

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DIVERSITY OF TRANSFORMER LAYERS: ONE ASPECT OF PARAMETER SCALING LAWS

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformers deliver outstanding performance across a wide range of tasks and are now a dominant backbone architecture for large language models (LLMs). Their task-solving performance is improved by increasing parameter size, as shown in the recent studies on parameter scaling laws. Although recent mechanistic-interpretability studies have deepened our understanding of the internal behavior of Transformers by analyzing their residual stream, the relationship between these internal mechanisms and the parameter scaling laws remains unclear. To bridge this gap, we focus on layers and their size, which mainly decide the parameter size of Transformers. For this purpose, we first theoretically investigate the layers within the residual stream through a bias-diversity decomposition. The decomposition separates (i) bias, the error of each layer’s output from the ground truth, and (ii) diversity, which indicates how much the outputs of each layer differ from each other. Analyzing Transformers under this theory reveals that performance improves when individual layers make predictions close to the correct answer and remain mutually diverse. We show that diversity becomes especially critical when individual layers’ outputs are far from the ground truth. Finally, we introduce an information-theoretic diversity and show our main findings that adding layers enhances performance only when those layers behave differently, i.e., are diverse. We also reveal the performance gains from increasing the number of layers exhibit submodularity: marginal improvements diminish as additional layers increase, mirroring the logarithmic convergence predicted by the parameter scaling laws. Experiments on multiple semantic-understanding tasks with various LLMs empirically confirm the theoretical properties derived in this study. Our code will be available at <https://github.com/> [Anonymous].

1 INTRODUCTION

Transformer (Vaswani et al., 2017) is one of the dominant architectures across a wide range of tasks in natural language processing (NLP) and other fields. In particular, large language models (LLMs) built on the Transformer backbone have demonstrated remarkable capabilities in language understanding and generation. This rapid progress, however, raises fundamental questions about why Transformers perform so well and how their performance scales with model size.

Empirical scaling studies have shown that increasing model parameter size leads to predictable improvements in performance (Hestness et al., 2017; Kaplan et al., 2020). These scaling laws suggest that larger networks consistently yield better performance as represented by in-context learning ability (Brown et al., 2020) and emergent capabilities observed in models with hundreds of billions of parameters (Wei et al., 2022).

Despite the impressive empirical successes of LLMs, their inner workings largely remain a black box. The mechanistic interpretability has partially elucidated the internal computations of Transformers and uncovered interpretable patterns and circuits within these networks (Geva et al., 2021; Olsson et al., 2022). Studies focusing on the residual stream (Elhage et al., 2021), composed of embedding, Multi-head Attention (MHA), and Multi-layer Perceptron (MLP) layers, have further deepened the interpretation of how information accumulates on residual networks through layers.

These works suggest that each layer contributes incrementally to the model’s prediction by adding or refining information in the residual stream. However, the relationship between these internal

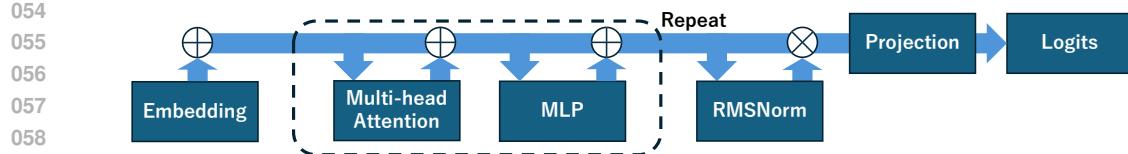


Figure 1: The overview of the residual stream in pre-layer normalization type Transformers.

layer-wise mechanisms and the observed scaling behavior of the overall model remains unclear. This disconnect limits the efficient performance improvement of Transformers.

To address this gap, we propose a theoretical interpretation that links a Transformer’s internal layer dynamics with its overall performance, offering a new lens to interpret parameter scaling laws. As a first step, we rely on bias–diversity decomposition (Krogh & Vedelsby, 1994) to quantify the contribution of each layer within the residual stream. In this formulation, each layer’s output is evaluated in terms of (i) bias, the error between the layer’s output prediction and the ground-truth target, and (ii) diversity, showing how layers’ outputs differ from each other. By analyzing Transformers under this approach, we obtain theoretical insights that achieving both low bias and high diversity across layers is ideal for improving performance. In contrast, bias and diversity depend on each other, which makes it difficult to improve both bias and diversity.

Finally, to deal with our main target, parameter scaling laws, from an information-theoretic diversity (Brown, 2009; Zhou & Li, 2010), we examined how diversity contributes to performance gains when additional layers are introduced. Our analysis shows that, to improve performance, the outputs of different layers must remain distinct, i.e., diverse. We also provide a theoretical explanation for the diminishing returns of adding layers: the marginal performance improvement decreases as more layers are stacked. This tendency is consistent with the Scaling Law, which predicts that performance grows logarithmically with the number of parameters.

Finally, we conduct experiments on multiple NLP tasks using various LLMs and show that our theoretical findings are valid in practical situations.

2 RESIDUAL STREAM IN TRANSFORMERS

As shown in Figure 1, in pre-layer normalization type transformers (Xiong et al., 2020) commonly used in LLMs, there is a residual stream (Elhage et al., 2021) consisting of embedding layers, multi-head attention (MHA), and multi-layer perceptron (MLP). In this residual stream, the outputs of each module are added together, and finally, the normalized result is projected to predict the output. Letting $L = (\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(|L|)})$, $E = (\mathbf{e}^{(1)}, \dots, \mathbf{e}^{(|E|)})$, $M = (\mathbf{m}^{(1)}, \dots, \mathbf{m}^{(|M|)})$, and $A = (\mathbf{a}^{(1)}, \dots, \mathbf{a}^{(|A|)})$ be sequences of entire layers, embedding layers, MHA layers, and MLP layers, respectively, the logit prediction on the residual stream is represented as follows:

$$\text{logits} = W_{out} \text{LN} \left(\sum_{i=1}^{|L|} \mathbf{z}^{(i)} \right) = W_{out} \text{LN} \left(\sum_{i=1}^{|E|} \mathbf{e}^{(i)} + \sum_{i=1}^{|M|} \mathbf{m}^{(i)} + \sum_{i=1}^{|A|} \mathbf{a}^{(i)} \right), \quad (1)$$

where LN is RMSNorm (Zhang & Sennrich, 2019) and W_{out} is a projection layer. By representing the scaling by RMSNorm as s , we can reformulate Eq. 1 as follows (Chang et al., 2024):

$$(1) \equiv \text{logits} = W_{out}(\mathbf{s} \odot \sum_{i=1}^{|L|} \mathbf{z}^{(i)}) = \sum_{i=1}^{|L|} W_{out}(\mathbf{s} \odot \mathbf{z}^{(i)}) \quad (2)$$

Here, by replacing $W_{out}(\mathbf{s} \odot \mathbf{z}^{(i)})$ with $\mathbf{u}^{(i)}$, we can reformulate Eq. 2 as follows:

$$\mathbf{logits} = \sum_{i=1}^{|L|} \mathbf{u}^{(i)}. \quad (3)$$

We use this equation to investigate the theoretical effects of modules in the residual stream.

108 **3 THEORETICAL ANALYSIS**
 109

110 In this section, we analyze the theoretical characteristics of the residual stream of Transformer layers.
 111

112 **3.1 PREDICTION DISCREPANCY**
 113

114 In general, Transformers output the token with the highest prediction probability for a given input.
 115 This behavior can be formalized as follows:

$$116 \quad \arg \max_y \text{logits} = \arg \max_y \sum_{i=1}^{|L|} \mathbf{u}^{(i)} = \arg \max_y \frac{1}{|L|} \sum_{i=1}^{|L|} \mathbf{u}^{(i)} \quad (4)$$

119 Here, we can reformulate Eq. 4 with $\bar{\mathbf{u}} = \frac{1}{|L|} \sum_{i=1}^{|L|} \mathbf{u}^{(i)}$ as follows:
 120

$$121 \quad (4) \equiv \arg \max_y \bar{\mathbf{u}} \quad (5)$$

123 By defining $\hat{\mathbf{u}}$ as the true distribution of logits $\bar{\mathbf{u}}$, we can consider a prediction error between
 124 Transformer layers and its true distribution on logits as the following Mean Squared Error (MSE):
 125

$$126 \quad 127 \quad 128 \quad MSE(\hat{\mathbf{u}}, \bar{\mathbf{u}}) = \frac{1}{|V|} \sum_{j=1}^{|V|} (\hat{u}_j - \bar{u}_j)^2 = \mathbb{E}_{j \in V}[(\hat{u}_j - \bar{u}_j)^2]. \quad (6)$$

129 We use this error to theoretically analyze the discrepancy between the predicted logits by the
 130 Transformer and the true logit distribution to reveal the theoretical insights into the residual streams
 131 of the Transformer layers.
 132

133 **3.2 IMPORTANCE OF DIVERSITY**
 134

135 First, we focus on the diversity arising from the differences between the predictions of each Trans-
 136 former layer. From Eqs. 1 and 6, we can decompose the discrepancy between the Transformer’s
 137 predictions and the true logit distribution into bias and diversity terms as in the following theorem.

138 **Theorem 1 (Bias and Diversity Decomposition).** *The prediction error of Transformer layers,
 139 $MSE(\hat{\mathbf{u}}, \bar{\mathbf{u}})$, can be decomposed into bias and diversity (ambiguity) (Wood et al., 2024) terms (Krogh
 140 & Vedelsby, 1994) as follows:*

$$141 \quad MSE(\hat{\mathbf{u}}, \bar{\mathbf{u}}) \quad (7)$$

$$142 \quad = \underbrace{\mathbb{E}_{j \in V}[\mathbb{E}_{\mathbf{u} \in L}[(\hat{u}_j - u_j)^2]]}_{\text{Bias}} - \underbrace{\mathbb{E}_{j \in V}[\mathbb{E}_{\mathbf{u} \in L}[(\bar{u}_j - u_j)^2]]}_{\text{Diversity}} \quad (8)$$

$$143 \quad = \underbrace{\frac{1}{|L|} \mathbb{E}_{j \in V}[|E| \underbrace{\mathbb{E}_{\mathbf{e} \in E}[(\hat{u}_j - e_j)^2]}_{\text{Embedding Bias}} + |M| \underbrace{\mathbb{E}_{\mathbf{m} \in M}[(\hat{u}_j - m_j)^2]}_{\text{MLP Bias}} + |A| \underbrace{\mathbb{E}_{\mathbf{a} \in A}[(\hat{u}_j - a_j)^2]}_{\text{Attention Bias}}]}_{\text{Bias}} \quad (9)$$

$$144 \quad - \underbrace{\frac{1}{|L|} \mathbb{E}_{j \in V}[|E| \underbrace{\mathbb{E}_{\mathbf{e} \in E}[(\bar{u}_j - e_j)^2]}_{\text{Embedding Diversity}} + |M| \underbrace{\mathbb{E}_{\mathbf{m} \in M}[(\bar{u}_j - m_j)^2]}_{\text{MLP Diversity}} + |A| \underbrace{\mathbb{E}_{\mathbf{a} \in A}[(\bar{u}_j - a_j)^2]}_{\text{Attention Diversity}}]}_{\text{Diversity}}. \quad (10)$$

145 *(See Appendix A.1 for the proof.)*
 146

147 As shown in Eq. 8, MSE can be decomposed into two terms: bias and diversity. Since the diversity
 148 term is negative, we can see that when diversity increases, the discrepancy from the true distribution
 149 decreases, meaning that prediction accuracy improves. This is different from the bias-variance
 150 decomposition, which is widely known in the field of machine learning.
 151

152 Equations 9 and 10 show the further decomposition of the bias and diversity terms corresponding
 153 to the modules on the residual stream in Eq. 1. From this, we can see that each module contributes
 154 to both bias and diversity, and that the number of modules weighs the contribution. Therefore, we
 155

162 can confirm that MLP layers and attention layers play an important role in Transformers in terms
 163 of the number of layers. The contribution of the embedding layer is small based on the number of
 164 layers, while in contrast, its relative importance may increase in lightweight models. We empirically
 165 investigate these hypotheses through experiments in §5.3.

167 3.3 LIMITATION OF DIVERSITY

169 As discussed in §3.2, the diversity term is important to improve the prediction performance. However,
 170 there are limitations to its effectiveness. The next theorem indicates the limitation.

172 **Theorem 2 (Limitation of Diversity).** *The decomposition of the prediction error in Trans-
 173 former layers (Eqs. 8, 9, and 10) holds the following relation: Diversity $\rightarrow 0$ (Bias $\rightarrow 0$);
 174 Embedding Diversity $\rightarrow 0$ (Embedding Bias $\rightarrow 0$); MLP Diversity $\rightarrow 0$ (MLP Bias \rightarrow
 175 0); Attention Diversity $\rightarrow 0$ (Attention Bias $\rightarrow 0$). (See Appendix A.2 for the proof.)*

176 From Theorem 2, regarding the prediction by entire modules and each module, when bias is close to
 177 zero, we cannot expect performance improvement from diversity. Therefore, when the predictions
 178 of each layer are sufficiently accurate, performance improvement by increasing diversity is limited.
 179 However, this relationship does not guarantee that diversity will increase when bias is far from zero.
 180 Therefore, when the predictions of each layer are inaccurate, the importance of diversity increases.
 181 Even under this situation, the following limitation exists.

182 **Theorem 3 (Bias and Diversity Trade-off).** *Bias and Diversity in the decomposition of the prediction
 183 error in Transformer layers (Eq. 8) depend on each other as follows (Brown et al., 2005):*

$$185 \text{Bias} = \overline{\text{bias}}^2 + \Omega, \text{Diversity} = \Omega - \left[\frac{1}{|L|} \overline{\text{var}} + \left(1 - \frac{1}{|L|} \right) \overline{\text{cov}} \right], \quad (11)$$

188 where $\overline{\text{bias}} = \mathbb{E}_{\mathbf{u} \in L} [\mathbb{E}_{j \in V} [u_j] - \mathbb{E}_{j \in V} [\hat{u}_j]]$, $\overline{\text{var}} = \mathbb{E}_{\mathbf{u} \in L} [\mathbb{E}_{j \in V} (u_j - \mathbb{E}_{k \in V} [u_k])^2]$, $\overline{\text{cov}} =$
 189 $\frac{1}{|L|(|L|-1)} \sum_{i=1}^{|L|} \sum_{i \neq j}^{|L|} \mathbb{E}_{\mathbf{u} \in L} [(u_k^i - \mathbb{E}_{l \in V} [u_l^i])(u_k^j - \mathbb{E}_{l \in V} [u_l^j])]$, and $\Omega = \overline{\text{var}} + \mathbb{E}_{\mathbf{u} \in L} [(\mathbb{E}_{j \in V} [u_j] -$
 190 $\mathbb{E}_{j \in V} [\hat{u}_j])^2]$ (See Appendix A.3 for the proof.)

192 By focusing on Eq. 11, we can see that the bias and diversity terms share Ω . This suggests that
 193 attempting to reduce the bias term may also reduce Ω , which in turn may reduce the diversity term. In
 194 other words, Theorem 3 demonstrates the general trade-off relationship between the bias and diversity
 195 term, emphasizing the difficulty of maximizing the diversity term without affecting the bias term.

198 3.4 LIMITATION OF STACKING LAYERS

200 In §3.3, we discussed a trade-off relationship between the bias and diversity terms, and improving the
 201 diversity term can potentially improve the prediction performance of Transformers when the bias term
 202 is large. A simple method to improve performance is to add layers following the parameter scaling
 203 laws, and it can also improve the diversity based on our analysis so far. We theoretically investigate
 204 the performance improvement and limitations of this method through the following theorems.

205 **Theorem 4 (Generalized Diveristy).** *Letting Y be a true label, variables $\mathbf{u}^{(1)}, \dots, \mathbf{u}^{(|L|)}$ be $U_{1:|L|}$,
 206 and $g(U_{1:|L|})$ be a function¹ predicting the best label. Its prediction error $p(Y \neq g(U_{1:|L|}))$ satisfies
 207 the following inequality (Brown, 2009; Zhou & Li, 2010):*

$$209 \frac{H(Y) - I(U_{1:|L|}; Y) - 1}{\log |Y|} \leq p(Y \neq g(U_{1:|L|})) \leq \frac{H(Y) - I(U_{1:|L|}; Y)}{2}, \quad (12)$$

212 ¹This function must follow the Bayes decision rule according to Hellman & Raviv (1970). In the case of
 213 the Transformer, the Bayesian decision rule stands only when the output distribution of the Transformer fits
 214 that of its training data, and argmax is used for its prediction. Since we target scaling laws that require large
 215 parameters with large data, this premise is valid and natural. Note that even a one-layer Transformer can satisfy
 the Bayesian decision rule (Shen et al., 2025; Nguyen & Nguyen-Tang, 2025).

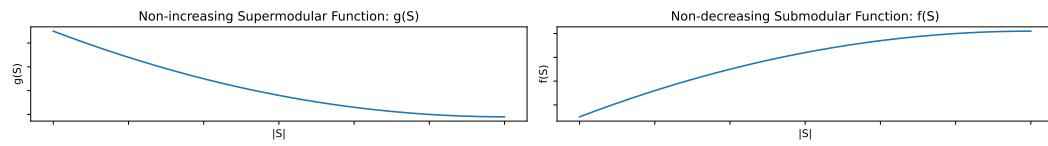


Figure 2: The examples of non-increasing supermodular and non-decreasing submodular functions.

where $H(Y)$ is entropy and $I(U_{1:|L|}; Y)$ is joint mutual information. To minimize the error, we should maximize $I(U_{1:|L|}; Y)$ which can be decomposed to (Zhou & Li, 2010):

$$I(U_{1:|L|}; Y) = \underbrace{\sum_{i=1}^{|L|} I(\mathbf{u}^{(i)}; Y)}_{\text{Relevancy}} + \underbrace{\underbrace{\mathcal{I}(U_{1:|L|} | Y)}_{\text{Conditional Redundancy}} - \underbrace{\mathcal{I}(U_{1:|L|})}_{\text{Redundancy}}}_{\text{Information Theoretic Diveristy}}, \quad (13)$$

where $\mathcal{I}(U_{1:|L|})$ is total correlation and $\mathcal{I}(U_{1:|L|}; Y)$ is conditional total correlation. (See Appendix A.4 for the proof.)

We can interpret Theorem 4 from the bias and diversity decomposition in Eq. 10 from a viewpoint of information theory, indicating that the bias term corresponds to the relevancy term and the diversity term corresponds to the information-theoretic diversity. Through this decomposition, we discuss how adding layers improves the prediction performance of Transformers.

Theorem 5 (Monotonicity of each Term). *In Eq. 13, when $U_{1:|L|}$ increases (that means new elements are added to $U_{1:|L|}$), Relevancy, Conditional Redundancy, and Redundancy monotonically increase, whereas Information Theoretic Diveristy and $I(U_{1:|L|}; Y)$ do not monotonically increase or decrease (See Appendix A.5 for the proof.)*

Theorem 5 suggests that simply adding more layers to a Transformer does not guarantee an improvement in performance, especially due to the difficulty of improving information-theoretic diversity. This insight is further reinforced by the following theorem.

Theorem 6 (Monotonicity of Upper and Lower Bounds). *In Eq. 12, the lower bound $\frac{H(Y) - I(U_{1:|L|}; Y) - 1}{\log |Y|}$ and the upper bound $\frac{H(Y) - I(U_{1:|L|}; Y)}{2}$ do not monotonically increase or decrease when $U_{1:|L|}$ increases. (See Appendix A.6 for the proof.)*

These results seem to indicate that increasing the number of layers in Transformers makes it difficult to improve performance, but at the same time, they suggest that performance can be improved by enhancing diversity corresponding to *Information Theoretic Diveristy*. Therefore, similar to Theorem 1, diversity is also important from an information-theoretical perspective. However, regarding the information-theoretic diversity, there is a limitation described by the following theorem.

Theorem 7 (Submodularity of each Term). *In Eq. 13, when the variables in $U_{1:|L|}$ are independent given Y , $I(U_{1:|L|}; Y)$ and Information Theoretic Diveristy are submodular, and $I(U_{1:|L|}; Y)$ is non-decreasing on $U_{1:|L|}$. (See Appendix A.7 for the proof.)*

This theorem assumes a kind of lower bound that *Conditional Redundancy* becomes zero due to the variables in $U_{1:|L|}$ being independent given Y . Even in this situation, the performance of Transformers increases by adding layers because $I(U_{1:|L|}; Y)$ is non-decreasing. Here, submodularity refers to the property whereby an increase in input leads to decreasing additional benefit in output. Thus, the effect of adding layers on performance decreases as the number of layers increases in this situation. By assuming that the number of layers and the number of parameters are proportional, this result is consistent with the parameter scaling laws, which show that performance converges logarithmically with an increase in the number of parameters. The next theorem reinforces this characteristic.

Theorem 8 (Supermodularity of Upper and Lower Bounds). *In Eq. 12, when the variables in $U_{1:|L|}$ are independent given Y , the lower bound $\frac{H(Y) - I(U_{1:|L|}; Y) - 1}{\log |Y|}$ and the upper bound $\frac{H(Y) - I(U_{1:|L|}; Y)}{2}$ are supermodular and non-increasing on $U_{1:|L|}$. (See Appendix A.8 for the proof.)*

270 Supermodularity is a property that the more inputs there are, the greater the risk that additional
 271 inputs will result in performance not improving. Therefore, this theorem is also consistent with the
 272 parameter scaling laws and reinforces Theorem 7.

273 Figure 2 shows the example behaviors of non-increasing supermodular and non-decreasing sub-
 274 modular functions. The gradual convergence of values aligns with the logarithmic convergence
 275 of parameter scaling laws. However, these are based on a kind of lower bound that *Conditional*
 276 *Redundancy* becomes zero. In the actual situation, we can expect performance improvement by
 277 increased *Conditional Redundancy*, and it makes the performance improvement non-monotonic, by
 278 following Theorems 5 and 6. We check the actual behavior in §5.5.

280 4 REMAINING PROBLEMS

282 4.1 DIFFERENCE BETWEEN PROBABILITY AND LOGITS

284 Previous discussions have focused on the logits in the output layer of the Transformer. However,
 285 when actually using the Transformer, the output is selected from vectors normalized by the softmax
 286 layer. Therefore, to investigate whether our theoretical findings are practical, it is desirable to conduct
 287 experiments using actual models and datasets. To investigate the behavior of MSE and bias through
 288 experiments, we should prepare the true logit distribution, $\hat{\mathbf{u}}$. However, assuming the correct answers
 289 in softmax, softmax returns the same value for shifts in the input like $\frac{e^{\logits_i}}{\sum_j e^{\logits_j}} = \frac{e^{(\logits_i - \mu)}}{\sum_j e^{(\logits_j - \mu)}}$,
 290 resulting in an infinite number of true logits, which is difficult to handle. To address this issue, we
 291 approximate MSE and bias in Eq. 8 using the following equation:

$$293 \quad 294 \quad MSE(\hat{\mathbf{u}}, \bar{\mathbf{u}}) \approx MSE(\tilde{\mathbf{u}}, softmax(\bar{\mathbf{u}})); bias \approx \frac{1}{|V|} \sum_{i=1}^{|V|} \frac{1}{|L|} \sum_{j=1}^{|L|} \left(\tilde{u}_i - softmax(\mathbf{u}^{(j)})_i \right)^2, \quad (14)$$

296 where $\tilde{\mathbf{u}}$ represents a one-hot vector whose dimension of a gold label is one and others are zero.

298 4.2 OUR ASSUMPTION FOR THE PARAMETER SCALING LAWS.

300 **Dimension Size.** Our previous discussion on the parameter scaling laws has been based on the
 301 assumption that the number of layers in a Transformer is proportional to the number of parameters.
 302 However, this assumption overlooks several important factors. One such factor is the number of
 303 dimensions. In many models, the actual number of parameters is represented by the product of the
 304 number of dimensions and the number of layers. Therefore, when considering the relationship with
 305 the parameter scaling laws in a rigorous manner, it is necessary to take into account elements at the
 306 neuron level corresponding to the dimension size. Fortunately, it is known that the residual stream
 307 in Transformers can be decomposed down to the neuron level (Elhage et al., 2021), allowing us to
 308 replace “layers” with “neurons” in our discussion and maintain the validity of our claims.

309 **Reuse of Layers.** Another oversight is the existence of models that recursively utilize layers. In
 310 such cases, the number of layers does not necessarily correspond to the number of parameters. A
 311 well-known example of such a model is the Universal Transformer (Dehghani et al., 2019), whose
 312 efficiency is also recognized in natural language generation tasks (Takase & Kiyono, 2023). Recently,
 313 there has been a trend to repurpose such models as small-scale LLMs (Touvron et al., 2023). We
 314 verify whether the increase in layers independent of parameters in such models is consistent with our
 315 claim in §5.6.

317 5 EMPIRICAL ANALYSIS

319 5.1 GENERAL SETTINGS

322 We used the following Transformer models from HuggingFace Transformers (Wolf et al., 2020):
 323 facebook/MobileLLM-125M; facebook/MobileLLM-125M-layer-share; facebook/MobileLLM-
 350M; facebook/MobileLLM-350M-layer-share (Liu et al., 2024); meta-llama/Llama-2-7b-hf;

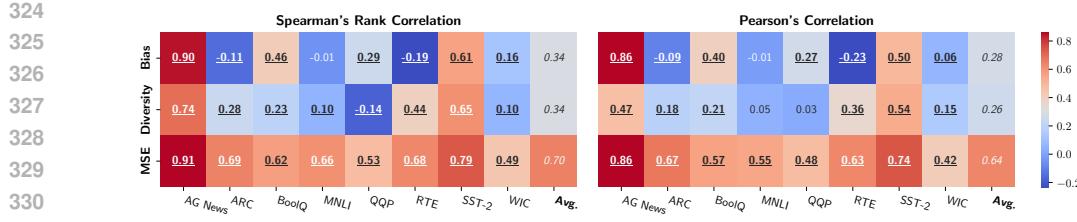


Figure 3: The correlation between accuracy and MSE, bias, and diversity of models across tasks. The underlined scores show the statistical significance ($p < 0.05$).³ Note that the scores on Avg. are not the target of the significance test.

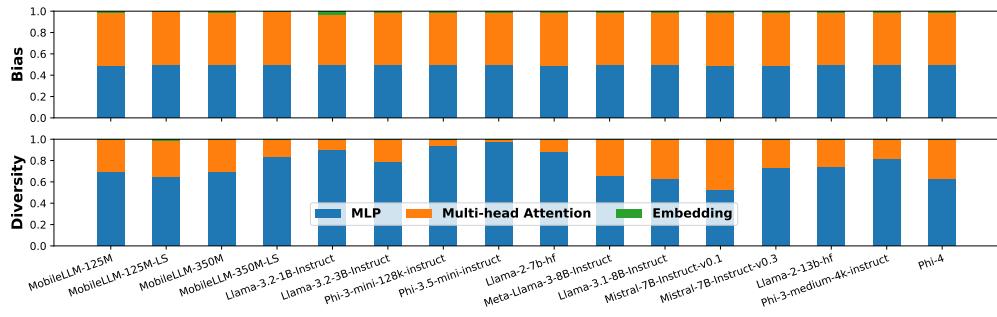


Figure 4: The average proportion of bias and diversity accounted for by each module in each model in all datasets.

meta-llama/Llama-2-13b-hf (Touvron et al., 2023); meta-llama/Meta-Llama-3-8B-Instruct; meta-llama/Llama-3.1-8B-Instruct; meta-llama/Llama-3.2-1B-Instruct; meta-llama/Llama-3.2-3B-Instruct Grattafiori et al. (2024); microsoft/Phi-3-medium-4k-instruct; microsoft/Phi-3-mini-128k-instruct; microsoft/Phi-3.5-mini-instruct Abdin et al. (2024a); microsoft/phi-4 (Abdin et al., 2024b); mistralai/Mistral-7B-Instruct-v0.1; mistralai/Mistral-7B-Instruct-v0.3 (Jiang et al., 2023).

By following the setting of the previous work (Chang et al., 2024), we used the first 2000 instances in AG News (Zhang et al., 2015), ARC (Clark et al., 2018), BoolQ (Clark et al., 2019), MNLI (Williams et al., 2018), QQP (Wang et al., 2017), RTE, SST-2, and WIC (Wang et al., 2019) datasets. We use the accuracy as a metric for each task. We used a predefined template by for prompting on each task and restricted the output to predefined options (See Appendix B for the details).

5.2 CORRELATION OF MSE, BIAS, AND DIVERSITY TO PERFORMANCE

In order to clarify the relationship between MSE, bias, diversity, and performance in actual tasks, we calculated the Pearson and Spearman's correlation between the accuracy and MSE, bias, and diversity at each junction point on the residual stream. Figure 3 shows the correlation.⁴ As can be seen from these results, MSE shows a high correlation with accuracy. On the other hand, bias and diversity show moderate correlations, but the trends differ depending on the task, indicating that the model changes the roles of each layer according to the task. Furthermore, the fact that the Spearman correlation is lower than the rank correlation indicates that detailed accuracy differences cannot be read from MSE.

³This is based on Student's t-test (Student, 1908).

⁴Different from accuracy and diversity, lower bias and MSE are better for performance improvement. To reflect it, we used the negative value of bias and MSE when calculating the correlation. Also, to assign the value range, we standardize each score for each model. By utilizing z-transformation (Corey et al., 1998), we report averaged correlation (Avg.).

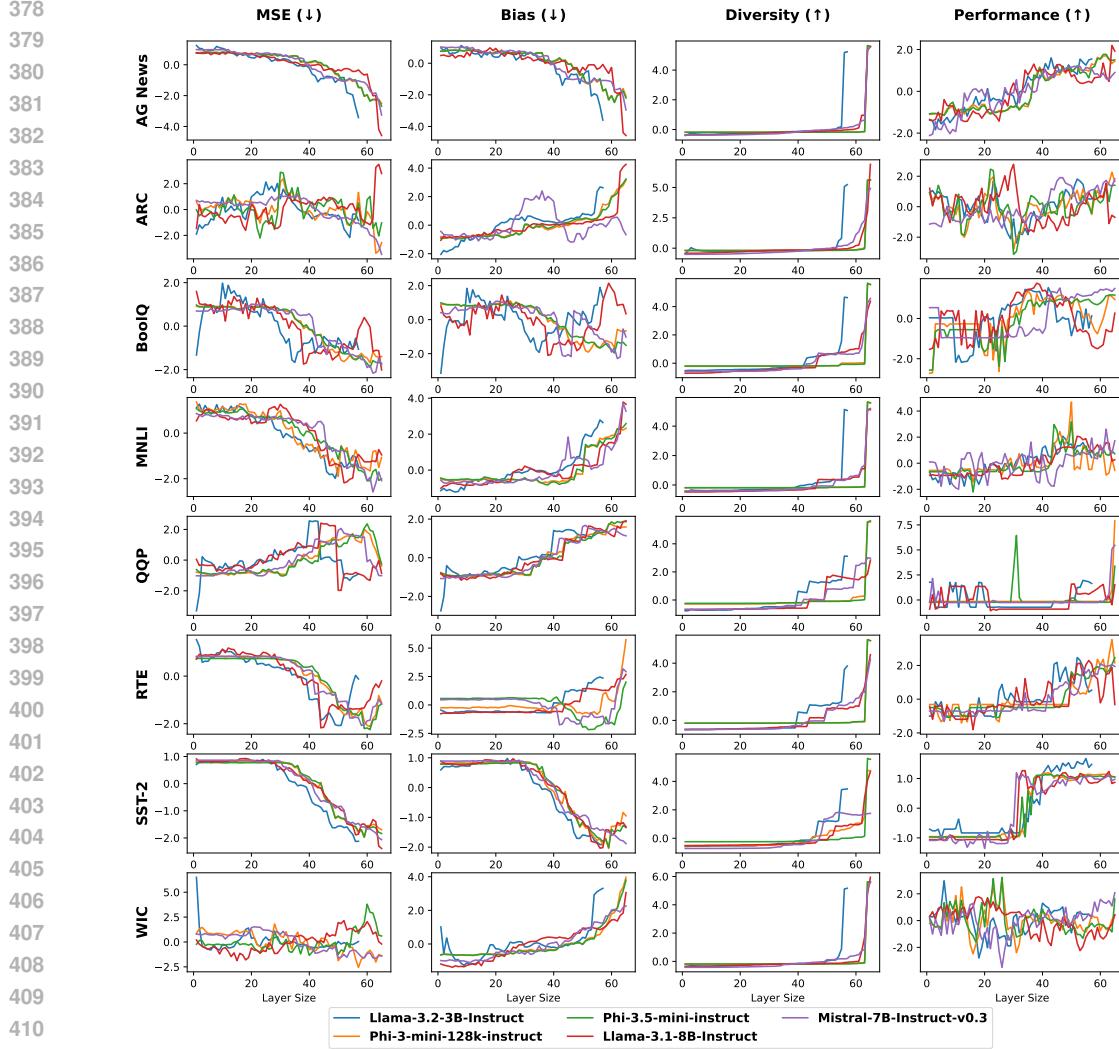


Figure 5: The relationship between MSE, bias, diversity, and performance on each task. Note that each metric is standardized to capture the change by the number of layers.

5.3 INFLUENCE OF EACH MODULE

Figure 4 shows the influence of each module on bias and diversity based on the weights corresponding to their layer size, represented by Eqs. 9 and 10. In bias, the contributions for each module are proportional to their layer size. This is the reason for the few contributions of the embedding layers. These tendencies are almost the same across the models. In contrast, the MLP layers dominate diversity. However, the tendency differs depending on the model. This result suggests the necessity of improving the diversity of multi-head attention layers. It supports the previous work, indicating

432
 433 Table 1: The results of MobileLLM on different tasks. Avg. indicates the average scores of all tasks.
 434 The suffix -LS indicates that the model recurrently shares its layers.

MobileLLM	Accuracy										MSE									
	AG News	ARC	BoolQ	MNLI	QQP	RTE	SST-2	WIC	Avg.	AG News	ARC	BoolQ	MNLI	QQP	RTE	SST-2	WIC	Avg.		
125M	49.4	27.2	62.6	30.4	43.8	50.9	53.1	53.0	46.3	18.5	18.7	24.9	22.3	25.0	25.0	25.0	25.0	23.0		
125M-LS	47.9	28.4	62.7	30.4	34.8	52.7	55.4	52.7	45.6	18.7	18.7	25.0	22.2	25.0	25.0	25.0	25.0	23.1		
350M	50.4	27.7	62.6	30.8	35.2	53.4	52.6	55.2	46.0	18.5	18.7	24.9	22.2	25.0	25.0	25.0	25.0	23.0		
350M-LS	52.4	25.6	59.7	30.4	34.6	52.7	49.1	50.0	44.3	18.7	18.8	25.0	22.2	25.3	25.0	25.0	25.0	23.1		
MobileLLM	Bias										Diversity									
	AG News	ARC	BoolQ	MNLI	QQP	RTE	SST-2	WIC	Avg.	AG News	ARC	BoolQ	MNLI	QQP	RTE	SST-2	WIC	Avg.		
125M	18.6	18.8	25.1	22.4	25.7	25.2	25.0	25.3	23.3	6.2	10.1	11.8	8.1	20.3	6.2	21.8	13.1	12.2		
125M-LS	18.7	18.8	25.0	22.3	25.2	25.1	25.0	25.0	23.1	1.3	1.6	3.0	0.8	2.3	1.5	2.6	1.1	1.8		
350M	18.6	18.8	25.0	22.3	25.5	25.1	25.0	25.2	23.2	9.6	9.2	16.7	8.0	3.9	10.4	54.0	12.1	15.5		
350M-LS	18.7	18.8	25.1	22.3	25.5	25.1	25.1	25.1	23.2	2.9	4.6	8.6	3.2	2.6	3.0	5.7	3.4	4.2		

444
 445 the existence of unnecessary attention heads in Transformers (He et al., 2024). Similar to the case of
 446 the bias, the contribution of embedding layers is limited.

447 5.4 TRADE-OFF RELATIONSHIP BETWEEN BIAS AND DIVERSITY

449
 450 We investigate whether there is actually a trade-off between bias and diversity, as shown in Theorems
 451 2 and 3. Figure 5 shows the results.⁵ As can be seen from these results, when there is no performance
 452 improvement, there is a trade-off between bias and diversity, but when performance improves, the
 453 trade-off relationship does not hold. This is consistent with the fact that bias and diversity share only
 454 one term, as shown in Theorem 3. The limitation of diversity shown in Theorem 2 is caused by bias
 455 being close to zero, but in reality, bias rarely approaches zero, so the decrease in bias does not hinder
 456 the improvement of diversity. Therefore, although a trade-off relationship may exist in some cases, it
 457 is possible to improve both bias and diversity.

458 5.5 DECREASE IN EFFICIENCY WITH INCREASING NUMBER OF LAYERS

459
 460 We verify whether the decrease in performance improvement accompanying the increase in layers
 461 shown in Theorems 5, 6, 7, and 8 actually occurs. To do so, we averaged the accuracy and MSE for
 462 all tasks in models with no less than 1B of parameters. Figure 6 shows the result. From these results,
 463 we can see that the effectiveness of increasing layers actually decreases. Also, the performance
 464 degradation caused by increasing layers indicates that *Conditional Redundancy* becomes larger than
 465 zero, and the layers depend on each other to predict the answers.

466 5.6 CONSISTENCY OF OUR THEORY WITH MODELS THAT REUSE LAYERS

468
 469 We verify the performance of a model that reuses layers. Table 1 shows the results obtained using
 470 MobileLLM. Basically, we find that the performance improvement achieved by reusing layers is
 471 limited. Furthermore, since the diversity of models that reuse layers is generally low, we consider
 472 that the low diversity is the reason for the limited performance improvement. This suggests that in
 473 order to improve model performance by reusing layers, it is necessary to improve the diversity of
 474 each module.

475 6 CONCLUSION

477
 478 In this paper, we demonstrated that the diversity of predictions from each module on the residual
 479 stream of Transformers is important for improving performance from the perspective of bias and
 480 diversity decomposition. Additionally, we demonstrated limits to the performance improvements
 481 achievable through this diversity. Furthermore, we showed that performance improvements achieved
 482 by adding more layers are related to this diversity and that the effectiveness of these improvements
 483 diminishes as the number of layers increases, which is consistent with the parameter scaling laws.
 484 Experimental results across multiple tasks with various LLMs confirmed that empirical observations
 485 support these theoretical claims.

⁵Note that due to low visibility, this figure only covers models that achieved the top five accuracy on average over all tasks. See Appendix C for the overall result.

486 ETHICS STATEMENT
487488 Because our work uses predefined output and templates for the investigation, there is no possibility
489 of generating harmful content from LLMs. Furthermore, our work can contribute to revealing the
490 internal behavior of LLMs to understand given instructions, which is often useful to prevent LLMs
491 from generating harmful content.
492493 REPRODUCIBILITY STATEMENT
494495 Experimental settings and their details are described in §5 and Appendix B, respectively. Both
496 sections cover the essential information for reproducing our reported results, which are about the
497 used templates, models, decoding methods, and GPU environment. In addition, we will release our
498 code for reproducibility.
499500 REFERENCES
501502 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
503 Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
504 Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong
505 Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai,
506 Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg,
507 Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J.
508 Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin,
509 Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev
510 Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui
511 Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo,
512 Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes,
513 Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker,
514 Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa,
515 Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael
516 Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song,
517 Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan
518 Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping Wu,
519 Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali Yadav,
520 Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril
521 Zhang, Jianwen Zhang, Li Lyra Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou.
522 Phi-3 technical report: A highly capable language model locally on your phone, 2024a. URL
523 <https://arxiv.org/abs/2404.14219>.523 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
524 Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat
525 Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa, Olli
526 Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril Zhang, and
527 Yi Zhang. Phi-4 technical report, 2024b. URL <https://arxiv.org/abs/2412.08905>.528 Stephen Bach, Victor Sanh, Zheng Xin Yong, Albert Webson, Colin Raffel, Nihal V. Nayak, Abheesht
529 Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry, Zaid Alyafeai, Manan Dey, Andrea
530 Santilli, Zhiqing Sun, Srulik Ben-david, Canwen Xu, Gunjan Chhablani, Han Wang, Jason
531 Fries, Maged Al-shaibani, Shanya Sharma, Urmish Thakker, Khalid Almubarak, Xiangru Tang,
532 Dragomir Radev, Mike Tian-jian Jiang, and Alexander Rush. PromptSource: An integrated
533 development environment and repository for natural language prompts. In Valerio Basile, Zornitsa
534 Kozareva, and Sanja Stajner (eds.), *Proceedings of the 60th Annual Meeting of the Association
535 for Computational Linguistics: System Demonstrations*, pp. 93–104, Dublin, Ireland, May 2022.
536 Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-demo.9. URL <https://aclanthology.org/2022.acl-demo.9/>.538 Gavin Brown. An information theoretic perspective on multiple classifier systems. In *Proceedings
539 of the 8th International Workshop on Multiple Classifier Systems*, MCS '09, pp. 344–353, Berlin,

540 Heidelberg, 2009. Springer-Verlag. ISBN 9783642023255. doi: 10.1007/978-3-642-02326-2_35.
 541 URL https://doi.org/10.1007/978-3-642-02326-2_35.
 542

543 Gavin Brown, Jeremy L. Wyatt, and Peter Tišo. Managing diversity in regression ensembles. *Journal*
 544 *of Machine Learning Research*, 6(55):1621–1650, 2005. URL <http://jmlr.org/papers/v6/brown05a.html>.
 545

546 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
 547 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
 548 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
 549 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
 550 teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
 551 dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
 552 learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Ad-
 553 vances in Neural Information Processing Systems*, volume 33, pp. 1877–1901. Curran Asso-
 554 ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
 555

556 Ting-Yun Chang, Jesse Thomason, and Robin Jia. When parts are greater than sums: Individ-
 557 ual LLM components can outperform full models. In Yaser Al-Onaizan, Mohit Bansal, and
 558 Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Na-
 559 tural Language Processing*, pp. 10280–10299, Miami, Florida, USA, November 2024. Associa-
 560 tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.574. URL <https://aclanthology.org/2024.emnlp-main.574>.
 561

562 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
 563 Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill
 564 Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of*
 565 *the North American Chapter of the Association for Computational Linguistics: Human Lan-
 566 guage Technologies, Volume 1 (Long and Short Papers)*, pp. 2924–2936, Minneapolis, Min-
 567 nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
 568 <https://aclanthology.org/N19-1300>.
 569

570 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 571 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
 572 2018. URL <https://arxiv.org/abs/1803.05457>.
 573

574 David M Corey, William P Dunlap, and Michael J Burke. Averaging correlations: Expected values
 575 and bias in combined pearson rs and fisher's z transformations. *The Journal of general psychology*,
 576 125(3):245–261, 1998.
 577

578 Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
 579 transformers. In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=HyzdRiR9Y7>.
 580

581 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
 582 Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer
 583 circuits. *Transformer Circuits Thread*, 1(1):12, 2021.
 584

585 Satoru Fujishige. Polymatroidal dependence structure of a set of random variables. *In-
 586 formation and Control*, 39(1):55–72, 1978. ISSN 0019-9958. doi: [https://doi.org/10.1016/S0019-9958\(78\)91063-X](https://doi.org/10.1016/S0019-9958(78)91063-X). URL <https://www.sciencedirect.com/science/article/pii/S001999587891063X>.
 586

587 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
 588 key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
 589 tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Language
 590 Processing*, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November 2021.
 591 Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL <https://aclanthology.org/2021.emnlp-main.446>.
 592

593

594 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 595 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 596 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
 597 Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
 598 Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
 599 Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
 600 Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
 601 Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
 602 Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
 603 Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
 604 Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
 605 Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
 606 Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
 607 Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
 608 Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
 609 Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
 610 Saxe, Junteng Jia, Kalyan Vasudevan Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
 611 Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arimi, Krithika Iyer, Kshitiz Malik, Kuenley
 612 Chiu, Kunal Bhalla, Kushal Lakhota, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
 613 Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
 614 Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
 615 Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
 616 Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
 617 Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
 618 Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajwal
 619 Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
 620 Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
 621 Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
 622 Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
 623 Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
 624 Sharan Narang, Sharath Raparth, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
 625 Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
 626 Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
 627 Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
 628 Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
 629 Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
 630 Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
 631 Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
 632 Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
 633 Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
 634 Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenber, Alexei
 635 Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
 636 Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
 637 Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
 638 Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
 639 Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
 640 Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
 641 Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
 642 Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
 643 Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
 644 Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
 645 Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 646 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
 647 Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
 Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
 Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
 Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
 Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
 Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James

648 Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
 649 Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
 650 Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
 651 Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
 652 Veeraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
 653 Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
 654 Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
 655 Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
 656 Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
 657 Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
 658 Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
 659 Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
 660 Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
 661 Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
 662 Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
 663 Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghatham Murthy,
 664 Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
 665 Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
 666 Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
 667 Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
 668 Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
 669 Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
 670 Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
 671 Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
 672 Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
 673 Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
 674 Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
 675 Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
 676 Will Constable, Xiaocheng Tang, Xiaoqian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
 677 Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
 678 Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
 Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
 llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

679 Shuai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention is
 680 needed, 2024. URL <https://arxiv.org/abs/2406.15786>.

681

682 Martin Hellman and Josef Raviv. Probability of error, equivocation, and the chernoff bound. *IEEE
 683 Transactions on Information Theory*, 16(4):368–372, 1970.

684

685 Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
 686 Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
 687 empirically, 2017. URL <https://arxiv.org/abs/1712.00409>.

688

689 Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combinatorial
 690 information measures with applications in machine learning. In Vitaly Feldman, Katrina Ligett, and
 691 Sivan Sabato (eds.), *Proceedings of the 32nd International Conference on Algorithmic Learning
 692 Theory*, volume 132 of *Proceedings of Machine Learning Research*, pp. 722–754. PMLR, 16–19
 693 Mar 2021. URL <https://proceedings.mlr.press/v132/iyer21a.html>.

694

695 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 696 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 697 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 698 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

699

700 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 701 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
 2020. URL <https://arxiv.org/abs/2001.08361>.

702 Andreas Krause and Carlos Guestrin. Near-optimal nonmyopic value of information in graphical
 703 models. In *Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence*,
 704 UAI'05, pp. 324–331, Arlington, Virginia, USA, 2005. AUAI Press. ISBN 0974903914.
 705

706 Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and active learning.
 707 In G. Tesauro, D. Touretzky, and T. Leen (eds.), *Advances in Neural Information Processing Systems*,
 708 volume 7. MIT Press, 1994. URL https://proceedings.neurips.cc/paper_files/paper/1994/file/b8c37e33defde51cf91e1e03e51657da-Paper.pdf.
 709

710 Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
 711 Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and Vikas
 712 Chandra. Mobilellm: optimizing sub-billion parameter language models for on-device use cases.
 713 In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org,
 714 2024.

715 Quan Nguyen and Thanh Nguyen-Tang. One-layer transformers are provably optimal for in-context
 716 reasoning and distributional association learning in next-token prediction tasks, 2025. URL
 717 <https://arxiv.org/abs/2505.15009>.
 718

719 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 720 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
 721 Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
 722 Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
 723 and Chris Olah. In-context learning and induction heads, 2022. URL <https://arxiv.org/abs/2209.11895>.
 724

725 OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
 726 Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry, Alex Baker-
 727 Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex
 728 Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau,
 729 Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian,
 730 Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein,
 731 Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey
 732 Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia,
 733 Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben
 734 Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake
 735 Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon
 736 Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo
 737 Lugaressi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li,
 738 Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
 739 Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
 740 Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
 741 Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
 742 Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
 743 Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
 744 Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric
 745 Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
 746 Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh,
 747 Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang
 748 Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik
 749 Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung,
 750 Ian Kivlichan, Ian O'Connell, Ian O'Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu,
 751 Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon,
 752 Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie
 753 Kirov, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe,
 754 Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi
 755 Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers,
 Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan
 Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh
 Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn

756 Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra
 757 Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe,
 758 Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman,
 759 Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng,
 760 Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk,
 761 Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
 762 Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin
 763 Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty, Mayank
 764 Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna
 765 Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang, Michelle
 766 Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles
 767 Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho
 768 Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine,
 769 Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige,
 770 Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko,
 771 Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick
 772 Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan,
 773 Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal,
 774 Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo
 775 Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob
 776 Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory
 777 Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi
 778 Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara
 779 Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu
 780 Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi Xia, Sonia Phene, Spencer
 781 Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal
 782 Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas
 783 Cunninghamman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao
 784 Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan,
 785 Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie
 786 Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,
 787 Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang,
 Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card, 2024.
 URL <https://arxiv.org/abs/2410.21276>.

788 Wei Shen, Ruida Zhou, Jing Yang, and Cong Shen. On the training convergence of transformers for
 789 in-context classification of gaussian mixtures, 2025. URL <https://arxiv.org/abs/2410.11778>.

790 Student. Probable error of a correlation coefficient. *Biometrika*, pp. 302–310, 1908.

791 Milan Studeny. *Probabilistic conditional independence structures*. Springer Science & Business
 792 Media, 2006.

793 Sho Takase and Shun Kiyono. Lessons on parameter sharing across layers in transformers.
 794 In Nafise Sadat Moosavi, Iryna Gurevych, Yufang Hou, Gyuwan Kim, Young Jin Kim, Tal
 795 Schuster, and Ameeta Agrawal (eds.), *Proceedings of the Fourth Workshop on Simple and Ef-
 796 ficient Natural Language Processing (SustaiNLP)*, pp. 78–90, Toronto, Canada (Hybrid), July
 797 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.sustainlp-1.5. URL
 798 <https://aclanthology.org/2023.sustainlp-1.5/>.

799 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 800 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
 801 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
 802 Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 803 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 804 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 805 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 806 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 807 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 808 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 809 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh

810 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 811 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 812 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 813 2023. URL <https://arxiv.org/abs/2307.09288>.

814 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 815 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
 816 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-*
 817 *vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 818 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf.

819 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
 820 GLUE: A multi-task benchmark and analysis platform for natural language understanding. 2019.
 821 In the Proceedings of ICLR.

822 Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-perspective matching for natural
 823 language sentences. In *Proceedings of the Twenty-Sixth International Joint Conference on Artificial*
 824 *Intelligence, IJCAI-17*, pp. 4144–4150, 2017. doi: 10.24963/ijcai.2017/579. URL <https://doi.org/10.24963/ijcai.2017/579>.

825 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
 826 Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
 827 Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-
 828 guage models. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL
 829 <https://openreview.net/forum?id=yzkSU5zdwD>. Survey Certification.

830 Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
 831 sentence understanding through inference. In Marilyn Walker, Heng Ji, and Amanda Stent
 832 (eds.), *Proceedings of the 2018 Conference of the North American Chapter of the Association*
 833 *for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pp.
 834 1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
 835 10.18653/v1/N18-1101. URL <https://aclanthology.org/N18-1101/>.

836 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 837 Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
 838 Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
 839 Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural language
 840 processing. In Qun Liu and David Schlangen (eds.), *Proceedings of the 2020 Conference on*
 841 *Empirical Methods in Natural Language Processing: System Demonstrations*, pp. 38–45, Online,
 842 October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6.
 843 URL <https://aclanthology.org/2020.emnlp-demos.6/>.

844 Danny Wood, Tingting Mu, Andrew M. Webb, Henry W. J. Reeve, Mikel Luján, and Gavin Brown.
 845 A unified theory of diversity in ensemble learning. *J. Mach. Learn. Res.*, 24(1), mar 2024. ISSN
 846 1532-4435.

847 Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
 848 Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architecture.
 849 In *Proceedings of the 37th International Conference on Machine Learning, ICML’20*. JMLR.org,
 850 2020.

851 Biao Zhang and Rico Sennrich. Root mean square layer normalization. In H. Wal-
 852 lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (eds.), *Ad-*
 853 *vances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.,
 854 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf.

855 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
 856 classification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), *Ad-*
 857 *vances in Neural Information Processing Systems*, volume 28. Curran Associates, Inc.,
 858 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf.

864 Zhi-Hua Zhou and Nan Li. Multi-information ensemble diversity. In Neamat El Gayar, Josef Kittler,
 865 and Fabio Roli (eds.), *Multiple Classifier Systems*, pp. 134–144, Berlin, Heidelberg, 2010. Springer
 866 Berlin Heidelberg. ISBN 978-3-642-12127-2.

870 A PROOFS

872 A.1 THE PROOF FOR THEOREM 1

874 According to Krogh & Vedelsby (1994), when the coefficients of each term in Eq. 6 satisfy the
 875 definition of probability, we can decompose Eq. 6 into Eq. 8. Here, the coefficients follow a uniform
 876 distribution, and the decomposition of Eq. 8 holds. We can induce Eqs. 9 and 10 based on the fact
 877 that the weighted mean equals the original mean.

880 A.2 THE PROOF FOR THEOREM 2

882 When the bias term in Eq. 8 equals zero, $\hat{u} = u$ holds. In this condition, $\bar{u} = \sum u$ becomes \hat{u} . Thus,
 883 the diversity terms become zero. Similarly, other decomposed diversity terms become zero when
 884 corresponding bias terms become zero.

886 A.3 THE PROOF FOR THEOREM 3

888 The decomposition of Krogh & Vedelsby (1994) is a sufficient condition for the decomposition of
 889 Brown et al. (2005). Since we proved that Theorem 2 holds, Theorem 3 also holds.

892 A.4 THE PROOF FOR THEOREM 4

894 See Zhou & Li (2010) for the proof of the bound and decomposition. Since their claim does not
 895 restrict the elements of the input and output in their formulation, we can apply their bound and
 896 decomposition to the behavior of the residual stream in Transformers.

899 A.5 THE PROOF FOR THEOREM 5

901 Since *Relevancy* is a sum of joint mutual information, *Relevancy* increases when $|U_{1:|L|+1}|$ increases.
 902 This is because joint mutual information always becomes a positive value.

903 *Conditional Redundancy* is conditional total correlation (conditional multi-information). We can
 904 consider its increase when $U_{1:|L|+1}$ obtains a new element, $\mathbf{u}^{(|L|+1)}$ as follows:

$$906 \quad \mathcal{I}(U_{1:|L|+1}|Y) - \mathcal{I}(U_{1:|L|}|Y) \quad (15)$$

$$908 \quad = \left(\sum_{i=1}^{|L|+1} H(\mathbf{u}^{(i)}|Y) \right) - H(U_{1:|L|+1}|Y) - \left(\sum_{i=1}^{|L|} H(\mathbf{u}^{(i)}|Y) \right) + H(U_{1:|L|}|Y) \quad (16)$$

$$911 \quad = H(\mathbf{u}^{(|L|+1)}|Y) - H(U_{1:|L|+1}|Y) + H(U_{1:|L|}|Y) \quad (17)$$

$$913 \quad = H(\mathbf{u}^{(|L|+1)}|Y) - \left(H(\mathbf{u}^{(|L|+1)}|Y) + H(U_{1:|L|}|Y, \mathbf{u}^{(|L|+1)}) \right) + H(U_{1:|L|}|Y) \quad (18)$$

$$914 \quad = H(U_{1:|L|}|Y) - H(U_{1:|L|}|Y, \mathbf{u}^{(|L|+1)}) \quad (19)$$

$$916 \quad = I(U_{1:|L|+1}|Y). \quad (20)$$

917 Since $I(U_{1:|L|+1}|Y)$ is non-negative, *Conditional Redundancy* monotonically increases.

918 *Redundancy* is total correlation (multi-information). We can similarly consider its increase when
 919 $U_{1:|L|}$ obtains a new element, $\mathbf{u}^{(|L|+1)}$ as follows:
 920

$$921 \quad \mathcal{I}(U_{1:|L|+1}) - \mathcal{I}(U_{1:|L|}) \quad (21)$$

$$922 \quad = \left(\sum_{i=1}^{|L|+1} H(\mathbf{u}^{(i)}) \right) - H(U_{1:|L|+1}) - \left(\sum_{i=1}^{|L|} H(\mathbf{u}^{(i)}) \right) + H(U_{1:|L|}) \quad (22)$$

$$923 \quad = H(\mathbf{u}^{(|L|+1)}) - H(U_{1:|L|+1}) + H(U_{1:|L|}) \quad (23)$$

$$924 \quad = H(\mathbf{u}^{(|L|+1)}) - \left(H(\mathbf{u}^{(|L|+1)}) + H(\mathbf{u}^{(|L|+1)}|U_{1:|L|}) \right) + H(U_{1:|L|}) \quad (24)$$

$$925 \quad = H(U_{1:|L|}) - H(\mathbf{u}^{(|L|+1)}|U_{1:|L|}) \quad (25)$$

$$926 \quad = I(U_{1:|L|+1}). \quad (26)$$

927 Since $I(U_{1:|L|+1})$ is non-negative, *Redundancy* monotonically increases. Note that Studeny (2006)
 928 introduces the monotonicity of total correlation.
 929

930 Regarding *Information Theoretic Diversity*, we can consider its increase when $U_{1:|L|}$ obtains a new
 931 element, $\mathbf{u}^{(|L|+1)}$ by utilizing Eqs. 20 and 26 as follows:
 932

$$933 \quad \mathcal{I}(U_{1:|L|+1}|Y) - \mathcal{I}(U_{1:|L|}|Y) - (\mathcal{I}(U_{1:|L|+1}) - \mathcal{I}(U_{1:|L|})) \quad (27)$$

$$934 \quad = I(U_{1:|L|+1}|Y) - I(U_{1:|L|+1}). \quad (28)$$

935 When elements in $U_{1:|L|+1}$ are independent but not independent given Y , Eqs. 28 is non-negative.
 936 On the other hand, when elements in $U_{1:|L|+1}$ are not independent but independent given Y , Eq. 28
 937 is non-positive. Thus, *Information Theoretic Diversity* does not have monotonicity.
 938

939 Finally, Iyer et al. (2021) indicates the non-monotonicity of mutual information. Therefore,
 940 $I(U_{1:|L|}; Y)$ does not satisfy the monotonicity. We can check its increase when $U_{1:|L|}$ obtains
 941 a new element, $\mathbf{u}^{(|L|+1)}$ as follows:
 942

$$943 \quad I(\mathbf{u}^{(|L|+1)}; Y) + I(U_{1:|L|+1}|Y) - I(U_{1:|L|+1}). \quad (29)$$

944 When elements in $U_{1:|L|+1}$ are independent but not independent given Y , Eq. 29 is non-negative. On
 945 the other hand, when elements in $U_{1:|L|+1}$ are not independent but independent given Y , Eq. 29 is
 946 non-positive.
 947

948 A.6 THE PROOF FOR THEOREM 6

949 Only $I(U_{1:|L|}; Y)$ is a term including $U_{1:|L|}$ in both bounds, $I(U_{1:|L|}; Y)$ dominates the bounds.
 950 Because $I(U_{1:|L|}; Y)$ is not a monotonic function, the upper and lower bounds do not satisfy the
 951 monotonicity.
 952

953 A.7 THE PROOF FOR THEOREM 7

954 Because $I(U_{1:|L|}; Y)$ is a joint mutual information, it is submodular and non-decreasing on $U_{1:|L|}$
 955 under the conditional dependence of the variables in $U_{1:|L|}$ given Y (Krause & Guestrin, 2005). To
 956 check that, we define the change of $I(U_{1:|L|}; Y)$ when adding \mathbf{u} to $U_{1:|L|}$ as follows:
 957

$$958 \quad \Delta(\mathbf{u}|U_{1:|L|}) = I(U_{1:|L|}, \mathbf{u}^{(|L|+1)}; Y) - I(U_{1:|L|}; Y) \quad (30)$$

$$959 \quad = I(Y, \mathbf{u}|U_{1:|L|}) + I(U_{1:|L|}; Y) - I(U_{1:|L|}; Y) \quad (31)$$

$$960 \quad = I(Y, \mathbf{u}|U_{1:|L|}) \quad (32)$$

961 Since $I(Y, \mathbf{u}|U_{1:|L|})$ is no less than zero, $I(U_{1:|L|}; Y)$ monotonically increases when $U_{1:|L|}$ increases
 962 under the conditional dependence of the variables in $U_{1:|L|}$ given Y . By utilizing this reformulation,
 963

$$964 \quad I(Y, \mathbf{u}|U_{1:|L|}) = H(\mathbf{u}|U_{1:|L|}) - H(\mathbf{u}|Y, U_{1:|L|}), \quad (33)$$

972
973
974
975
976
977
978
979
980
981
982
983
984
985
Table 2: Dataset names and licenses.
986

Dataset Name	License
AG News	CC BY 4.0
ARC	CC BY-SA 4.0
BoolQ	CC BY-SA 3.0
MNLI	CC BY 4.0
QQP	Apache 2.0
RTE	Unknown
SST-2	Unknown
WiC	CC BY-NC-SA 3.0

986 and utilizing entropy’s submodularity, we can induce the following inequality:
 987
 988
 989
 990
 991
 992
 993

$$\Delta(\mathbf{u}|U_{1:|L|}) - \Delta(\mathbf{u}|U_{1:|L|+1}) \quad (34)$$

$$= H(\mathbf{u}|U_{1:|L|}) - H(\mathbf{u}|Y, U_{1:|L|}) - (H(\mathbf{u}|U_{1:|L|+1}) - H(\mathbf{u}|Y, U_{1:|L|+1})) \quad (35)$$

$$= H(\mathbf{u}|U_{1:|L|}) - H(\mathbf{u}|U_{1:|L|+1}) - (H(\mathbf{u}|Y, U_{1:|L|}) - H(\mathbf{u}|Y, U_{1:|L|+1})) \quad (36)$$

$$= H(\mathbf{u}|U_{1:|L|}) - H(\mathbf{u}|U_{1:|L|+1}) - (H(\mathbf{u}|Y) - H(\mathbf{u}|Y)) \quad (37)$$

$$= H(\mathbf{u}|U_{1:|L|}) - H(\mathbf{u}|U_{1:|L|+1}) \quad (38)$$

$$\geq 0 \quad (39)$$

994 Therefore, $I(U_{1:|L|}; Y)$ is submodular on $U_{1:|L|}$ under the conditional dependence of the variables in
 995 $U_{1:|L|}$ given Y .
 996

997 *Information Theoretic Divergence* is a sum of total correlation and conditional total correlation. Both
 998 functions are supermodular according to Fujishige (1978); Studeny (2006). Since $\mathcal{I}(U_{1:|L|}|Y)$ is zero
 999 under the given condition, *Information Theoretic Diveristy* becomes

$$-\mathcal{I}(U_{1:|L|}). \quad (40)$$

1000 Here $-\mathcal{I}(U_{1:|L|})$ is submodular and thus, *Information Theoretic Diveristy* is a submodular function
 1001 on $U_{1:|L|}$.
 1002

1003 A.8 THE PROOF FOR THEOREM 8

1004 Under the condition, since $I(U_{1:|L|}; Y)$ is a submodular function, $-\mathcal{I}(U_{1:|L|}; Y)$ is a supermodular
 1005 function. Only $-\mathcal{I}(U_{1:|L|}; Y)$ is a term including $U_{1:|L|}$ in both bounds. Therefore, the upper and
 1006 lower bounds are supermodular functions and monotonically decrease.
 1007

1008 B EXPERIMENTAL DETAILS

1009 Table 2 shows the datasets and their licenses. Excluding the AG New dataset, we used a validation
 1010 split because the test set has not been released. Table 3 shows the templates used for each task. All
 1011 templates are extracted from promptsource (Bach et al., 2022)⁶. The output vocabulary is restricted
 1012 to the tokens used in options corresponding to the task. Table 4 shows the details of the used models
 1013 in our experiments. In the implementation, we modified the released code from Chang et al. (2024)⁷.
 1014 We used an NVIDIA RTX A6000, which has 48GB of VRAM, to run the models.
 1015

1016 C DETAILED RESULTS

1017 Figure 7 shows the detailed results of the MSE, bias, diversity, and performance of LLMs for each
 1018 layer.
 1019

1020 ⁶<https://github.com/bigscience-workshop/promptsource>

1021 ⁷<https://github.com/terarachang/LLMDecomp>

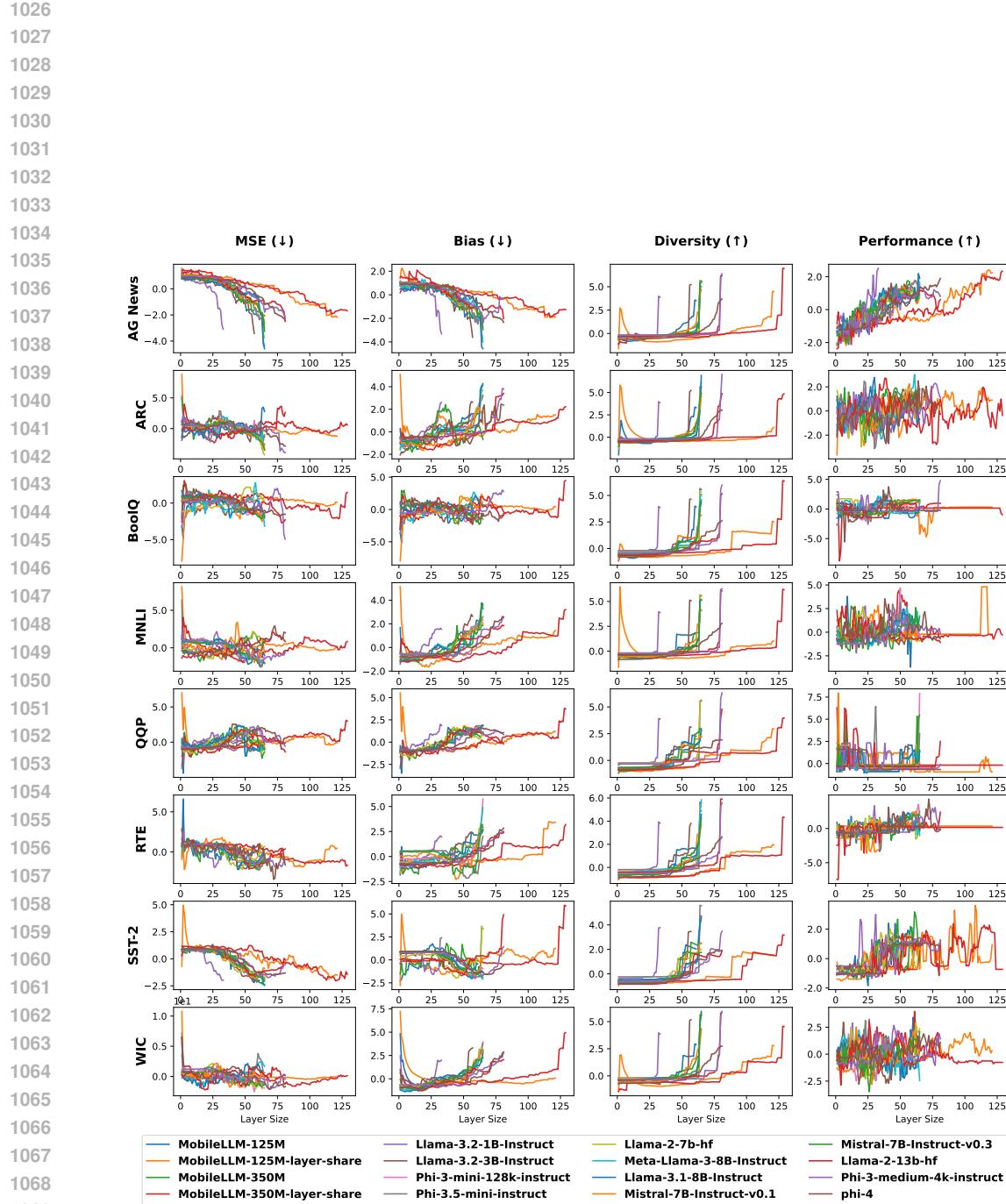


Figure 7: The relationship between MSE, bias, diversity, and performance of all models on each task. The settings are the same as Figure 5.

1080

1081 Table 3: The used templates for each task.

1082 Task	1083 Template	1084 Options
1085 AG News	1086 What label best describes this news article?\n1087 {text} {answer}	1088 World, Sports, Business, Science
1089 ARC	1090 Pick the most correct option to answer the following question.\n\n{text} \n\n{options} {answer}	1091 A B C D
1092 BoolQ	1093 {passage}\n\nAfter reading this passage, I have a question: {question} True or False? {answer}	1094 False, True
1095 MNLI	1096 Suppose it's true that {text1} Then, is "{text2}" {options} {answer}	1097 Always, Sometimes, Never
1098 QQP	1099 I'm an administrator on the website Quora. There are two posts, one that asks "{question1}" and another that asks "{question2}" 1100 I can merge questions if they are asking the same thing. Can I merge these two questions? 1101 {answer}	1102 no, yes
1103 RTE	1104 {text1} Using only the above description and what you know about the world, is {text2} definitely correct? Yes or No? {answer}	1105 Yes, No
1106 SST-2	1107 {text}\nQuestion: Was that sentence positive or negative? Answer: {answer}	1108 negative, positive
1109 WIC	1110 Does the word "{word}" have the same meaning in these two sentences? Yes, No?\n {sentence1}\n {sentence2} {answer}	1111 No, Yes

1108

1109

1110

1111

Table 4: The statistics of the used models.

1112 Model Name	1113 Parameter Size	1114 Layer Size	1115 License
facebook/MobileLLM-125M	125M	61	MIT
facebook/MobileLLM-125M-layer-share	125M	121	MIT
facebook/MobileLLM-350M	350M	65	MIT
facebook/MobileLLM-350M-layer-share	350M	129	MIT
meta-llama/Llama-3.2-1B-Instruct	1B	33	LLaMA License
meta-llama/Llama-3.2-3B-Instruct	3B	57	LLaMA License
microsoft/Phi-3-mini-128k-instruct	3.8B	65	MIT
microsoft/Phi-3.5-mini-instruct	3.8B	65	MIT
meta-llama/Llama-2-7b-hf	7B	65	LLaMA License
mistralai/Mistral-7B-Instruct-v0.1	7B	65	Apache 2.0
mistralai/Mistral-7B-Instruct-v0.3	7B	65	Apache 2.0
meta-llama/Meta-Llama-3-8B-Instruct	8B	65	LLaMA License
meta-llama/Llama-3.1-8B-Instruct	8B	65	LLaMA License
meta-llama/Llama-2-13b-hf	13B	81	LLaMA License
microsoft/Phi-3-medium-4k-instruct	14B	81	MIT
microsoft/phi-4	14.7B	81	MIT

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

D LLM USAGE

1129

1130

1131

1132

1133

We used GPT-4o (OpenAI et al., 2024) only for proofreading our paper.