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Abstract001

Recent progress in large language models002
(LLMs) offers promising new approaches for003
recommendation system tasks. While the004
current state-of-the-art methods rely on fine-005
tuning LLMs to achieve optimal results, this006
process is costly and introduces significant en-007
gineering complexities. Conversely, methods008
that directly use LLMs without additional fine-009
tuning result in a large drop in recommenda-010
tion quality, often due to the inability to cap-011
ture collaborative information. In this paper,012
we propose a Simple Training-free Approach013
for Recommendation (STAR), a framework014
that utilizes LLMs and can be applied to var-015
ious recommendation tasks without the need016
for fine-tuning, while maintaining high quality017
recommendation performance. Our approach018
involves a retrieval stage that uses semantic019
embeddings from LLMs combined with col-020
laborative user information to retrieve candi-021
date items. We then apply an LLM for pair-022
wise ranking to enhance next-item prediction.023
Experimental results on the Amazon Review024
dataset show competitive performance for next025
item prediction, even with our retrieval stage026
alone. Our full method achieves Hits@10 per-027
formance of +23.8% on Beauty, +37.5% on028
Toys & Games, and -1.8% on Sports & Out-029
doors relative to the best supervised models.030
This framework offers an effective alternative031
to traditional supervised models, highlighting032
the potential of LLMs in recommendation sys-033
tems without extensive training or custom ar-034
chitectures.035

1 Introduction036

Recent advances in large language models (LLMs)037

present new opportunities for addressing recom-038

mendation tasks (Brown et al., 2020; Team et al.,039

2023; Lin et al., 2023; Zhao et al., 2023; Li et al.,040

2023b; Chen et al., 2024; Tsai et al., 2024; Wu041

et al., 2024). Current approaches primarily lever-042

age LLMs in three ways: (1) advanced prompt-043

(a) LLM RecSys through prompting

(b) LLM as a base model for fine-tune

(c) LLM as feature encoder

(d) STAR
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Figure 1: A Motivating Example. LLMs can be uti-
lized in RecSys through (a) prompting, (b) fine-tuning
on user-item interactions, and (c) using LLMs as fea-
ture encoders for training subsequent models. However,
(a) cannot leverage collaborative knowledge, while (b)
and (c) require extensive training and large-scale inter-
action data. Our framework STAR integrates collabora-
tive knowledge into LLMs without additional training.

ing (Wang and Lim, 2023; Wang et al., 2023; Hou 044

et al., 2024; Wang et al., 2024b; Xu et al., 2024a; 045

Zhao et al., 2024; Liang et al., 2024); (2) as base 046

models for direct fine-tuning (Geng et al., 2022; 047

Zhang et al., 2023; Bao et al., 2023; Xu et al., 048

2024b; Tan et al., 2024; Kim et al., 2024); and 049

(3) as feature encoders for fine-tuning subsequent 050

generative models (Hou et al., 2023; Singh et al., 051
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2023; Rajput et al., 2024; Zheng et al., 2024) or052

sequential models (Sun et al., 2019; Yuan et al.,053

2023; Hu et al., 2024). While prompting LLMs054

for scoring and ranking utilizes their reasoning055

abilities, these models often largely underperform056

compared to fine-tuned approaches due to the ab-057

sence of collaborative knowledge derived from058

user-item interactions. Conversely, using LLMs059

for fine-tuning, whether as base models or feature060

encoders, enhances model performance by leverag-061

ing their strong semantic understanding. However,062

this requires extensive training and large-scale in-063

teraction data.064

The main objective of this work is to integrate065

the semantic capabilities of LLMs with collabora-066

tive knowledge from user-item interaction data, all067

without requiring additional training. To achieve068

this, we present a Simple Training-free Approach069

for Recommendation (STAR) framework using070

LLMs. The STAR framework involves two stages:071

Retrieval and Ranking. The Retrieval stage072

scores new items using a combination of seman-073

tic similarity and collaborative commonality to the074

items in a user’s history. Here, we utilize LLM-075

based embeddings to determine semantic similarity.076

Additionally, a temporal factor gives priority to077

user’s recent interactions, and a rating factor aligns078

with user preferences to rank items within a specific079

set (§3.2). The Ranking stage leverages the rea-080

soning capabilities of LLMs to adjust the rankings081

of the initially retrieved candidates. Specifically,082

we assess various LLM-based ranking approaches,083

including point-wise, pair-wise, and list-wise meth-084

ods, while also determining the key information085

needed for the LLM to better understand user pref-086

erences and make accurate predictions (§3.3). Our087

experimental evaluation shows competitive perfor-088

mance across a diverse range of recommendation089

datasets, all without the need for supervised train-090

ing or the development of custom-designed archi-091

tectures.092

We present extensive experimental results on the093

Amazon Review dataset (McAuley et al., 2015; He094

and McAuley, 2016). Our findings are as follow:095

1. Our retrieval pipeline itself, comprised of both096

semantic relationship and collaborative infor-097

mation, achieves Hits@10 performance of098

+17.3% on Beauty, +26.2% on Toys & Games,099

and -5.5% on Sports & Outdoors relative to100

the best supervised models.101

2. We show that pair-wise ranking further im-102

proves upon our retrieval performance, while 103

point-wise and list-wise methods struggle to 104

achieve similar improvements. 105

3. We illustrate that collaborative information is 106

a critical component that adds additional ben- 107

efits to the semantic information throughout 108

our system, in both the retrieval and ranking 109

stages. 110

These findings show that it is possible to build 111

a recommendation system utilizing LLMs without 112

additional fine-tuning that can significantly close 113

the quality gap of fully fine-tuned systems, and in 114

many cases even achieve higher quality. 115

2 Related Works 116

Recent studies have explored the role of LLMs in 117

recommendation systems through three primary 118

approaches: (1) using prompting for scoring and 119

ranking, (2) fine-tuning as a base model, and (3) 120

serving as a feature encoder. 121

LLM prompting for scoring and ranking. 122

LLMs can generate recommendations by under- 123

standing user preferences or past interactions ex- 124

pressed in natural language. 125

This is typically achieved through generative 126

selection prompting, where the model ranks and 127

selects top items from a given candidate set (Wang 128

and Lim, 2023; Wang et al., 2023; Hou et al., 2024; 129

Wang et al., 2024b; Xu et al., 2024a; Zhao et al., 130

2024; Liang et al., 2024). Another line of work 131

applies ranking prompting (Dai et al., 2023), in- 132

spired by LLM-based ranking in information re- 133

trieval (Zhu et al., 2023; Wang et al., 2024a), using 134

point-wise (Liang et al., 2022; Zhuang et al., 2023), 135

pair-wise (Qin et al., 2024), or list-wise (Sun et al., 136

2023; Qin et al., 2024) approaches. However, LLM 137

prompting alone, without a retrieval stage to pre- 138

select candidate items for scoring and ranking, is 139

less effective than fine-tuned models due to lack 140

of collaborative knowledge derived from user-item 141

interaction data. As a result, many approaches use 142

a fine-tuned model for candidate retrieval and an 143

LLM for ranking. However, in this setup, over- 144

all performance is primarily determined by the re- 145

trieval quality rather than the LLM itself. 146

LLM as base model for fine-tuning. To inte- 147

grate collaborative knowledge with the semantic 148

understanding of LLMs, recent studies have ex- 149

plored fine-tuning using user-item interaction data. 150
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While this improves recommendation performance,151

it requires extensive training and large-scale inter-152

action datasets (Geng et al., 2022; Zhang et al.,153

2023; Bao et al., 2023; Xu et al., 2024b; Tan et al.,154

2024; Kim et al., 2024).155

LLM as feature encoder. LLMs can also be156

used as text encoders to capture richer seman-157

tic information from item metadata and user pro-158

files (Reimers and Gurevych, 2019; Cer et al., 2018;159

Ni et al., 2021; Lee et al., 2024). To further opti-160

mize these representations, researchers have ex-161

plored several approaches: (1) mapping continuous162

LLM embeddings into discrete tokens using vector163

quantization and training a subsequent generative164

model (Hou et al., 2023; Singh et al., 2023; Rajput165

et al., 2024; Zheng et al., 2024); (2) training sequen-166

tial models by initializing the embedding layer with167

LLM embeddings (Sun et al., 2019; Yuan et al.,168

2023; Hu et al., 2024); and (3) training models to169

directly compute the relevance between item and170

user embeddings (i.e., embeddings of user selected171

items) (Ding et al., 2022; Hou et al., 2022; Gong172

et al., 2023; Li et al., 2023a; Liu et al., 2024; Li173

et al., 2024; Ren et al., 2024; Sheng et al., 2024).174

In this work, we utilize LLMs as both feature175

encoders and ranking functions by integrating col-176

laborative knowledge from user-item interaction177

data. Our findings show that LLM embeddings can178

serve as effective item representations, achieving179

strong results in sequential recommendation tasks180

without extensive optimization. This aligns with181

(Harte et al., 2023) but differs in our use of novel182

scoring rules that incorporate both collaborative183

and temporal information.184

3 STAR: Simple Training-Free RecSys185

This section initially outlines the problem formula-186

tion (§3.1). Subsequently, we detail the proposed187

retrieval (§3.2) and ranking pipelines (§3.3).188

3.1 Sequential Recommendation189

The sequential recommendation task predicts the190

next item a user will interact with based on their in-191

teraction history. For a user u ∈ U , where U is the192

set of all users, the interaction history is represented193

as a sequence of items Su = {s1, s2, . . . , sn}, with194

each item si ∈ I belonging to the set of all items195

I . Each user history item si is associated with a196

rating ri ∈ {1, 2, 3, 4, 5} given by the user u. The197

goal is to predict the next item sn+1 ∈ I that the198

user is most likely to interact with.199

3.2 Retrieval Pipeline 200

The retrieval pipeline aims to assign a score to 201

an unseen item x ∈ I given the sequence Su. To 202

achieve this, we build two scoring components: one 203

that focuses on the semantic relationship between 204

items and another that focuses on the collaborative 205

relationship. 206

Semantic relationship. Understanding how sim- 207

ilar a candidate item is to the items in a user’s 208

interaction history si ∈ Su is key to accurately 209

gauging how well candidate items align with user 210

preferences. Here we leverage LLM embedding 211

models, where we pass in text prompts representing 212

items and collect embedding vectors of dimension 213

de. We construct a prompt based on the item in- 214

formation and metadata, which can include fields 215

like title, description, category, brand, sales rank- 216

ing, price, etc. (See Appendix A.3 for the full 217

prompt details). We collect embeddings for each 218

item i ∈ I , resulting in E ∈ Rn×de , where n is 219

number of total items in I . 220

The semantic relationship between two items 221

(ia, ib) is then calculated using the cosine similar- 222

ity between their embeddings Eia , Eib ∈ E. This 223

measure provides a numerical representation of 224

how closely related the items are in semantic space. 225

For our experiments, we precompute the entire se- 226

mantic relationship matrix RS ∈ Rn×n. For many 227

domains, this is a practical solution. However, if 228

|I| is very large, Approximate Nearest Neighbor 229

methods (Guo et al., 2020; Sun et al., 2024) are 230

efficient approaches to maintain quality and reduce 231

computation. 232

Collaborative relationship. Semantic similarity 233

between a candidate item and items in a user’s in- 234

teraction history is a helpful cue for assessing the 235

similarity of items based on the item information. 236

However, this alone does not fully capture the en- 237

gagement interactions of items by multiple users. 238

To better understand the collaborative relationship, 239

we consider how frequently different combinations 240

of items are interacted with by users. These shared 241

interaction patterns can provide strong indicators 242

of how likely the candidate item is to resonate with 243

a broader audience with similar preferences. For 244

each item i ∈ I , we derive an interaction array that 245

represents user interactions, forming a set of sparse 246

user-item interaction arrays C ∈ Rn×m, where m 247

is number of users in U . The collaborative relation- 248

ship between two items (ia, ib) is then computed 249
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Figure 2: STAR Framework overview. We use the semantic relationship scores in RS and the collaborative
relationship scores in RC to score the items in the user history compared to new items to recommend. The final
score for one new item is a weighted average from the semantic relationship and collaborative relationship scores,
with additional weights from the user’s ratings r and a temporal decay λ < 1 which prioritize recent interactions.
The top scoring retrieved items are sent to the LLM Ranking, where we can use point-wise, pair-wise, or list-wise
ranking approaches to further improve upon the scoring of recommended items.

by using the cosine similarity between their sparse250

arrays Cia , Cib ∈ C, capturing the normalized co-251

occurrence of the items. To streamline the process,252

we pre-compute and store these values in a collabo-253

rative relationship matrix RC = C·C>

‖C‖‖C>‖ ∈ Rn×n,254

which is typically very sparse.255

Scoring rules. The score for an unseen item x ∈256

I is calculated by averaging both the semantic and257

collaborative relationships between items in Su =258

{s1, s2, . . . , sn} as follows:259

score(x) =
1

n

n∑
j=1

rjλ
tj
[
aRxj

S + (1− a)Rxj
C

]
(1)260

where Rxj
S and Rxj

C represent the semantic and261

collaborative relationships between the unseen item262

x and item sj ∈ Su, respectively. In this equation,263

rj is the rating given by user u to item sj , and264

λtj is an exponential decay function applied to the265

temporal order tj of sj in the sequence Su. Here,266

tj is set to 1 for the most recent item in Su and267

increments by 1 up to n for the oldest item. The268

framework, illustrated in Figure 2, outputs the top269

k items in descending order based on their scores.270

3.3 Ranking Pipeline271

After retrieving the top k items, denoted as Ik, from272

the initial retrieval process, a LLM is employed to273

further rank these items to enhance the overall next-274

item recommendation quality. The items in Ik are 275

already ordered based on scores from the retrieval 276

framework, which reflect semantic, collaborative, 277

and temporal information. We intentionally incor- 278

porate this initial order into the ranking process 279

to enhance both efficiency and effectiveness. This 280

framework then leverages the capabilities of the 281

LLM to better capture user preference, complex 282

relationships and contextual relevance among the 283

items. 284

3.3.1 Rank schema 285

We present three main strategies for ranking: (1) 286

Point-wise evaluates each item x ∈ Ik indepen- 287

dently, based on the user sequence Su, to deter- 288

mine how likely it is that user u will interact with 289

item x. If two items receive the same score, their 290

rank follows the initial order from Ik; (2) Pair- 291

wise evaluates the preference between two items 292

xi, xj ∈ Ik based on the user sequence Su. We 293

adopt a sliding window approach, starting from the 294

items with the lowest retrieval score at the bottom 295

of the list (Qin et al., 2024). The LLM compares 296

and swaps adjacent pairs, while iteratively step- 297

ping the comparison window one element at a time. 298

(3) List-wise evaluates the preference among mul- 299

tiple items xi, . . . , xi+w ∈ Ik based on the user 300

sequence Su. This method also uses a sliding win- 301

dow approach, with a window size w and a stride 302

d to move the window across the list, refining the 303
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“Item ID”: 4,

    “Title”: “Nullo Internal Deodrant”

    “Categories”: [“Beauty”, “Skin Care”, “Body”, “Oils”]

    “Description”: “Chlorophyllin Copper 100g …”

    “salesRank”: {“Health & Personal Care”: 13703”}

“# users who bought this item & history item 1”: 3,

      …

    “# users who bought this item & history item n”: 2

Co-occurrence

“# users who bought this item”: 6

Popularity

Meta-data

Figure 3: Prompt overview for the ranking pipeline.
The prompt includes history items, candidate items,
and instructions for the ranking strategy. Each item
is represented by metadata, along with additional de-
tails such as popularity and co-occurrence, formatted
in JSON. Full prompt is available in Appendix A.4.

ranking as it passes (Sun et al., 2023). In this setup,304

pair-wise is a special case of list-wise with w = 2305

and d = 1.306

3.3.2 Item information307

We represent the metadata (e.g., Item ID, title, cat-308

egory, etc.) for each item in the user sequence309

sj ∈ Su and each candidate item to be ranked310

x ∈ Ik as JSON format in the input prompt. Ad-311

ditionally, we incorporate two more types of in-312

formation that can help the reasoning capabilities313

of the LLM: (1) Popularity is calculated as the314

number of users who have interacted with the item315

x, simply by counting the occurrences in the train-316

ing data. This popularity value is then included in317

the prompt for both the items in the user sequence318

sj ∈ Su and the candidate item to be ranked x ∈ Ik319

as “Number of users who interacted with this item:320

###”; (2) Co-occurrence is calculated as the num-321

ber of users who have interacted with both item322

x and item sj ∈ Su. The resulting value is then323

included for candidate items x ∈ Ik as “Number of324

users who interacted with both this item and item325

sj: ###”.326

4 Experimental Setup327

Datasets. We evaluate the performance using328

public 2014 Amazon review datasets (McAuley329

et al., 2015; He and McAuley, 2016). Specifically,330

we select the Beauty, Toys and Games, and Sports331

and Outdoors categories, as these have been used332

in previous studies (Geng et al., 2022; Tan et al.,333

2024) and provide data points for comparison (see334

Table 1). We follow the same data processing steps335

Dataset # Users # Items # Interactions Density

Beauty 22,363 12,101 198,502 0.0734%
Toys and Games 19,412 11,924 167,597 0.0724%
Sports and Outdoors 35,598 18,357 296,337 0.0453%

Table 1: Dataset statistics. Density is the percentage
of actual user-item interactions out of all interactions.

as in prior work, filtering out users and items with 336

fewer than five interactions, maintaining consistent 337

baseline settings. 338

Dataset Construction and Evaluation Metrics. 339

We follow conventional supervised models, where 340

the last item, sn, is reserved for testing and the sec- 341

ond to last item, sn−1, is used for validation. The 342

remaining items are used for training. For the final 343

predictions of sn, all training and validation items 344

are used as input. Although our method does not 345

train model parameters, we only use the training 346

data to calculate the collaborative user interaction 347

values used for RC in retrieval and for popularity 348

and co-occurence in ranking. We report Normal- 349

ized Discounted Cumulative Gain (NDCG) and Hit 350

Ratio (HR) at ranks 5 and 10. 351

Compared Methods. We compare our model 352

with following supervised trained models: (1) 353

KNN is a user-based collaborative filtering method 354

that finds the top 10 most similar users to a given 355

user and averages their ratings to score a specific 356

item; (2) Caser uses convolution neural networks 357

to model user interests (Tang and Wang, 2018); (3) 358

HGN uses hierarchical gating networks to capture 359

both long and short-term user behaviors (Ma et al., 360

2019); (4) GRU4Rec employs GRU to model user 361

action sequences (Hidasi et al., 2015); (5) FDSA 362

uses a self-attentive model to learn feature tran- 363

sition patterns (Zhang et al., 2019); (6) SASRec 364

uses a self-attention mechanism to capture item 365

correlations within a user’s action sequence (Kang 366

and McAuley, 2018); (7) BERT4Rec applies a 367

masked language modeling (MLM) objective for bi- 368

directional sequential recommendation (Sun et al., 369

2019); (8) S3-Rec extends beyond the MLM ob- 370

jective by pre-training with four self-supervised ob- 371

jectives to learn better item representations (Zhou 372

et al., 2020). (9) P5 fine-tunes a pre-trained LM for 373

use in multi-task recommendation systems by gen- 374

erating tokens based on randomly assigned item 375

IDs (Geng et al., 2022); (10) TIGER also fine- 376

tunes LMs to predict item IDs directly, but these 377

IDs are semantic, meaning they are learned based 378

on the content of the items (Rajput et al., 2024); 379
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and (11) IDGenRec goes further by extending se-380

mantic IDs to textual IDs, enriching the IDs with381

more detailed information (Tan et al., 2024).382

Implementation Details. Unless otherwise spec-383

ified, we use Gecko text-embedding-004 (Lee384

et al., 2024)1 to collect LLM embeddings for re-385

trieval, and we use gemini-1.5-flash2 for LLM-386

based ranking. All API calls were completed as of387

September 1, 2024.388

5 Experimental Results389

In this section, we present a performance analysis390

of our retrieval (§5.1) and ranking pipeline (§5.2).391

5.1 Retrieval Pipeline392

The second group of Table 2 presents the per-393

formance of our retrieval framework. STAR-394

Retrieval alone achieves the best or second-best395

results compared to all baselines and fine-tuned396

methods. There is a significant improvement across397

all metrics for Toys and Games, ranging from398

+26.50% to +35.3%. In Beauty, all metrics besides399

NDCG@5 (-1.2%) are improved from a range of400

+6.1% to +20.0%. In Sports and Outdoors, the re-401

sults are second best to IDGenRec, trailing from a402

range of -19.6% to -5.57%. Furthermore, we ex-403

plore the following questions in greater detail, with404

additional details provided in Appendix A.1:405

Impact of semantic and collaborative informa-406

tion. We assess the impact of semantic (RS) and407

collaborative (RC) information by varying their408

weighting factor a. As shown in the top panel of409

Figure 4, the optimal performance occurs between410

a = 0.5 and 0.6, with a = 0.5 chosen for simplic-411

ity. The far left and right sides of that figure show412

that results significantly degrade when using only413

one component (a = 0.0 or a = 1.0), confirming414

that combining both enhances retrieval effective-415

ness.416

Impact of user history length l and recency fac-417

tor λ. We analyze the effect of user history length418

(l) and recency factor (λ) on retrieval performance.419

As shown in the right panel of Figure 4, perfor-420

mance improves with more history items up to421

l = 3 but declines beyond that. The middle panel422

indicates that a recency factor of λ = 0.7 effec-423

tively prioritizes recent interactions, outperforming424

1https://cloud.google.com/vertex-ai/generative-
ai/docs/model-reference/text-embeddings-api

2https://deepmind.google/technologies/gemini/flash/
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Figure 4: Retrieval performance (Hits@50) with dif-
ferent weighting factor a between RS and RC (top),
recency factor λ (bottom-left), and number of history
l (bottom-right). The shaded regions show the best
range. a = 0.5, λ = 0.7, and l = 3 show the best.

no recency adjustment (λ = 1). However, an ex- 425

cessively small λ overly discounts past items, re- 426

sembling the effect of using only one history item. 427

Impact of user rating. In Equation 1, we pro- 428

pose using the user ratings to help score items. To 429

assess their impact, we compare results using ac- 430

tual ratings (r) versus a uniform rating (r = 1 for 431

all items). Surprisingly, ignoring the rating infor- 432

mation consistently produced better results (See 433

Table 3). This likely due to a task mismatch—our 434

focus is on predicting interactions, not user ratings. 435

Consequently, in our main evaluation and the rest 436

of the analysis, we disregard ratings (by setting 437

r = 1 for all items), which is also practical since 438

most real-world interactions lack explicit ratings. 439

Scoring rule analysis. Prior studies (Harte et al., 440

2023; Liang et al., 2024) use LLM embeddings of 441

items in a user sequence (Su) to retrieve candidates. 442

These methods generate a “user embedding” by 443

averaging item embeddings, then identify the most 444

similar candidate based on embedding similarity. 445

To evaluate our scoring rule, we compare it against 446

this pooling approach. As shown in Table 4, our 447

method outperforms pooling even without collabo- 448

rative information (S = 1.0, C = 0.0). Incorporat- 449

ing collaborative information (S = 0.5, C = 0.5) 450

further improves performance, highlighting the ad- 451

vantage of our approach. 452
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Category Method / Model Train Beauty Toys and Games Sports and Outdoors

H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10

Baseline

KNN 3 0.004 0.003 0.007 0.004 0.004 0.003 0.007 0.004 0.001 0.001 0.002 0.001
Caser (Tang and Wang, 2018) 3 0.021 0.013 0.035 0.018 0.017 0.011 0.027 0.014 0.012 0.007 0.019 0.010
HGN (Ma et al., 2019) 3 0.033 0.021 0.051 0.027 0.032 0.022 0.050 0.028 0.019 0.012 0.031 0.016
GRU4Rec (Hidasi et al., 2015) 3 0.016 0.010 0.028 0.014 0.010 0.006 0.018 0.008 0.013 0.009 0.020 0.011
BERT4Rec (Sun et al., 2019) 3 0.020 0.012 0.035 0.017 0.012 0.007 0.020 0.010 0.012 0.008 0.019 0.010
FDSA (Zhang et al., 2019) 3 0.027 0.016 0.041 0.021 0.023 0.014 0.038 0.019 0.018 0.012 0.029 0.016
SASRec (Kang and McAuley, 2018) 3 0.039 0.025 0.061 0.032 0.046 0.031 0.068 0.037 0.023 0.015 0.035 0.019
S3-Rec (Zhou et al., 2020) 3 0.039 0.024 0.065 0.033 0.044 0.029 0.070 0.038 0.025 0.016 0.039 0.020
P5 (Zhou et al., 2020) 3 0.016 0.011 0.025 0.014 0.007 0.005 0.012 0.007 0.006 0.004 0.010 0.005
TIGER (Geng et al., 2022) 3 0.045 0.032 0.065 0.038 0.052 0.037 0.071 0.043 0.026 0.018 0.040 0.023
IDGenRec (Tan et al., 2024) 3 0.062 0.049 0.081 0.054 0.066 0.048 0.087 0.055 0.043 0.033 0.057 0.037

STAR-Retrieval - 7 0.068 0.048 0.098 0.057 0.086 0.061 0.118 0.071 0.038 0.026 0.054 0.031

STAR-Ranking
point-wise 7 0.068 0.047 0.096 0.056 0.086 0.061 0.117 0.071 0.037 0.026 0.054 0.031
pair-wise 7 0.072 0.051 0.101 0.060 0.090 0.064 0.120 0.073 0.040 0.028 0.056 0.034
list-wise 7 0.065 0.047 0.090 0.055 0.083 0.060 0.111 0.069 0.036 0.026 0.052 0.031

Table 2: Performance (Hits@K, NDCG@K) comparison among supervised models, and STAR retrieval &
ranking pipeline. The first group in the table represents supervised models; The second group shows the retrieval
pipeline with parameters set to an exponential decay rate of λ = 0.7, history length of l = 3, and a weight factor
of a = 0.5; The third group consists of ranking pipeline which use gemini-1.5-flash. The best model for each
dataset is shown in bold, and the second best is underlined.

Rating Beauty Toys & Games Sports & Outdoors

H@10 N@10 H@10 N@10 H@10 N@10

w/ rating 0.095 0.056 0.115 0.069 0.052 0.030
w/o rating 0.098 0.057 0.118 0.071 0.054 0.031

Table 3: Retrieval (Hits@10, NDCG@10) comparing
w/ and w/o incorporating user rating.

Scoring method Beauty Toys & Games Sports & Outdoors

H@10 N@10 H@10 N@10 H@10 N@10

Average Pooling 0.060 0.033 0.080 0.043 0.033 0.017
STAR (S=1.0, C=0.0) 0.072 0.042 0.095 0.055 0.039 0.022
STAR (S=0.5, C=0.5) 0.098 0.057 0.118 0.071 0.054 0.031

Table 4: Retrieval performance (Hits@10,
NDCG@10) comparison between STAR-retrieval
pipeline and average embedding pooling. S repre-
senting Semantic Information and C representing
Collaborative Information weightings.

5.2 Ranking Pipeline453

The third group of Table 2 highlights the perfor-454

mance of the ranking framework, which improves455

upon the retrieval stage results. Pair-wise ranking456

improves all metrics over STAR-Retrieval perfor-457

mance by +1.7% to +7.9%. This further improves458

the results over other baselines for Beauty and Toys459

and Games, while closing the gap on IDGenRec460

in Sports and Outdoors. Point-wise and list-wise461

methods struggle to achieve similar improvements.462

We examine the following questions in more de-463

tail, with additional information available in Ap-464

pendix A.2.465

Effectiveness of ranking and impact of window466

size and stride. Previous approaches use a se-467

lection prompt, instructing the LLM to choose the468

top-k items from a candidate set (Wang and Lim,469

2023; Hou et al., 2024; Wang et al., 2024b). In470

1 2 3 5 7 10 25
Number of history

0.101
0.120

0.057

Beauty
Toys and Games
Sports and Outdoors

(a) Number of history l

10 20 25 50 75
Number of candidates

0.101

0.121

0.058

Beauty
Toys and Games
Sports and Outdoors

(b) Number of candidates k

Figure 5: Pair-wise ranking performance (Hits@10)
trend by different number of history l and number of
candidates k

contrast, our method uses a ranking prompt, which 471

explicitly instructs the LLM to rank all items within 472

the available context window. We assess the effec- 473

tiveness of the ranking approach in comparison to 474

the selection approach and a point-wise prompt. As 475

shown in Table 5, results show that ranking with 476

a small window size (e.g., pair-wise or list-wise 477

with a window of 4) consistently outperforms se- 478

lection and pair-wise approaches. These findings 479

align with prior work in document retrieval, where 480

list-wise ranking with large windows or reasoning 481

prompts is challenging for LLMs due to the need 482

for task-specific knowledge. In contrast, pair-wise 483

ranking is relatively easier and can yield better per- 484

formance, even for smaller LMs (Qin et al., 2024). 485

Impact of candidate count (k) and history 486

length (l). As shown in Figure 5, varying the 487

number of historical items (l) has little effect on 488

performance. In contrast, increasing the number of 489

candidate items (k) slightly improves accuracy by 490

increasing the chances of including the correct item. 491

However, the performance gains are minimal, and 492

7



Prompt Style Window Size Stride Beauty Toys and Games Sports and Outdoors

H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10

None (STAR-Retrieval) - - 0.0684 0.0480 0.0977 0.0574 0.0857 0.0606 0.1176 0.0709 0.0379 0.0262 0.0542 0.0314

Selection - - 0.0691 0.0484 0.0958 0.0570 0.0841 0.0613 0.1109 0.0699 0.0376 0.0269 0.0520 0.0316

Point-wise 1 1 0.0685 0.0472 0.0956 0.0558 0.0855 0.0611 0.1170 0.0713 0.0370 0.0257 0.0539 0.0312

Pair-wise 2 1 0.0716 0.0506 0.1008 0.0600 0.0899 0.0639 0.1196 0.0734 0.0401 0.0283 0.0564 0.0335

List-wise

4 2 0.0724 0.0502 0.1002 0.0592 0.0894 0.0634 0.1195 0.0732 0.0406 0.0282 0.0559 0.0331
8 4 0.0688 0.0484 0.0988 0.0581 0.0874 0.0625 0.1202 0.0731 0.0388 0.0276 0.0556 0.0330
10 5 0.0676 0.0480 0.0981 0.0578 0.0853 0.0616 0.1201 0.0728 0.0379 0.0270 0.0558 0.0327
20 - 0.0653 0.0471 0.0903 0.0551 0.0829 0.0603 0.1113 0.0694 0.0364 0.0262 0.0518 0.0311

Table 5: Ranking performance (Hits@K, NDCG@K) by window size and stride. Here we use 20 candidates
from the retrieval stage. The best prompt for each dataset is shown in bold, and the second best is underlined.

Item prompt Beauty Toys & Games Sports & Outdoors

H@10 N@10 H@10 N@10 H@10 N@10

Metadata 0.1000 0.0567 0.1193 0.0690 0.0544 0.0315
+ popularity 0.0998 0.0564 0.1174 0.0701 0.0549 0.0316
+ co-occurrence 0.1008 0.0600 0.1196 0.0734 0.0564 0.0335
+ popularity, co-occurrence 0.0999 0.0599 0.1203 0.0736 0.0550 0.0322

Table 6: Pair-wise ranking (Hits@10 & NDCG@10)
by varying information in the item prompt.

given the high computational cost of processing493

more candidates, the trade-off may not be worth-494

while.495

Impact of additional item information in496

prompts. We analyze the effect of adding ex-497

tra item information—specifically, popularity and498

co-occurrence data—alongside item metadata in499

prompts. As shown in Table 6, incorporating co-500

occurrence data improves NDCG@10 by +0.2%501

to +3.4% compared to using metadata alone. In502

contrast, adding popularity information does not503

enhance performance and sometimes even reduces504

it. This suggests that popularity bias does not help505

LLMs make better ranking decisions, consistent506

with prior research showing its ineffectiveness in507

recommendation tasks (Abdollahpouri and Man-508

soury, 2020; Abdollahpouri et al., 2019; Zhu et al.,509

2021).510

Impact of candidate order. We investigate511

whether the order of the retrieval candidate items512

affects the ranking performance of our recommen-513

dation system. To assess this, we conducted an514

experiment comparing the pairwise ranking out-515

comes between two sets of top 20 candidates: (1)516

Random order: Candidates were randomly shuf-517

fled; (2) Retrieval Order: Candidates were ordered518

based on their scores from the retrieval pipeline. As519

shown in Table 7, ordering the candidates accord-520

ing to their retrieval pipeline scores significantly521

improves ranking performance compared to a ran-522

dom arrangement. Comparing rows 2 and 4 show523

that our pair-wise ranking can improve results of524

a randomly shuffled list. However, the results are525

Shuffle LLM Beauty Toys & Games Sports & Outdoors

Candidates Ranking H@10 N@10 H@10 N@10 H@10 N@10

7 7 0.0977 0.0574 0.1176 0.0709 0.0542 0.0314
3 7 0.0687 0.0312 0.0779 0.0349 0.0371 0.0169
7 3 0.1008 0.0600 0.1196 0.0734 0.0564 0.0335
3 3 0.0793 0.0485 0.0949 0.0596 0.0452 0.0275

Table 7: Ranking (Hits@10 & NDCG@10) compari-
son with random shuffling of the retrieved items.

even better when the candidate list is ranked by 526

the retrieval score (row 3). More analysis needs 527

to be done to determine if O(n log n) or O(n2) 528

comparisons could better rank a randomly shuf- 529

fled candidate list compared to a sliding window 530

approach, although this would come at an even 531

higher computation cost. 532

6 Conclusion 533

In this paper, we introduced a Simple Training- 534

free Approach for Recommendation (STAR) that 535

uses the power of large language models (LLMs) 536

to create a generalist framework applicable across 537

multiple recommendation domains. Our method 538

comprises two key stages: a retrieval phase and a 539

ranking phase. In the retrieval stage, we combine 540

semantic embeddings from LLMs with collabora- 541

tive user information to effectively select candidate 542

items. In the ranking stage, we apply LLMs to 543

enhance next-item prediction and refine the recom- 544

mendations. Experimental results on a large-scale 545

Amazon review dataset demonstrate that our re- 546

trieval method alone outperforms most supervised 547

models. By employing LLMs in the ranking stage, 548

we achieve further improvements. Importantly, our 549

study highlights that incorporating collaborative 550

information is critical in both stages to maximize 551

performance. Our findings reveal that LLMs can 552

effectively function as generalists in recommenda- 553

tion tasks without requiring any domain-specific 554

fine-tuning. This opens up exciting possibilities for 555

developing versatile and efficient recommendation 556

systems that are readily adaptable across diverse 557

domains. 558
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7 Limitations559

The STAR framework presents an effective alterna-560

tive to traditional supervised models, showcasing561

the potential of LLMs in recommendation systems562

without the need for extensive training or custom563

architectures. However, several limitations remain,564

which also indicate directions for future improve-565

ment:566

Importance of item modality and enriched item567

meta-data. The STAR framework’s ability to568

capture semantic relationships between items relies569

significantly on the presence of rich item text meta-570

data. Without such meta-data and with only user-571

item interaction data available, the framework’s572

semantic relationship component will be less effec-573

tive. To maximize the use of semantic relationships574

between items, future work should explore incor-575

porating additional modalities, such as visual or576

audio data, to generate more comprehensive se-577

mantic representations of items, fully utilizing all578

the available information.579

Improving Retrieval Simplicity and Scalability.580

Although our work demonstrates the effectiveness581

of a general training-free framework, the current582

method requires different choices for parameters.583

In future work, we will explore ways to either re-584

duce the number of parameters choices or select585

values more easily. In our current implementation,586

we compute the full set of item-item comparisons587

for both the semantic and collaborative informa-588

tion. This computation is infeasible if the item589

set is too large. In future work, we will run ex-590

periments to measure how effective approximate591

nearest neighbor methods are at reducing computa-592

tion and maintaining retrieval quality.593

Beyond LLM ranking. The importance of our594

work highlights that high quality results can be595

achieved without additional fine-tuning. However,596

in the current method, our STAR ranking pipeline597

utilizes costly LLM calls that would result in high598

latency. This may be a suitable solution to use599

in offline scenarios, but would be prohibitive to600

serve large-scale and real-time user traffic. Fu-601

ture work needs to explore how we can improve602

efficiency, such as using a mix of pair-wise and603

list-wise ranking. Our work shows a promising604

first step to creating high quality, training-free, and605

general recommendation systems.606
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A Appendix940

A.1 Retrieval Performance Analysis941

LLM embedding performance comparison on942

retrieval. We test different LLM embedding943

APIs with different embedding size to under-944

stand the impact of LLM embeddings captur-945

ing item semantic similarity . Figure 6 illus-946

trates the performance differences between the947

Gecko text-embedding-004 (Lee et al., 2024),948

OpenAI text-embedding-3-small, and text-949

embedding-3-large models3. Overall, higher-950

dimensional embeddings and larger models per-951

formed better, indicating that enhanced semantic952

representation capabilities lead to improved seman-953

tic relationship capture.954

256 512 768 1024 1536 3072
Embedding Dimension

0.155

0.160

0.165

0.170

0.175

0.180

Toys and Games

text_embedding_004
text_embedding_3_small
text_embedding_3_large

Figure 6: Retrieval performance (Hits@50) compari-
son by embedding APIs for Toys and Games. The mod-
els text-embedding-004, text-embedding-3-small, and
text-embedding-3-large each have a maximum dimen-
sion of 768, 1536, and 3072, respectively.

A.2 Ranking Performance Analysis955

LLM performance comparison on ranking.956

To evaluate how model capabilities impact ranking957

performance, we compare four models: gemini-958

1.5-flash, gemini-1.5-pro, gpt-4o-mini, and959

gpt-4o. In Table 8, we observe the larger mod-960

els (gemini-1.5-pro and gpt-4o) tend to outper-961

form their smaller counterparts, although the per-962

formance differences are minimal. This finding963

aligns with results from other studies (Qin et al.,964

2024), which suggest that increased model capa-965

bility has limited influence on pairwise ranking966

tasks. Despite being more computationally expen-967

sive, pairwise ranking methods tend to be more968

robust than alternative approaches.969

3https://platform.openai.com/docs/guides/embeddings/

Model Beauty Toys & Games Sports & Outdoors

H@10 N@10 H@10 N@10 H@10 N@10

gemini-1.5-flash 0.101 0.060 0.120 0.073 0.056 0.034
gemini-1.5-pro 0.100 0.060 0.120 0.075 0.056 0.034
gpt-4o-mini 0.100 0.058 0.120 0.072 0.056 0.033
gpt-4o 0.100 0.060 0.121 0.074 0.056 0.033

Table 8: Pair-wise ranking performance (Hits@10 &
NDCG@10) comparison by different models.
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A.3 Item Encoding Prompt for Retrieval Example970

Below is an example of an item prompt for encoding with an LLM embedding API. This example includes971

fields for title, description, category, brand, sales ranking, and price. We omit metadata fields like Item ID972

and URL, as those fields contain strings that can contain spurious lexical similarity (e.g., IDs: “000012”,973

“000013’ or URLs: “https://abc.com/uxrl”, “https://abc.com/uxrb”) and can reduce the uniformity of the974

embedding space and make it difficult to distinguish between semantically different items975

description:
LENGTH: 70cm / 27.55 inches
Color: Mix Color
EST. SHIPPING WT.: 310g
Material: Synthetic High Temp Fiber
Cap Construction: Capless
Cap Size: Average
1. The size is adjustable and no pins or tape should be required. It should fit most people.

Adjust the hooks inside the cap to suit your head.
2. Please be aware that colors might look slightly different in person due to

camera quality and monitor settings. Stock photos are taken in natural light with no flash.
3. Please ask all questions prior to purchasing. I will replace defective items.

Indicate the problem before returning.
A 30-day return/exchange policy is provided as a satisfaction guarantee.

title: 63cm Long Zipper Beige+Pink Wavy Cosplay Hair Wig Rw157
salesRank: {'Beauty': 2236}
categories: Beauty > Hair Care > Styling Products > Hair Extensions & Wigs > Wigs
price: 11.83
brand: Generic
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A.4 Ranking Prompt Example 976

Below is an example of a single pass in a list-wise ranking pipeline with a window size of 4 and a stride 977

of 2 (w = 4 and d = 2) assuming there are 3 history items (l = 3). 978

System: You are an intelligent assistant that can rank items based on the user’s preference.

User: User 1656 has purchased the following items in this order:

{
"Item ID": 1069,
"title": "SHANY Professional 13-Piece Cosmetic Brush Set with Pouch,
Set of 12 Brushes and 1 Pouch, Red",
"salesRank_Beauty": 248,
"categories": [

["Beauty", "Tools & Accessories", "Makeup Brushes & Tools", "Brushes & Applicators"]
],
"price": 12.95,
"brand": "SHANY Cosmetics"

},
{

"Item ID": 2424,
"title": "SHANY Eyeshadow Palette, Bold and Bright Collection, Vivid, 120 Color",
"salesRank_Beauty": 1612,
"categories": [

["Beauty", "Makeup", "Eyes", "Eye Shadow"]
],
"price": 16.99,
"brand": "SHANY Cosmetics"

},
{

"Item ID": 2856,
"title": "SHANY Studio Quality Natural Cosmetic Brush Set with Leather Pouch, 24 Count",
"salesRank_Beauty": 937,
"categories": [

["Beauty", "Tools & Accessories", "Bags & Cases", "Cosmetic Bags"]
],
"price": 26.99,
"brand": "SHANY Cosmetics"

}

I will provide you with 4 items, each indicated by number identifier []. Analyze the user’s purchase history to identify
preferences and purchase patterns. Then, rank the candidate items based on their alignment with the user’s preferences and
other contextual factors.

Assistant: Okay, please provide the items.

User: [1]

{
"title": "SHANY Cosmetics Intense Eyes Palette 72 Color Eyeshadow Palette, 17 Ounce",
"salesRank_Beauty": 181358,
"categories": [

["Beauty", "Makeup", "Makeup Sets"]
],
"price": 26.4,
"brand": "SHANY Cosmetics",
"Number of users who bought both this item and Item ID 1069": 18,
"Number of users who bought both this item and Item ID 2424": 0,
"Number of users who bought both this item and Item ID 2856": 16

}

Assistant: Received item [1].

User: [2] 979
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{
"title": "SHANY Cosmetics Carry All Train Case with Makeup and Reusable Aluminum Case, Cameo",
"salesRank_Beauty": 2439,
"categories": [

["Beauty", "Makeup", "Makeup Sets"]
],
"price": 39.99,
"brand": "SHANY Cosmetics",
"Number of users who bought both this item and Item ID 1069": 27,
"Number of users who bought both this item and Item ID 2424": 1,
"Number of users who bought both this item and Item ID 2856": 29

}980

Assistant: Received item [2].

User: [3]

{
"title": "SHANY COSMETICS The Masterpiece 7 Layers All-in-One Makeup Set",
"salesRank_Beauty": 2699,
"categories": [

["Beauty", "Makeup", "Makeup Sets"]
],
"price": 41.89,
"brand": "SHANY Cosmetics",
"Number of users who bought both this item and Item ID 1069": 23,
"Number of users who bought both this item and Item ID 2424": 2,
"Number of users who bought both this item and Item ID 2856": 25

}

Assistant: Received item [3].

User: [4]

{
"title": "SHANY Silver Aluminum Makeup Case, 4 Pounds",
"salesRank_Beauty": 16605,
"categories": [

["Beauty", "Tools & Accessories", "Bags & Cases", "Train Cases"]
],
"price": 59.95,
"brand": "SHANY Cosmetics",
"Number of users who bought both this item and Item ID 1069": 32,
"Number of users who bought both this item and Item ID 2424": 1,
"Number of users who bought both this item and Item ID 2856": 40

}

Assistant: Received item [4].

User: Analyze the user’s purchase history to identify user preferences and purchase patterns. Then, rank the 4 items above
based on their alignment with the user’s preferences and other contextual factors. All the items should be included and
listed using identifiers, in descending order of the user’s preference. The most preferred recommendation item should be
listed first. The output format should be [] > [], where each [] is an identifier, e.g., [1] > [2]. Only respond with the ranking
results, do not say any word or explain. Output in the following JSON format:

{
"rank": "[] > [] .. > []"

}
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