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Abstract 

Humans are remarkably efficient at adapting to different contextual demands by exerting 

optimal levels of cognitive flexibility versus stability for switching between different tasks. 

Here, we developed a recurrent neural network to simulate behavioral indices of cognitive 

flexibility versus stability and investigated its dynamics. We observed that behavioral 

adaptation to high- versus low- task switch frequency conditions can be achieved via either 

fast but transient activation-based adaptations (in activation space), or slow but more 

enduring weight-based adaptations (shallow versus deep task attractor settings in weight 

space). Interestingly, like humans, the model further learned to associate contextual features 

to different weight-based task attractor settings and use this knowledge to shift along a 

flexibility-stability continuum when encountering these same contexts, suggesting that it is 

optimal to use such contextual features. In sum, our framework sheds new light on classic 

measures of cognitive flexibility versus stability when people must switch between multiple 

tasks, through the lens of activation-based versus weight-based adaptations. 

Keywords: cognitive control, activation- and weight-based adaptation, flexibility-

stability trade-off, task attractor 

  



Introduction 

 Much of our everyday behavior requires switching between different task goals. For 

example, preparing a meal typically involves switching between chopping vegetables, boiling 

water, seasoning the sauce etc. This highlights the need for cognitive flexibility by efficiently 

shifting task focus for successful task performance. However, we often also need to maintain 

focus on a single task (cognitive stability). For instance, it is important to not be distracted by 

other tasks when chopping vegetables with a sharp knife. Therefore, it is critical to 

strategically regulate task goals in response to different needs for cognitive flexibility versus 

stability (Braem & Egner, 2018; Cools, 2019; Dreisbach & Fröber, 2019; Egner, 2023; 

Garner & Dux, 2023; Goschke, 2013; Hommel, 2015; Musslick & Cohen, 2021).   

Cognitive flexibility versus stability is usually studied using task switching paradigms 

that assess performance differences in speed or accuracy between task switching versus 

repetition conditions (Kiesel et al., 2010). The modulation of cognitive flexibility versus 

stability can be seen as a meta-control process, i.e., regulating cognitive control according to 

the context (Eppinger et al., 2021; Wang, 2021). People can learn to be flexible as indicated 

through smaller switch costs when faced with higher switching frequencies (Braem & Egner, 

2018; Dreisbach & Haider, 2006; Dreisbach & Mendl, 2024; Monsell & Mizon, 2006), and 

optimally shift between cognitive flexibility versus stability depending on contextual 

demands (Fröber & Dreisbach, 2017; Xu et al., 2024), demand avoidance (Brosowsky & 

Egner, 2021), time costs (Mendl & Dreisbach, 2024; Mittelstädt et al., 2018) or reinforcement 

history (Braem, 2017; Held, Vermeylen, Dignath, et al., 2024; Held, Vermeylen, Krebs, et al., 

2024). More broadly, several studies emphasize the importance of this regulation in the 

development of executive functions, mental disorders, and social interaction (Crone & 

Steinbeis, 2017; Goschke, 2014; Hommel & Colzato, 2017; Ruel et al., 2021; Stucke & 

Doebel, 2023). However, it remains unclear how these regulations of cognitive flexibility 



versus stability are learned and implemented. 

Importantly, learning different needs for cognitive flexibility versus stability is 

thought to occur at different speeds (Egner, 2023). For example, the online regulation of 

cognitive control in response to currently experienced task switching frequencies occurs fast, 

but dissipates quickly (Fröber et al., 2022). Humans seem to gradually increase task-relevant 

activation over successive repetition trials, while increasing switch readiness over switching 

trials – potentially through a flexible use of different gating mechanisms that manipulate 

inputs and outputs of working memory (Chatham & Badre, 2015; O’Reilly & Frank, 2006). 

In contrast to these fast adjustments, the formation of enduring context-control knowledge, 

i.e., associations between environmental features and different needs for cognitive flexibility 

(e.g., working memory gating settings), requires more experience and likely reflects slower 

forms of learning (Braem et al., 2024; Xu et al., 2024).  

Although several computational models have proposed different control modules to 

exert cognitive control (Brown et al., 2007; Gilbert & Shallice, 2002; Musslick & Cohen, 

2021; Verguts & Notebaert, 2009), how these models shift between levels of cognitive 

flexibility versus stability was either preset and not learned by the model, or not studied 

computationally. Recent neural network studies argue that different task attractor settings 

underlie this regulation of cognitive control (Jaffe et al., 2023; Musslick & Bizyaeva, 2024; 

Musslick & Cohen, 2021; Ueltzhöffer et al., 2015). However, also here it remains an open 

question how one can spontaneously learn different task attractor settings for shifting 

between cognitive flexibility and stability required in various contexts. 

Here, we start from the observation that the impact of experience in a neural network 

can manifest through two distinct forms: either through changes in the node activation, or 

through changes in the connection strength between these nodes, i.e., weights (Hummos et 

al., 2022; O’Reilly & Munakata, 2000; Rao & Ballard, 1999). We propose that a dynamic 



regulation of flexibility versus stability in cognitive control, can be achieved through both 

activation-based and weight-based adaptations. First, task activations are influenced by the 

previous (activation) state. For example, during task switching, starting from a state closer to 

the attractor of an old task (Fig 1A, brown trajectory) will typically result in a final state 

further away from the attractor of a new task, relative to starting from a state closer to the 

attractor of a new task (Fig 1A, blue trajectory). As a result, task switching will be better in 

the situation represented by the brown trajectory. Such activation-based adaptation manifests 

itself mostly as a product of recency, or “inertia”, demonstrating the influence of lingering 

task activation states in working memory, without necessarily learning control parameters 

(context-control learning) which are instantiated in neural network weights. However, 

second, the network can also learn different task attractor settings that favor either flexibility 

or stability via its weights (weight-based adaptation). For example, in a condition with more 

frequent task switching, requiring higher cognitive flexibility, shallow attractors are favored 

(Fig 1B, pink dashed line), resulting in lower overall task activations but more efficient 

updates during task switching; instead, in a condition where there are less switches, deeper 

attractors are favored (Fig 1B, green solid line), improving performance in task repetitions at 

a cost of worse performance during task switching. Both types of control adaptations, 

activation-based and weight-based, can co-exist and indeed mutually determine one another 

in neural networks (Russin et al., 2024). Here, we propose they jointly contribute to the 

regulation of cognitive flexibility versus stability.  

 



Fig. 1. Illustrations of weight-based and activation-based adaptations. (A) An example of activation-based 

adaptations. When a task goal changes from Task 1 to Task 2, trajectories of blue and brown dots represent 

corresponding task activation adjustments. Despite the same attractor depth (fixed weights), task switching 

performance is better for blue dots as its initial state (the left blue dot) starts less deep into the attractor of an old 

task. (B) Weight-based adaptations can be visualized as attractors (Task 1 and Task 2 on the x-axis) with 

different depths (y-axis) in an energy landscape. The depth of attractors is determined by weights. In a high-

switch condition, shallow attractors (pink dotted line) facilitate task switching compared to deep attractors (dark 

green full line). Humans can adjust the attractor depth to adapt to different task switching conditions, showing 

context-specific control regulations. 

 

We developed our Learning Control Dynamics (LCD) model to investigate these 

computational principles of learning and regulating control parameters, based on a recurrent 

and gating-based neural network (Long Short-Term Memory, LSTM (Hochreiter & 

Schmidhuber, 1997). It considers both the current task input and the history of previous tasks 

when generating an output for each step. Importantly, LCD does not include a preset control 

module, allowing us to study the learning and emergence of cognitive control during task 

switching.  

A classic marker of dynamic control adaptations to varying needs for cognitive 

flexibility is the observation of a smaller switch cost in a context with more frequent task 

switching (Braem & Egner, 2018; Dreisbach & Haider, 2006; Dreisbach & Mendl, 2024; 

Monsell & Mizon, 2006). Therefore, in Study 1, we first demonstrate how this marker of the 

flexibility-stability trade-off can be driven purely by fast activation-based adaptations in 

LCD. This indicates that this form of control adaptation can result from recent task exposure 

without necessarily changing weights. Next, in Study 2, we investigated a slower weight-

based form of control adaptation. We found that LCD prepares for task switching by finding 

the optimal location in the task space (i.e., activation and weight space) that maximizes the 

activation of the cued task (i.e., an attractor of the cued task), while keeping an optimal level 



of cognitive flexibility to switch to other tasks via weight-based adaptations. To understand 

how LCD learns to navigate between tasks with a focus on either cognitive flexibility or 

stability, we also examined how LCD differentially prepared for upcoming task switches and 

repetitions in Study 2 after training on high- versus low-switch conditions. 

Recent studies in humans further revealed that we can learn to use contextual features 

to balance the need for cognitive flexibility versus stability, showing (weight-based) context-

specific control regulations. For example, we recently demonstrated that humans can learn to 

associate their control strategies to be more flexible in high-switch versus low-switch 

conditions to co-occurring environment features (Xu et al., 2024). Moreover, humans can also 

use task identity features to increase switch readiness when encountering tasks that appear 

more often in switching trials (Fröber et al., 2022; Nack & Yu-Chin, 2024; Siqi-Liu & Egner, 

2020). Therefore, we next show how LCD can similarly learn to navigate differentially 

through task space depending on environmental (Study 3) or task identity (Study 4) features 

for balancing cognitive flexibility versus stability via weight-based adaptations. Based on 

those simulations, we finally compared our model simulations with an existing human dataset 

(Siqi-Liu & Egner, 2020) to test novel predictions that emerged from Study 4. 

Methods 

The LCD model aims to investigate the computational mechanisms that underlie 

dynamic adaptations of cognitive control and context-control learning in different switching 

conditions where participants had to switch between multiple different categorization tasks 

(see also, Xu et al., 2024). We will first explain the general method, after which we will 

explain the paradigms, the model architecture, and the training regimes in more detail. 

To simulate task switching, we asked the model to respond to different task goals on 

different trials, which was to respond to one dimension of a multidimensional stimulus, 

dependent on the task cue (Fig. 2A). Therefore, LCD needed to learn to attend to the 



appropriate stimulus feature based on the task cue, as the other stimulus features could lead to 

inappropriate responses. Task switching occurs when LCD received two different task cues 

on two successive trials; while task repetition occurs when the task cue was the same on two 

successive trials (Fig. 2B).  

We always trained LCD in two steps. First, in the task rule learning step (Fig. 2C), we 

trained LCD’s non-recurrent layers how to perform each task. By analogy, this can be thought 

of as the instruction phase in humans where participants are first equipped with the general 

task rules. Second, we froze all weights learned in task rule learning step and trained an 

LSTM layer feeding into LCD’s task control module, which we refer to as the task control 

learning step (Fig. 2D). This LSTM layer received all inputs and was trained on different task 

switching frequencies that could, in some simulations, be predicted by contextual features. Its 

output was projected to a feedforward layer of the control module to generate a 

multidimensional output that served as a new task cue input (i.e., task activations) to the 

output module for behavioral responding. In this way, the model could learn to employ 

contextual features as a function of recent history, to exert cognitive control.  

Behavioral paradigm  

On each trial, LCD received a m-dimensional stimulus, where m is the number of 

tasks. Each stimulus consisted of m random (real) numbers between zero and one (Fig. 2A). 

The task goal was to evaluate if the number in the cued location is larger or smaller than 0.5. 

The task cue was one-hot encoded and was used to indicate which location of the stimulus to 

respond to (Fig. 2A). Each training sequence contained multiple trials (details given in Model 

Training Regimes). Switching frequency was defined as the proportion of trials where the 

task cue was different from the preceding trial, within a single training sequence. Stimuli and 

training sequences were always randomly generated (constrained by the switching 

frequencies that was aimed for), so no exact same sequence or stimulus was ever repeatedly 



used. In Study 3, we also used the environment cues to indicate which switching condition 

LCD is in (Fig. 2A). This environment cue shared the size of stimulus and task cue inputs, 

consisting of multiple zeros (low-switch) or ones (high-switch). Hence these environment 

cues served as a predictive feature of switching conditions. In other studies, the environment 

cues were always set to zero. 

In Study 1 and 2, we manipulated the switching frequency, high-switch (90% task 

switching) versus low-switch condition (10% task switching), and trained LCD on them 

separately. In Study 3, we introduced two types of environment cues (Fig. 2A, right panel), 

which were predictive of high-switch or low-switch conditions respectively, to LCD to 

investigate whether LCD can learn context (environment)-control knowledge and therefore 

use environment cues for future control regulations. In Study 4, similarly, we used task 

identity as a predictive feature to investigate context (task identity)-control learning at the 

task level. There were four tasks in Study 4 for a balanced design with two tasks being 

associated with high-switch while another two being associated with low-switch. In first three 

studies, switching conditions were manipulated by using a switching frequency of 10% or 

90% for training in the low-switch or high-switch contexts respectively, In Study 4, overall 

switching frequency was set to 50%, while two tasks were randomly selected to appear more 

in switching trials (90%) and the other two appeared more in repetition trials (90%).  



 

Fig. 2. Training LCD to adaptively switch between different tasks. (A) An example of three types of inputs 

used in model training, stimulus, task cue and environment cue. On each trial, LCD received one row of each 

input. For each task, the goal is to evaluate if a cued value is below or above 0.5. The stimulus comprises 

multiple random values in a range of zero to one, excluding the ambiguous 0.5. On each trial, a task cue 

indicates which feature of the stimulus LCD needed to evaluate, one for the cued stimulus feature and zeros for 

the others. For instance, if the third value in a task cue input is one (as in the example), LCD should learn to 

evaluate the third value in a stimulus input on that trial. The environment cue (only varied in Study 3) was 

provided by multiple separate nodes but consisted of either all zeros or ones indicating the level of task 



switching frequency. An environment cue with all zeros implied task switching was less frequent in this 

environment (i.e., task cues would repeat more often), while the environment with all ones implied more task 

switching instead. In simulation studies where the environment inputs did not vary, this input was always set as 

all zeros. (B) Illustrations of task repetition and task switching. (C) and (D) show the LCD’s model architecture 

and our training regime. In the first training step (C), the task rule learning step, stimulus and task cue inputs 

were used to train LCD to learn how to perform tasks one by one. In the second step (D), the task control 

learning step, LCD was trained to optimize its task control parameters and task switching behaviors in response 

to a list of inputs (i.e., an input sequence) with different switching frequencies. All weights learned from the first 

step (grey arrows) were fixed in this step. During this phase, an LSTM layer in the control module was trained 

so that the control module could generate task activations based on all inputs. Different from a binary task cue, 

the control module output is continuous in a range of zero to one to signify the intensity of the corresponding 

task activation, with a higher value indicating a greater degree of task activation. 

 

Learning Control Dynamics Model (LCD) Architecture 

Control Module 

 The control module has two layers, a LSTM layer and a feedforward layer. The 

LSTM layer has 32 units, with a sigmoid recurrent activation function and a ReLU regular 

activation function. The feedforward layer has m units, with a sigmoid activation function. 

This ensures that the output of the control module on each trial contains m values from zero 

to one, which can then serve as task activations. We used Keras’ default settings for all 

remaining model configurations. In each trial, the control module receives one stimulus, one 

task cue and one environment cue. These three inputs were concatenated before sending to 

the first (LSTM) layer of the control module.  

Output Module 

 The output module has three feedforward layers. The first two layers have 16 units 

with a ReLU activation function. The last layer has two units, with a softmax activation 

function, to generate the model’s choice in each trial. We used Keras’ default settings for all 



remaining model configurations. On each trial, the output module received one stimulus, one 

task cue (in the task rule learning step, see below) or task activations (in the task control 

learning step and simulations, see below), and then generated its choice. These two inputs 

were concatenated before sending to the first layer of the output module.  

Model Training Regimes 

 Model training and simulations were implemented in Keras, version 2.13.1. There 

were two training steps in total, with 100 training runs in each study. In the task rule learning 

step (Fig. 2C), we trained LCD’s non-recurrent layers (output module) how to perform each 

task. More specifically, the output module was trained in the task rule learning step to 

generate choices based on task cue inputs and stimulus inputs. As mentioned above, this can 

be thought of as the instruction phase in humans where participants are first equipped with 

the general task rules. Second, LCD learned how to regulate its control parameters in 

response to different needs for cognitive flexibility versus stability at the task control 

learning step (Fig. 2D). This second step allowed learning context-specific cognitive control 

weights. Similarly, in the task control learning, the output module still expected to receive a 

task cue and a stimulus to generate a choice. In this sense, the output of the control module 

was supposed to send task relevant information to indicate the subsequent output module how 

to make its choice. Due to the recurrent nature of the LSTM layer, the output of the control 

module depends on current inputs and the module’s historical states. In this step, we 

manipulated the switching condition in training sequences. Therefore, the control module 

should take all inputs into consideration for its output generation, instead of only focusing on 

a given task cue input in a certain trial.  

Task Rule Learning Step 

All four studies shared the same task rule learning step. In this step, we directly 

passed task cue inputs together with stimulus inputs to the output module. There were 400 



trials in each training sequence. We updated LCD’s weights every four training sequences. 

Tasks were totally interleaved in each training sequence. We used Keras’ built-in Adam 

optimizer, with a learning rate of 0.001, to update model weights based on categorical cross-

entropy loss. At the end of each epoch, we evaluated model accuracy on each task separately. 

The training stopped when LCD reached at least 95% accuracy on each single categorization 

task.  

Task Control Learning Step 

 The Task Control Learning Step was subject to switching condition manipulations in 

each study. First, we froze all weights learned in the task rule learning step and trained an 

LSTM layer feeding into LCD’s task control module. This LSTM layer received environment 

cues, stimulus and task cues and was trained on different task switching frequencies that 

could, in some simulations (see below), be predicted by contextual features. Its output was 

projected to a feedforward layer of the control module to generate a multidimensional output 

that served as a new task-cue-like input (i.e., task activations) to the output module for 

responding.  

In Study 1 and 2, we had 100 independent training runs in high-switch and low-switch 

conditions respectively. Similarly, in Study 3 and Study 4, LCD was trained on high-switch 

and low-switch conditions together with associated contextual features until reaching 85% 

accuracy. More specifically, in Study 3, the same LCD model was trained on both high and 

low switching regimes, and the regime was indicated by the environment inputs (Fig. 2A), 

five zeros meaning a low-switch condition while five ones meaning a high-switch condition. 

In each epoch, LCD was trained on one switching regime together with a corresponding 

environment input. To keep the model’s task switching performance induced by each 

environment input comparable (Xu et al., 2024), model accuracy on each environment input 

with a switching frequency of 50% was evaluated at the end of each epoch. The environment 



where LCD had worse performance was trained in the next epoch. For example, if LCD had 

lower accuracy in a low-switch environment (i.e., five zeros) with a switching frequency of 

50% in the evaluation, then in the next epoch, LCD was trained with a low-switch 

environment input with a switching frequency of 10%. The first training condition was 

randomly chosen in Study 3. In Study 4, we employed only four tasks, and the switching 

condition was indicated by the task identity. Specifically, two tasks were randomly selected to 

occur more frequently on switching trials (90% switching, high-switch tasks), while the other 

two tasks were more prevalent in repetition trials (90% repetition, low-switch tasks), with an 

overall switching frequency of 50% in each epoch. 

In each training run, initial LCD weights were sampled from a normal distribution 

with a mean of zero and standard deviation of 0.001. There were 50 trials in each training 

sequence, and weights were updated every four training sequences. The last state in each 

batch was not passed to the next batch during training. Again, no training sequence was 

repeated. In addition, during training, we regularized the connection between the LSTM layer 

and the feedforward layer in the control module with a dropout rate of 0.5. We updated model 

weights according to categorical cross-entropy loss, using the Adam optimizer with a learning 

rate of 0.001. To match human performance (Xu et al., 2024), in this step, we trained LCD 

until it reached at least 85% accuracy in a switching condition with a switching frequency of 

50% in each context type, which was tested at the end of each epoch. We let LCD freely 

decide how to optimize its behavior in each switching condition to reach the target accuracy. 

To ensure a similar training procedure, we discarded models if they did not reach 85% 

accuracy in this step after 300 epochs.   

Simulations and Analyses 

Model Simulations 

In all simulations, learned weights after model training were frozen to avoid any 



further learning. Therefore, each simulation served as a testing phase to study how LCD 

adapts to different switching conditions after learning. We ran 100 simulations in each study. 

There were 1000 trials in each simulation. We recorded model accuracy as well as task 

activations in each trial for following analyses. 

In Study 1 we studied whether pure activation-based dynamics could contribute to 

task switch costs. Here, low-switch trained LCD was subjected to either high (90%) or low 

(10%) task switching frequencies in simulations. Because all weights were learned from the 

same training regime and fixed during test, weight-based adaptation could not explain any 

switch cost difference in high-switch versus low-switch testing conditions in Study 1.  

In Study 2, conversely, we aimed to investigate the weight-based adaptation. 

Therefore, we tested the low-switch trained (from Study 1) and a new high-switch trained 

LCD with frozen weights in a test with unbiased switching frequency of 50%. This time, all 

(stimulus, task) sequences in Study 2 shared the same switching frequency.  

In Study 3, LCD was again tested with frozen weights on a switching frequency of 

50% together with environment cues that were predictive of switching frequencies during 

training, to test environment-control learning. Similarly, in Study 4, four tasks were presented 

equally often in switching and repetition trials in simulations with a switching frequency of 

50% to test task-control learning.  

Model Behavioral Analysis 

 Similar to conventional task switching analyses in humans, we excluded the first and 

post-error trials in model simulations as they cannot be defined as neither task switching nor 

task repetition. Then we computed model’s behavioral accuracy in switching trials and 

repetition trials in each context.  

Task Activation Adjustment Analysis 



We computed task activation adjustment velocities to quantify the extent of 

adjustments on task activations, via measuring Euclidean distance between m-dimensional 

task activations [𝐴!,#$!, 𝐴%,#$!, 𝐴&,#$!, … , 𝐴',#$!] and [𝐴!,#, 𝐴%,#, 𝐴&,#, … , 𝐴',#]  on two 

successive trials, trial n-1 and trial n. Here 𝐴(,#  stands for task activation in trial n on task i ∈ 

{1, 2, ⋯ m}. The sign of task activation adjustment velocities depends on whether LCD 

moved in a direction that increases the activation of the cued task from trial n-1 to trial n. If 

trial n is a switching trial, then the measured velocity is a switching velocity, otherwise a 

repetition velocity. To decompose the switching velocity, we computed the task activation 

changes. We defined three groups of tasks, the previously executed task (i.e., the task 

performed in trial n-1), the current task (i.e., the task performed in trial n) and other tasks that 

were not cued on these two trials. The activation change of each task was computed by 

subtracting the activation of this task in trial n-1 from the activation of the same task in trial 

n. To interpret the repetition velocity, we extracted trials from each simulation where LCD 

experienced the same task on five successive trials to look at how task activation accumulated 

over repetition trials. In these five trials, the first one is a switching trial, where LCD 

switched from another task to the current task and repeated performing this task in following 

four trials. In the variant version (in Study 4), we instead measured switching and repetition 

velocities from trial n to trial n+1 to study the task-specific regulation effect after 

experiencing high-switch and low-switch tasks. The switching velocity decompositions were 

also implemented accordingly.  

Task Representation Separation 

To measure how separately LCD represented each task in each context, we first 

located a task representation centroid as a reference point in each simulation data. A task 

representation centroid is defined by averaging task activations over simulation trials, 

resulting in an m-dimensional vector [𝐴!&&&, 𝐴%&&&, 𝐴&&&&, …	, 𝐴'&&&&], where 𝐴)(  stands for an average task 



activation of task i, i ∈ {1, 2, ⋯ m}, and m is the number of tasks. Then we computed a 

Euclidean distance between the task representation centroid and an m-dimensional task 

activation in each trial with a correct response. Afterwards, the representation separation of 

each task was measured by averaging each task’s own computed Euclidean distance values.  

Model Statistics 

We conducted a 2 (context: high and low switching regimes) × 2 (trial type: switching 

and repetition) analysis of variance (ANOVA) on behavioral accuracy data in all studies, 

where we set context as a between-subject factor in the study 2 but a within-subject factor in 

the other studies. We conducted two-sided t tests to compare accuracy between contexts on 

task switching and repetition trials respectively, task representation separation, switching / 

repetition velocities, task activation changes and task activation accumulation.  

Human Dataset Reanalysis 

 The human dataset used in Study 4 is from Experiment 3a and 3b of Siqi-Liu & 

Egner, 2020. Two experiments share a similar design, where participants switched between 

three tasks with different switching frequencies. We used their data from a high-switch 

condition with a switching frequency of 70%. There were two biased tasks and one unbiased 

task in each block. Biased tasks appeared more in switching trials, but unbiased tasks 

appeared equally in switching and repetition trials, resulting in an overall switching 

frequency of 70%. We applied the same data preprocessing and exclusion strategy (see 

original paper for task procedure and analysis details). We relabeled their biased tasks as 

high-switch tasks and their unbiased task as a low-switch task. To gain higher statistical 

power, we combined data from two experiments, and therefore reached a sample size of 102. 

We ran a repeated measure two-way ANOVA of trial type (switching and repetition) and task 

type (high-switch tasks and low-switch tasks), and then another repeated measure two-way 

ANOVA of trial type (switching and repetition) and previous task type (after high-switch 



tasks and after low-switch tasks) to examine whether the switch cost would be smaller in 

trials with high-switch tasks or after receiving high-switch tasks.  

Data and Code Availability 

Human behavior data can be found via the link provided in the original paper (Siqi-

Liu & Egner, 2020). All code used to train and analyze the model, trained models and 

simulation results in this manuscript are available: https://osf.io/cqhvx/. 

 

Results 

Activation-based adaptations in response to different needs for cognitive flexibility 

Study 1 evaluated whether the model would show a modulation in switch costs when 

LCD was trained on the low-switch condition, but tested under low- versus high-switch 

conditions with its weights frozen during the test. Results showed that the classic observation 

of smaller switch costs in high versus low switch conditions can indeed be explained by 

dynamic variations in (accumulated) task activation caused by the experienced high- versus 

low-switch frequency conditions. Specifically, in a low-switch testing condition, LCD 

experienced more task repetitions, and therefore had more opportunities to get closer to a 

given task attractor (e.g., Fig. 3A, blue dots). This helped LCD accumulate task activation 

over subsequent task repetitions, improving performance on task repetitions but impairing 

performance on subsequent switch trials. To quantify activation-based adaptation, we 

computed, similar to humans, the switch cost on LCD’s accuracy data. As predicted, we 

observed a significant switch cost, which was significantly smaller when switching frequency 

was higher (Fig. 3B). Specifically, LCD had better accuracy in switching trials, but worse in 

repetition trials when faced with a higher switching frequency (Fig. 3B). Previous work 

argued that a deeper task attractor is favored when the need for task switching is low, which 

leads to more separated task representations and vice versa (Jaffe et al., 2023; Musslick & 

https://osf.io/cqhvx/


Cohen, 2021). Therefore, we measured the distance between LCD’s activation state of each 

task and its average activation state (see Methods) to indicate task representation separation 

in Study 1. Notably, even though the weights were fixed, we observed less separation in task 

representations (Fig. 3C) when LCD was tested in a high-switch condition. This indicates that 

LCD dynamically adapted to emerging needs for control, even after its weights are frozen, 

via activation-based adaptation.  

An important consequence of these findings is that they emphasize the importance of 

using equal testing conditions when studying control regulations. Otherwise, under unequal 

testing conditions, the observed modulation of switch costs may be driven either by 

(activation-based) variations in task activations induced by the locally experienced switching 

frequencies, or instead by (weight-based) enduring changes in control parameters (Braem et 

al., 2019, 2024; Frings et al., 2023; Wang et al., 2018) or both. In fact, we believe the 

activation-based variation may be a more likely explanation in most previous studies, given 

that learning weight-based adaptation of control strategies often requires considerable 

amounts of task and context-specific training beyond the length of a single experimental 

session (Braem et al., 2024; Xu et al., 2024).  

 

Fig. 3. Activation-based adaptation in Study 1. (A) When tested on 10% task switching, LCD has more 

chances to accumulate task activation over repetition trials. Consequently, LCD is closer to one task attractor, 

which benefits task repetition, but impairs its performance on task switching, i.e., farther away from the cued 

task attractor on a switching trial. (B) LCD behavioral results of LCD with a low-switch training regime in the 

testing phase with 10% (blue) and 90% (orange) task switching frequencies respectively. (C) LCD task 



representation separation results with a low-switch training regime in the testing phase with 10% (blue) and 

90% (orange) task switching frequencies respectively. Error bars stand for the 95% confidence intervals, *** 

represents p < .001. 

 

Weight-based adaptations through different task activation velocities  

In Study 2, we wanted to investigate whether LCD can also learn such weight-based 

adaptation in response to different needs for flexibility. Our reasoning was opposite to Study 

1, as the two groups of simulation data were now from LCD that was trained on different 

needs for cognitive flexibility (i.e., weight-based adaptation), but experienced the same 

proportion of task switching and repetition in the testing phase, hence reflecting effects from 

weight-based control learning instead of task activation variations induced by different 

switching frequencies.  

Indeed, we found that LCD still showed smaller switch costs in the testing phase 

when trained on a high-switch condition (Fig. 4B). Specifically, LCD had better accuracy in 

switching trials, but worse in repetition trials after a high-switch training regime compared to 

a low-switch training regime. As for task representation separation, LCD with a high-switch 

training tends to represent tasks closer together (Fig. 4C), suggesting shallower task 

attractors. Thus, LCD acquired different strategies for the regulation of cognitive control 

through weight-based learning during low- versus high-switch frequency conditions.  

We analyzed the outputs from LCD’s control module to unveil how LCD adjusted its 

task activation to meet the varying needs for cognitive flexibility. Because we implemented 

multiple tasks, LCD needed to navigate a high-dimensional task space. To quantify the 

dynamics of task activations from trial to trial, we developed a novel metric that we call task 

activation adjustment velocity. This metric quantifies how efficiently LCD moved away from 

its old location in the task space in a correct direction toward the currently cued task, during 

task switching and task repetition separately. We hypothesized that LCD would strategically 



modulate its task activation adjustment velocity in response to different needs for control. 

Specifically, we expected it would show a higher task activation adjustment velocity 

(switching velocity, Fig. 4D) in switching trials when moving toward the cued task attractor 

away from an old task attractor, after a high-switch training regime as opposed to after a low-

switch training regime. Conversely, LCD had a higher task activation adjustment velocity 

(repetition velocity, Fig. 4G) while moving toward the same task attractor in a repetition trial, 

after a low-switch training regime as opposed to after a high-switch training regime. Due to 

this higher repetition velocity, a low-switch training should drive LCD toward stronger task 

activation over successive repetition trials.  

Using the same simulation results as presented above, we analyzed LCD’s task 

activations after high-switch and low-switch training regimes in a testing phase with an equal 

switching frequency (50% task switching) in Study 2. In line with our expectation, LCD had 

a higher switching velocity in switching trials after a high-switch training regime (Fig. 4E). 

To unpack, LCD increased its activation of the cued task more (Fig. 4F) and reduced the 

activation of the previously executed task more after a high-switch training. Moreover, LCD 

also showed a smaller reduction in activation of other tasks after a high-switch training 

regime. These findings suggest that LCD learned the strategy to move faster toward the cued 

task attractor in the task space during task switching.  

Analogous to the switching velocity metric used in task switching, we also calculated 

velocity during task repetition. For a comparable measurement, we calculated the repetition 

velocity on a task repetition on the first repetition trials (i.e., Fig. 4I, from trial 1 to trial 2). 

Indeed, the repetition velocity was higher after a low-switch training regime (Fig. 4H). To 

examine whether LCD converged to a stronger task activation after a low-switch training 

regime, we assessed task activation dynamics during task repetition over multiple successive 

trials, i.e., repeating a task once (trial 2), twice (trial 3), etc. We expected that LCD would 



accumulate activation of a cued task over successive repetition trials, but with a different 

pattern for low-switch and high-switch training regimes. For this purpose, we tracked the 

activation of the same cued task across five successive repetition trials (Fig. 4I). In the first 

trial, LCD’s activation of the cued task was stronger after a high-switch training regime. It is 

because this trial is a switching trial (see Methods), where LCD moved from another task to 

this cued task. However, activation strength of the cued task after a low-switch training 

regime surpassed those from LCD after a high-switch training regime from the second trial 

onwards, finally converging to a higher task activation value.  

 

Fig. 4. Weight-based adaptation in Study 2. (A) A visual illustration of weight-based adaptation. LCD learned 

to reduce attractor depth to deal with task-switching after a high-switch training regime (orange line). In a low-

switch training regime, LCD increased attractor depth (blue line). Therefore, a high-switch training regime 

enables LCD to move its task activation state faster in a switching trial, resulting in a task activation state closer 



to the cued task from trial n - 1to trial n. (B-C) Behavioral accuracy and task representation separation results of 

simulation data from low-switch and high-switch trainings in the testing phase with 50% task switching 

respectively. (D) A visual illustration of switching velocity. A shallower attractor facilitates the movement from 

one task on trial n – 1 to another task on trial n, resulting in a final task activation state closer to the new task 

attractor. (E) LCD switching velocity results in the testing phase after low-switch and high-switch training. (F) 

Task activation trial-by-trial changes on current task, previously executed task and other tasks during task 

switching. Here, current task means the task in the current switching trial and previously executed task means 

the task performed in the last trial, while other tasks refer to three remaining tasks. (G) A visual illustration of 

repetition velocity. In a repetition trial, LCD benefitted from a deeper attractor with a low-switch training, 

enabling it to move toward the task attractor more efficiently. (H) LCD repetition velocity results in the testing 

phase after low-switch and high-switch training. (I) LCD task activation accumulation over task repetitions in 

the testing phase after low-switch and high-switch trainings, with numbers on x-axis representing repetition trial 

numbers. Error bars and shade area stand for the 95% confidence intervals. In violin plots, white dots in 

boxplots indicate medians and upper and lower hinges of the boxplot correspond to the first and third quartiles. 

*** represents p < .001. 

 

Learning environment-specific cues signaling varying needs for cognitive flexibility  

To examine whether LCD emulates this type of environment-control learning at the 

behavioral level, we conducted Study 3 by presenting different switching frequencies (high 

versus low) associated with different environment cues, and trained LCD to see if it was able 

to learn these environment-control contingencies. We expected LCD to learn these 

environment-specific control parameters and therefore established an environment-specific 

control regulation strategy (Fig. 5A). Indeed, we observed smaller switch costs for the 

environment cues associated to a high-switch condition (Fig. 5B), suggesting that LCD 

learned to apply environment-specific task switching strategies. LCD also tended to have less 

separated task representations while cued by a high-switch environment cue (Fig. 5C), 

allowing for a higher degree of cognitive flexibility.  

Similar to results in Study 2, LCD learned to use different task activation adjustment 



velocities depending on the environment it was in. On the one hand, when presented with a 

high-switch environment cue, LCD learned to use a faster switching velocity during task 

switching (Fig. 5D), as opposed to when presented with a low-switch environment cue (Fig. 

5E). Specifically, when LCD was presented with a high-switch environment cue, the cued 

task activations increased more, with more reduction in activation of the previously executed 

task but less reduction in activations of other tasks (Fig. 5F). On the other hand, LCD had a 

larger repetition velocity (Fig. 5H), and converged to a larger value (Fig. 5I, trial 5), when 

performing task repetitions when presented with a low-switch environment cue. These results 

support that LCD can learn environment-control associations, showing environment-specific 

regulations of control to achieve optimal levels of cognitive flexibility versus stability.  

 

Fig. 5. Environment-specific control regulation in Study 3. (A) A visual illustration of environment-specific 

weight-based control regulation. LCD was trained on both high- and low-switch condition, indicated by 



different environment cues. Therefore, LCD was able to adjust its attractor settings based on environment cues, 

showing shallower attractors when cued by a low-switch environment cue but deeper attractors when cued by a 

high-switch environment cue. (B-C) Behavioral accuracy and task representation separation results in study 2 

when LCD was tested on 50% task switching when cued by different environment cues. (D) A visual illustration 

of switching velocity difference induced by environment-specific control regulation. During task switching, 

LCD moves faster (shown by a longer trajectory between a black and a red dot) in the task space when cued by 

a high-switch environment cue compared to a low-switch environment cue. (E) Switching velocity results in the 

testing phase when cued by different environment cues. (F) Task activation changes on current task, previously 

executed task and other tasks during task switching when cued by different environment cues. (G) A visual 

illustration of repetition velocity difference induced by environment-specific control regulation. In a repetition 

trial, LCD moved closer to a task attractor when cued by a low-switch environment cue, shown by a longer 

trajectory between a black point and a light blue point. (H) Repetition velocity results in the testing phase cued 

by different environment cues. (I) Task activation accumulation over task repetitions in the testing phase when 

cued by different environment cues. Error bars and shade area stand for the 95% confidence intervals. In violin 

plots, white dots in boxplots indicate medians and upper and lower hinges of the boxplot correspond to the first 

and third quartiles. *** represents p < .001. 

 
Learning task-specific cues signaling varying needs for cognitive flexibility 

 Finally, having established that LCD can learn to apply different control parameters 

for high- versus slow-switch environments, we investigated whether and how LCD can also 

adjust its control strategy in response to task identity features that were predictive of different 

needs for cognitive flexibility (i.e., high-switch and low-switch conditions). In line with 

behavioral findings, we found task-specific switch costs, showing smaller switch costs on 

high-switch tasks (Fig. 6B). Similarly, we again observed that LCD represented high-switch 

tasks closer together than low-switch tasks (Fig. 6C). Thus, LCD can learn to regulate 

cognitive control strategies in accordance to varying needs for cognitive flexibility predicted 

by task identity features, consistent with recent work on human task-specific control 

regulation. 



To study how LCD learned to be more flexible on high-switch versus low-switch 

tasks, we analyzed its velocity data. Despite the fact that LCD exhibited task-specific 

cognitive flexibility and represented high-switch tasks closer together, but in contrast to our 

previous simulation studies, there was no difference in switching velocity, when facing low-

switch vs. high-switch tasks (Fig. 6E). Similarly, when analyzing changes in task activation 

during task switching (Fig. 6F), we did not observe a higher increase in activation of the cued 

high-switch tasks in switching trials, nor changes in activation of the other tasks. Instead, we 

only observed a smaller reduction in activations of previously executed tasks. However, the 

repetition velocity and the task accumulation results were consistent with previous findings, 

showing LCD had a faster repetition velocity (Fig. 6H), and converged to higher task 

activation (Fig. 6I, trial 5) on low-switch tasks compared to high-switch tasks.  

 

Fig. 6. Task-specific control regulations in Study 4. (A) A visual illustration of task-specific weight-based 



control regulation. LCD was trained on two groups of tasks where two tasks appeared more in repetition trials 

(low-switch) while another two tasks appeared more in switching trials (high-switch). Therefore, LCD 

developed deeper attractors for low-switch tasks but shallower ones for high-switch tasks (B-C) Behavioral 

accuracy and task representation separation results when LCD was tested on 50% task switching with low-

switch versus high-switch tasks. (D) A visual illustration of switching velocity difference induced by task-

specific control regulation. LCD is supposed to move faster in the task space when it performs a high-switch 

task compared to a low-switch task on a switching trial. (E) Switching velocity results on low-switch and high-

switch tasks in the testing phase with low-switch versus high-switch tasks. (F) Task activation changes on 

current task, previously executed task and other tasks during task switching in the testing phase with low-switch 

versus high-switch tasks. (G) A visual illustration of repetition velocity difference induced by task-specific 

control regulation. In a repetition trial, the task-specific model moves closer to a task attractor when it performs 

a low-switch task. (H) Repetition velocity results in the testing phase with low-switch versus high-switch tasks. 

(I) Task activation accumulation over task repetitions in the testing phase with low-switch versus high-switch 

tasks. Error bars and shade area stand for the 95% confidence intervals. In violin plots, white dots in boxplots 

indicate medians and upper and lower hinges of the boxplot correspond to the first and third quartiles. n.s. 

indicates non-significancy, ** represents p < .01, *** represents p < .001. 

 
Together, these results seemingly indicate that the observed task-specific control 

regulation at the behavioral level may not be driven by a strategic adjustment of the switching 

velocity, but only the repetition velocity in response to low-switch and high-switch tasks. 

However, different from the environment cues which were presented throughout the whole 

experiment in Study 3, task identity features do not suggest an optimal global strategy, but 

rather operate on a trial-by-trial basis in Study 4. When looking at switching trials where a 

high-switch task was presented, the measures of switching velocity were averaged across 

conditions where the previous trial was a high-switch or low-switch task, thereby eliminating 

the potential after-effects of switching velocity induced by the two types of tasks (Fig. 7A). 

Instead, in repetition trials where a low-switch (versus high-switch) task was presented, we 

know the previous task was another low-switch task, so the resulting repetition velocities 



could also be the product of the previous trial(s). Therefore, LCD probably did not use 

learned task-control knowledge to deal with task switching within the same trial. Instead, it 

may apply the learned knowledge after receiving a low-switch or high-switch task in a 

previous trial (Jia et al., 2024) (Fig. 7B-C).  

 

  

Fig. 7. Task-specific switching velocity after receiving low-switch and high-switch tasks in Study 4. (A) 

Unlike environment-specific switching velocity, task-specific switching velocity is influenced by which type of 

task is presented in a previous trial. Directly looking at switching trials, where for example a high-switch task is 

presented, averages the task-specific switching velocity induced by low- and high-switch tasks in previous trials, 

hence eliminating the switching velocity difference between low-switch and high-switch tasks. To observe the 

task-specific switching velocity, one should measure the effect after receiving high-switch tasks (B) or low-

switch tasks (C). (D-E) Human behavioral results of difference analyses on an existing human task-specific 

experiment dataset by looking at task-specific effect in trials presenting low- or high-switch tasks (D) or 

following low- or high-switch tasks (E) respectively. (F) LCD behavioral accuracy in trials following low- or 



high-switch tasks. (G) A visual illustration of the new measure of switching velocity in task-specific control 

regulation. Instead of looking at switching to each type of task, we now look at the velocity of switching away 

from each type of task. (H) Switching velocity results in the testing phase, after receiving low- and high-switch 

tasks. (I) Task activation changes on current task, previously executed task and other tasks during task switching 

in the testing phase, after receiving low- and high-switch tasks. Error bars stand for the 95% confidence 

intervals. n.s. indicates non-significancy, *** represents p < .001. 

 

To directly test whether LCD adjusted its switching velocity only after receiving high-

switch or low-switch tasks, we analyzed LCD’s behavioral accuracy on trials after high-

switch or low-switch tasks on previous trials (Fig. 7F). The results again showed task-specific 

switch costs, with lower switch costs after receiving high-switch tasks. Next, we computed 

switching velocity after low-switch and high-switch tasks. This time, we did observe a higher 

switching velocity on switching trials after high-switch tasks (Fig. 7H). In addition, the 

decomposition of this new switching velocity result pointed to a higher activation increase of 

the cued tasks as well as a higher reduction in activation of the previously executed tasks on 

switching trials following high-switch tasks (Fig. 7I). Notably, there was still no difference in 

reduction in activations of the other tasks, further suggesting that this learned task-specific 

control regulation was applied in a very task-specific trial-by-trial manner.  

These results predict that learned task-specific requirements for cognitive flexibility 

are more pronounced after receiving predictive task identity features. To further investigate 

these new predictions, we reanalyzed an earlier human dataset (Siqi-Liu & Egner, 2020). 

When directly looking at the task type (high-switch versus low-switch), there is a significant 

main effect of trial type, F(1,101) = 203.87, p < .001, ηp2 = .669, but no main effect of task 

type or their interaction F(1,101) < 2.57,  p > .112, ηp2 < .025. However, when looking after 

biased tasks, the results showed the critical interaction of previous trial type and trial type, 

F(1,101) = 8.77, p = .004, ηp2 = .080. A smaller switch cost was observed in trials after 



switch-predictive tasks (Fig. 7E, switch cost difference M = -36.39, 95% confidence interval 

CI = [-60.48, -12.30]), but not on them (Fig. 7D, M = -8.11, 95% (CI) = [-18.70, 2.47]). 

In sum, although able to learn from both environmental and task identity features 

predictive of different levels of task switching, LCD applied this learned context-control 

knowledge in different ways, depending on the characteristics of the predictive contextual 

information, i.e., global environment vs. trial-by-trial task information. 

 

Discussion 

Over the past decades, many cognitive control studies yielded diverse insights into 

how people tradeoff cognitive flexibility versus stability depending on task characteristics. 

Here, we show how classic markers of these opposing states can be understood through the 

lens of both fast but fleeting activation-based adaptation, and slower but more enduring 

weight-based adaptation. Together, these findings shed an important, new light on the 

interpretation and implementation of (context-specific) cognitive flexibility versus stability. 

Our LCD model is also able to learn and associate these different task activation adjustment 

strategies to co-occurring contextual features, such as the identity of the environment or task 

in which agents are subjected to different degrees of task switching. These results help 

ground contemporary theories of cognitive control and offer a useful framework to 

understand old and new debates in the field – several of which we will briefly discuss below. 

Recent years have seen an emerging interest in using attractor dynamics (Hopfield, 

1982; Rolls et al., 2008; Yang et al., 2019) to understand the computational mechanisms of 

cognitive control (Grahek et al., 2024; Haykin et al., 2012; Jaffe et al., 2023; Khona & Fiete, 

2022; Musslick & Bizyaeva, 2024; Musslick & Cohen, 2021; Ueltzhöffer et al., 2015). 

However, an open question has been whether and how humans learn these different control 

states. LCD promotes our understanding of not only how task attractors are shaped in the first 



place, but also how different task attractors are learned in response to varying environmental 

demands. One critical contribution is the distinction between activation-based and weight-

based adaptations on task performance. Here, we show how LCD can both differentially 

benefit from accumulated task activation in low- versus high-switch environments, as well as 

learn to adaptively shape the depth of its attractor landscapes.  

This cooperation between activation-based and weight-based adaptations is 

reminiscent of the recent distinction between in-weight learning versus in-context learning as 

manifested in recurrent neural networks (Wang et al., 2018) and transformers (Vaswani et al., 

2017). Any system that learns in weights (e.g., a neural network) but also shows sufficiently 

complex and sustained activation dynamics (e.g., a recurrent network or a transformer), can 

sculpt its weights so that it can also learn in activation space (in-context learning). 

Specifically, during (weight) training such networks learn how to use their activations from 

previous time steps to apply them to the current time step (Russin et al., 2024). In this way, 

large language models (LLM), for example, learn to extract the relevant information from the 

recent word stream for next-word predictions, resulting in incredible capacities to meet 

challenges in new tasks. Similarly, activation dynamics in LCD make sure that the model 

gradually moves toward the right attractor (which can be called in-context adaptation); where 

the direction and speed of movement have been shaped by in-weight learning.  

Our model also has implications for prevalent discussions in the broader literature on 

cognitive control. For example, many theoretical discussions on task switching have focused 

on the origin of switch costs, where researchers have dissociated between an interference 

view and reconfiguration view (Kiesel et al., 2010; Vandierendonck et al., 2010). The 

interference view holds that the persistent activation of an old and irrelevant task 

representation (task-set inertia) results in switch costs (Allport et al., 1994; Evans et al., 2015; 

Logan & Bundesen, 2003; Meuter & Allport, 1999; Philipp et al., 2007; Waszak et al., 2003; 



Wylie & Allport, 2000). In contrast, the reconfiguration view proposes that switch costs 

reflect a process of activating new task representations (reconfiguring) during task switching 

compared to task repetition (Jost et al., 2008; Meiran, 1996; Monsell & Mizon, 2006; Rogers 

& Monsell, 1995; Rubinstein et al., 2001; Verbruggen et al., 2007; Weaver et al., 2014). In 

this terminology, LCD’s process of reconfiguring to a new task involves moving away from 

previous, irrelevant tasks and toward the currently relevant ones in task space. From this 

perspective, both processes are two sides of the same coin, where task switching involves a 

constant balancing between different tasks. 

The past two decades have also witnessed a debate over whether markers of cognitive 

control, such as switch costs, reflect cognitive control processes at all, or learning instead 

(Mayr & Kliegl, 2003; Mordkoff, 2012; Rothermund et al., 2005; Schmidt et al., 2020), often 

attributing control-related effects to episodic memory (Frings et al., 2020; Giesen & 

Rothermund, 2014; Hommel, 2004) or contingency learning processes (Hommel et al., 2004; 

Mayr et al., 2003; Schmidt et al., 2020; Schmidt & Besner, 2008). Here, in line with recent 

theories that emphasize the learning of control settings (Abrahamse et al., 2016; Botvinick & 

Cohen, 2014; Braem & Egner, 2018; Lieder et al., 2018; Verguts & Notebaert, 2009), we 

show how cognitive control involves the learning of such control settings but crucially in 

tight interaction with episodic memory as implemented via task-based activation. Indeed, 

LCD even learns abstract environment-control relations in response to changing 

environment-specific demands for cognitive flexibility versus stability. Therefore, LCD 

provides a unified framework to integrate not only learning and control, but also the 

respective contributions of episodic memory and contingency learning (Frings et al., 2023) 

through activation-based and weight-based changes, respectively.  

Another long-standing debate in the field is whether states of cognitive flexibility 

versus stability should be considered domain-general or domain-specific. While some studies 



suggest that training task switching may promote performance on other related tasks that 

require cognitive flexibility (Johann & Karbach, 2020; Karbach & Kray, 2009; Minear & 

Shah, 2008), others find limited evidence for such transfer (Aben et al., 2019; Ganesan et al., 

2024; Kassai et al., 2019; Melby-Lervåg et al., 2016; Sabah et al., 2019, 2021; Simons et al., 

2016; Uddin, 2021). Our model takes a clear stance in that it predicts that learned control 

states are highly task- and context-specific, thereby rendering it unlikely that transfer would 

extend far beyond the current task (components). This is consistent with recent models and 

observations that learned states of cognitive flexibility and stability can be very task- and 

environment-specific (Fröber et al., 2022; Nack & Yu-Chin, 2024; Siqi-Liu & Egner, 2020, 

2023; Xu et al., 2024). Namely, we document how different states of cognitive flexibility 

versus stability can be learned, but, in doing so, will necessarily bind to the task identities of 

broader environments in which these different attractor landscapes are learned. From this 

perspective, generalization can only occur for whole task sets or its disentangled components 

(Frankland & Greene, 2020; Franklin & Frank, 2020; Hupkes et al., 2020; Ito et al., 2022). 

This model-based interpretation has the benefit of allowing for concrete predictions about the 

extent to which tasks and task environments can benefit from one another.  

LCD also shows clear links to, and takes inspiration from, different biological 

processes. First, activation-based adaptations have been related to the activation dynamics of 

neurons (via neural spikes), whereas changes in weights are thought to depend on pre-or post-

synaptic membrane configurations (e.g., based on AMPA receptors). Interestingly, some have 

also proposed an intermediate activity-silent working memory system that maintains 

information via short-term synaptic plasticity instead of persistent neural activity (Masse et 

al., 2020; Stokes, 2015). We speculate that weight changes may initially reside in activity-

silent working memory, but then gradually transfer to membrane configurations when 

repeatedly triggered. Second, the gating parameters inherent in any LSTM (including LCD), 



are plausibly supported by striato-cortical loops systems (Braver & Cohen, 1999, 2000; 

Chatham & Badre, 2015; Ede & Nobre, 2023; Hazy et al., 2007). Finally, attractors, as 

described here, may be sculpted in cortex, whereas thalamus integrates inputs from basal 

ganglia and cerebellum to adapt their depth to construct a dynamically evolving attractor 

landscape (Houk & Wise, 1995; Shine, 2021). 

LCD also holds potential for several extensions. We focused on accuracy, but switch 

costs are often observed in both accuracy and response time (RT) data. In general, empirical 

effects can be observed in accuracy, RT, or some combination, depending on where an agent 

resides on the speed-accuracy tradeoff continuum (Heitz, 2014; Woodworth, 1899). Future 

work can model RT so that our model can be compared more comprehensively to human 

data. A second and related extension is fitting the model to behavioral data. Given their 

complexity, neural networks are notoriously difficult to fit to data, and it is a classic modeling 

trade-off to make models expressive or instead statistically tractable. Nevertheless, promising 

new avenues allow for a more thorough statistical treatment of neural networks (Ji-An et al., 

2023; Radev et al., 2020). Third, as just mentioned, efficient generalization across tasks may 

require a compositional (e.g., hierarchical) task structure (Liu & Frank, 2022). LCD did not 

focus on simulating these hierarchical task structures, which pertain mostly to the first 

learning step of our model. However, incorporating this aspect of task learning will be an 

important extension to allow for more fine-grained predictions on the generalization of 

control strategies.  

In conclusion, LCD provides a unified framework to study how people find optimal 

states of cognitive flexibility versus stability when switching between tasks. We simulated 

several findings from the literature and proposed a clear computational mechanism of 

cognitive control. Inspired by this framework, we discussed new insights to longstanding 

debates regarding control functions in regulating human behavior. Given the ubiquity of task 



switching in (modern) daily life, we believe that sculpting adaptive attractors as modeled in 

our LCD model, reflects a crucial aspect of cognitive control.   
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