
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MAXPOOLBERT: ENHANCING BERT CLASSIFICATION
VIA LAYER- AND TOKEN-WISE AGGREGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The [CLS] token in BERT is commonly used as a fixed-length representation
for classification tasks, yet prior work has shown that both other tokens and in-
termediate layers encode valuable contextual information. In this work, we study
lightweight extensions to BERT that refine the [CLS] representation by aggregat-
ing information across layers and tokens. Specifically, we explore three modifica-
tions: (i) max-pooling the [CLS] token across multiple layers, (ii) enabling the
[CLS] token to attend over the entire final layer using an additional multi-head
attention (MHA) layer, and (iii) combining max-pooling across the full sequence
with MHA. Our approach, called MaxPoolBERT, enhances BERT’s classification
accuracy (especially on low-resource tasks) without requiring new pre-training or
significantly increasing model size. Experiments on the GLUE benchmark show
that MaxPoolBERT consistently achieves a better performance than the standard
BERT base model on low resource tasks of the GLUE benchmark.

1 INTRODUCTION

BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019), is one of
the best known Transformer-based (Vaswani et al., 2017) language models. The core principle of
BERT is the unsupervised pre-training approach on large corpora, enabling it to learn contextual word
representations, which can then be used to solve various downstream tasks. Through fine-tuning,
BERT adapts its representations to aggregate the most relevant information required for a given task.

103 104 105

Training Set Size (log scale)

0

1

2

3

4

5

6

 Im
pr

ov
em

en
t o

ve
r B

as
el

in
e

Performance vs. Training Size for GLUE Tasks

Our Methods
MaxCLS
MHA
MaxPoolBERT

Figure 1: MaxPoolBERT performs best on low-
resource datasets. We show that our methods,
in particular MaxPoolBERT, provide significant
improvements for smaller datasets indicating that
the model learns a better representation during fine-
tuning (top-left).

A key component of BERT’s architecture is the
classification token (abbreviated [CLS]), a spe-
cial token that is prepended to every input se-
quence. During fine-tuning, the [CLS] token
serves as the only input to the classification head,
which generates predictions for the task at hand.
Through self-attention, the [CLS] token is ex-
pected to capture the sentence-level information
necessary for downstream tasks. In this paper,
we ask the question whether we can enrich the
[CLS] token with information from the layers
below the top level.

We know that the last layers of BERT change
the most during fine-tuning and encode the most
task-specific information (Rogers et al., 2020).
This is why the [CLS] token embedding from
the final layer is conventionally used for classifi-
cation. However, assuming that only the [CLS]
token retains meaningful sentence-level informa-
tion is misleading. Prior studies have shown that
all token embeddings in the final layer contain sentence-level information (Rogers et al., 2020), and
that using different token positions for classification results in only minor differences in accuracy
(Goyal et al., 2020). Goyal et al. (2020) also found that embedding vectors in the final layer exhibit
high cosine similarity due to information mixing through self-attention.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Motivated by these findings, we explore incremental modifications to the BERT base architecture for
sequence classification, aiming to enhance its performance on downstream tasks. We specifically focus
on improving the informativeness of the [CLS] token by (i) incorporating more width information
of the whole sequence, and (ii) incorporating more depth information from additional layers. In the
end we find that a mixture of these approaches leads to the best results.

Contributions.

1. We introduce MaxPoolBERT, an effective extension to BERT that enriches the [CLS] token
representation using max-pooling and attention mechanisms across layers and tokens.

2. We systematically evaluate three architectural variants that incorporate width (token-level)
and depth (layer-level) information into the [CLS] embedding.

3. We show that our proposed approach improves fine-tuning performance on 7 out of 9 GLUE
tasks and achieves an average gain of 1.25 points over the BERT base baseline.

4. We demonstrate that MaxPoolBERT is particularly effective in low-resource scenarios,
providing improved stability and accuracy where training data is limited.

All of our models will be made publicly available after the review process.

2 RELATED WORK

Much research has been done dedicated to improving and optimizing BERT’s training process through
architectural modifications and fine-tuning strategies. Below, we discuss advancements in fine-tuning
stability, text representations, model enhancements, and training efficiency. Our work falls within the
branch of research aimed at optimizing BERT’s representation to enhance downstream classification
results, with a particular focus on augmenting the informativeness of the [CLS] token.

Stabilized BERT Fine-Tuning. The pre-training and fine-tuning paradigm for language models
such as BERT (Devlin et al., 2019) has led to significant improvements across a wide range of NLP
tasks while keeping computational costs manageable. However, fine-tuning remains unstable due to
challenges like vanishing gradients (Mosbach et al., 2021) and limited dataset sizes (Zhang et al.,
2021). Several studies have proposed techniques to address this instability.

Zhang et al. (2021) explore re-initializing BERT layers before fine-tuning, demonstrating that retaining
all pre-trained weights is not always beneficial for fine-tuning. They also show that extending fine-
tuning beyond three epochs improves performance. Hao et al. (2020) examine how fine-tuning affects
BERT’s attention, finding that higher layers change significantly while lower layers remain stable.
They propose a noise regularization method to enhance stability. Mosbach et al. (2021) identify high
learning rates as a key issue that cause fine-tuning instability. They propose using small learning rates
with bias correction and increasing training iterations until nearly zero training loss is achieved. Hua
et al. (2021) introduce Layer-wise Noise Stability Regularization which further stabilizes fine-tuning
through regularization. Xu et al. (2023) propose self-ensemble and self-distillation mechanisms that
enhance fine-tuning stability without requiring architectural changes or external data.

Our method, while not explicitly targeting stability, contributes to more robust performance especially
on low-resource tasks by enabling the [CLS] token to integrate a broader context via pooling and
attention. We analyze fine-tuning stability of our variants in Section 5.2.

Faster and More Efficient Training. In addition to stabilization, architectural enhancements
have been introduced to boost BERT’s efficiency and effectiveness. Goyal et al. (2020) propose to
eliminate tokens after fine-tuning, to reduce the time of inference. They discovered that the token
representations in the highest layer of BERT base carry similar information.

Recently, Warner et al. (2024) introduce ModernBERT, an updated version of BERT with an increased
sequence length of 8192. ModernBERT incorporates architectural improvements such as GeGLU
activations (Shazeer, 2020), Flash Attention (Dao et al., 2022), and RoPE embeddings (Su et al.,
2024).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

While other approaches improve the input embedding size of BERT (Nussbaum et al., 2024) or refine
the pre-training process for GPU’s (Geiping & Goldstein, 2023; Portes et al., 2023; Izsak et al., 2021),
our work specifically concentrates on optimizing the [CLS] token during fine-tuning, leveraging the
information captured in BERT’s layers after pre-training.

Improved BERT Fine-Tuning and Representation Learning. Lastly, several approaches refine
BERT’s classification capability through optimized fine-tuning strategies and enriched sentence
representations - areas that align closely with our approach (see also Stankevičius & Lukoševičius
(2024) who provide a comprehensive survey of methods for extracting sentence-level embeddings
from BERT).

Toshniwal et al. (2020) systematically compared different text span representations using BERT, and
found that max-pooling performs quite well across tasks, though its effectiveness varies. Bao et al.
(2021) construct sentence representations for classification by selecting meaningful n-grams and
combining sub-tokens of a pre-trained BERT model into span representations using a max-pooling
approach. In contrast, our method does not require span selection or input modification, and applies
pooling and attention directly to hidden states during fine-tuning.Hu et al. (2024) introduce a flexible
BERT architecture with dynamic width and depth that adapts the number of attention heads, hidden
size, and number of layers at inference time using knowledge distillation. Our approach does not
alter the base architecture, instead we enrich the fixed-size [CLS] embedding to boost classification
performance.

Chang et al. (2023) introduce Multi-CLS BERT, a framework that modifies pre-training and adds
multiple [CLS] tokens to the sequence for fine-tuning. We achieve comparable results on the GLUE
benchmark without altering the pre-training setup. Chen et al. (2023) present HybridBERT, which
incorporates a hybrid pooling network and drop masking during pre-training to accelerate training
and improve downstream accuracy. While HybridBERT combines multiple pooling strategies (mean,
max, and attention) to replace the [CLS] token, we retain the original [CLS] embedding and
instead enrich it through architectural refinements such as an additional multi-head attention layer and
optional sequence-wide pooling. This allows our method to be applied to any pre-trained BERT-like
model without re-training, with particular benefits observed on tasks with limited training data.

Recently, Galal et al. (2024) explore aggregation techniques such as mean pooling and self-attention
on output embeddings for Arabic sentiment analysis. They show that freezing BERT during fine-
tuning can boost performance. Our method can be combined with such techniques but focuses on
improving the [CLS] pathway, especially under low-resource conditions.

Lastly, Lehečka et al. (2020) propose modifying BERT’s output pooling strategy to improve large-
scale multi-label text classification. Specifically, they replace the [CLS] token with combined mean
and max pooling over the final hidden states of all tokens, arguing that this captures richer semantic
information for classification. While their method entirely discards the [CLS] embedding, our
approach retains it and enhances its contextual richness by integrating sequence-wide information via
additional architectural layers during fine-tuning.

3 REFINING THE [CLS] TOKEN

It has been shown that other token representations in the layers of BERT also capture sentence-level
representations (Rogers et al., 2020). We investigate whether the informativeness of the [CLS]
token embedding can be further enhanced during fine-tuning, to improve downstream classification
results. To do this, we include more depth information from other BERT layers and also more width
information from other tokens within the sequence. We study different versions of fine-tuning BERT
for sequence classification tasks. All variants are described below.

3.1 PRELIMINARIES

Final-Layer [CLS] Representation. As a baseline we use the [CLS] token of the final encoder
layer of a fine-tuned vanilla BERT base model (Devlin et al., 2019) for classification (see Figure 2a).
Recall that a single layer of BERT can be written as

fi : RT×d → RT×d, (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Layer 1

. . .

Layer N

Classification Head

[CLS] Tok1 Tok2 . . . TokT

E[CLS]

E[CLS]

(a) Baseline. Plain vanilla BERT for sequence clas-
sification, where the embedding of the [CLS] token
of the final layer is used as input for the classification
head.

Layer 1

. . .

Layer N

Max

Classification Head

E[CLS]

E[CLS] ETok1 ETokT

E[CLS] ETok1 ETokT

[CLS] Tok1 Tok2 . . . TokT

k

(b) MaxCLS. A max-pooling operation is applied on
the [CLS] tokens of the last k layers before classifi-
cation.

Layer 1

. . .

Layer N

MHA Layer

Classification Head

E[CLS]

E[CLS] ETok1 ETokT

E[CLS] ETok1 ETokT

[CLS] Tok1 Tok2 . . . TokT

(c) MHA. An additional multi-head attention layer
allows the [CLS] token to attend to all tokens of the
last layer.

Layer 1

. . .

Layer N

Max

MHA Layer

Classification Head

E[CLS]

E[CLS] ETok1 ETokT

E[CLS] ETok1 ETokT

[CLS] Tok1 Tok2 . . . TokT

k

(d) MaxSeq + MHA. A max-pooling operation on the
whole sequence is combined with an additional MHA
layer.

Figure 2: Comparison of four BERT architectures for sequence classification. (Left above)
Classical BERT for sequence classification architecture. (Right above) Applying max-pooling on
the token embeddings of the [CLS] token over the last k layers. (Left below) Adding an additional
MHA layer before classification. (Right below) MaxPoolBERT architecture: After the Nth layer (N =
12 for BERT base), we apply a sequence-wide max-pooling operation over the last k layers (we used
k = 3). The [CLS] token can then attend to every token after the max-pooling and the resulting
[CLS] token embedding is used for classification.

where i indicates the layer number (BERT base has 12 layers), T is the number of tokens, and d is
the dimensionality of each token vector. We denote the values of the intermediate layers by y(i):

y(1) = f1(x), y(i+1) = fi+1(y
(i)). (2)

The classification token of each layer is the first token, i.e., for a sequence of tokens y(i) = [t1i, ..., tTi]
in the ith layer,

[CLS]i = t1i ∈ R1×d. (3)
The embedding of the [CLS] token serves as the input for the classification head c, which we
have choosen to be a simple linear layer without an activation function, since we are just inter-
ested in the plain expressiveness of the refinement (instead of adding tanh as in the original BERT
implementation):

c : R1×d → R. (4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Thus, the baseline model for sequence classification can be written as:

(c ◦ CLS ◦ f12 ◦ · · · ◦ f1) : RT×d → R (5)

for BERT base with 12 layers.

Max-pooling operation. The final layers of a BERT model are known to contain the task-specific
information. In order to utilize not only the last layer but several layers, we have to define a
flexible maximizing operation, that can work with several sequences of vectors. For this, we write
Θ

(k)
t ∈ Rk×t×d for the tensor that contains the first t token vectors (each d dimensional) of the last

k layers. For instance, Θ(1)
1 ∈ R1×1×d is the [CLS] token, and Θ

(k)
1 ∈ Rk×1×d collects the token

vectors the [CLS] token of the last k layers. Similarly, Θ(1)
T ∈ R1×T×d contains all token vectors of

the last layer, and Θ
(k)
T ∈ Rk×T×d all token vectors of the last k layers.

Next, we define an element-wise max-pooling operation that maximizes over the first dimension, i.e.,

max : Rk×t×d → Rt×d. (6)

Written as Pytorch1 code, the operation is torch.max(Theta, dim=1) for b-sized minibatches
of shape b× k × t× d.

Mean-pooling operation. Several studies indicate, that max-pooling seems to be a stable choice to
aggregate information into a single sentence representation. In the experimental section (Section 4),
we also consider mean-pooling to challenge these results. For this, we apply an element-wise
mean-pooling operation

mean : Rk×t×d → Rt×d (7)
on every vector of our k chosen layers (defined analogously as the max-pooling operation).

3.2 DEPTH-WISE [CLS] POOLING (MAXCLS)

To use the vertical information (i.e., more depth) as one possible improvement for BERT’s fine-tuning,
we take information from the last k layers (instead of only from the last layer): we extract the last
k [CLS] embeddings [[CLS]12−k+1, . . . ,[CLS]12] which corresponds to Θ

(k)
1 ∈ Rk×1×d (using

the notation of the previous paragraph). Then we apply the element-wise max-pooling operation on
the extracted tokens (see Figure 2b).

3.3 TOKEN-WISE ATTENTION VIA ADDITIONAL MHA LAYER (MHA)

The orthogonal way to enrich the information in the [CLS] token, is to consider horizontal informa-
tion (i.e., more width, see Figure 2c). For this, we include all tokens of the last layer. To obtain a
single vector, we employ an additional multi-head attention (MHA) layer on the encoder output, but
compute the attention only for the [CLS] token. We write the MHA as (see Vaswani et al., 2017),

MHA(Q,K,V) = [head1, . . . , headh]W0 (8)

where the heads are defined as

heads = Attention(QWQ
s ,KWK

s , V WV
s ). (9)

Using the standard BERT base model with 12 layers, we have Q = [CLS]12 and K = V = y(12).
Through the attention mechanism, the [CLS] token can attend to all other tokens once more before
classification. Note that the additional MHA layer is not part of the pre-training process and is
added and initialized before the fine-tuning process. We use the default initialization of the Pytorch1
multi-head attention implementation which is a Xavier uniform initialization (Glorot & Bengio, 2010).
For the number of attention heads we choose h = 4.

1https://pytorch.org/

5

https://pytorch.org/


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 SEQUENCE-WIDE POOLING WITH MHA (MAXSEQ + MHA & MEANSEQ + MHA )

Parameter Value
learning rate 2e-5
epochs 4
batch size 32
warmup ratio 0.1
weight decay 0.01

Table 1: Hyperparameters used for all fine-
tuning experiments.

Finally, we combine the additional depth and width
information of MaxCLS and MHA by extending the
max-pooling operation to the whole sequences of the
last k layers by using max(Θ

(k)
T ) ∈ Rk×T×d. We

call this setup MaxSeq+ MHA, since the maximum
is now along the whole sequence and the additional
MHA layer aggregates the pooled information. We
call this approach MaxPoolBERT in the following.
As a variant, we replaced max pooling with mean
pooling. We report the results for mean pooling with
an additional MHA layer as MeanSeq+ MHA.

4 EXPERIMENTS

In order to evaluate each previously presented modification of the BERT architecture for sequence
classification, we fine-tune each model on different classification tasks of the GLUE benchmark and
compare the results. As a baseline, we use a standard BERT base model (Devlin et al., 2019). In
addition, we assess the generalizability of our approach by applying it to a BERT variant, namely
RoBERTa base (Liu et al., 2019).

4.1 DATASETS

The General Language Understading Evaluation (GLUE) benchmark (Wang et al., 2018) is a well
known benchmark for natural language understanding (NLU) and natural language inference (NLI)
tasks. We evaluate on the following 9 tasks:

• CoLA (Corpus of Linguistic Acceptability (Warstadt et al., 2019)): 10,657 sentences from
linguistic publications, annotated for grammatical acceptability (acceptable or unaccept-
able).

• MRPC (Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005)): 5,800 sen-
tence pairs from news source, annotated for paraphrase identification (equivalent or not
equivalent).

• QNLI (Question NLI): an NLI dataset derived from the Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016) containing question paragraph pairs. The task is
to predict if the question is answered by the given paragraph (entailment or no entailment).

• MNLI (Multi-Genre NLI (Williams et al., 2018)): includes 433,000 sentence pairs, anno-
tated with three different indicators for entailment (neutral, contradiction or entailment).
MNLI includes both matched (in-domain) and mismatched (cross-domain) sections.

• SST-2 (The Stanford Sentiment Treebank (Socher et al., 2013)): 215,154 phrases annotated
for sentiment analysis (positive or negative).

• STS-B (Semantic Textual Similarity Benchmark (Cer et al., 2017)): 8,630 sentence pairs
annotated with a textual similarity score (from zero to five).

• RTE (Recognizing Textual Entailment (Dagan et al., 2006)): 5,770 sentence pairs annotated
for entailment recognition (entailment or no entailment).

• QQP (Quora Question Pairs): 795,000 pairs of questions from Quora, annotated for seman-
tical similarity (duplicate or no duplicate).

• WNLI (Winograd NLI Levesque et al., 2012): 852 sentence pairs annotated for textual
entailment (entailment or no entailment).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model CoLA MRPC QNLI MNLI SST-2 STS-B RTE QQP WNLI
MCC Acc. F1 Acc. m mm Acc. Sp. Acc. Acc. F1 Acc.

Train Size 8.5k 3.7k 3.7k 105k 393k 393k 67k 5.75k 2.5k 364k 364k 634
BERT base 53.59 82.43 87.49 90.96 84.27 84.57 92.55 88.47 63.42 90.65 87.40 49.77
MaxCLS 55.32 83.66 88.5 91.15 84.22 84.55 92.62 88.97 63.06 90.59 87.33 50.23
MHA 55.88 85.38 89.51 90.49 84.37 84.67 92.32 88.04 64.98 90.67 87.45 55.4
MaxSeq+MHA 55.35 85.95 89.78 90.73 83.82 84.24 92.74 88.22 66.06 90.59 87.32 55.4
MeanSeq+MHA 55.10 85.62 89.66 90.86 83.78 84.2 92.51 87.91 66.67 90.68 87.41 54.46
∆ 2.29 3.52 2.29 0.19 0.24 0.1 0.19 0.5 3.25 0.03 0.05 5.63

Table 2: Our proposed variants improve the performance over BERT base on GLUE validation
tasks (average of 3 seeds). The size of the training data set is highlighted in gray. We report Matthews
correlation coefficient (MCC) for CoLA, accuracies for matched (m) and mismatched results (mm)
for MNLI, and Spearman correlation (Sp.) for STS-B. Below we report the improvement from the
best performing variant over the baseline as ∆.

Model CoLA ↓ MRPC ↓ QNLI ↓ MNLI ↓ SST-2 ↓ STSB ↓ RTE ↓ QQP ↓ WNLI ↓
BERT Base 6.34e-02 2.42e-02 2.08e-03 1.97e-03 1.99e-03 3.2e-03 1.78e-02 10.8e-04 5.86e-02
MaxCLS 4.55e-02 2.02e-02 3.89e-03 2.73e-03 3.81e-03 3.8e-03 1.86e-02 9.26e-04 4.61e-02
MHA 4.3e-02 2.1e-02 5.69e-03 2.43e-03 3.63e-03 4.99e-03 1.86e-02 8.09e-04 4.61e-02
MaxSeq + MHA 4.22e-02 2.18e-02 5.11e-03 4.45e-03 3.64e-03 4.63e-03 1.96e-02 7.87e-04 4.31e-02
MeanSeq + MHA 4.22e-02 2.03e-02 4.49e-03 5.04e-03 4.46e-03 4.55e-03 2.12e-02 7.46e-04 3.97e-02

Table 3: Standard deviations for three fine-tuning runs with different random seeds.

4.2 EXPERIMENTAL DETAILS

All experiments were run on a single NVIDIA A100 GPU. We used the Huggingface transformers
and dataset libraries2 to implement and train all of our models. Each model was fine-tuned three
times with three different random seeds for four epochs. We report the mean of all runs and use
the validation sets of all GLUE tasks for evaluation. Experimenting with different values for k (the
number of the considered layers), we found that k = 3 works best (see Appendix A.1.1). All others
hyperparameters are listed in Table 1.

5 RESULTS

We report the results for all model variants in each task and analyze fine-tuning stability by measuring
the standard deviation between runs with different seeds.

5.1 PERFORMANCE ACROSS GLUE TASKS

The performance of each of our four variants on the GLUE benchmark tasks is presented in Table 2.
For each task, at least one variant achieves higher performance than the BERT baseline, indicating
that our proposed methods for enriching the [CLS] token representation are effective. However, the
magnitude of improvement varies across tasks.

Model GLUE avg.
BERT Base 79.63
MaxCLS 80.02
MHA 80.76
MaxSeq+MHA 80.85
MeanSeq+MHA 80.75
∆ 1.25

Table 4: Average performance across all GLUE
tasks. MaxPoolBERT shows a consistent gain over
BERT base.

The MaxCLS variant, which applies max-
pooling over the [CLS] token representations
from the last k layers, results in marginal to
no improvement for most tasks. Notably, this
variant achieves the best performance among all
variants on QNLI and STS-B, suggesting that
layer-wise max-pooling can be beneficial for cer-
tain task types. Both tasks incorporate semantic
matching between two texts, thus both require
nuanced understanding of sentence meaning.

The MHA variant introduces an additional
MHA layer, allowing the final-layer [CLS] to-
ken to attend to the full sequence before clas-

sification. This variant consistently improves upon the baseline BERT model, indicating that this

2https://huggingface.co/

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Accuracies for the GLUE benchmark with error bars. We show the standard deviation
between three fine-tuning runs with three random seeds. Note that the y-axis is shifted but scaled
equally across tasks.

extra attention step, effectively enhances the model’s ability to integrate global context. The biggest
improvement is observed on the WNLI dataset, which has the fewest training examples in the GLUE
benchmark (634 training examples in total), suggesting that the added attention is particularly helpful
in low-resource settings.

The MaxSeq+MHA variant combines token-wise max-pooling over the sequence with the additional
MHA layer. This configuration shows the most consistent improvements, achieving a higher perfor-
mance than the baseline in 7 out of 9 tasks. As shown in Figure 1, the largest improvements are again
seen on datasets with limited training data, such as CoLA, MRPC, RTE and WNLI. These findings
suggest that combining sequence-level pooling with attention further enhances robustness in low
resource settings.

Overall, MeanSeq+MHA performs similarly well as max-pooling, on RTE it even achieves higher
performance than max-pooling. In the end, max-pooling seems to be a better choice as mean-pooling
as it works better for most GLUE tasks.

Model GLUE avg.
RoBERTa Base 82.62
MaxSeq+MHA 82.6
∆ -0.02

Table 5: Average performance across
all GLUE tasks. MaxPoolBERT shows
a gain over RoBERTa base.

For clarity, Table 4 shows the average performance of
each model variant across all GLUE tasks. The MaxSeq+
MHA variant, which we call MaxPoolBERT, achieves the
highest overall average. While the average improvement
over the baseline is 1.25 points, individual tasks show
greater improvements.

Additionally we apply the max-pooling and MHA com-
bination to a BERT variant, namely RoBERTa (Liu et al.,
2019). The results are depicted in Table 6. For RoBERTa,
our max-pooling + MHA variant shows improvements on

4 out of 9 tasks but on average both models perform equally (see Table 5). RoBERTa is an optimized

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

version of BERT with a similar architecture, however the effects vary on this BERT variant. A
significant improvement can only be observed on the CoLA dataset.

Model CoLA MRPC QNLI MNLI SST-2 STS-B RTE QQP WNLI
MCC Acc. F1 Acc. m mm Acc. Sp. Acc. Acc. F1 Acc.

Train Size 8.5k 3.7k 3.7k 105k 393k 393k 67k 5.75k 2.5k 364k 364k 634
RoBERTa Base 54.96 88.56 91.64 92.29 87.15 86.97 93.2 89.78 73.29 90.84 87.64 56.34
MaxSeq+MHA 57.43 87.58 91.01 92.15 86.99 87.14 93.43 90.49 70.4 90.93 87.85 55.87
∆ 2.47 -0.98 -0.63 -0.14 -0.16 0.17 0.23 0.71 -2.89 0.09 0.21 -0.47

Table 6: Performance on GLUE validation tasks for RoBERTa (average of 3 seeds).

5.2 STABILITY ON LOW-RESOURCE TASKS

To assess fine-tuning stability, which is usually worse for smaller datasets (Devlin et al., 2019; Lee
et al., 2020; Dodge et al., 2020), we run all experiments with three different seeds for each GLUE task.
We report the mean accuracy across runs (for CoLA we report Matthews correlation coefficient, for
STS-B we report Spearman rank correlation), and include error bars showing the standard deviation
of these three runs (see Figure 3 and Table 3).

We observe that the stability in fine-tuning remains comparable across model variants for most
datasets. However, improvements are observed for datasets with fewer training samples such as
CoLA, MRPC, QQP and WNLI, where our variants exhibit reduced variability between runs. These
findings suggest that our proposed modifications improve robustness in the low-sample regime.

6 CONCLUSION

We introduced MaxPoolBERT, a lightweight yet effective refinement of BERT’s classification pipeline
that improves the representational quality of the [CLS] token for the BERT base model. Our method
leverages max-pooling across layers and tokens, and introduces a multi-head attention layer that allows
the [CLS] token to re-aggregate contextual information before classification. These modifications
require no changes to pre-training and add minimal overhead to fine-tuning.

Empirical results on the GLUE benchmark demonstrate that MaxPoolBERT outperforms standard
BERT base across most tasks, with especially strong improvements in low-resource settings. This sug-
gests that BERT’s native use of the final-layer [CLS] embedding underutilizes available information
and that small architectural additions can enhance generalization without sacrificing efficiency.

LIMITATIONS

While MaxPoolBERT improves downstream performance, several limitations remain:

• No task-specific tuning. Our experiments use shared hyperparameters across tasks. Further
gains could be possible with task-specific settings for pooling depth, attention heads, or
training schedules.

• Model size and generalization. Our work focuses on BERT base. We also examined one
BERT variant but were not able to demonstrate an advantage of applying max-pooling +
MHA for RoBERTa.

• Scope of evaluation. We focus on sentence-level classification tasks in GLUE. The applica-
bility of our approach to other tasks, such as token classification, generation, or cross-lingual
transfer, is not yet evaluated.

In the future we aim to further investigate how to optimize the fine-tuning of small BERT models.
While larger models often yield better performance, smaller models are crucial in real-time or
resource-constrained environments. The BERT training paradigm following pre-training and fine-
tuning has been predominant for several years and is widely used, so it is important to study whether
further improvements can be made through small changes to this learning paradigm.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Rongzhou Bao, Zhuosheng Zhang, and Hai Zhao. Span fine-tuning for pre-trained language
models. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 1970–1979,
Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.findings-emnlp.169. URL https://aclanthology.org/2021.
findings-emnlp.169/.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task 1:
Semantic textual similarity multilingual and crosslingual focused evaluation. In Steven Bethard,
Marine Carpuat, Marianna Apidianaki, Saif M. Mohammad, Daniel Cer, and David Jurgens
(eds.), Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017),
pp. 1–14, Vancouver, Canada, August 2017. Association for Computational Linguistics. doi:
10.18653/v1/S17-2001. URL https://aclanthology.org/S17-2001/.

Haw-Shiuan Chang, Ruei-Yao Sun, Kathryn Ricci, and Andrew McCallum. Multi-CLS BERT:
An efficient alternative to traditional ensembling. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 821–854, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.48. URL
https://aclanthology.org/2023.acl-long.48/.

Qian Chen, Wen Wang, Qinglin Zhang, Chong Deng, Ma Yukun, and Siqi Zheng. Improving bert
with hybrid pooling network and drop mask. arXiv preprint arXiv:2307.07258, 2023.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Joaquin Quiñonero-Candela, Ido Dagan, Bernardo Magnini, and Florence d’Alché
Buc (eds.), Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Clas-
sification, and Recognising Tectual Entailment, pp. 177–190, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg. ISBN 978-3-540-33428-6.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//www.aclweb.org/anthology/N19-1423.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL
https://aclanthology.org/I05-5002/.

Omar Galal, Ahmed H Abdel-Gawad, and Mona Farouk. Rethinking of bert sentence embedding
for text classification. Neural Computing and Applications, 36(32):20245–20258, 2024. doi:
https://doi.org/10.1007/s00521-024-10212-3.

Jonas Geiping and Tom Goldstein. Cramming: Training a language model on a single GPU in one
day. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 11117–11143. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/geiping23a.html.

10

https://aclanthology.org/2021.findings-emnlp.169/
https://aclanthology.org/2021.findings-emnlp.169/
https://aclanthology.org/S17-2001/
https://aclanthology.org/2023.acl-long.48/
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://aclanthology.org/I05-5002/
https://proceedings.mlr.press/v202/geiping23a.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010.
PMLR. URL https://proceedings.mlr.press/v9/glorot10a.html.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy, Yogish Sabhar-
wal, and Ashish Verma. PoWER-BERT: Accelerating BERT inference via progressive word-vector
elimination. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
3690–3699. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
goyal20a.html.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. Investigating learning dynamics of BERT fine-tuning.
In Kam-Fai Wong, Kevin Knight, and Hua Wu (eds.), Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International
Joint Conference on Natural Language Processing, pp. 87–92, Suzhou, China, December 2020.
Association for Computational Linguistics. URL https://aclanthology.org/2020.
aacl-main.11.

Ting Hu, Christoph Meinel, and Haojin Yang. A flexible bert model enabling width- and depth-
dynamic inference. Computer Speech & Language, 87:101646, 2024. ISSN 0885-2308.
doi: https://doi.org/10.1016/j.csl.2024.101646. URL https://www.sciencedirect.com/
science/article/pii/S0885230824000299.

Hang Hua, Xingjian Li, Dejing Dou, Chengzhong Xu, and Jiebo Luo. Noise stability regularization
for improving BERT fine-tuning. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer,
Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao
Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 3229–3241, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.258. URL
https://aclanthology.org/2021.naacl-main.258.

Peter Izsak, Moshe Berchansky, and Omer Levy. How to train BERT with an academic budget. In
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 10644–10652,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.831. URL https://aclanthology.org/
2021.emnlp-main.831/.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang. Mixout: Effective regularization to finetune
large-scale pretrained language models. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=HkgaETNtDB.

Jan Lehečka, Jan Švec, Pavel Ircing, and Luboš Šmı́dl. Adjusting bert’s pooling layer for large-scale
multi-label text classification. In International Conference on Text, Speech, and Dialogue, pp.
214–221. Springer, 2020. doi: https://doi.org/10.1007/978-3-030-58323-1 23.

Hector J. Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation
and Reasoning, KR’12, pp. 552–561. AAAI Press, 2012. ISBN 9781577355601.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019. doi: https://doi.org/10.48550/arXiv.1907.11692.

Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. On the stability of fine-
tuning {bert}: Misconceptions, explanations, and strong baselines. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
nzpLWnVAyah.

Zach Nussbaum, John X Morris, Brandon Duderstadt, and Andriy Mulyar. Nomic embed: Training a
reproducible long context text embedder. arXiv preprint arXiv:2402.01613, 2024.

11

https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v119/goyal20a.html
https://proceedings.mlr.press/v119/goyal20a.html
https://aclanthology.org/2020.aacl-main.11
https://aclanthology.org/2020.aacl-main.11
https://www.sciencedirect.com/science/article/pii/S0885230824000299
https://www.sciencedirect.com/science/article/pii/S0885230824000299
https://aclanthology.org/2021.naacl-main.258
https://aclanthology.org/2021.emnlp-main.831/
https://aclanthology.org/2021.emnlp-main.831/
https://openreview.net/forum?id=HkgaETNtDB
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jacob Portes, Alexander Trott, Sam Havens, DANIEL KING, Abhinav Venigalla, Moin
Nadeem, Nikhil Sardana, Daya Khudia, and Jonathan Frankle. Mosaicbert: A
bidirectional encoder optimized for fast pretraining. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural In-
formation Processing Systems, volume 36, pp. 3106–3130. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/095a6917768712b7ccc61acbeecad1d8-Paper-Conference.pdf.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392,
Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/
D16-1264. URL https://aclanthology.org/D16-1264/.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in BERTology: What we know about
how BERT works. Transactions of the Association for Computational Linguistics, 8:842–866, 2020.
doi: 10.1162/tacl a 00349. URL https://aclanthology.org/2020.tacl-1.54/.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven Bethard (eds.),
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp.
1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.
URL https://aclanthology.org/D13-1170/.

Lukas Stankevičius and Mantas Lukoševičius. Extracting sentence embeddings from pretrained
transformer models. Applied Sciences, 14(19), 2024. ISSN 2076-3417. doi: 10.3390/app14198887.
URL https://www.mdpi.com/2076-3417/14/19/8887.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomput., 568(C), February 2024. ISSN 0925-
2312. doi: 10.1016/j.neucom.2023.127063. URL https://doi.org/10.1016/j.neucom.
2023.127063.

Shubham Toshniwal, Haoyue Shi, Bowen Shi, Lingyu Gao, Karen Livescu, and Kevin Gimpel.
A cross-task analysis of text span representations. In Spandana Gella, Johannes Welbl, Marek
Rei, Fabio Petroni, Patrick Lewis, Emma Strubell, Minjoon Seo, and Hannaneh Hajishirzi (eds.),
Proceedings of the 5th Workshop on Representation Learning for NLP, pp. 166–176, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.repl4nlp-1.20. URL
https://aclanthology.org/2020.repl4nlp-1.20/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
Grzegorz Chrupała, and Afra Alishahi (eds.), Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 353–355, Brussels, Belgium,
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
https://aclanthology.org/W18-5446.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said
Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, et al. Smarter, bet-
ter, faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context
finetuning and inference. arXiv preprint arXiv:2412.13663, 2024.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/095a6917768712b7ccc61acbeecad1d8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/095a6917768712b7ccc61acbeecad1d8-Paper-Conference.pdf
https://aclanthology.org/D16-1264/
https://aclanthology.org/2020.tacl-1.54/
https://aclanthology.org/D13-1170/
https://www.mdpi.com/2076-3417/14/19/8887
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://aclanthology.org/2020.repl4nlp-1.20/
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/W18-5446


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019. doi: 10.1162/
tacl a 00290. URL https://aclanthology.org/Q19-1040/.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Marilyn Walker, Heng Ji, and Amanda Stent
(eds.), Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.
1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1101. URL https://aclanthology.org/N18-1101/.

Yi-Ge Xu, Xi-Peng Qiu, Li-Gao Zhou, and Xuan-Jing Huang. Improving bert fine-tuning
via self-ensemble and self-distillation. J. Comput. Sci. Technol., 38(4):853–866, July 2023.
ISSN 1000-9000. doi: 10.1007/s11390-021-1119-0. URL https://doi.org/10.1007/
s11390-021-1119-0.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Weinberger, and Yoav Artzi. Revisiting few-
sample {bert} fine-tuning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=cO1IH43yUF.

A APPENDIX

A.1 ABLATIONS

We conduct ablation studies to test different modifications of our architectures. We describe all
experiments and report their results in the following.

A.1.1 CHOICE OF k

We experiment with the choice of k for the max-pooling layer on the smaller GLUE datasets (CoLA,
MRPC and RTE) and report the results in the following in Table 7. Because we average over three
runs with different random seeds, the choice of k does not have an immense influence on performance,
but it is apparent that k = 3 is the best choice on the data sets tested.

A.1.2 TIME DIFFERENCE

CoLA MRPC RTE
Acc. Acc. F1 Acc.

k = 1 54.85 83.58 88.44 63.18
k = 2 55.76 85.21 89.29 65.34
k = 3 55.35 85.95 89.78 66.06
k = 4 56.42 85.29 89.27 65.34
k = 6 55.65 85.13 89.25 65.7
k = 12 55.41 85.21 89.17 65.46

Table 7: Effect of max-pooling depth k on small
GLUE tasks. k = 3 generally yields best results.

To evaluate differences in fine-tuning and in-
ference time, we measured the time to fine-tune
both standard BERT and MaxPoolBERT for four
epochs on the MRPC dataset on a single A100
GPU. We also measured the inference time on
the MRPC validation set for both model variants.
Fine-tuning BERT took 289.298 seconds (ap-
prox. 72.324 seconds per epoch), inference on
the validation set took 2.9935 seconds. In con-
trast, fine-tuning MaxPoolBERT on the MRPC
dataset takes: 294.504 seconds (approx. 73.626
seconds per epoch). Inference time on the validation set is 3.0284 seconds. That is a difference of
approximately 1.3 seconds per epoch of fine-tuning and 0.035 seconds difference for inference, which
is neglectable.

13

https://aclanthology.org/Q19-1040/
https://aclanthology.org/N18-1101/
https://doi.org/10.1007/s11390-021-1119-0
https://doi.org/10.1007/s11390-021-1119-0
https://openreview.net/forum?id=cO1IH43yUF

	Introduction
	Related Work
	Refining the [CLS] Token
	Preliminaries
	Depth-Wise [CLS] Pooling (MaxCLS)
	Token-Wise Attention via Additional MHA Layer (MHA)
	Sequence-Wide Pooling with MHA (MaxSeq + MHA & MeanSeq + MHA )

	Experiments
	Datasets
	Experimental Details

	Results
	Performance Across GLUE Tasks
	Stability on Low-Resource Tasks

	Conclusion
	Appendix
	Ablations
	Choice of k
	Time Difference



