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Abstract

Since the inception of crowdsourcing, aggre-001
gation has been a common strategy for deal-002
ing with unreliable data. Aggregate ratings are003
more reliable than individual ones. However,004
many NLP datasets that rely on aggregate rat-005
ings only report the reliability of individual006
ones, which is the incorrect unit of analysis.007
In these instances, the data reliability is being008
under-reported. We present empirical, analyti-009
cal, and bootstrap-based methods for measur-010
ing the reliability of aggregate ratings. We call011
this k-rater reliability (kRR), a multi-rater ex-012
tension of inter-rater reliability (IRR). We apply013
these methods to the widely used word simi-014
larity benchmark dataset, WordSim. We con-015
ducted two replications of the WordSim dataset016
to obtain an empirical reference point. We hope017
this discussion will nudge researchers to report018
kRR, the correct unit of reliability for aggregate019
ratings, in addition to IRR.020

1 Introduction021

Crowdsourcing has become a mainstay for data022

collection in NLP (Geva et al., 2019; Sabou et al.,023

2014). It can produce data in a scalable and cost024

effective manner. However, these benefits come025

at a cost: quality. As researchers transitioned to026

replacing linguists with crowd workers for NLP027

labeling tasks, they understood data reliability was028

a concern. One common strategy to increase data029

reliability is to collect multiple, independent judge-030

ments and aggregate them. Indeed, early papers031

such as Snow et al. (2008) show that average ratings032

correlate more strongly with expert judgements.033

This makes sense, as average ratings are known to034

have a higher reliability than individual ones (Ebel,035

1951).036

A number of strategies have been proposed to ad-037

dress data quality issues, e.g. rater modeling, label038

correction, label pruning (Kumar and Lease, 2011),039

but aggregation remains very popular (Jung and040

Lease, 2011). Sheshadri and Lease (2013) present041

nine crowdsourced datasets across a wide range of 042

NLP tasks to compare different aggregation meth- 043

ods. See Difallah and Checco (2021) for a recent 044

review of aggregation techniques. Aggregation has 045

become the default method for acquiring reliable 046

data from the crowd. 047

After we adopted aggregation as a community, 048

we forgot to update our reliability measures corre- 049

spondingly. With aggregation, the data collection 050

artifacts are no longer individual ratings, but aver- 051

age ratings or majority ratings. Focusing on IRR, 052

we are unable to capture the increase in reliability 053

due to aggregation. 054

By shifting our attention to the correct unit of 055

analysis with a higher reliability, this may even 056

have a side effect of lessening the stigma on low- 057

IRR datasets. As a result, this may create a path 058

forward towards reliable data on subjective tasks, 059

where a high IRR is difficult to obtain, such as 060

emotions (Wong et al., 2021) and toxicity (Wulczyn 061

et al., 2017). With a reproducibility crisis looming 062

in the background (Baker, 2016; Hutson, 2018), 063

more frequent and accurate reporting of reliability 064

is our primary safeguard (Paritosh, 2012). 065

We present k-rater reliability (kRR) as a multi- 066

rater generalization of IRR to capture the reliability 067

of aggregate ratings. We demonstrate a general 068

empirical method for computing kRR, by conduct- 069

ing replications of a widely used word similarity 070

dataset, WordSim-353 (Finkelstein et al., 2001). 071

We discuss bootstrap as a simulation solution in 072

situations with high rating redundancy. Then we 073

present two techniques in the intra-class correlation 074

(ICC) framework to compute kRR analytically. We 075

conclude with recommendations for reporting reli- 076

ability of crowdsourced annotations, and novel re- 077

search questions to expand the usefulness of kRR. 078

2 Prior Work 079

Various authors have stressed the importance of 080

measuring reliability for the correct unit of analy- 081
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sis. Ebel (1951) asks “Is it better to estimate the082

reliability of individual ratings or the reliability of083

average ratings? If decisions are based upon aver-084

age ratings, it of course follows that the reliability085

with which one should be concerned is the reliabil-086

ity of those averages.” Similarly, Shrout and Fleiss087

(1979) ask “Is the unit of analysis an individual088

rating or the mean of several ratings?” The authors089

explain "the reliability of the mean rating is of in-090

terest" when the mean ratings is used. Hallgren091

(2012) reiterates, "the researcher must specify the092

unit of analysis" and decide whether to measure093

"the reliability of the ratings based on averages094

of ratings provided by several coders or based on095

ratings provided by a single coder."096

The unit of analysis informs the reliability coef-097

ficient as well. Shrout and Fleiss (1979) list sev-098

eral types intra-class correlation coefficient, one of099

which is for average ratings. They call it ICC(k),100

where k is the number of ratings averaged over.101

ICC is designed for continuous scales. See Feldt102

(1965) for generalization to the the dichotomous103

case. McGraw and Wong (1996) use a slightly dif-104

ferent notation ICC(1,k) to explicitly denote that it105

is for a one-way random effects model, where the106

raters are treated as interchangeable.107

Another way to arrive at ICC(k) is via the108

Spearman-Brown (SB) prophecy formula (Spear-109

man, 1910; Brown, 1910). de Vet et al. (2017) show110

that, originally designed to predict test reliability111

at various test lengths, SB can predict ICC(k) at112

any k based on ICC(1), reliability of individual113

ratings. Both ICC(k) and SB are set in the ICC114

framework. The authors are not aware of multi-115

rater generalization for other reliability coefficients,116

such as Cohen’s (1960) kappa or Krippendorff’s al-117

pha (Krippendorff, 2011), used widely in linguistic118

annotations.119

3 k-rater Reliability120

Inter-rater reliability measures the reliability of in-121

dividual raters. Based on this notion, we use k-rater122

reliability to denote the reliability of groups of k123

raters. The groups’ reliability is defined as the124

chance-adjusted agreement between their aggre-125

gate judgements. kRR is analogous to IRR, where126

each rater is a committee and each rating is an127

group judgement.128

Like IRR, kRR denotes a family of reliability in-129

dices for different rating scales, distance functions,130

and assumptions relevant to the annotation tasks.131

For continuous data, the aggregation function can 132

be the mean, and the distance function the squared 133

distance; for categorical data, the majority vote 134

and equality; for ranks data, the mean reciprocal 135

rank and Spearman’s ρ. Much like IRR, kRR is 136

a general notion and is agnostic to these choices. 137

Any coefficients suitable for IRR are suitable for 138

kRR. This allows one to build upon the rich IRR 139

literature and the many different coefficients for 140

different experimental conditions. For example, in 141

a binary task, if all the items are rated by two fixed 142

but distinct groups of raters (raters from different 143

locales), Cohen’s (1960) kappa is a suitable reliabil- 144

ity index for kRR. Whereas if the raters groups are 145

homogeneous, and the rating scale is ordinal (e.g. 146

Likert), then Krippendorff’s alpha (Krippendorff, 147

2011) can be used. 148

The most direct way to observe the chance- 149

adjusted agreement between aggregate ratings is 150

by replicating them, i.e., reproducing the entire an- 151

notation experiment and computing the reliability 152

between the two vector of replicated means.1 We 153

call this the empirical approach and illustrate it 154

with a word similarity dataset. 155

3.1 Replicating the WordSim Dataset 156

WordSim-353 (Finkelstein et al., 2001) is a widely 157

used benchmark for measuring a system’s ability 158

to compute similarity between two words, and has 159

been cited over 1500 times. The dataset contains 160

353 word pairs. Each word pair is rated by the same 161

13 workers for their similarity on a scale from 1 162

to 10. The 13 ratings on each word pair are then 163

aggregated into a mean score. It is important to note 164

that only the mean of the ratings are utilized by all 165

the research using this dataset as a benchmark.2 166

So the unit of analysis is the aggregate of the 13 167

ratings, not individual ratings. 168

Nearly twenty years have elapsed since the cre- 169

ation of the WordSim dataset. It is impossible to 170

re-create the original experimental conditions due 171

rater population changes. Therefore, we created 172

two replications in order to approximate the kRR 173

of the original dataset.3 We used the original an- 174

notation guidelines on Amazon Mechanical Turk.4 175

In each replication, we collected 13 judgements on 176

each of the same 353 word pairs. These are our 177

1If the original experiment has a large number of annota-
tion items, one can work with a random sub-sample instead.

2 https://aclweb.org/aclwiki/WordSimilarity-353_Test_Collection_State_of_the_art|
3We will open-source it with the publication of this paper.
4Raters were paid on average USD 9.5 per hour.
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Figure 1: k-rater reliability for replications of WordSim bench-
mark, calculated using 3 different methods: 1) Empirical,
based on replications, 2) ICC(k), analytical, and 3) SB predic-
tions. Note ICC(1) is not available as we only have a single
column of ratings available at k = 1. All SB predictions are
based on only 2 ratings per item.

best attempts to replicate the original experiment.178

3.2 Computing kRR Empirically179

We take k column of ratings at random from each180

of the two replications, compute the k-rating mean181

scores for each replication, and measure the relia-182

bility between them using Krippendorf’s alpha, the183

most widely used and general reliability index. We184

do this for k = 1, 2, . . . , 13. The resulting kRR val-185

ues are shown in Fig.1. At k = 1, the IRR is 0.574,186

slightly lower than the 0.6 originally reported in187

Finkelstein et al. (2001). At k = 13, the k-rater188

reliability is 0.94, quite a bit higher than the IRR.189

In addition, Fig.1 shows the marginal returns on190

increasing the number of ratings on the replicated191

datasets.192

4 Other Approaches to Computing kRR193

The empirical approach is general, as it is agnostic194

to the choice of rating scale, aggregation function,195

and reliability coefficient. However, it has a ma-196

jor drawback. As we see in Section3.1, it can be197

difficult to do a perfect replication post-fact. This198

backward incompatibility will present a challenge199

to computing kRR for existing datasets. Below200

we present two other approaches that can work on201

existing datasets under some conditions without202

requiring any additional data collection.203

4.1 Bootstrap 204

Bootstrap (Efron and Tibshirani, 1994) is a re- 205

sampling technique commonly used for quantify- 206

ing uncertainty in statistical parameter estimation. 207

One can bootstrap an NLP annotations dataset by 208

re-sampling ratings within each annotation item 209

with replacement at the same sample size. If one 210

treats each bootstrap sample as a replication, then 211

one can apply the technique discussed in Section 212

3 to obtain a bootstrapped kRR. Bootstrap is an 213

approximate technique and works better with larger 214

sample sizes, typically 20 observations and above 215

for a single distribution. The 13-rating redundancy 216

in the WordSim replications is arguably small for 217

a typical bootstrap exercise, but it makes up for it 218

with a large number of items. 219

Before we apply bootstrap to the original Word- 220

Sim dataset, we first verify its soundness by com- 221

paring it against the empirical results obtained from 222

Section 3.2. When applied to one of the two recent 223

replications, the bootstrapped 13-rater reliability is 224

0.943. This is comparable to the 0.94 found em- 225

pirically. When applied to the original dataset, the 226

bootstrapped 13-rater reliability is 0.953. The exact 227

method introduced below produces a very similar 228

value of 0.95 (Table 1). 229

4.2 Intra-class Correlation 230

Intra-class correlation (ICC) is a popular reliability 231

coefficient for continuous data in behavioral and 232

medical sciences. ICC gives researchers granular 233

control over assumptions about the raters. For ex- 234

ample, each annotation item can be rated by the 235

same set of raters, or different sets of raters (in- 236

terchangeability). In the former, the raters can be 237

treated as either fixed or randomly drawn from a 238

population. Shrout and Fleiss (1979) and McGraw 239

and Wong (1996) give very extensive treatment on 240

different ICC types for different rater assumptions. 241

In this paper, we focus on the most basic defini- 242

tion, one that treats raters as interchangeable. The 243

ICC for a k-rater average is denoted as ICC(k) us- 244

ing McGraw and Wong’s notation. ICC(1) is hence 245

just the reliability of individual ratings. ICC(k) can 246

be computed by summing squares of differences on 247

the data matrix (Shrout and Fleiss, 1979). Software 248

implementations of ICC are also widely available, 249

e.g. in R and Python. 250

We first verify ICC’s accuracy by comparing it 251

against the empirical results in Section 3.2. To 252

do that, we calculate ICC(k) for one of the two 253
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Unit of analysis Method reliability
single-rating ICC 0.59

13-rating mean ICC 0.95
13-rating mean bootstrap 0.953

Table 1: Reliability of the original WordSim benchmark. First
two rows are analytical estimates ICC(1) and ICC(13). Both
computed using all 13 available ratings. Third row is a re-
sampling based bootstrapped estimate based on 100 bootstrap
samples.

recent WordSim replications for k = 1, 2, . . . , 13254

and overlay the results over the empirical curve in255

Fig.1. We can see ICC(k) matches the empirical256

results quite well.257

After verifying the technique, we compute258

ICC(k) on the original WordSim dataset. We report259

in Table 1 both ICC(1) and ICC(13) to show the260

increase in reliability. They are respectively 0.59261

and 0.95.5262

4.3 Extrapolation of ICC(k)263

ICC(k) quantifies the reliability of the k-rater av-264

erage in the current experiment. If this reliability265

is too low, the researcher may want to increase266

the value of k. In this case, it would be helpful to267

know how additional ratings would impact reliabil-268

ity. This is analogous to calculating the required269

sample size for a given margin of error in a poll. For270

this purpose, the Spearman-Brown formula (SB)271

(Spearman, 1910; Brown, 1910) can be a useful272

tool. It predicts ICC(k) for any value of k based on273

single-rating ICC(1) in the current experiment:274

ICC(k) =
k · ICC(1)

1 + (k − 1) · ICC(1)
. (1)275

Warrens (2017) and de Vet et al. (2017) show that276

SB and ICC(k) are indeed equivalent.6 This finding277

merely confirms past observations that SB predicts278

empirical results accurately (Remmers et al., 1927).279

A limitation of SB is clearly that it only works280

with ICC. However, Fleiss and Cohen (1973) show281

ICC is actually equivalent to weighted-kappa with282

quadratic weights, so it likely has wider applicabil-283

ity.284

To verify the formula, we apply SB to one of285

the two recent WordSim replications and overlay286

5The former is computed using two-way random without
interaction ICC(1), the latter two-way random without interac-
tion ICC(13). The equivalent one-way models yield identical
point estimates.

6The only exception is two-way mixed model with interac-
tion (Warrens, 2017).

the results over the empirical curve obtained earlier. 287

When computing SB, we only provide it with 2 288

ratings, in order to assess its predictive accuracy. 289

That is, we first compute ICC(1) with 2 randomly 290

drawn ratings from each word pair, then we plug 291

this ICC(1) value into Eq.1 for k = 1, 2, . . . , 13. 292

The SB curve is overlaid over the empirical curve 293

in Fig.1. We see that SB tracks the empirical results 294

very well even at high k. This is remarkable as the 295

empirical approach requires 26 ratings for k = 13, 296

whereas SB merely requires 2 for any value of k. 297

5 Conclusions and Discussion 298

We pointed out where aggregated ratings are used, 299

as is the case in many crowdsourced datasets, re- 300

liability of aggregate ratings is a more accurate 301

accounting of data reliability. We introduced k- 302

rater reliability (kRR) as a multi-rater extension of 303

IRR. We demonstrated empirical, analytical, and 304

bootstrap-based methods for computing the kRR 305

on the original WordSim dataset and our recent 306

replications. All three methods produce similar es- 307

timates for 13-rater reliability ranging from 0.94 to 308

0.953. 309

While aggregation makes it possible to have reli- 310

able benchmarks on subjective topics, some read- 311

ers may feel uneasy about increasing reliability via 312

replication, as opposed to other traditional means 313

such as improving annotation guidelines. This con- 314

cern can be mediated by reporting both IRR and 315

kRR. In fact, kRR is not meant to replace IRR, but 316

rather complement it. IRR speaks to the reliabil- 317

ity of the experiment, whereas kRR the aggregate 318

ratings we consume. We urge researchers to re- 319

port both where possible. In fact, Hallgren (2012) 320

states, "In cases where single measures ICCs are 321

low but average-measures ICCs are high, the re- 322

searcher may report both ICCs to demonstrate this 323

discrepancy." 324

This research also raises interesting questions 325

for future research: 326

1. How do we derive multi-rater generalizations 327

for coefficients other than ICC? 328

2. Is the Landis and Koch (1977) kind of inter- 329

pretation for IRR suitable for kRR? 330

We urge researchers to report both IRR and kRR 331

of aggregated human annotations, and for further 332

inquiry around the above fundamental questions 333

about reliability. 334
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