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Abstract

Understanding user preferences plays a crucial role in domains where strategies are designed
by domain experts, such as personalized recommendations, targeted marketing, and human-
centered interface design. However, many existing methods prioritize predictive accuracy
over model transparency, limiting their use in settings that require interpretability. To ad-
dress this issue, we propose the Random Fourier Feature Shared Latent Variable
Model (RFSLVM), a probabilistic generative model based on Gaussian processes that
enables interpretable analyses of user preferences. RFSLVM jointly models two data modal-
ities: real-valued item features and binary user ratings. It learns a two-dimensional visu-
alization space that captures relationships among items and user ratings. Additionally, it
infers user-specific preference vectors that are compact and continuous representations of
generally nonlinear preference functions. These vectors support tasks such as measuring user
similarity and performing preference-based clustering, thereby facilitating downstream anal-
ysis and decision-making. We evaluate RFSLVM on multiple real-world datasets and find
that it performs competitively against baseline models, while maintaining interpretability.
In addition, we demonstrate the utility of the learned representations through qualitative
analyses, including hierarchical clustering and the identification of latent preference pat-
terns. These findings suggest that RFSLVM offers a practical and interpretable approach
to modeling user preferences in real-world applications.

1 Introduction

Understanding user preferences plays a crucial role in domains where strategies are designed by domain
experts, such as personalized recommendations (He et al., 2017; Kang & McAuley, 2018; Sun et al., 2019),
targeted marketing (Min et al., 2023; Liu et al., 2023), and human-centered interface design (Kunkel et al.,
2017; Zhang et al., 2020). Despite recent advances in automation, many strategies in these domains are
still crafted manually by domain experts. These expert-designed strategies rely on a clear understanding
of user preferences, as reflected in how users engage with items. To inform such strategies, interpretable
visualizations (Yuan et al., 2021; Li & Zhao, 2021) and multi-perspective analyses of user preferences provide
useful insights.

This study considers scenarios with two data modalities: real-valued item features and binary user ratings
indicating positive or negative feedback on the items. Based on these inputs, we address two main objectives.
First, we aim to derive a shared latent space, referred to as the visualization space, that captures rela-
tionships among items and user ratings while supporting intuitive, low-dimensional visualization. Second,
we aim to learn vector representations, referred to as the preference vectors, that encode users’ nonlinear
preferences within the visualization space. These vectors support the computation of similarities between
users, facilitating exploratory analysis such as clustering and preference pattern discovery. An example of
the output produced by our model is shown in Figure 1, which illustrates a hierarchical clustering of user
preferences based on learned latent representations. The figure highlights both the cluster structure among
users and the characteristic preference patterns associated with each cluster.
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Figure 1: Hierarchical Clustering of User Preferences. This figure is constructed based on the visu-
alization space and preference vectors inferred by RFSLVM in Section 5.3. The dendrogram visualizes the
hierarchical structure of user preferences. Each leaf node represents an individual user, and branch colors
indicate distinct clusters. Contour diagrams show the distribution of user preferences within the visualization
space for each cluster. In the contour diagrams, color indicates preference intensity, increasing from blue to
red. Details of the interpretation of the preference patterns are discussed in Section 5 and Appendix D.

Dimensionality reduction techniques such as Principal Component Analysis (PCA) (Hotelling, 1933), t-
distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten & Hinton, 2008), and Uniform Mani-
fold Approximation and Projection (UMAP) (Huang et al., 2022) are widely used to produce low-dimensional
visualizations. Similarly, probabilistic latent variable models such as Gaussian Process Latent Variable Mod-
els (GPLVMs) (Lawrence, 2003; Titsias & Lawrence, 2010; Lalchand et al., 2022) and Random Feature Latent
Variable Models (RFLVMs) (Gundersen et al., 2021; Zhang et al., 2023) are also used for visualization of
nonlinear structure. While these methods offer useful low-dimensional representations, they do not support
multiple modalities or provide preference vectors for downstream tasks.

To handle multiple modalities, Shared Gaussian Process Latent Variable Models (SGPLVMs) (Ek, 2009;
Salzmann et al., 2010) and Manifold Relevance Determination (MRD) (Damianou et al., 2012; 2021) extend
GPLVMs. Similarly, neural architectures such as Multimodal Variational Autoencoders (MMVAEs) (Shi
et al., 2019; Suzuki & Matsuo, 2022) integrate heterogeneous modalities into a shared latent space using
deep encoder–decoder networks. However, in many cases these models rely on post hoc 2D visualizations
(e.g., applying t-SNE to their learned representations) and do not explicitly provide preference vectors.

In this study, we adopt a Gaussian process (GP) based approach over neural architectures for two main
reasons. First, compared to deep neural networks, GP models offer more transparent, white-box modeling of
nonlinear user preferences, which better aligns with our goal of interpretability. Second, prior work suggests
that GP-based models can perform well even with limited data Damianou et al. (2021).

We propose the Random Fourier Feature Shared Latent Variable Model (RFSLVM), a probabilistic
generative model that builds on a line of latent variable models such as GPLVM, RFLVM, SGPLVM, and
MRD. All observations are conditionally generated from a shared, two-dimensional latent space referred
to as the visualization space, designed to promote interpretability. This space is mapped into a high-
dimensional feature space via Random Fourier Features (RFFs) (Rahimi & Recht, 2007), enabling efficient
inference and expressive modeling. User preferences are modeled as linear weight vectors, referred to as
preference vectors, in the high-dimensional space, allowing the model to capture complex, nonlinear
preference structures. The model also explicitly accounts for heterogeneity between real-valued item features
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Method Family Multimodality 2D Visualization Preference Vectors

PCA / t-SNE / UMAP ✗ ✓ ✗

GPLVM / RFLVM ✗ ✓ ✗

MMVAE ✓ ✓2 ✗

SGPLVM / MRD ✓1 ✓2 ✗

RFSLVM (Ours) ✓ ✓ ✓

Table 1: Comparison of RFSLVM with previous methods. Multimodality: Supports heterogeneous
modalities (e.g., real-valued item features and binary user ratings). 2D Visualization: The latent space is
optimized in two dimensions during training, enabling direct visualization without post-processing. Prefer-
ence Vectors: The model provides user preference vectors. ✓: supported; ✗: not explicitly supported. 1:
Assumes Gaussian outputs and does not natively support Bernoulli outputs, requiring extensions to handle
binary user ratings. 2: Shared latent spaces are not restricted to 2D and often require post hoc projections
(e.g., t-SNE) for 2D visualization.

and sparse binary user ratings. Table 1 summarizes the capabilities of RFSLVM relative to previous methods
in terms of multimodality, 2D visualization, and preference vectors.

We evaluate RFSLVM on real-world datasets and observe both predictive and reconstruction performance
comparable to prior approaches, while preserving interpretability. We further demonstrate practical analyses
enabled by the learned visualization space and preference vectors, including user clustering and identification
of latent preference patterns.

The primary contributions of this study are summarized as follows:

1. We propose RFSLVM, a probabilistic generative model that represents multiple data modalities in
a shared two-dimensional visualization space, enabling interpretable analysis of user preferences
through preference vectors.

2. We develop a scalable inference algorithm based on RFFs that explicitly handles heterogeneous data,
including real-valued item features and sparse binary user ratings.

3. We present empirical results on real-world datasets, demonstrating competitive predictive and re-
construction performance, and enabling practical analyses such as user clustering and the discovery
of latent preference patterns.

The remainder of this paper is organized as follows. Section 2 reviews relevant background and related work,
highlighting key challenges that motivate our approach. Section 3 introduces RFSLVM and formulates the
inference objective. Section 4 presents a quantitative evaluation of RFSLVM on real-world datasets, report-
ing predictive performance, reconstruction accuracy, and inference time. Section 5 demonstrates practical
applications enabled by the visualization space and preference vectors. Finally, Section 6 concludes the paper
and outlines directions for future research.

2 Background and Related Work

In this section, we review related work that forms the foundation of our approach. We also identify key
challenges that motivate further extensions.

2.1 Gaussian Process Latent Variable Models

The Gaussian Process Latent Variable Model (GPLVM) (Lawrence, 2003; Titsias & Lawrence, 2010; Lalchand
et al., 2022) is a probabilistic generative model for nonlinear dimensionality reduction that explains high-
dimensional data as generated from a low-dimensional latent space via Gaussian processes (GPs).
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Figure 2: Related Models and RFSLVM. White nodes represent latent variables or model parameters,
gray nodes represent observed data (modalities), and arrows indicate probabilistic dependencies. RFSLVM
(ours) extends MRD with two key modifications: (i) the latent space Z is constrained to two dimensions to
enhance visual interpretability; (ii) Z is transformed via RFFs into φ(Z), and a linear model is applied to
each output dimension of each modality. This enables the modeling of preference vectors w(Y)

h ∈ W(Y).

Let X = {xn}N
n=1 ∈ RN×D denote the observed features of N items in a D-dimensional space. Let Z =

{zn}N
n=1 ∈ RN×Q be the corresponding latent representations, where Q ≪ D. Each observed dimension is

modeled independently using a GP : X:,d ∼ N (m, K). Here, m is the mean vector, typically set to 0, and
K is the kernel (covariance) matrix with entries Ki,j = k(zi, zj ; θ) for i, j ∈ {1, . . . , N}. The Radial Basis
Function (RBF) kernel is commonly used:

kRBF(zi, zj ; θ) = θ1 exp
(

−∥zi − zj∥2

2θ2

)
, (1)

where θ = {θ1, θ2} are kernel hyperparameters. The graphical model of GPLVM is shown in Figure 2(a).

GPLVMs have two major limitations for our purpose. First, they assume a single modality, which motivates
extensions such as Shared Gaussian Process Latent Variable Models (see Section 2.2). Second, inference
scales cubically with data size due to matrix inversion, making it impractical for large datasets. To address
this limitation, inducing point methods (Quiñonero-Candela & Rasmussen, 2005; Snelson & Ghahramani,
2005) and random Fourier features (see Section 2.3) have been proposed. Variants known as Random Feature
Latent Variable Models (RFLVMs) (Gundersen et al., 2021; Zhang et al., 2023) employ kernel approximations
via RFFs. However, like GPLVMs, they also remain limited to a single modality.

2.2 Shared Gaussian Process Latent Variable Models

The Shared Gaussian Process Latent Variable Model (SGPLVM) (Ek, 2009; Salzmann et al., 2010) and
Manifold Relevance Determination (MRD) (Damianou et al., 2012; 2021) extend the GPLVM to handle
multiple modalities.

Let X = {xn}N
n=1 ∈ RN×D and Y = {yn}N

n=1 ∈ RN×H denote two modalities observed for the same N
items. The shared latent representations are denoted by Z = {zn}N

n=1 ∈ RN×Q, where Q ≪ D, H.

Each dimension of the observed data is modeled independently using Gaussian processes:

X:,d ∼ N (0, K(X)), Y:,h ∼ N (0, K(Y)), (2)

where K(X) and K(Y) are kernel matrices computed over the latent variables Z for each modality.

In MRD, for each modality χ ∈ {X, Y}, the Automatic Relevance Determination (ARD) kernel is used:

kARD(zi, zj ; w(χ)) = exp
(

−1
2

Q∑
q=1

w(χ)
q (ziq − zjq)2

)
, w(χ)

q ∈ w(χ). (3)

4



Under review as submission to TMLR

This allows each modality to focus on the latent dimensions most relevant to its structure. Figure 2(b)
depicts the graphical model of MRD.

However, SGPLVM and MRD have several limitations with respect to our goals. First, they do not explicitly
represent user preferences as vectors. Second, the latent space is not constrained to two or three dimensions,
often necessitating post hoc visualization using methods such as t-SNE. Third, they do not account for the
heterogeneous nature of the data, including the difference between real-valued features and binary ratings,
as well as the imbalance and sparsity of user ratings.

The first and second limitations are addressed by RFFs (see Section 2.3) and are discussed in Section 3.1.
The third issue is discussed in detail in Section 3.2.

2.3 Random Fourier Features

Random Fourier Features (RFFs) (Rahimi & Recht, 2007; Liu et al., 2021; Gundersen et al., 2021; Zhang
et al., 2023) offer a scalable approximation to kernel functions by avoiding costly matrix inversion, enabling
the application of Gaussian processes to large-scale data.

The RFF transformation φ : RQ → RM is defined as:

φ(z) =
√

2
M

(
cos(ω⊤

1 z + b1), cos(ω⊤
2 z + b2), . . . , cos(ω⊤

M z + bM )
)⊤

, (4)

where ωm ∼ N (0, IQ) and bm ∼ Unif(0, 2π). Under this construction, the inner product φ(zi)⊤φ(zj)
approximates the RBF kernel with unit parameters (θ1 = θ2 = 1):

φ(zi)⊤φ(zj) ≈ exp
(

−∥zi − zj∥2

2

)
(5)

= kRBF(zi, zj ; θ1 = θ2 = 1). (6)

RFFs also support efficient approximation of nonlinear functions. Given observations {(zn, yn)}N
n=1, a non-

linear function f can be approximated as follows (Watson, 1964; Hastie et al., 2009):

f(z) ≈
N∑

n=1
yn

k(zn, z)∑N
j=1 k(zj , z)

(7)

≈
N∑

n=1
yn

φ(zn)⊤∑N
j=1 k(zj , z)︸ ︷︷ ︸
w⊤

φ(z) (8)

= w⊤φ(z), (9)

where w ∈ RM is a weight vector. The vector w is optimized via gradient-based methods, as described in
Section 3, with each update requiring O(NM) computation.

The quality of the RFF approximation depends on the number of features M . Theoretical error bounds are
given by (Liu et al., 2020; Sutherland & Schneider, 2015):

ϵ = O
(

1√
M

)
, sup

zi,zj∈Z

∣∣φ(zi)⊤φ(zj) − k(zi, zj)
∣∣ ≤ ϵ. (10)

These bounds are often loose, and reasonable accuracy is achievable with smaller M .

3 Random Fourier Feature Shared Latent Variable Models

We propose the Random Fourier Feature Shared Latent Variable Model (RFSLVM), a probabilistic
generative model that extends MRD by incorporating RFFs. A graphical representation of RFSLVM is shown
in Figure 2(c), and the notations used in this section are summarized in Table 2.
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Table 2: Notations used in RFSLVM.

Notation Description

X ∈ RN×D Item feature matrix; each row xn ∈ RD represents item n.
Y ∈ {0, 1, NA}N×H User rating matrix. 1: positive, 0: negative, NA: unrated.
Z ∈ RN×Q Latent positions of items in the visualization space; Q = 2 for visualization.

zn ∈ RQ denotes the latent representation of item n.
W(χ) ∈ Rdim(χ)×M Weight matrix for modality χ ∈ {X, Y}. dim(X) = D, dim(Y) = H.

W(X) = {w(X)
d }D

d=1, W(Y) = {w(Y)
h }H

h=1.
φ : RQ → RM RFF transformation; φ(z) = φ(z; Ω, b).

z ∈ RQ, Ω = {ωm ∈ RQ}M
m=1, b = {bm ∈ [0, 2π]}M

m=1.
λX , λY > 0 Regularization coefficients for each modality.
ηZ , ηX , ηY > 0 Learning rates for latent positions and weight matrices.
κnh ≥ 0 Modality balancing factor for user rating entries.

RFSLVM models two modalities: item features X ∈ RN×D and user ratings Y ∈ {0, 1, NA}N×H . The goal
is to infer a shared low-dimensional visualization space Z ∈ RN×Q and a set of preference vectors
W(Y ) ∈ RH×M that characterize user preferences.

3.1 Generative Process

The generative process of RFSLVM consists of the following four steps:

Step 1: Visualization Space. Each item is associated with a latent position zn in a visualization space,
sampled from a standard normal distribution:

zn ∼ N (0, IQ), n = 1, . . . , N. (11)

The latent dimensionality is fixed at Q = 2 to ensure interpretable visualizations.

Step 2: Random Fourier Features. Each latent position zn is mapped to a high-dimensional feature
space via the RFF transformation:

φ(z) ≡ φ(z; Ω, b), z ∈ Z, (12)

where Ω = {ω1, . . . , ωM } and b = {b1, . . . , bM } are sampled as:

ωm ∼ N (0, IQ), bm ∼ Uniform(0, 2π), m = 1, . . . , M. (13)

where Uniform(0, 2π) denotes the uniform distribution over [0, 2π]. Sampled Ω and b are fixed during
training and not optimized.

Step 3: User Ratings. Each user h is associated with a preference vector w(Y)
h in the high-dimensional

space:

w(Y)
h ∼ N (0, λ−1

Y IM ). (14)

The binary rating Yn,h for item n by user h is drawn from a Bernoulli distribution:

Yn,h ∼ Bernoulli
(

σ
(

w(Y)⊤
h φ(zn)

))
, n = 1, . . . , N, h = 1, . . . , H, (15)

where σ(x) = 1/(1 + e−x). Here, w(Y)
h is a linear weight vector in the RFF-induced feature space, which is

used to represent a user’s nonlinear preference function.
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Step 4: Item Features. Each feature dimension d of a weight vector w(X)
d :

w(X)
d ∼ N (0, λ−1

X IM ). (16)

The feature value Xn,d for item n and dimension d is drawn as:

Xn,d ∼ N
(

w(X)⊤
d φ(zn), 1

)
, n = 1, . . . , N, d = 1, . . . , D. (17)

Here, w(X)
d is a linear weight vector in the RFF-induced feature space.

3.2 Objective Function and Optimization

RFSLVM is trained by minimizing the negative log-likelihood of both modalities. The loss function is defined
as:

L(Z, W(X), W(Y)) = L(Z, W(X)) + L(Z, W(Y)). (18)

The first term corresponds to the reconstruction error of item features:

L(Z, W(X)) =
N∑

n=1

D∑
d=1

(
Xn,d − w(X)⊤

d φ(zn)
)2

+ λX

D∑
d=1

∥w(X)
d ∥2. (19)

The second term corresponds to a binary cross-entropy loss for user ratings:

L(Z, W(Y)) = −
N∑

n=1

H∑
h=1

κnh {Yn,h log(fnh) + (1 − Yn,h) log(1 − fnh)} (20)

+ λY

H∑
h=1

∥w(Y)
h ∥2, (21)

where fnh = σ
(

w(Y)⊤
h φ(zn)

)
denotes the predicted probability that user h positively rates item n.

The weighting factor κnh adjusts the contribution of each rating to mitigate label imbalance and normalize
the loss across modalities:

κnh = ND(∑N
n=1

∑H
h=1 κ′

nh

)
H

· κ′
nh, κ′

nh =


1 if Yn,h = 0,
|{Yn,h=0}|
|{Yn,h=1}| if Yn,h = 1,

0 otherwise.

(22)

This formulation balances the influence of each label class on the loss function despite severe label imbalance,
and normalizes for modality size, thereby promoting stable optimization under sparsity and heterogeneity.
The full derivation of the objective function is provided in Appendix A.

To optimize RFSLVM, we minimize the objective in Equation 18 using gradient-based methods. Specifi-
cally, we adopt the ADAM optimizer (Kingma & Ba, 2017) in Optax (DeepMind et al., 2020), with auto-
differentiation provided by JAX (Bradbury et al., 2018).

4 Evaluation

We evaluate RFSLVM on three tasks using publicly available datasets: prediction of binary user ratings in
Section 4.2, reconstruction of item features in Section 4.3, and assessment of computational efficiency during
inference in Section 4.4.
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Table 3: Statistics of Evaluation Datasets. # Ratings is the number of user ratings. # Pos is the
number of positive ratings. # Neg is the number of negative ratings. # Items is the number of items N . #
Users is the number of users H.

Dataset # Ratings # Pos # Neg # Items # Users

MIND 768,414 43,606 724,808 3,523 2,498
ANIME 957,949 289,030 668,919 6,269 2,978
BEER 881,724 239,001 642,723 9,244 1,859

4.1 Datasets

We constructed three evaluation datasets by processing publicly available sources. Each dataset was pre-
processed to produce binarized user ratings and item features derived from textual metadata, as described
below.

MIND (Wu et al., 2020) is a large-scale dataset containing user interactions with news articles. User
interactions were binarized by treating clicked articles as positive ratings and articles that were displayed but
not clicked as negative ratings, while others were treated as unrated. We retained users with at least 10 ratings
in each class (positive and negative) to ensure sufficient signal per user. Item features were represented using
384-dimensional text embeddings computed from the concatenation of the title and abstract fields, using the
all-MiniLM-L6-v2 model from the Sentence-Transformers library (Reimers & Gurevych, 2019).

ANIME1 is a dataset consisting of user ratings for various anime. Ratings were binarized by treating scores
greater than or equal to 9 as positive ratings, scores less than 9 as negative ratings, and those not scored as
unrated. We retained users with at least 10 ratings in each class (positive and negative) to ensure sufficient
signal per user. Item features were represented using 384-dimensional text embeddings generated from the
synopsis field using Sentence-Transformers.

BEER (McAuley et al., 2012; McAuley & Leskovec, 2013) is a dataset consisting of user ratings for various
beers. Ratings were binarized by treating scores greater than or equal to 4.5 as positive, scores below 4.5 as
negative, and unscored items as unrated. We retained users with at least 10 ratings in each class (positive
and negative) to ensure sufficient signal per user. Item features were represented using 384-dimensional text
embeddings generated by concatenating 30 sampled reviews from the review/text field and embedding the
result using Sentence-Transformers.

Table 3 summarizes the key statistics of the datasets.

4.2 Prediction of User Ratings

We evaluate the predictive performance of RFSLVM on binary classification tasks, comparing it against
Logistic Regression (LR), k-Nearest Neighbors (kNN), Gaussian Process Classifiers (GPC), MRD, Multi-
Modal VAE (MMVAE) (Shi et al., 2019), Neural Collaborative Filtering (NCF) (Rendle et al., 2020), and
xDeepFM (Lian et al., 2018). For the multimodal models MRD, MMVAE, and RFSLVM, the dimensionality
of the shared latent space was fixed at 2.

We used implementations from (Pedregosa et al., 2011) for LR, kNN, and GPC; from (Argyriou et al., 2020)
for NCF and xDeepFM; (GPy, since 2012) for MRD; and from (Senellart et al., 2023) for MMVAE.

We used two standard metrics for imbalanced binary classification: ROC-AUC, which measures the ability
to rank positive instances above negative ones (higher is better), and log loss, which quantifies the quality
of probabilistic predictions (lower is better).

We used an 80:10:10 split for training, validation, and testing, selecting hyperparameters based on validation
performance. The full hyperparameter settings are listed in Appendix B.

1https://www.kaggle.com/datasets/dbdmobile/myanimelist-dataset

8

https://www.kaggle.com/datasets/dbdmobile/myanimelist-dataset


Under review as submission to TMLR

Table 4: User Rating Prediction Results. Higher ROC-AUC and lower log loss indicate better predictive
performance. For each metric, the best score is highlighted in bold within each group, based on whether the
model is multimodal or not. MM: Supports multiple modalities. PV: The model provides preference vectors.
✓: supported; ✗: not explicitly supported.

MIND ANIME BEER
Model MM PV ROC-AUC Log loss ROC-AUC Log loss ROC-AUC Log loss

LR ✗ ✓ 0.640 0.357 0.676 1.277 0.590 1.333
kNN ✗ ✗ 0.643 0.873 0.715 0.898 0.618 0.990
GPC 1 ✗ ✗ 0.500 0.693 0.501 0.693 0.500 0.693
NCF ✗ ✓ 0.688 0.239 0.797 0.576 0.721 0.648
xDeepFM ✗ ✓ 0.624 0.214 0.736 0.610 0.675 0.585

MMVAE ✓ ✗ 0.424 0.694 0.366 0.695 0.422 0.693
MRD 2 ✓ ✗ 0.689 0.716 0.790 0.722 0.660 0.753
RFSLVM ✓ ✓ 0.680 0.565 0.751 0.581 0.710 0.613

Table 5: Reconstruction Errors. MAE and RMSE are reported for each model. Lower values indicate
better reconstruction performance. For each metric, the best score is highlighted in bold.

MIND ANIME BEER
Model MAE RMSE MAE RMSE MAE RMSE

MMVAE 0.782 0.979 0.782 0.982 0.778 0.980
MRD 0.733 0.922 0.744 0.937 0.739 0.933
RFSLVM 0.737 0.925 0.734 0.924 0.736 0.929

Table 4 reports the best-performing results for each model. RFSLVM shows competitive performance com-
pared to the baseline models. Compared to MRD, RFSLVM consistently achieves lower log loss while
maintaining comparable ROC-AUC.

4.3 Reconstruction of Item Features

We evaluated how well the learned representations preserved item information by comparing the observed
item features X with the reconstructed features X′. We compared MRD, MMVAE, and RFSLVM as multi-
modal models.

We reported both Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), where lower values
indicated better reconstruction performance. Table 5 shows the reconstruction errors for item features.
RFSLVM achieved competitive reconstruction accuracy across all datasets, attaining the lowest MAE and
RMSE on ANIME and BEER.

Figure 3 visualizes the latent spaces inferred by each model. Colors indicate item categories assigned in the
MIND dataset. All models capture meaningful structure in the latent space. RFSLVM and MRD exhibit
similar patterns in their latent representations.

1GPC yields near-random ROC-AUC (∼0.5) on all datasets, which may reflect difficulty in handling imbalanced and sparse
binary ratings.

2We evaluated MRD by applying a sigmoid to the predictive mean from the original Gaussian likelihood for Y, and computed
ROC-AUC and log loss.
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Figure 3: Visualization Spaces of Each Model. Each point represents an item in the two-dimensional
latent space. Colors indicate item categories assigned in the MIND dataset. This visualization helps us grasp
the overall structure of the visualization space. Details are discussed in Section 5 and Appendix D.

Figure 4: Processing Time of Inference. Inference time per 100 optimization iterations as a function of
dataset size N .

4.4 Processing Time of Inference

We compared the inference time of RFSLVM against MRD, an exact GPLVM that uses full GP inference,
and a sparse GPLVM that employs inducing points for scalability (Quiñonero-Candela & Rasmussen, 2005).

To assess scalability, we varied the dataset size N ∈ {100, 300, 500, 1000, 3000, 5000}. For each setting, we
generated synthetic datasets X ∈ RN×384 and Y ∈ {0, 1}N×1 with randomly sampled values. Inference
time was measured per 100 optimization iterations. For MRD and the sparse GPLVM, we used 32 inducing
points. For RFSLVM, the number of RFF was fixed at M = 128.

All experiments were conducted on a machine running Ubuntu 22.04.2 LTS, equipped with an AMD Ryzen
7 5800X CPU, an NVIDIA GeForce RTX 3090 GPU, 64 GB RAM, and 24 GB VRAM.

Figure 4 shows the inference time. The exact GPLVM shows cubic time complexity O(N3), resulting in
rapidly increasing computation time. In contrast, RFSLVM scales efficiently with dataset size, performing
better than the sparse GPLVM and MRD in terms of computational cost.

5 Analysis Examples

This section presents practical analyses enabled by the visualization space and the preference vectors inferred
by RFSLVM. We begin with an overview of the visualization space and user-specific preference views in
Section 5.1. Section 5.2 examines user similarity based on preference vectors. Section 5.3 introduces a
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Z f1 f2 f3 f4 f5

Figure 5: Visualization Space and User Preference Views. The visualization space Z and five user-
specific preference functions f1, . . . , f5 are shown. The visualization space is reused from the RFSLVM exam-
ple in Figure 3. In the preference function views, contour plots represent the values of fh(z) = σ(w(Y )⊤

h φ(z)),
with colors transitioning from blue (low preference) to red (high preference). Scatter points indicate items
rated by each user (red: positive, blue: negative). By comparing Z and fh, we can interpret which regions
in the latent space—associated with particular item categories—correspond to high or low preferences (see
also Appendix D).

clustering-based analysis, highlighting representative preferences and identifying promising items within
each cluster. All figures and tables in this section are constructed based on learned representations from the
MIND dataset.

5.1 Visualization Space and User Preference Views

We first illustrate how RFSLVM enables intuitive visualization of user preferences through the learned
visualization space. Figure 5 shows the latent item representations and the user-specific preference views. In
the figure, the leftmost panel shows the visualization space Z. The remaining panels (f1 through f5) depict
contour plots of the predicted preference functions for five users. Each user h is associated with a nonlinear
preference function defined as

fh(z) = σ(w(Y )⊤
h φ(z)), (23)

where w(Y )
h is the user’s preference vector and φ(z) denotes the RFF transformation. Visualizing user-

specific preference functions in the visualization space enables intuitive interpretation of individual user
characteristics.

5.2 Similarities between User Preferences

RFSLVM enables efficient comparison of complex, nonlinear user preferences by computing similarities be-
tween their inferred preference vectors using simple metrics such as inner product or cosine similarity. In
this analysis, we identify similar users by ranking the inner products in descending order:

w⊤
i wj , i, j ∈ {1, . . . , H}. (24)

Table 6 lists the five most similar users for each of three selected base users. Each row presents the preference
function of a base user (leftmost) alongside those of the five most similar users. These results demonstrate
that similar preference patterns can be effectively captured through simple vector operations.

5.3 Clustering Analysis of User Preferences

Once similarities or distances between user preferences are computed, clustering algorithms can be applied to
uncover population-level structures and shared preference patterns. In this analysis, we applied hierarchical
clustering to the preference vectors, using cosine similarity. For each cluster c, the representative preference
function is defined as:

fc(z) = σ
(
w⊤

c φ(z)
)

, wc = 1
|c|
∑
h∈c

w(Y )
h , (25)

11
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Table 6: Similar User Preference Patterns. For each base user (leftmost column), the five most similar
users are identified based on the inner product of preference vectors. Each panel shows the user’s preference
function fh(z) = σ(w(Y )⊤

h φ(z)) over the visualization space.

Base 1st 2nd 3rd 4th 5th

where wc denotes the average preference vector of cluster c. This formulation enables the computation of
cluster-level preference scores. Figure 1 shows the dendrogram introduced in Section 1, constructed from
300 randomly selected users. It illustrates the hierarchical structure of user preferences.

Table 7 presents five representative clusters, each with its cluster-level preference contours and the top five
most promising items, ranked by fc(z). The table facilitates interpretation of each cluster’s characteristics.

RFSLVM enables cross-modal generation by leveraging a shared latent space across modalities. This allows
us not only to analyze observed data, but also to extrapolate into unobserved regions of the visualization
space. By evaluating the Equation 25 across the visualization space, we can identify high-preference regions,
even for hypothetical items. These regions can then be mapped to item features via the generative process
described in Section 3.1, opening new possibilities for content ideation and product design.

6 Conclusion

We proposed the Random Fourier Feature Shared Latent Variable Model (RFSLVM), a probabilis-
tic generative model for user preference visualization and analysis. RFSLVM integrates two modalities—real-
valued item features and binary user ratings—into a two-dimensional shared latent space (the visualization
space) and infers user-specific preference vectors representing nonlinear preferences. This representation
supports both predictive modeling and exploratory analysis.

To achieve this, we employed random Fourier features to express preference vectors in a high-dimensional
feature space, enabling nonlinear modeling while maintaining interpretability and computational efficiency.
The inference algorithm is designed to handle multiple modalities, including differences in data scale, sparsity,
and class imbalance.

Empirical evaluations on multiple real-world datasets showed that RFSLVM performs comparably to baseline
models in both prediction and reconstruction tasks. We also presented example analyses such as user simi-
larity estimation, clustering, and promising item ranking, which highlight the interpretability and analytical
utility of the learned latent representations.

12
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Table 7: Cluster-level Preferences and Promising Items. For each cluster (A, B, C, I, J) shown
in Figure 1, the cluster-level preference function fc(z) is visualized as a contour plot (red = high preference,
blue = low). Black scatter points indicate the locations of the five top-ranked promising items in the
visualization space, selected according to Equation 25, with their category labels and titles listed.

Cluster Preference Promising Items ([Category] Title)

A

[news] Search continues for Bridgeton girl missing for...
[news] Porsche launches into second story of New Jersey...
[news] Mother of missing Florida girl charged; human...
[news] Family members identify body found in water near...
[music] Broadway Actress Laurel Griggs Dies at Age 13

B

[movies] Eva Mendes opens up about her brother’s death: ’It’s...
[news] Their colleges closed but their student loans didn’t...
[health] NY teen thanks medical team that saved her from...
[health] Miss North Carolina Contestant Madeline Delp Says...
[health] Marcia Cross’ anal cancer may have been linked to...

C

[news] If convicted, Sean Kratz could face death penalty or...
[news] AWOL Marine accused of murder is still on the run
[news] Father of Atatiana Jefferson dies of heart attack,...
[news] Mother charged with murder: Family asks for help...
[news] Actress playing murderer in film charged in real...

I

[news] Texas judge orders hospital to keep baby on life-...
[music] Broadway Star Laurel Griggs Suffered Asthma Attack...
[music] Broadway Actress Laurel Griggs Dies at Age 13
[health] Miss North Carolina Contestant Madeline Delp Says...
[news] Search continues for Bridgeton girl missing for...

J

[tv] Marlboro Man Bob Norris dies at 90, having...
[sports] Charles Rogers, former Michigan State football,...
[news] Miami symphony oboe player dies after falling down...
[sports] 93-year-old WWII veteran walks up to 6 miles every...
[tv] Young and the Restless Star William Wintersole Dies...

Potential future directions include extensions to broader applications such as recommendation systems (He
et al., 2023; Purificato et al., 2024), as well as investigating RFSLVM as a pre-trained model for Bayesian
optimization (González-Duque et al., 2024). While this work focuses on binary user ratings, RFSLVM can
be extended to handle ordinal preference data by incorporating the Bradley–Terry model (Hino et al., 2010;
Caron & Doucet, 2012), which represents another promising avenue for future research.

RFSLVM is applicable to domains where both item features and user ratings are available, such as movies,
books, restaurants, real estate, and automobiles. We believe this framework enables more interpretable
preference modeling and facilitates decision-making through visual and analytical insights.
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A The Objective Function of RFSLVM

We derive the loss function for RFSLVM from the negative log-likelihood of the probabilistic generative
process described in Section 3.2 (see Table 2 for notation).

The joint distribution over all variables is factorized as

− log p(X, Y, Z, W(X), W(Y)) ∝ − log
[
p(X | Z, W(X)) · p(W(X)) · p(Y | Z, W(Y)) · p(W(Y))

]
.
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We now derive the loss components associated with each modality.

We begin with the item feature modality. Assuming a Gaussian likelihood with unit variance, the negative
log-likelihood becomes

− log p(X | Z, W(X)) = − log
N∏

n=1

D∏
d=1

N (Xn,d | w(X)⊤
d φ(zn), 1)

∝
N∑

n=1

D∑
d=1

(
Xn,d − w(X)⊤

d φ(zn)
)2

.

We place a Gaussian prior with zero mean and precision λX on the item feature weights:

− log p(W(X)) = − log
D∏

d=1
N (w(X)

d | 0, λ−1
X IM )

∝ λX

D∑
d=1

∥w(X)
d ∥2.

Combining the above, the loss for the item feature modality is

L(Z, W(X)) ∝
N∑

n=1

D∑
d=1

(
Xn,d − w(X)⊤

d φ(zn)
)2

+ λX

D∑
d=1

∥w(X)
d ∥2.

We next consider the user rating modality. Assuming a Bernoulli likelihood for binary observations, the
negative log-likelihood becomes

− log p(Y | Z, W(Y)) = − log
N∏

n=1

H∏
h=1

Bernoulli
(

Yn,h | σ(w(Y)⊤
h φ(zn))

)
∝ −

N∑
n=1

H∑
h=1

[Yn,h log fnh + (1 − Yn,h) log(1 − fnh)] ,

where fnh = σ(w(Y)⊤
h φ(zn)).

A Gaussian prior with zero mean and precision λY is placed on the user preference weights:

− log p(W(Y)) = − log
H∏

h=1
N (w(Y)

h | 0, λ−1
Y IM )

∝ λY

H∑
h=1

∥w(Y)
h ∥2.

To address label imbalance and scale discrepancies, we introduce a non-negative weighting factor κnh for
each user–item pair. The resulting loss for the user rating modality is

L(Z, W(Y)) ∝ −
N∑

n=1

H∑
h=1

κnh [Yn,h log fnh + (1 − Yn,h) log(1 − fnh)] + λY

H∑
h=1

∥w(Y)
h ∥2.

Finally, the total objective function is the sum of the losses from both modalities:

L(Z, W(X), W(Y)) = L(Z, W(X)) + L(Z, W(Y)).
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B Hyperparameter Settings

We list below the hyperparameter configurations considered for each model. Only the specified hyperparam-
eters are shown; others are set to their default values. Values in curly brackets {} indicate candidate values
selected via validation.

• kNN

– k: {5, 10}

• GPC

– max_iter_predict: 1,000
– kernel: {RBF(0.01), RBF(0.1), RBF(1.0)}

• NCF

– model_name: NeuMF
– layer_size: [16, 8, 4]
– n_epochs: 10
– batch_size: 256
– learning_rate: 0.001

• xDeepFM

– cross_l2, embed_l2, layer_l2: 0.01
– cross_layer_size: [20, 10]
– init_value: 0.1
– epochs: 10, batch_size: 256
– learning_rate: 0.001
– user_Linear_part: True
– user_CIN_part, user_DNN_part: True

• MMVAE

– latent_dim: 2
– max_epochs: 100
– learning_rate: 0.001
– use_early_stopping: True

• MRD

– max_iters: 100
– latent_dim: 2
– num_inducing: {16, 32, 64}

• RFSLVM

– Iterations T : {100, ..., 1000}
– Latent dimension Q: 2
– Random features M : {128, 256, 384}
– Learning rates: ηZ = 0.01, ηX = ηY = 0.001
– Regularization λX , λY : 0.01
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C Effect of Latent Dimension and Random Feature Size

We investigate how the visualization space dimensionality Q and the number of random Fourier features M
affect the predictive performance of RFSLVM on the MIND dataset. Figure 6 shows the ROC-AUC scores
for various combinations of Q ∈ {2, 3, 4, 8} and M ∈ {128, 256, 384}.

Overall, performance remains stable for Q = 2 to 4, with a slight degradation observed at Q = 8. This
suggests that low-dimensional latent spaces are sufficient to capture meaningful user-item relationships.

Figure 6: ROC-AUC on the MIND dataset for different combinations of latent dimension Q ∈ {2, 3, 4, 8}
and number of random Fourier features M ∈ {128, 256, 384}.

D Interpretation of the Preference Function

Figure 7 shows the same preference function of Cluster J as presented in Figure 1 and Table 7, projected onto
the same visualization space as in Figure 5. We can interpret the preferences by comparing the distribution
of the preference function with the positions of items in the visualization space. Cluster J mainly shows
high preferences in the regions associated with news, sport, health, movie, and music.
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Figure 7: Preference function of Cluster J and the visualization space. In the scatter plot, each
point represents an item in the visualization space. Point colors indicate item categories as defined in the
MIND dataset. In the contour plots, color represents preference intensity, increasing from blue (low) to red
(high). The cluster mainly prefers regions associated with news, sport, health, movie, and music.
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