Vknn
(ϕK) {Assumption-2}

= IDs

Vknn
(ϕL) +

K∑
k=L+1

ID
Vknn

(ϕk)− ID
Vknn

(ϕk−1) {Telescoping Sum}

≥ IDs

Vknn
(ϕL) + (K − L)τ {Assumption-3}

≥ ψ min
X,Y ∈Ds,pd>=L

PV Iknn(X → Y )

+ (1− ψ) min
X,Y ∈Ds,pd<L

PV Iknn(X → Y ) + (K − L)τ {Prediction Depth Separation}

≥ 0 ∗ ψ + δ ∗ (1− ψ) + (K − L)τ {Prediction Depth Separation}

Upper bounding IDi

Vcnn

IDi

Vcnn
≤ IDi

Vknn
(ϕN ) {Assumption-2}

= ID
Vknn

(ϕK) +

N∑
k=K+1

ID
Vknn

(ϕk)− ID
Vknn

(ϕk−1) {Telescoping Sum}

≤ ID
Vknn

(ϕK) + (N −K)ϵ {Assumption-3}
≤ (N −K)ϵ+ ψ max

X,Y ∈Di,pd(X)≤K
PV IDVknn

(ϕK(X) → Y )

+ (1− ψ) max
X,Y ∈Di,pd(X)>K

PV IDVknn
(ϕK(X) → Y ) {Prediction Depth Separation}

≤ (N −K)ϵ+ ψmax
y

(− log p(Y = y))

+ (1− ψ) max
X,Y ∈Di,pd(X)>K

PV IDVknn
(ϕK(X) → Y ) {PVI ≤ − log p(Y = y)}

≤ (N −K)ϵ+ ψmax
y

(− log p(Y = y)) + (1− ψ)δ {PD-PVI connection for pd > K}

The proof follows by comparing the lower bound on IDs

Vcnn
and the upper bound on IDi

Vcnn
. Intuitively what this means is

that when there is a sufficiently large gap in the mean PD between Ds and Di, then the V-information of Ds exceeds the
V-information of Di, which is why the model prefers learning the spurious feature and using them as shortcuts rather than
using the core features for the task.

A.2. Grad-CAM Visualization

PD plots help us understand the model layers actively used for classifying different images. To further aid our intuition, we
visualize the Grad-CAM outputs for the model’s arbitrary layer k by attaching a soft-KNN head. Let gknn denote the soft
and differentiable version of k-NN. We compute gknn as follows:

This is a sample text in gknn(ϕkq ;ϕ
k
i∈{1,2,...m}) =

∑
j∈N(ϕk

q ,1)
exp

−∥ϕk
q−ϕk

j ∥/s

∑
j∈N(ϕk

q ,:)
exp

−∥ϕk
q−ϕk

j
∥/s

This function makes the KNN differentiable and can be used to compute Grad-CAM (Selvaraju et al., 2017). We use the
L1 norm for all distance computations. ϕkq corresponds to feature at layer-k for query image xq. Let ϕki∈{1,2,...m} be the
training data for KNN. Let N denote the neighborhood function. N (ϕkq , :) returns the indices of K-nearest neighbors for ϕkq .
N (ϕkq , 1) returns indices of images with positive label (y = 1) from the set of K-nearest neighbors for ϕkq . s is the median
for the set of L1 norms {∥ϕkq − ϕkj ∥} for j ∈ N (ϕkq , :).
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A.3. Semi-Synthetic Shortcut on Medical Datasets:

We follow the procedure by DeGrave et al. (2021) to create the ChestX-ray14/GitHub-COVID dataset. This dataset
comprises Covid19 positive images from Github Covid repositories and negative images from ChestX-ray14 dataset (Wang
et al., 2017b). In addition, we also create the Chex-MIMIC dataset following the procedure by Puli et al. (2022). This
dataset comprises 90% images of Pneumonia from Chexpert (Irvin et al., 2019) and 90% healthy images from MIMIC-
CXR (Johnson et al., 2019). We train two DenseNet121 models, Mcovid on the ChestX-ray14/GitHub-COVID dataset, and
Mchex on the Chex-MIMIC dataset. We use DenseNet121, a common and standard architecture for medical image analysis.
Images are resized to 512× 512.

Chex-MIMIC

Grad-CAM Layer-4

ChestX-ray14/GitHub-COVID

Grad-CAM Layer-4

Figure 6. PD plots for two DenseNet-121 models trained on Chex-MIMIC and ChestX-ray14/GitHub-COVID datasets are shown in the
figure, along with their corresponding Grad-CAM visualizations. Both PD plots exhibit a very high peak in the initial layers (1 to 4),
indicating that the models use very easy features to make the predictions.

Fig-6 shows the PD plots for Mchex and Mcovid. Both the plots are highly skewed towards initial layers, similar to the
KMNIST with patch shortcut in Fig-4D. This again indicates that the models are using very easy features to make the
predictions, which is counterintuitive as the two tasks (pneumonia and covid19 detection) are hard tasks even for humans.
Examining the Grad-CAM maps at layer-4 reveals that these models focus on irrelevant spurious features outside the lung
region. This raises concern because both diseases are known to affect mainly the lungs. The reason for this suspicious
behavior is that, in both these datasets, the healthy and diseased samples have been acquired from two different sources.
This creates a spurious feature because source-specific attributes or tokens are predictive of the disease and can be easily
learned, as pointed out by DeGrave et al. (2021). On the other hand, we don’t observe this skewed distribution in the NIH
with chestdrain experiment (Sec-3) because all the images come from a single dataset (NIH).

A.4. Detecting Shortcuts Early

In this experiment, we show how shortcuts can often be detected relatively early during training. This is because initial
layers which learn the shortcuts converge very early during the training. We observe this by monitoring PD plots across
training epochs. In all of our experiments, the shortcut is revealed by the PD plot within two epochs of training.

Fig-7 shows the evolution of the PD plot across epochs for Mnih (which is the model used in Fig-5). This visualization
helps us observe the training dynamics of the various layers. The red bar in the PD plots shows the samples with undefined
prediction depths.

These plots reveal several useful insights into the learning dynamics of the model. Firstly, we see three prominent peaks
in epoch-1 at layers-4,40,88 (see Fig-7A). The magnitude of the initial peaks (like layers-4&40) remains nearly constant
throughout the training. These peaks correspond to shortcuts, as discussed in the previous section. This indicates that easy
shortcuts can often be identified early (epoch-1 in this case). Fig-8 shows the PD plots at epoch-2 for other datasets with
shortcuts. It is clear from Fig-8 that the suspiciously high peak at the initial layer is visible in the second epoch itself. The
Grad-CAM maps reveal that this layer looks at irrelevant artifacts in the dataset. This behavior is seen in all datasets shown
in Fig-8.

Secondly, we also see that accuracy or AUC plots do not reveal shortcut learning patterns. We need to monitor the training
dynamics using suitable metrics (like PD) to detect this behavior. Thirdly, the red peak (undefined samples) decreases in
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Figure 7. Evolution of PD plot across epochs shows the training dynamics of the DNN on the NIH dataset. The initial peaks (layers-4&40)
are relatively stable throughout training, whereas the later peaks (layer-88) change with time. The initial layers learn the easy shortcuts,
which can be detected early during the training. Samples with undefined PD (shown in red) take more time to converge and eventually
accumulate in the later layers (layer 88 in this case).

KMNIST w/ Shortcut

Grad-CAM Layer-1

Chex-MIMIC

Grad-CAM Layer-4

ChestX-ray14/GitHub-COVID

Grad-CAM Layer-4

Figure 8. Epoch-2 PD plots for various datasets with shortcuts. The high spurious peak in the initial layer is visible in all the datasets
indicating that shortcuts can be detected early during the training.

magnitude with time, and we see a proportional increase in the layer-88 peak. This corroborates well with the observation
that later layers take more time to converge (Rahaman et al., 2019; Mangalam & Prabhu, 2019; Zeiler & Fergus, 2014).
Therefore, samples with higher PD are initially undefined and do not appear in the PD plot. Nonetheless, samples with
lower PD show up very early during the training, which helps us detect shortcuts early. Early detection can consequently
help develop intervention schemes that fix the shortcut early.

A.5. Prediction Depth ≈ V-Usable Information

In this experiment, we show that datasets with easy spurious features have more “usable information” (Ethayarajh et al.,
2021) compared to their counterparts without such features. Due to higher usable information, the model requires fewer
layers to classify the images with spurious features. We use this experiment to empirically justify Proposition-1 outlined in
Appendix-A.1.

Table-2 measures the influence of spurious features on NIH and KMNIST using PD and PVI metrics. All diseased patients
in the “NIH w/ Spurious feat.” dataset have a chest drain, whereas all diseased patients in the “NIH w/o Spurious feat.”
dataset have no chest drain. The set of healthy patients is common for the two datasets. The KMNIST datasets are the same
as those used in Section-3.2. We use VGG16 for KMNIST and DenseNet121 for NIH. Other training details are the same as
Section-3.2.

Table-2 shows that datasets with spurious features (Ds) have smaller mean PD values than their counterparts without such
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Table 2. Effect of Spurious features on Prediction Depth and the negative conditional V-entropy (-HVcnn(Y | X)). The label marginal dis-
tributions are the same with or without the spurious feature, and thus the negative conditional V-entropy is proportional to V-information.

Dataset mean PD −HVcnn(Y | X)

NIH w/ Spurious feat. 53.43 -0.1171
NIH w/o Spurious feat. 75.33 -0.2321

KMNIST w/ Spurious feat. 1.06 -0.0024
KMNIST w/o Spurious feat. 5.25 -0.0585

features (Di). Proposition-1 (see Section-2, Appendix-A.1) shows that a sufficient gap between the mean PDs of Ds and
Di causes the V-Information of Ds to be greater than Di. Table-2 confirms this in a medical-imaging dataset with a real
chest drain spurious feature, and we see that the mean “usable information” increases when there is a spurious feature. This
implies that the model learns spurious features as they have more usable information than the core features. Ethayarajh et al.
(2021) also show that V-information is positively correlated with test accuracy. This explains the significant change in AUC
observed in Fig-5D. Proposition 1 bridges the gap between the notions of PD and V-usable information. This connection
between V-information and PD indicates that monitoring early training dynamics using PD not only helps detect shortcut
learning but also bears insights into the dataset’s difficulty (in information-theoretic terms) for a given model class.

We further investigate this relationship on four additional datasets: KMNIST, FMNIST, SVHN, and CIFAR10. We train a
VGG16 model on these datasets for ten epochs using an Adam optimizer and a base learning rate of 0.01. We use a bar
plot to show the correlation between PD and V-entropy. We group PD into intervals of size four and compute the mean
V-entropy for samples lying in this PD interval.

Figure 9. The bar plots show a positive correlation between PD and Conditional V-entropy. Samples with higher PD also have a higher
V-entropy resulting in lower usable information for models like VGG16.

We again find that PD is positively correlated with V-information. Instance difficulty increases with PD, and the usable
information decreases with an increase in V-entropy. It is, therefore, clear from Fig-9 that samples with a higher difficulty
(PD value) have lower usable information, which is not only intuitive but also provides empirical support to Proposition-1 in
Appendix-A.1.

A.6. Vision Experiments

We use the NICO++ (Non-I.I.D. Image dataset with Contexts) dataset Zhang et al. (2022) to create multiple spurious datasets
(Cow vs. Bird; Dog vs. Lizard) such that the context/background is spuriously correlated with the target. NICO++ is a
Non-I.I.D image dataset that uses context to differentiate between the test and train distributions. This forms an ideal setup
to investigate what spurious correlations the model learns during training. We follow the procedure outlined by (Puli et al.,
2022) to create datasets with spurious correlations (90% prevalence) in the training data. The test data has the relationship
between spurious attributes and the true labels flipped. This is similar to the Chex-MIMIC dataset illustrated in section-A.3.
We test our hypothesis using ResNet-18 and VGG16. We train our models for 30 epochs using an Adam optimizer and a
base learning rate of 0.01. We choose the best checkpoint using early stopping.

Figures-10,12 show PD plots and train/test accuracies for models that learn the spurious background feature present in the
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NICO (Cows vs Birds; Spurious Background)

GradCAM (Layer-1)

Training Data (Acc=97.2%)

(Cows on grass; Birds on water)

Test Data (Acc=59.9%)

(Cows on water; Birds on grass)

(A) (B) (C) (D)

Figure 10. Cow vs. Birds classification on NICO++ dataset. (A) Training data contains images of cows on grass and birds on water
(correlation strength=0.9). The model achieves 97.2% training accuracy. (B) PD plot for ResNet-18 reveals a spurious peak at layer-1,
indicating the model’s heavy reliance on very simple (potentially spurious) features. (C) GradCAM plots for layer 1 reveal that the model
mainly relies on the spurious background to make its predictions. (D) Consequently, the model achieves a test accuracy of only 59.9% on
test data where the spurious correlation is flipped (i.e., cows (birds) are found on water (grass)).

NICO (Cows vs Birds; Balanced Dataset)

Balanced Training Data (Acc=99.1%)

(Cows/Birds on Grass/Water)

Test Data (Acc=80.2%)

(Cows on water; Birds on grass)

(A) (B) (C)

Figure 11. Balanced dataset for Cow vs. Birds classification task on NICO++ dataset. (A) The training dataset contains a balanced
distribution of cows and birds found on water and grass (each group has an equal number of images). (B) The balanced dataset shifts the
PD plot towards the later layers (compared to Fig-10B, indicating that the model relies lesser on spurious features. (C) This consequently
results in an improved test accuracy of 80.2% (as compared to 59.9% in Fig-10D for the spurious dataset).

NICO++ dataset. While all models achieve > 85% training accuracy, they have poor accuracies ( 50%) on the test data
where the spurious correlation is flipped. This can be seen simply by observing the PD plots for the model on the training
data. The plots are skewed towards the initial layers indicating that the model relies heavily on very simple (potentially
spurious) features for the task. GradCAM maps also confirm that the model often focuses on the background context rather
than the foreground object of interest.

We further observe in Fig-11 that balancing the training data (to remove the spurious correlation) results in a model with
improved test accuracy (80.2%) as expected. This is also reflected in the PD plot (Fig-11B), where we see that the distribution
of the peaks, as well as the mean PD, shift proportionately towards the later layers, indicating that the model now relies
lesser on the spurious features.
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NICO (Dog vs Lizard; Spurious Background)

Spurious Training Data (Acc=87.2%)

(Outdoor Dogs; Lizards on Rock)

Test Data (Acc=63.9%)

(Dogs on Rock; Outdoor Lizards)

(A) (B) (C)

Figure 12. Dog vs. Lizard classification with a spurious background feature on NICO++ dataset. (A) Training data contains images of
outdoor dogs and lizards on rock (correlation strength=0.9). The spurious background color/texture reveals the foreground object. The
model achieves 87.2% training accuracy. (B) PD plot for ResNet-18 reveals a spurious peak at layer-1, indicating the model’s reliance on
simple (potentially spurious) features. (C) The low test accuracy confirms this (63.9%). The test data has the spurious correlation flipped
(i.e., images contain dogs on rock and lizards found outdoors.)

By monitoring PD plots during training and using suitable visualization techniques, we show that one can obtain useful
insights about the spurious correlations that the model may be learning. This can also help the user make an educated guess
about the generalization behavior of the model during deployment.

A.7. Chest Drain Annotations for NIH Dataset

To reproduce the results by Oakden-Rayner et al. (2020), we need chest drain annotations for the NIH dataset (Wang et al.,
2017a), which is not natively provided. To do this, we use the MIMIC-CXR dataset (Johnson et al., 2019), which has rich
meta-data information in radiology reports. We collaborate with radiologists to identify terms related to Pneumothorax from
the MIMIC-CXR reports. These include pigtail catheters, pleural tubes, chest tubes, thoracostomy tubes, etc. We collect
chest drain annotations for MIMIC-CXR by parsing the reports for these terms using the RadGraph NLP pipeline (Jain et al.,
2021). Using these annotations, we train a DenseNet121 model to detect chest drains relevant to Pneumothorax. Finally, we
run this trained model on the NIH dataset to obtain the needed chest drain annotations. We use these annotations to get the
results shown in Fig - 5D, which closely reproduces the results obtained by Oakden-Rayner et al. (2020).

A.8. Notion of Undefined Prediction Depth

The PD is simply the earliest layer, after which all subsequent k-NN predictions remain the same (0 or 1) Baldock et al.
(2021).

PD = min argmax
n

[
N∏
i=n

fknn(ϕ
i) +

N∏
i=n

(1− fknn(ϕ
i))

]
,

fknn is a k-NN classifier that outputs 0 or 1 based on a given threshold, ϕi is the feature embedding for the given input at
layer-i, and N is the index of the final layer of the model. The lower the PD of input, the easier it is to classify. We also use
the notion of undefined PD to work with models that are not fully trained. We treat k-NN predictions close to 0.5 (for a
binary classification setting) as invalid. If the k-NN predictions for the last three layers (for a given input to the model) are
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invalid, we treat the PD of the input as undefined.

While fully trained models give valid PD values, our application requires working with arbitrary deep-learning models that
are not necessarily fully trained. We, therefore, introduce the notion of undefined PD by treating k-NN predictions close
to 0.5 (for a binary classification setting) as invalid. We define a δ such that |fknn(x)− 0.5| < δ implies an invalid k-NN
output. We use δ = 0.1 and k = 29 in our experiments. If any k-NN predictions for the last three layers are invalid, we
treat the PD of the input image to be undefined. To work with high-resolution images (like 512× 512), we downsample
the spatial resolution of all training embeddings to 8× 8 before using the k-NN classifiers on the intermediate layers. We
empirically see that our results are insensitive to k in the range [5, 30].

A.9. A PD Perspective for Feature Learning

Table 1 shows that the core-only accuracy stays high (>98%) for datasets where the spurious feature is harder to learn
than the core feature. When the spurious feature is easier than the core, the model learns to leverage them, and hence the
core-only accuracy drops to nearly random chance (∼50%). Interestingly, the KMNpatch-MN results have a much higher
core-only accuracy (∼69%) and a more significant standard deviation. This is because the choice of features that the model
chooses to learn depends on the PD distributions of the core and spurious features. We provide three different perspectives
on why KMNpatch-MN runs have better results.

PD Distribution Perspective: The KMNpatch-MN domino dataset has a smaller difference in the core-spurious mean
PDs (2.2− 1.1 = 1), as compared to other datasets (for e.g., MN-KMN has a difference of 5− 2.2 = 2.8 in their mean PDs).
The closer the PD distributions of the core and spurious features are, the more the model treats them equivalently. Therefore,
in the case of the KMNpatch-MN, we empirically observe that different initializations (random seeds) lead to different
choices the model makes in terms of core or spurious features. This is why the standard deviation of KMNpatch-MN is high
(20.03) compared to the other experiments.

Theoretical Perspective (Proposition-1): This is not surprising and, in fact, corroborates quite well with Proposition-1 in
Appendix-A.1. The Prediction Depth Separation Assumption suggests that without a sufficient gap in the mean PDs of the
core and spurious features, one cannot concretely assert anything about their ordinal relationship in terms of their usable
information. In other words, spurious features will have higher usable information (for a given model) than the core features
only if the spurious features have a sufficiently lower mean PD as compared to the core features. On the other hand, as the
core and spurious features become comparable in terms of their difficulty, the model begins to treat them equivalently.

Loss Landscape Perspective: (this is a conjecture; we do not have empirical evidence) The loss landscape is a function
of the model and the dataset. The solutions in the landscape that are reachable by the model depend on the optimizer and the
training hyperparameters. Given a model and a set of training hyperparameters, we conjecture that the diversity (in terms of
the features that the model learns during training) of the solutions in the landscape increase as the distance (difference in
mean PD) between the core and spurious features decreases. This diversity manifests as the model’s choice of using core vs.
spurious features and could potentially result in a higher standard deviation of core-only accuracy across initializations.

A.10. Code Reproducibility

The code, along with the Python package list and environment files, will be made available upon acceptance.


