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Abstract

Inflammation and chronic changes in the different tissue structures (e.g., glomeruli, tubuli,
interstitium) are major contributors to kidney transplant failure. Kidney transplant biopsy
diagnostics is based on the Banff classification system, in which pathologists assess these
changes. However, many of these factors have suboptimal reproducibility and the scoring
is labor-intensive. To address this, we developed a multi-class segmentation approach that
covers all tissue structures relevant for diagnostics. Our dataset comprises 99 Periodic-acid
Schiff (PAS)-stained kidney transplant biopsy slides from two pathology departments. An
expert pathologist manually annotated >17,000 structures across eight classes (glomeruli,
sclerotic glomeruli, empty Bowman space, proximal tubuli, distal tubuli, atrophic tubuli,
capsule, arteries/arterioles, and interstitium). We compared two segmentation approaches:
(1) a combination of two nnU-Nets (one for tissue segmentation and one specialized for
structure boundary detection) and (2) the SAM-Path foundation model. For the peritubu-
lar capillary segmentation, we used a previously developed U-Net. The nnU-Nets achieved
a per-class average Dice score of 0.80, outperforming SAM-Path (0.69) and providing a
reliable solution for all tissue structures relevant for kidney transplant biopsy diagnostics.
Next, the nnU-Nets will be used in a reader study aimed at investigating the impact of Al
on pathologists’ performance in Banff lesion scoring. The algorithm is publicly available
on Grand Challenge®.

Keywords: segmentation, nnUNet, segment anything model (SAM), kidney transplant
biopsies, deep learning, Banff classification

1 Introduction

Digital pathology has rapidly advanced through the integration of deep learning, enabled
by whole-slide imaging technologies that digitize biopsies into gigapixel images, so-called
whole-slide images (WSIs). This shift allows computational analysis of tissue, opening new
opportunities in workflow integration and disease diagnosis, including cancer and kidney
pathology (Achi et al., 2019; Song et al., 2023).

1. https://grand-challenge.org/algorithms/kidney-tissue-segmentation
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The kidneys are vital for filtering waste, regulating blood pressure, and maintaining elec-
trolyte balance (Lopez-Giacoman and Madero, 2015; Luyckx et al., 2024). Chronic kidney
disease affects approximately 10% of the global population and can progress to end-stage
renal disease (ESRD), where kidney function declines irreversibly and renal replacement
therapy becomes necessary (Lopez-Giacoman and Madero, 2015). Kidney transplantation
is a common treatment for ESRD, which is often caused by diabetes, hypertension, or
polycystic kidney disease (Hariharan, 2001). Despite improvements in surgical techniques
and immunosuppressive therapies, long-term graft survival remains challenged by chronic
rejection and inflammation (Hamed et al., 2015; Heldal et al., 2023). Histological analy-
sis of tissue compartments, including the interstitium, tubuli, glomeruli, and peritubular
capillaries, is central to assessing graft rejection.

The Banff classification provides an internationally standardized system for grading
transplant rejection. It defines criteria for inflammation and chronic changes such as in-
terstitial fibrosis (ci), tubular atrophy (ct), tubular atrophy with fibrosis (i-IFTA), and
peritubular capillaritis (ptc), using categorical scales from zero (none) to three (severe)
(Naesens et al., 2024). Banff Lesion Scores are derived from these criteria and play a
central role in transplant diagnostics and treatment planning.

Convolutional neural networks (CNNs) have shown strong performance in segmenting
kidney structures. For example, Hermsen et al. (2022) used a U-Net-based architecture
to segment major tissue compartments, achieving high accuracy on PAS-stained biopsies.
More recent models such as Omni-Seg (Deng et al., 2023) and PrPSeg (Deng et al., 2024) in-
corporate multi-resolution patch inputs to capture tissue features at different spatial scales.
While these techniques have demonstrated improved segmentation performance, they re-
quire task-specific training pipelines and complex architectural modifications.

More recently, vision foundation models such as SAM-Path (Zhang et al., 2023) and
SAM-Nephro (Weijer et al., 2024) have shown promise for domain-agnostic segmentation
in digital pathology. Unlike traditional CNNs, these models can often be applied out-
of-the-box, requiring minimal fine-tuning to perform meaningful segmentation. However,
their effectiveness on PAS-stained kidney transplant biopsies has not been systematically
evaluated. It should also be noted that SAM-Nephro is primarily designed as an instance
segmentation—based annotation tool, with limited standalone segmentation capability.

Our contributions are threefold. First, we develop a multi-class structure segmentation
model for kidney transplant biopsies using nnU-Net, an automated and highly adaptable
segmentation framework that configures itself to a given dataset (Isensee et al., 2021).
Second, we integrate contextual information from other structural compartments with the
results from existing peritubular capillary (PTC) segmentations. Third, we compare the
performance of dedicated CNN-based models with foundation model-based approaches for
PAS-stained slides.

2 Methods

The nnU-Net framework (Isensee et al., 2021) is a self-configuring segmentation pipeline
based on the original U-Net architecture. It automates preprocessing, architecture con-
figuration, training, and postprocessing based on a dataset-specific fingerprint that en-
codes key properties such as spacing, modality, and intensity distribution. We used the
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pathology-specific extension of nnU-Net proposed by Spronck et al. (2023), which addresses
domain-specific challenges such as gigapixel-scale resolution and multi-class segmentation
of morphologically diverse tissue structures.

SAM-Path (Zhang et al., 2023) is a pathology-adapted extension of the Segment Any-
thing Model (SAM), a foundation model that enables prompt-free semantic segmentation.
It augments the standard SAM architecture by introducing a parallel pathology encoder,
whose features are combined with those from SAM’s image encoder and passed to a shared
decoder. A set of trainable class prompts replaces manual input, allowing the model to
generate one segmentation mask per tissue class automatically.

All models were trained using a combination of Dice loss and focal loss. The total loss
was computed as:

Etotal = wDCﬁDice + wFocalﬁFocab (1)

where wpc, Wreear € [0, 1] denote the respective weights assigned to each loss term.
The Dice loss directly optimizes spatial overlap and is effective for sparse classes:
‘CD' _ _ 2 Z th +e€
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where @); and Y; denote the predicted and ground-truth binary masks, and e prevents
division by zero.

(2)

The focal loss (Lin et al., 2018) addresses class imbalance by down-weighting well-classified
examples:

['Focal = - log <JCV> (1 - pt)7 log(pt)7 (3)

()

where p; is the predicted probability for the true class, v controls the focusing strength,
and class weights are set via inverse class frequency (ICF), o; = log (Cﬁ), with ¢; the pixel

count of class i and N the total pixel count (excluding background). This formulation penal-
izes underrepresented classes (e.g., sclerotic glomeruli or atrophic tubuli) without inducing
instability.

Finally, performance was assessed per class using the Dice score metric. Full computa-
tion details are provided in the supplementary materials (S1 and S2).

3 Experimental Setup

This study utilized 99 PAS-stained kidney transplant biopsy WSIs from Radboud Univer-
sity Medical Center (Radboudumc, n = 69) and Mayo Clinic, Rochester (n = 30). Slides
were scanned using a PANORAMIC 1000 (3DHISTECH; Radboudumc) at a resolution of
0.24 pm/px and an Aperio ScanScope XT (Leica Biosystems; Mayo Clinic) at a resolu-
tion of 0.49 pm/px. An expert pathologist annotated eight classes: glomeruli, sclerotic
glomeruli, empty Bowman’s space, tubuli, atrophic tubuli, capsule, arteries/arterioles, and
interstitium. Nearly 20,000 individual structures were annotated (Table 1).
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Table 1: Overview of the number of annotated structures in each data subset for each tissue

class.
Tissue class Train Validation Test Total
Glomeruli 140 55 76 271
Sclerotic glomeruli 121 47 6 174
Empty Bowman’s space 73 14 10 127
Tubuli 7,921 2,637 3,240 13,798
Atrophic tubuli 3,240 899 368 4,507
Capsule 22 6 4 32
Arteries/arterioles 630 210 61 901
Interstitium 84 23 36 143

The dataset was split into training (47 Radboudumec, 16 Mayo), validation (12 Rad-
boudumc, 4 Mayo), and test sets (10 Radboudumec, 10 Mayo), as in Hermsen et al. (2022).
The pixel and class distributions per set are detailed in Table 1 and Figure S.1.

As an additional objective, 16 extra biopsies (13 Radboudumc, 3 Medical University
of Vienna) were used to test whether the segmentation could improve the results of a
previously developed PTC segmentation model (van Midden et al., 2025). These biopsies
were annotated for PTC segmentation only, and slides were scanned using a PANORAMIC
1000 (3DHISTECH; Radboudumc) at 0.24 pm/px.

The nnU-Net was trained using 512 x 512 px patches at 1.0 pm/px resolution with 5-
fold cross-validation, where fold assignments were optimized to match the dataset-wide class
pixel distribution. The network was trained for 100 iterations with a batch size of eight,
using batch normalization, LeakyReLU activation (slope 0.01), and a set of augmenta-
tions including spatial (scaling, rotation, mirroring), color (HSV, gamma), and deformation
transforms. During inference, tissue-background segmentation (Béandi et al., 2019) masked
non-tissue areas, followed by patch-wise sliding window prediction with half-overlap and
Gaussian importance weighting (Isensee et al., 2021). To better resolve adjacent or overlap-
ping structures, a separate border nnU-Net was trained to segment three classes: structure,
border, and interstitium, using the same training configuration as the baseline model. Bor-
ders were generated by dilating ground truth masks by eight pixels (four inward, four
outward) as illustrated by Figure 2.

SAM-Path was trained on 1024 x 1024 patches at 0.5 pm/px. We used the ViT-H SAM
encoder pretrained on SA-1B, combined with a pathology-specific encoder: either HIPT
(Chen et al., 2022) or UNI (Chen et al., 2024). Only the prompt and mask decoders were
fine-tuned since the encoder weights were frozen. Training used a batch size of 12 and
a learning rate of 1 x 107 over 60 iterations. Class-balanced sampling and augmenta-
tions matching the nnU-Net were used for comparability. During inference, each class was
prompted with a trainable token to generate confidence-weighted patch predictions, which
were then stitched into full-resolution segmentation masks.

Both the nnU-Nets and SAM-Path used the AdamW optimizer during training, and
an equal-weighted Dice and focal loss (Liotai = Lpice + LFocal) With v = 2. Final mask
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Visual assessment of kidney Manual annotated structures
structures on PAS WSI on PAS WSI

Total of 99 formalin- Fresh cut
fixed paraffin- PAS-stained
embedded kidney slides
transplant biopsies

Apply border mask
(nnU-Net only)

Network training (n=63)

Testing (n=20)

Postprocessing optimization on Output: segmentation mask
validation set (n=16)

Figure 1: Overview of the nnU-Nets and SAM-Path training workflow: After staining and
scanning, a pathologist annotated ground truth regions on 99 WSIs. The over
140 regions were split into training, validation, and test set. Postprocessing was
applied after inference, utilizing the nnU-Net border network to refine the seg-
mentation masks before postprocessing. These steps were iteratively optimized
on the validation set, and final performance was evaluated on 20 hold-out test
cases.

a) Original PAS ROI b) Tissue Class Annotation Mask c) rder Annoati ask

Figure 2: Separating the different tissue compartments, especially tubuli, was challenging.
To combat this, we trained a separate nnU-Net specifically for border segmenta-
tion (three classes: structure, border, and interstitium).
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Table 2: Per-class Dice score of the best performing nnU-Nets (segmentation and border)
and SAM-Path (UNI encoder) approach on the hold-out test set. The nnU-Nets
outperform SAM-Path on all the tissue classes. Both models score below average
for rarer structures, such as atrophic tubuli and empty Bowman’s space.

nnU-Nets SAM-Path

Glomeruli .95 .92
Sclerotic glomeruli .76 .29
Empty Bowman’s space .66 .63
Tubuli .92 .87
Atrophic tubuli .51 .39
Capsule .89 .85
Arteries/arterioles .82 71
Interstitium .89 .83
Weighted average .74 AT
Per-class average .80 .69

predictions were stitched to produce full-resolution segmentation masks. These masks then
underwent postprocessing by temporarily setting interstitium pixels to zero, filling small
holes (<150 pixels) with neighboring structure labels, and removing small objects (<300
pixels) as noise (reassigned to interstitium). Subregions within structures were merged into
the dominant label. Finally, interstitium pixels were restored.

These models are still missing one tissue class, PTC, for a fully automated Banff scoring.
We integrated this tissue class using an improved version of a previously developed model
specifically for PTC segmentation (van Midden et al., 2025). Since PTCs are found in
the interstitium, our prediction mask only includes PTCs that overlap with the predicted
interstitial regions (see Figure 4).

4 Results and Discussion

The final models were chosen based on their performance on the validation set, which
can be found in Table S.1. Table 2 presents the segmentation performance of the best-
performing nnU-Net and SAM-Path approach on the hold-out test set. Per-class Dice
scores are computed for each slide and then aggregated across all slides in the test set.

For the nnU-Net, we find that the model benefited greatly from extensive data aug-
mentation and the combination with the border model. For SAM-Path, the UNI encoder
configuration yielded the best results.

The nnU-Nets outperformed SAM-Path across all tissue classes, achieving a 0.80 average
Dice per class versus 0.69 for SAM-Path, and a weighted average Dice of 0.74 compared
to 0.47. The nnU-Nets’ performance was also more consistent, particularly for common
structures such as glomeruli, tubuli, capsules, and arteries/arterioles, as highlighted in
Figure S.3. Both models struggled with rarer classes, such as atrophic tubuli and empty
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a) Region of Interest b) Ground Truth Annotations ¢) Segmentation Mask nnU-Nets d) Segmentation Mask SAM-Path

Figure 3: Segmentation performance between (c¢) the nnU-Nets and (d) SAM-Path com-
pared to (b) the ground truth (GT) annotations. The segmentations of both
model outputs are aligned with the GT for reference.

Bowman’s spaces. However, the nnU-Nets’ Dice score for atrophic tubuli is 0.12 higher than
SAM-Path.

Looking at the confusion matrix of the nnU-Nets (Figure S.2), we find that all classes
except atrophic tubuli show a high Dice score. Atrophic tubuli are often misclassified as
normal ones. Tubular atrophy is a continuous process, ranging from mild to severe. Often,
only a part of a tubule is detected as atrophic, whereas the rest is labelled as normal.
Examples of difficult cases for several tissue classes are shown in Figure S.5.

The border nnU-Net improved the separation of overlapping structures by learning
border-specific features independently of class. This approach contrasts with integrated
border-class strategies, reducing confusion between structures and their boundaries. How-
ever, segmentation quality still depends on accurate border detection, and missed borders
may exclude structures during the merging process.

SAM-Path was evaluated using three encoder variants: the base SAM encoder and
versions combined with HIPT or UNI. The pathology-specific encoders showed better results
but were unable to perform on par with the nnU-Nets. This is likely due to these foundation
models being pretrained on H&E- and THC-stained WSIs, but not on PAS. Additionally,
SAM-Path omits ToU-based mask selection, instead assigning pixels based on the highest
class confidence, which may reduce robustness. Future work could reintroduce IoU scoring
or adopt overlapping patch inference to address this.

Regarding runtime, training the nnU-Net required approximately 2 minutes per epoch,
totaling around 3.5 hours per fold. In contrast, training SAM-Path’s class prompts and
mask decoder took approximately 5.5 hours each, with significantly higher GPU memory
usage (~ 40 GB), which limited the available batch size and hardware accessibility.

The integration of the PTC segmentation mask resulted in a 0.04 decrease in the PTC
Dice score. Based on visual inspection, we found that some correctly predicted PTCs
were removed because they were segmented as tubuli by the nnU-Nets and thus were not
considered during the merge.
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a) Region of Interest

Figure 4: (b) PTC segmentations from a previous study (van Midden et al., 2025) were
integrated to refine tissue classification (c), with overlays limited to interstitial
regions (d).

5 Conclusion

This study developed and compared two approaches for tissue segmentation in PAS-stained
kidney transplant biopsies: a task-specific nnU-Net model enhanced with a dedicated bor-
der segmentation network, and the foundation-based SAM-Path model augmented with
pathology-specific encoders.

The nnU-Nets consistently outperformed SAM-Path, delivering reliable segmentation
across all clinically relevant tissue classes. While SAM-Path showed promise on unseen
data, its lack of training on PAS-stained images limited generalization. These findings
underscore the importance of training foundation models on more diverse datasets encom-
passing multiple organs and stainings, including PAS-specific augmentations tailored to this
domain.

To address the inseparability of structures during postprocessing, a separate border seg-
mentation model was implemented to enhance the separation between adjacent structures.
However, this occasionally led to the unintended removal of structures, suggesting that
future work could explore joint training with border-aware loss functions.

The integration of PTC segmentation with the nnU-Nets has room for improvement, as
it currently results in a decrease in the Dice score for the PTCs. Refining postprocessing by
utilizing the model’s prediction uncertainty or applying size-based constraints could improve
this.

Finally, the segmentation of tissue structures is complicated by biological ambiguity and
inter-observer variability, particularly for atrophic tubuli (Breda et al., 2020; Hermsen et al.,
2022). From a clinical perspective, reliable identification of fibrotic versus normal tissue is
more valuable than achieving perfect pixel-level accuracy.

For future work, we will conduct a reader study using this segmentation pipeline together
with the inflammatory cell detection algorithm developed as part of the MONKEY challenge
(Studer, 2024). The reader study will focus on how pathologists can use Al assistance for
Banff lesion scoring and its impact on inter- and intra-observer variability.
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S1 Supplementary Materials: Software and Resources

All experiments were conducted on a deep learning cluster provided by Radboud University
Medical Center. Each nnU-Net fold was trained on either an NVIDIA RTX 2080 Ti, RTX
3080 Ti, or GTX Titan X GPU. Training the SAM-Path mask decoder and class prompts
required more virtual memory, necessitating the use of larger GPUs, specifically an NVIDIA
A100 or L40S.

The experiments were implemented using Python (version 3.10) and PyTorch (version
2.6). For processing WSIs, we used the WholeSlideData package in Python?. The WSIs
were annotated by professional pathologists using the automated slide analysis platform
(ASAP, version 2.1, Computational Pathology Group; RadboudUMC?)

Additionally, we used the publicly available repositories of nnU-Net for pathology (v1)*
and SAM-Path® with minimal adjustments.

S2 Supplementary Materials: Model Evaluation
This section briefly describes the evaluation metrics used and provides a detailed description
of the performance of the nnU-Net border model.

S2.1 Dice Score

Performance was assessed using the Dice score for each class. These metrics were computed
from the confusion matrix M € N¢*¢ where M;; denotes the number of pixels of ground-
truth class j predicted as class 1.

2M;;
Dice; = 4
' ZjMij+Ziji @
Where i € {1,...,C} corresponds to each of the eight tissue classes. For overall perfor-

mance, the unweighted average of each per-class metric was reported:

1 C
SZC;&-, (5)

where s; denotes the Dice metric for class ¢. To emphasize rare class performance without
overwhelming common class contributions, we also used normalized inverse class frequency
(ICF) weighting:

ICFnorm,i = (6)

where n is the number of classes and ¢; the pixel count for class 7.

. https://github.com/DIAGNijmegen/pathology-whole-slide-data

. https://github.com/computationalpathologygroup/ASAP/releases/tag/ASAP-2.1

. https://github.com/DIAGNijmegen/nnUNet-for-pathology/tree/nnunet_for_pathology_v1
. https://github.com/cvlab-stonybrook/SAMPath
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S2.2 Evaluation of Border Network

The border network achieved an average Dice score of 0.84, with a weighted Dice score of
0.79, where the lower weighted score reflected occasional challenges in segmenting structure
borders. Dice scores for borders and structures were 0.71 and 0.94, respectively. No post-
processing was applied to the border predictions. However, small segmentations (<300 px)
were filtered out during the merging stage with the structure masks.

S2.3 Tables and Figures

Interstitium 26.3%

Glomeruli

Sclerotic Glomeruli

Empty Bowman’s Space

Tubuli 32.2%
Atrophic Tubuli
Capsule
Arteries/Arterioles
0% 20% 40% 60% 80% 100

Figure S.1: Class pixel distribution of the 99 PAS-stained WSIs. A significant num-
ber of pixels is attributed to the tubuli, interstitium, and arteries classes,
whereas fewer pixels correspond to empty Bowman’s space, sclerotic glomeruli,
glomeruli, capsule, and atrophic tubuli.
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SAM-Path nnU-Net
Base HIPT UNI | Standalone With Border
Glomeruli 519 766  .863 .944 .956
Sclerotic glomeruli 309 621 799 .926 .924
Empty Bowman’s space | .445 486 .791 .888 .923
Tubuli 752 792 .831 .902 .899
Atrophic tubuli 398 458  .508 .657 .657
Capsule 434 690 .891 .893 .925
Arteries/arterioles 587 741 .900 951 933
Interstitium 705 731 767 .872 874
Weighted average 438 593 .802 .885 .905
Per-class average b18 661 794 .873 .886

Table S.1: Dice scores for segmentation predictions on the postprocessed validation set.
For SAM-Path, three model configurations are evaluated: the base SAM-Path
without an additional encoder, and SAM-Path with an added parallel encoder
from either HIPT or UNI. For nnU-Net, the standalone model is compared to a
version enhanced with a border segmentation network. Both nnU-Net configu-
rations consistently outperform the SAM-Path models with the UNI encoder.
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Interstitium 0.00014 0.0026 0.15 0.01 0.0091  0.032

Glomeruli - 1.5e-05 0.00037 0.031 0.0079 0.0044  0.034

Sclerotic Glomeruli 0.00049 0.2 0.0018  0.053 0.12 0

Empty Bowman’s Space - 0.13  0.00044 0.00016 0.015 0 0.043

True Class

Tubuli - 0.093 0.0052 0.0014 0.00052 0.0038

Atrophic Tubuli - 022  0.0067 0.00029 0 0.00087 0.016

Capsule - 0.079 0 0 0 0.00049

Ateries/Arterioles - 0.084 0.002  2.4e-06 3.2e-05 0.0081 0.018

Interstitium -

Glomeruli -

Sclerotic Glomeruli -

Tubuli -

Atrophic Tubuli -

Capsule -
Ateries/Arterioles

Empty Bowman’s Space -

Predicted Class

Figure S.2: Confusion matrix for the predictions of the nnU-Nets on the hold-out test set.
The diagonal values represent correctly classified instances for each tissue class,
while off-diagonal values indicate misclassifications. The model performs well
on glomeruli, tubuli, capsules, and arteries/arterioles, with high per-pixel ac-
curacy in these classes. However, atrophic tubuli are frequently misclassified as
normal tubuli, and empty Bowman’s space shows confusion with interstitium
and glomeruli, highlighting challenges in distinguishing these structures.
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Figure S.3: Comparison of segmentation outputs between the nnU-Nets and SAM-Path
with the UNI encoder. (a) Ground truth annotations, showing the manually
labeled structures. (b) Predictions from nnU-Net, capturing most structures
with high accuracy but showing some inconsistencies in finer details. (c) Pre-
dictions from SAM-Path with the UNI encoder, demonstrating differences in
segmentation quality, particularly in small structures and boundary regions.
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. Glomeruli

Sclerotic Glomeruli
Empty Bowman's Space
Tubuli

Atrophic Tubuli
Capsule
Arteries/Arterioles

PTC/Border

‘7' . Structure

(© (d |

Figure S.4: Visualization of different segmentation masks applied to a kidney biopsy tissue.
From left to right: (a) the original PAS-stained biopsy slide, (b) the structure
segmentation mask highlighting various tissue structures, (c) the border mask
showing boundaries between structures, and (d) the PTC segmentation mask.
The bottom row presents a zoomed-in region of interest for each mask.
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[[] False Positive
[ False Negative

Figure S.5: Segmentation results and errors for different kidney structures from the best
performing nnU-Net model. (a) Correctly segmented glomeruli, sclerotic
glomeruli, and empty Bowman’s space. (b) Incorrectly segmented structures,
where purple boxes indicate false positives (regions predicted as non-structure
with respect to the structure in the leftmost column), and red boxes indicate
false negatives (missed structure regions). (c¢) Correctly segmented arteries and
capsule structures. (d) Incorrectly predicted arteries and capsule structures,
with false positives and false negatives highlighted in red and purple, respec-
tively.
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