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ABSTRACT

Video understanding is inherently multimodal, requiring both visual and auditory
cues to form a complete representation of dynamic scenes. However, most existing
video understanding models rely solely on visual content, overlooking informa-
tive audio cues, such as spoken instructions or environmental sounds, for scene
understanding and event comprehension. Progress in audio-visual reasoning has
been hindered by the lack of high-quality supervised fine-tuning (SFT) data that
jointly considers video and audio. To address this gap, we introduce SoundInSights
, a large-scale audio-visual question answering dataset comprising over 80k ques-
tion–answer pairs from online videos, created via a multimodal large language
model (MLLM)-assisted annotation pipeline. SoundInSights provides rich super-
vision for audio-visual reasoning, enabling MLLMs to be fine-tuned for complex
joint audio-video understanding. We find that current video MLLMs heavily rely
on visual information, hindering effective multimodal learning. To mitigate this, we
propose an audio-only pretraining stage, which significantly improves audio-visual
reasoning performance. Additionally, to evaluate audio-visual comprehension,
we construct a high-quality, manually curated test set of 1,000 samples requiring
joint audio-visual understanding, exceeding standard benchmarks in complexity.
Models fine-tuned on SoundInSights with the proposed training strategy achieve
substantial performance gains on this new benchmark. Moreover, on the challeng-
ing VideoMME evaluation, our approach significantly improves performance in
Information Synopsis subcategory, demonstrating the efficacy of incorporating
audio. The SoundInSights dataset and code will be publicly released to facilitate
further research.

1 INTRODUCTION

Video multimodal large language models (MLLMs) aim to extend large language models (LLMs)
with the ability to perceive and comprehend complex visual content and temporal relationships in
videos. Despite significant advancements, most state-of-the-art models Zhang et al. (2024); Wang
et al. (2024a); Shen et al. (2024); Li et al. (2023b); Sun et al. (2024); Maaz et al. (2023); Chen et al.
(2024b); Li et al. (2024); Ye et al. (2024a); Chen et al. (2024c); Wang et al. (2024b) focus exclusively
on visual inputs, entirely neglecting auditory signals. This oversight is critical, as real-world videos
inherently contain rich auditory cues essential for accurate interpretation. Many important events
occur off-screen, where sound alone—such as a honking car or approaching footsteps—can reveal
crucial contextual information. Recent research highlights these limitations, demonstrating scenarios
where certain actions are visually ”invisible” yet acoustically informative, or visually distinct yet
acoustically indistinguishable Huh et al. (2023). Furthermore, conversational scenarios rely heavily
on audio cues like tone of voice and ambient noises, which visual-only models miss. Ignoring
audio thus not only restricts model perception but diverges significantly from how humans naturally
integrate visual and auditory information. Bridging this gap in multimodal perception demands
models that listen as effectively as they see. A few approaches have attempted to address this audio
perception gap. Some works utilize audio captioning modules to convert auditory input into textual
captions, subsequently feeding these into LLMs Fu et al. (2024); Jeoung et al. (2024). However,
this text-centric approach inherently compresses and limits the richness of audio representations and
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Input Question: Did the driver turn on the signal when he was turning? how do you know?
LLaVA-OV-Qwen2: Yes, the driver turned on the signal when he was turning. This is indicated by the visible turn 
signal in the video. (Hallucination)
Our model: The driver turned on the signal when he was turning because the audio includes a distinct 'click' 
sound, which is typically associated with the activation of a vehicle's turn signal.

SoundInSights Project

✅ A MLLM understand both audio 
and video.

✅ A scalable audio-video understanding
instruction data generation pipeline 

✅ A challenging benchmark requiring joint
visual and auditory understanding. 

Figure 1: Reasoning Invisible Event: SoundInSights model integrates audio and video modalities,
enabling effective reasoning about events that are invisible.

prevents direct audio-visual interaction. Other approaches Zhang et al. (2023); Cheng et al. (2024);
Shu et al. (2023); Sun et al. (2024); Wang et al. (2024c) attempt to jointly embed audio and video
into a unified multimodal space, but these efforts have been hindered by the scarcity of high-quality
joint audio-video datasets necessary for training robust cross-modal representations.

The emergence of large multimodal language models presents a promising opportunity to advance
video understanding significantly. MLLMs, such as LLaVA and LLaVA-Video, demonstrate the
powerful capability of generating rich, contextually informative annotations, thereby enabling efficient
scaling of high-quality synthetic datasets. For instance, LLaVA-Video showcases how multimodal
annotations for videos can be produced efficiently at scale by leveraging GPT-4-driven question-
answer pair generation. While existing datasets like WavCaps Mei et al. (2024) and AudioCaps Kim
et al. (2019) have made strides in providing annotations for audio or video individually, they typically
lack sophisticated, structured annotations that fully exploit multimodal context.

To fully unlock the potential of MLLMs in video understanding, models must learn to seamlessly
fuse auditory and visual modalities, dynamically interpreting temporal relationships and contextual
nuances. Current MLLM-based frameworks largely treat modalities independently or through
simplified fusion techniques, falling short of capturing the intricate interplay between sight and sound.
Developing truly multimodal MLLMs requires sophisticated training strategies, richer multimodal
datasets, and explicitly designed architectures to handle complex audio-visual reasoning tasks.

In this paper, we introduce a novel multimodal video dataset, SoundInSights dataset, specifically
constructed to bridge this significant gap in audio-visual comprehension. Central to our approach
is a hierarchical audio annotation schema designed to offer structured, multi-level insights into
the auditory dimension of videos. Instead of treating audio as a singular descriptive caption, we
annotate audio at multiple granularities—from detailed short-interval captions to broader contextual
summaries—thus fostering nuanced audio comprehension. Complementing these annotations, we
also generate high-quality, context-dependent audio-visual QA pairs using MLLMs. Our QA design
ensures questions require integrated cross-modal reasoning, explicitly testing models’ ability to
synthesize information across sight and sound.

To facilitate scalability, we leverage a highly efficient automated annotation pipeline driven by
multimodal large language models, notably ChatGPT. This pipeline first systematically annotates
audio at multiple granularities and subsequently generates context-aware QA pairs reflecting deep
audio-visual integration. Compared to traditional annotation approaches, our method significantly
enhances both annotation efficiency and complexity, enabling the processing of extensive video
content rapidly and comprehensively.

We believe our work provides foundational advances that can significantly enhance the capabilities
and research trajectories in multimodal video understanding. By highlighting the necessity of deeply
integrating auditory signals into video comprehension frameworks, our contributions pave the way
toward more sophisticated, robust, and human-like multimodal reasoning systems.

2 RELATED WORK

2.1 AUDIO-VISUAL DATA CURATION

Early multimodal datasets primarily addressed audio-visual integration through specialized or con-
strained contexts. For example, the AVSD dataset Alamri et al. (2019) provides human-dialogue-based
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QA annotations for approximately 11k short videos but remains limited due to its narrow domain
(Charades actions) and high annotation costs. Similarly, VGG-Sound Chen et al. (2020) provides
extensive coverage with 200k videos spanning 309 predefined sound categories, yet its reliance
on closed-set classification limits flexibility, precluding open-ended questions essential for broader
multimodal understanding.

Recently developed benchmarks have started exploring open-ended audio-visual question answering,
though often within restricted domains. The MUSIC-AVQA dataset Li et al. (2022) extends question
diversity yet remains constrained to musical performance scenarios. The AVQA dataset Yang et al.
(2022), while providing audio-visual questions, predominantly employs template-based questions that
limit reasoning complexity to basic recognition tasks. The AVinstruct dataset Ye et al. (2024b) further
attempts to enrich annotations by rephrasing existing questions with concise video descriptions, yet
does not substantially broaden context richness or complexity.

In summary, prior datasets exhibit limitations including restricted question diversity, constrained
domains, and limited scale, leaving substantial room for datasets featuring diverse, open-ended
questions and scalable multimodal annotations that cover realistic, everyday audio-visual scenarios.

2.2 MULTIMODAL LARGE LANGUAGE MODEL FOR VIDEO UNDERSTANDING

The rise of multimodal LLMs has spurred methods to integrate visual and auditory information for
video understanding. Approaches like X-InstructBLIP Panagopoulou et al. (2023) and OneLLM Han
et al. (2024) extend instruction-tuned LLMs to handle not just images but also audio and video inputs,
aiming for a unified cross-modal encoder. Others such as Video-LLaMA Zhang et al. (2023) (and its
successor VideoLLaMA2 Cheng et al. (2024)) incorporate audio tracks alongside video frames via
pretrained encoders and alignment modules. Models including PandaGPT Su et al. (2023), Macaw-
LLM Lyu et al. (2023), AV-LLM Chowdhury et al. (2025), and AVicuna Tang et al. (2024) have been
trained on available audio-visual datasets to enhance LLM understanding of videos. However, most
of these systems still lean heavily on visual information, treating audio as an auxiliary feature. In
practice, their audio-visual integration remains shallow – e.g. some use encoders trained mostly on
image data – and truly joint reasoning over sound and vision is underdeveloped. Indeed, current
multimodal models tend to underemphasize the role of audio in audio-visual reasoning tasks. This
underscores that effective audio-visual reasoning capability in LLMs is still in its infancy, often
constrained by the limitations of the training data and strategies used.

2.3 SUPERVISED FINE-TUNING FOR AUDIO-VISUAL LEARNING

Supervised fine-tuning of multimodal models on joint video-audio tasks has so far been bottlenecked
by the available training data. Many works resort to repurposing or synthesizing datasets that are not
originally designed for complex AV reasoning. For example, the VALOR dataset Chen et al. (2023)
provides audio-visual captions but only for trimmed 10-second clips, while QA-oriented sets like
AVSD Alamri et al. (2019) or MUSIC-AVQA Li et al. (2022) are small-scale or domain-specific
(and lack fine-grained temporal annotations). To compensate, recent multimodal LLM efforts have
constructed massive instruction-tuning corpora by combining or generating QA pairs. VideoLLaMA2,
for instance, uses ∼100k GPT-generated video instruction–response pairs for tuning, and models
like OneLLM and AVicuna were fine-tuned on roughly 460k and 350k audio-visual Q&A examples
respectively. Such brute-force data augmentation highlights the scarcity of high-quality, diverse AV
training data. In contrast, our proposed dataset offers a substantially larger and richer set of directly
annotated audio-visual QA pairs, avoiding the need for purely synthetic data. By covering a broad
spectrum of realistic AV scenarios with varied question types, it provides a more effective fine-tuning
resource for multimodal LLMs. Our accompanying training pipeline leverages this data to instill
stronger audio-visual reasoning capabilities, leading to models that significantly outperform those
trained on previous datasets in understanding and answering questions about complex audio-visual
content.

3 SOUNDINSIGHTS

High-quality multimodal datasets are essential for training effective multimodal large language
models (MLLMs)Zhang et al. (2024). However, existing video datasets face two primary challenges:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Audio

Time
0s 10s 20s 30s 40s 50s 60s 70s 80s 90s 100s 110s 120s

Video

VLM

Lvl. 1
Lvl. 2

Lvl. 3

Audio
Description

VLM VLM VLM

Video
Description

Lvl. 1 Description Lvl. 2 Description Lvl. 3 Description

t -1

t -1

t

t -1

t -1

t

t T-1 

T

T 

Question: How does the audio 
commentary praising Steph Curry for 
his first playoff block related to the 
visual moment when the player in 
the black uniform with the number 
30 attempts a block during the jump 
shot?
Answer: The visuals show the player 
in the black uniform with the number 
30 (Curry’s number) leaping to block 
a jump shot, and this action aligns in 
time with the audio commentary 
that highlights his defensive prowess 
and remarks on it being his first block 
of the playoffs.

Figure 2: Pipeline of generating hierarchical audio descriptions and audio-video joint QA pairs.

(1) sparse audio annotations that fail to comprehensively capture nuanced sound semantics, and (2)
insufficiently detailed correlations between audio and visual modalities, limiting robust multimodal
reasoning. Although the importance of richer multimodal datasets is widely recognizedGong et al.
(2024), progress has been hampered by manual labeling’s prohibitive costs and complexities involved
in modality alignment.

Inspired by recent advances in automated data annotation and synthesis methods Zhang et al. (2024);
Chen et al. (2024a), we can utilize some modality-specific MLLMs Hurst et al. (2024); Team et al.
(2024) to provide multi-modal information in text format, and then leverage LLMs to extract the
information from their results to generate high-quality conversation dataset.

Leveraging their capabilities, we propose a scalable framework designed to automatically generate
high-quality conversation data. Comparing with previous audio-video datasets like AVInstruct Ye
et al. (2024b) and AVQA Yang et al. (2022), our SoundInSights dataset has the following features: 1)
detailed auditory annotations that incorporate visual context for richer semantic understanding; 2)
Complex open-ended question answering pairs which requires a joint understanding of the visual
contents and the audio in the input videos.

Data Source. To ensure diversity and effectiveness, our annotation pipeline leverages videos sourced
from Youtube videos of LLaVA-Video 178K Zhang et al. (2024), enabling comprehensive auditory
and visual instructional learning.

3.1 HIERARCHICAL AUDIO ANNOTATIONS

Generating precise and temporally aligned audio descriptions is essential for creating natural and
detailed audio-visual conversational data. However, previous studies often overlook this critical aspect.
For instance, AVInstruct employs subtitle generators (e.g., BLIP2 Li et al. (2023a), Whisper Radford
et al. (2023)) to produce global audio descriptions, which lack detail and struggle with effectively
handling long-duration videos.

To address this issue, our audio annotation methodology employs GPT-4o Audio Hurst et al. (2024),
a state-of-the-art audio understanding model, as the primary annotation tool. Additionally, inspired
by the hierarchical annotation strategy proposed in LLaVA-Video-178k Zhang et al. (2024), we
implement a three-level hierarchical annotation structure, carefully balancing annotation granularity
with contextual coherence. Each hierarchical level uniquely contributes to enhancing multimodal
reasoning capabilities.

Specifically, videos are segmented into shorter clips that are individually fed into the audio multimodal
large language model (MLLM). Concurrently, each audio segment is paired with its corresponding
visual description. This visual context is crucial for resolving inherent ambiguities present in audio
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alone, such as distinguishing subtle audio events like a beep from a strike. Furthermore, the visual
context helps to explicitly link audio elements with their corresponding visible objects.

As illustrated in Figure 2, we generate audio captions at three distinct hierarchical levels, with detailed
inputs as follows:

Level-1 (Clip-Level). For every 30-second interval, detailed annotations describe the audio events
by integrating: the current audio clip, the most recent segment summary (Level-2), and the entire
video’s visual narrative.

Level-2 (Segment-Level). At 1-minute intervals, we summarize cumulative audio information to
capture broader contextual coherence. Inputs include: the recent Level-1 annotation, the previous
summary, and overall visual context.

Level-3 (Global-Level). A comprehensive final synopsis is produced, encapsulating the entire audio
content by integrating: remaining recent Level-1 annotations, and the most recent level-2 annotation.

This hierarchical structure enhances annotation quality, enabling more precise multimodal reasoning
by clearly delineating temporal and contextual audio events. The exact algorithm is provided in
Appendix A.

3.2 AUDIO-VISUAL QUESTION ANSWERING

To further facilitate multimodal reasoning, we automatically generate challenging QA pairs explicitly
requiring integrated audio-visual understanding. This automated pipeline involves three key steps:

Data Compilation. We gather annotated audio clips, their hierarchical summaries, and detailed
visual descriptions, establishing a robust multimodal context.

Question Formulation. Questions are designed to prioritize audio-centric information, demanding
reasoning that synthesizes auditory details with visual context, while explicitly avoiding references to
raw annotations.

QA Generation and Filtering. Using advanced GPT models (e.g., GPT-o1 mini Jaech et al. (2024)),
we produce and refine QA pairs, applying stringent validation to ensure clarity, relevance, and
multimodal dependency. This ensures the generated QAs necessitate integrated reasoning, effectively
challenging models’ multimodal capabilities.

Sample Data

Clip Caption:
1. The clip begins with an enthusiastic greeting, “What’s up everybody?. . .
2. The clip starts with the speaker confidently stating. . .
. . .
Audio Summary:
The clip begins with an enthusiastic and friendly greeting. . . As background remains quiet, the speaker goes on to describe the illusion,
posing a challenge with the question, “What do you see?” . . . The mood remains inquisitive and playful as the speaker engages directly
with the audience. The clip transitions with the speaker confidently revealing,. . . His tone conveys satisfaction, and he describes the illusion
as one of his favorites, adding that it is simple to perform. . . . He jokingly acknowledges his lack of enthusiasm for fulfilling this promise,
all while maintaining the lighthearted and engaging atmosphere. The clip concludes with an uplifting tone, inviting further interaction
from the audience.
Overall Audio Description:
The audio begins with an enthusiastic and friendly voice greeting, . . . The speaker, speaking with a slight accent, warmly sets the stage for
the presentation while teasing a “very cool illusion” to generate curiosity. The background remains quiet as the speaker describes the
visual illusion, mentioning . . . and invites the audience to actively engage by asking, “What do you see?” The speaker’s tone is playful and
inquisitive . . . The tone transitions to one of confidence and satisfaction as the speaker reveals. . . The informal and friendly connection
persists as they conclude the presentation with, “Alright guys, that’s pretty much it,” . . . Humor enters the tone as the speaker reluctantly
references a previous promise to perform a cinnamon challenge . . . The audio moves seamlessly into a closing segment, where the speaker
cheerfully thanks the audience with, ’ “Thank you for watching,” . . . The overall tone concludes on a positive, friendly note, emphasizing
community and connection with the audience.
Video Caption:
The video begins with a person wearing a white lab coat and an orange shirt. . . Next, the focus shifts to a white sheet of paper with two
drawn tables,. . . A hand points at the black-topped table, then the red-topped table, indicating a comparison or explanation. Two hands
then interact with the tables, . . . The video returns to the person in the white lab coat and orange shirt,. . . They gesture with the bottle,
turning it slightly to show different angles, and then set the bottle down, continuing to speak. The background remains the same, with the
various posters still visible. Throughout the video, the person maintains a focused and engaged demeanor, consistently seated in front of
the visually engaging backdrop of posters, explaining or demonstrating various points.
Generated QA:
Question: How does the speaker demonstrate the optical illusion with the two tables?
Answer: The speaker first describes the illusion with enthusiasm, mentioning the two tables with different shapes. As he points to each
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table and gestures with his hands, the visual of moving the black and red rectangles is shown, aligning with his explanation that they are
actually the same size despite appearing different.

We illustrate sample data in Table 3.2, emphasizing the temporal structure in audio annotations and
the extraction of nuanced emotional cues from audio. Our approach effectively captures complex
temporal relationships across audio segments and explicitly highlights challenging emotional aspects.
The generated QA pairs specifically require integrated audio-visual reasoning, demonstrating their
potential to advance multimodal understanding. Detailed prompts used for QA generation is shown
in Appendix B.

Dataset Statistics Our dataset comprises 80k training examples and 1k benchmark QA pairs, sourced
entirely from YouTube to ensure diverse and generalized video content. Videos range from 5 seconds
to approximately 2 minutes (120.48 seconds), with an average duration of 37.99 seconds. Specifically,
around 60k videos fall within the 0–30 second interval, while the remaining 20k span between 1–2
minutes. Audio descriptions vary from 32 to 484 tokens, averaging 131.78 tokens. Video captions
contain between 53 and 1819 tokens, averaging 392.34 tokens. Detailed statistics are summarized in
Table 1.

Table 1: Statistics of SoundInSights data.
min max mean

Video Duration (seconds) 5.00 120.48 37.99
Audio Description (#tokens) 32 484 131.78
Video Caption (#tokens) 53 1819 392.34

3.3 SOUNDINSIGHTS BENCHMARK

What color is the first person in the video wearing? 
A. Black B. White C. Red D. Blue

What happened in the video? 
A. Imitate the barking of a dog B. The dog howled 
C. The dog’s cry D. Dog’s coquetry

When will the smoke alarm in the video? 
A. In the park B. In case of failure 
C. When there is smoke D. When water drips in

Video Required
Audio Required

Video Required
Audio Required

Video Required
Audio Required

Figure 3: Example from AVQA Yang et al. (2022), where the samples are directly retrieved from
their appendix as representative examples.

When constructing an audio-visual multimodal understanding benchmark, it is crucial to ensure that
questions inherently require both video and audio modalities for reasoning. If a model can correctly
answer questions using only a single modality (either visual or auditory), two critical issues arise:
(1) The model may achieve high accuracy without genuinely establishing cross-modal associations,
making the benchmark ineffective for assessing multimodal understanding capabilities; (2) it can
lead to a false correctness phenomenon when one modality is missing, where the model hallucinates
correct answers based on dataset biases or prior knowledge rather than true multimodal reasoning.
This limitation has been observed in existing research. For example, the AVQA benchmark Yang
et al. (2022), as illustrated in Figure 3, includes questions that can often be correctly answered using
only visual or auditory information, or even general common sense reasoning.

Besides high-quality multimodal data for fine-tuning, a challenging evaluation benchmark is also
essential for developing audio-visual multimodal large language models (MLLMs). To this end,
we introduce the SoundInSights Benchmark, a challenging benchmark comprising around 1,000
carefully curated videos accompanied by corresponding open-ended questions. To guarantee high
data quality, we adopt a human-in-the-loop approach rather than fully automated generation. Initially,
approximately 4,000 candidate videos with strong audio-video correlations and substantial auditory
content are identified using ChatGPT. Subsequently, we manually select a refined subset, ensuring
the final 1,000 videos have clear visuals, rich and relevant auditory elements, and questions that
are meaningful, objective, and sufficiently challenging. For robust and stable model evaluation,
we employ a multiple-choice format rather than relying directly on an LLM-as-Judge paradigm to
compare model outputs against ground truth.
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3.4 MODEL STRUCTURE AND TRAINING STRATEGY

To incorporate the auditory modality, we adopt the widely-used LLaVA’s architecture Liu et al.
(2023)(see Figure 4), which encode signal from different modalities into language embeddings and
directly append them together. Specifically, in addition to the visual encoder and projector, we
introduce an audio encoder to process the raw audio signals into high-level audio features. These
features are then passed through a projector to align with the existing latent space of the LLM.

To facilitate the training process, we adopt the audio encoder of Qwen2Audio Chu et al. (2024) for
our model, which has been pretrained on large-scale audio data.

Large Language M
odel

Vision
Encoder

Vision
Projector

Audio
Encoder

Audio
Projector

Text
Tokenizer

Did the driver turn on the 
signal when turning? How 

do you know?

Video

Audio

Instruction

The driver turned on the 
signal when he was turning 
because the audio 
includes a distinct 'click‘
sound, which is typically 
associated with the 
activation of a vehicle's 
turn signal.

Vision
Embeddings

Audio
Embeddings

Text
Embeddings

Figure 4: Model Structure: We follow the classic LLaVA design and add an audio branch that projects
acoustic tokens into the LLM latent space.

Model Training. Instead of training from a text-only LLM base model, we further fine-tune a
well-pretrained multi-modal large language model, LLaVA-One-Vision-7B Li et al. (2024), which
is capable of performing video understanding but cannot perceive audio content. This strategy can
alleviate a lot of training resources.

However, during training, we find that model directly fine-tuned on the question-answering pairs in
SoundInSights will hallucinate audio contents given visual signals, which indicates that the model
only learns the superficial “format” of audio reasoning instead of trying to understand the audio
contents.

A plausible reason is that, these pre-trained model has built strong connections between vision and
language, which makes it hard to inject audio information from an un-aligned audio representation.

To this end, we devise a two-stage training strategy which first align the audio tower with the
pre-trained vision-language model.

In the first stage, we completely remove the vision encoder and inputs, and train the audio projector
on 80k caption data in the proposed SoundInSights dataset. The training task is then degraded into
audio captioning. Without the help of visual signals, the vision-language model is forced to extract
information from the audio representation and thereby achieves better alignment.

The second stage aims to enable the model to jointly consider both visual and audio input. We collect
80k caption data with 80k audio-video question answering data from the SoundInSights , combined
with 80k question-answering data sampled from LLaVA-Video-178K to preserve model’s ability on
general visual question answering. At this stage, both the vision projector and the audio projector is
updated to allow the representations of all modalities to co-adapt, yielding more robust alignment
and better multimodal understanding.
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Table 2: Performance of LLaVA-OneVision-Qwen2 7B model and ours. As shown in the table, with
SFT on SoundInSights data, our model achieves significant improvement on temporal perception and
information synopsis tasks.

VideoMME SoundInSights
Overall Short Medium Long Temp. Pcpt. Temp. Rsn. Info. Synopsis Overall

LLaVA OV 7B 57.44 69.8 55.4 47.1 56.4 43.5 67.8 85.6
Ours 58.11 71.1 55.7 47.6 63.6 40.1 75.9 92.7

Table 3: Performance of our base model and ablation study without audio caption pretraining.
VideoMME SoundInSights

overall Short Medium Long Temp. Pcpt. Temp. Rsn. Spc. Pcpt. Spc. Rsn. Info. Synopsis Overall
Ours 58.11 71.1 55.7 47.6 63.6 40.1 61.1 82.1 75.9 92.7
w/o pretrain 56.0 68.3 54.1 45.7 60.0 37.3 57.4 78.6 70.9 90.7

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We choose LLaVA-OneVision Qwen2 7B Li et al. (2024) as our base model. We integrate the
audio encoder from Qwen2-Audio 7B Chu et al. (2024) together with a two-layer MLP with GELU
activation Hendrycks & Gimpel (2016) as our audio tower.

Training details At the Stage 1 training, we train the audio projector with 80k level-3 audio captions
from SoundInSights dataset. The learning rate is 2e− 6 and the batch size is 128 as 4 samples on
each of 8 Nvidia A100 GPUs with gardient accumulation steps of 4. The stage 1 training runs 2
epochs on the SoundInSights dataset. At the Stage 2 training, we unfreeze both the video projector
and the audio projector. To avoid overfitting on audio video joint QA scenarios, we mix the 80k
open-ended audio video QAs with randomly sampled 100k open-ended QAs and 100k multi-choice
questions from the LLaVA-178K dataset Zhang et al. (2024). For each of questions from this training
set, both video and audio are fed into the model, thus the model can capture all the information to
answer any type of the question. The learning rate is 1e− 5 and batch size is 32 as 1 sample on each
of 8 Nvidia A100 GPUs with gradient accumulation steps of 4.

Benchmarks We evaluate our model on two benchmark: VideoMME Fu et al. (2024) and our
SoundInSights benchmark. VideoMME is a general video understanding benchmarks designed for
MLLM, which mostly consists of vision-centric question-answering tasks. However, it also has audio
track for the video. Hence, we test our model with the audio input on VideoMME.

4.2 RESULTS

Qualitative Examples We show some examples of our model with the baseline model LLaVA-
OneVision-7B in Figure 5, where both video and audio contents should be taken into consideration.
For the first case, the man slips while kicking the ball, and splat the drink in his hand. It can be hard
that the other man says that the football is attached with a string which makes the man slips. Our
model successfully captures this information and gives the correct answer. However, the baseline
model determine that the spilled drink from the man’s fall caused him to slip, which reverses cause
and effect. For the second case, the speaker is completely invisible during the video. While her voice
of encouragement can be clearly captured by our model.

Quantitative Results The experimental results presented in Table 2 clearly illustrate that our model
significantly outperforms LLaVA-OneVision-Qwen 7B model across multiple evaluation metrics,
highlighting the effectiveness of our tailored dataset and training approach. Notably, the introduction
of our SoundingSights dataset, which explicitly emphasizes audio-visual joint understanding, has
markedly improved performance on tasks requiring integrated modal reasoning. Our model’s sub-
stantial gains demonstrate that conventional multimodal models struggle with nuanced audio-video
interactions due to their more general training data. Conversely, our dataset’s specific design to
facilitate joint modal comprehension enables our model to excel, particularly in scenarios demanding
combined audio and visual inference. This suggests that targeted, modality-integrative datasets like
SoundingSights are essential for advancing multimodal reasoning capabilities.
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While the parrot tries to retrieve an orange object from the glass, how does the person's voice line up with its progress?
A. They keep telling jokes, causing the parrot to peck uncertainly all along.
B. They stay completely silent until the parrot fully abandons its attempt.
C. They encourage the parrot during its struggles and cheer upon success.
D. They issue random commands that confuse the parrot and block any progress.

LLaVA-OV-7B: A.
Ours: C.

Input Question: Model Output:

Why does the second man slip and spill his drink when approaching the soccer ball in the hallway?
A. He wore oversized shoes that made him trip.
B. The floor was already wet from a previous spill.
C. The soccer ball was attached to a hidden string.
D. He slipped on a loose tile by the hallway.

Input Question: Model Output:
LLaVA-OV-7B: B.
Ours: C.

Figure 5: Qualitative Results: We visualize our results together with LLaVA-OV-7B results. As
shown in the figure, our models successfully captures both of visual and auditory information.

4.3 ABLATION STUDY

We conduct ablation study on the effect of pretraining on audio caption task. Pretraining on audio-
caption data significantly boosts performance across all metrics by teaching the model richer mul-
timodal representations before fine-tuning. As seen in Table 3, the pretrained model consistently
surpasses its non-pretrained counterpart, especially on tasks involving temporal, spatial, and holistic
understanding. This highlights how aligning audio signals equips the model with a more robust feature
space, enabling better perception, reasoning, and synopsis capabilities in diverse video settings.

5 CONCLUSION

We presented a new multimodal dataset for video understanding that requires joint reasoning over
both visual and auditory streams, accompanied by a scalable MLLM-driven labeling pipeline. By
providing hierarchical audio annotations and audio-visual QA pairs, our dataset offers a challenging
benchmark which goes beyond existing visual-centric tasks. We also introduced a baseline model
demonstrating the benefits of integrating sound cues for improved comprehension.

Limitations and Future Work. This work aims to prove the effectiveness of multimodal data
annotated by MLLMs for video understanding. We fuse visual features with audio features by simple
concatenation. We leave the exploration of more efficient way of fusing different modalities for future
work.

Broader Impacts. Enhanced audio-visual systems promise better assistive captions, safer embodied
agents, and richer retrieval. We hope that the proposed dataset, benchmark, and pipeline will catalyze
further research in holistic audio-visual intelligence and lead to more robust, context-aware video
understanding systems.
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