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Abstract

Spiking neural networks (SNNs) are posited as a computationally efficient bio-
logically plausible alternative to conventional neural architectures, with their core
computational framework primarily using the leaky integrate-and-fire (LIF) neuron
model. However, the limited hidden state representation of LIF neurons, charac-
terized by a scalar membrane potential, and sequential spike generation process,
poses challenges for effectively developing scalable spiking models to address
long-range dependencies in sequence learning tasks. In this study, we develop
a computationally efficient scalable probabilistic spiking learning framework for
long-range dependency tasks leveraging the fundamentals of state space models.
Unlike LIF neurons that rely on the determinitic Heaviside function for a sequential
process of spike generation, we introduce a SpikeSampler layer that samples spikes
stochastically based on an SSM-based neuronal model while allowing parallel
computations. To address non-differentiability of the spiking operation and enable
effective training, we also propose a surrogate function tailored for the stochastic
nature of the SpikeSampler layer. To enhance inter-neuron communication, we
introduce the SpikeMixer block, which integrates spikes from neuron populations
in each layer. This is followed by a ClampFuse layer, incorporating a residual
connection to capture complex dependencies, enabling scalability of the model.
Our models attain state-of-the-art performance among SNN models across diverse
long-range dependency tasks of the Long Range Arena benchmark and demonstrate
sparse spiking pattern highlighting its computational efficiency.

1 Introduction

Spiking neural networks (SNNs) ([1]) have garnered attention as a bio-plausible substitute for
traditional artificial neural networks (ANNs). Their appeal stems from their utilization of spike-based
communication among neurons, a feature that closely mimics biological processes. In the progression
of SNN-based architecture advancements, research has predominantly focused on employing leaky-
integrate-and-fire (LIF) neurons [2]. While the dynamics modeled by LIF neurons are deemed
biologically plausible, the actual operations within the brain entail additional layers of complexity
([3]) and stochasticity [4] that are not fully captured by the simplified LIF neuron model. Moreover,
the sequential state updates and spike generation using a deterministic Heaviside function complicate
the training of LIF-based SNN architectures, often requiring computationally expensive methods like
backpropagation through time (BPTT) [5]. This fundamental challenge has significantly limited the
adoption of SNN models, particularly for complicated sequence learning tasks involving long-range
dependencies. In this paper, we move beyond traditional LIF-based spike generation models to
develop a computationally efficient probabilistic SNN architecture, designed to effectively tackle
long-range dependency tasks that have remained largely under-explored in the spiking domain.
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State Space Models (SSMs) have been recently employed in non-spiking architectures to effectively
model sequence learning tasks ([6, 7]). In this work, we employ SSMs to capture temporal depen-
dencies within sequences of input spikes, rather than conventional real-valued data. This approach
not only enables computational efficiency but also underscores the remarkable capability of SSMs in
analyzing long-term temporal dependencies in spike-based data.

Probabilistic Spiking State-Space Model: In this paper, we propose an SNN architecture grounded
in a probabilistic state-space neuronal model, which we call P-SpikeSSM. We conceptualize the
n-dimensional hidden state of the underlying SSM as the membrane potential, providing richer
representations when compared to the scalar hidden state of an LIF neuron. Dynamics of each
neuron is governed by an independent set of parameters, allowing the model to flexibly learn diverse
temporal dependencies across neurons, thus enhancing its processing capacity. As outlined in the
methodology, instead of real-valued inputs, we feed sequence of spikes into the P-SpikeSSM neuronal
model. This enables developing a computationally efficient framework by applying convolution over
the sparse spikes, instead of real-valued data. The SpikeSampler layer samples spikes from each
StochSpikeSSM neurons, enabling parallel operation with minimal overhead.

Scalable Architecture with SpikeSampler and SpikeMixer: Although individual P-SpikeSSM
neurons can process one input spike sequence, addressing tasks with complex long-range dependen-
cies demands a deeper, more scalable architecture capable of capturing diverse dependencies. To
address this, we introduce a robust architecture (Fig. 1) and training framework. We encode the
real-valued input sequence, associated with a sequence learning task, into “N” distinct spike trains,
which are fed to a layer consisting of “N” corresponding neurons. Each neuron generates spikes
stochastically based on its individual input spike train, while the collective activity of the neuron
population allows for effectively capturing a diverse range of dependencies across the different input
spike sequences. The output spikes from each neuron population in a layer are processed through
a SpikeMixer layer, facilitating inter-neuron communication. Next, a FuseClamp layer performs
further aggregation and computes the probability necessary for generating the subsequent spike
sequences, which are then passed to the next layer of P-SpikeSSM based neuronal units. Furthermore,
because the model communicates and uses sparse spike trains for computation, it achieves substantial
computational efficiency by significantly reducing the number of floating-point multiplication and
accumulation (MAC) operations across all layers and using simpler accumulative operations instead.

Application to Long-Range Dependency Tasks: We evaluate the performance and computational
efficiency of our proposed spiking architecture on various datasets within the Long Range Arena
(LRA) benchmark. Our model outperforms traditional non-spiking transformer-based architectures
and, to the best of our knowledge, establishes a new benchmark for fully spiking models in the
domain of long-range arena tasks.

2 Methodology

In this section, we first delve into the dynamics of the proposed Probabilistic Spiking State Space
Models (P-SpikeSSM). We then delve into the specifics of our proposed spiking architecture, high-
lighting the SpikeSampler, SpikeMixer, and FuseClamp layers. Additionally, we offer insights on
scaling the P-SpikeSSM-based spiking model for tackling complex long-range dependency tasks and
develop a computationally efficient parallel training framework.

2.1 P-SpikeSSM Formulation

We formulate the neuronal model as a time invariant system which takes in sequence of input spikes
given as xs(t) ∈ {0, 1}, at time t. Much like the membrane potential upholds the state of the LIF
neuron, we anchor our approach in SSMs [7, 6], crafting an n-dimensional hidden state (h(t) ∈ Rn)
at time t. Expanding the dimensionality of the hidden state enables our neuronal model to achieve
a more comprehensive state encoding of the underlying input sequence, surpassing the limitations
imposed by the scalar hidden state in LIF models. The event of spike generation at time t is associated
with a Bernoulli random variable St corresponding to each neuron. The probability of spiking, i.e.,
ps(t) at time t, is modelled as a function of the output of the neural model. The continuous time
neuronal dynamics are expressed as,
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Figure 1: (a) High-level overview of the P-SpikeSSM-based spiking architecture for LRA tasks. (b)
Heatmap depicting the sparsity of spiking events generated by a single P-SpikeSSM neuron over
input sequence length. (c) Graph showing the layer-wise active neuron ratio (i.e., the proportion of
neurons generating spikes within a layer per time step) against operating time steps. The layer-wise
spiking behavior illustrates the model-wide sparsity in spiking activity, contributing to computational
efficiency.

ḣ(t) = Ah(t) +Bxs(t)

ps(t) = σ(Ch(t) +Dxs(t))

σ(z) = clamp(az + b)

(1)

where, ḣ(t) = dh
dt and clamp(y) =


0 if y < 0

y if 0 ≤ y ≤ 1

1 if y > 1

, a and b are parameters. Setting a = 1 and

b = 0 allows using the output of the SSM directly as the probability of spiking event without further
scaling or translation. A is a parameter controlling the evolution of the hidden state over time without
any input spikes. B represents the influence of the input spikes (xs(t)). C describes the mapping
of the hidden state vector h(t) to the observed outputs, i.e., ps(t). D is the feedforward parameter,
representing any direct influence of the inputs spikes xs(t) on the observed output probability ps(t).
For the purpose of simpler formulation, following previous works on SSMs [7], we will consider
D = 0, since the term Dxs(t) can be viewed as a simple skip-connection. Furthermore, σ is a
function that clamps the output between [0, 1], since probability ps[t] ∈ [0, 1]. We utilize ps[t]
to sample spikes from the underlying neuron, as discussed in Section 2.1.3. The aforementioned
formulation of our SSM-based neuronal model is presented in a continuous-time setting. However,
since our primary focus is on sequence modeling tasks in domains such as NLP and vision tasks, we
now proceed to formulate the dynamics of our neuronal model in discrete time.

2.1.1 P-SpikeSSM Discrete Time Dynamics

In order to discretize our system we sample a sequence of spikes of length L, given by Xs =
(xs[1], xs[2], ..., xs[L]) from the original continuous signal given by xs(t), with step size ∆ such as
xs[i] = xs(i∆). The P-SpikeSSM neuronal dynamics are subsequently discretized using bilinear
transformations [8], whereby we approximate the parameters A,B,C as A,B,C which is given
asA = (I −∆/2 ·A)−1(I +∆/2 ·A), B = (I −∆/2 ·A)−1∆B,C = C,

where, I is the Identity matrix. The transition dynamics of the discretized system at time step t is,

h[t] = Ah[t− 1] +Bxs[t]

ps[t] = σ(Ch[t])
(2)
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where, h[t] is the hidden state of the neuron, ps[t] is the probability of the event St. This allows us
to write the transition dynamics of the system as a recurrence in discrete time. The sparse spiking
dynamics of our proposed neuronal model, characterized by the spike probability ps[t], is illustrated
in Fig. 1b. The spiking activity manifests in temporally localized patterns, mirroring the firing
patterns observed in biological neurons [9], with periods of non-activity interspersed between bursts.
Now, instead of using a recurrent representation, we investigate how the evolution of state dynamics
can be represented by a convolution operation (with spikes as input signal), thus requiring only
accumulation-based computationally efficient operation. Moreover, using convolution instead of a
recurrence-based approach enables us to parallelize the framework.

2.1.2 Representing Dynamics as Convolution over Spikes

There are two problems with Eqn. 2, concerning the training of a scalable spiking architecture. Firstly,
training it in its recurrent form necessitates employing a BPTT approach ([10]), which is impractical
for longer sequence lengths due to its time and memory overhead. Secondly, as the hidden state h[t]
at time t can be a vector of floating points rather than spikes, the transition operations involved would
not take complete advantage of energy/power efficient neuromorphic hardware. To achieve a fully
parallelizable training procedure and leverage SNN-based operational efficiency during inference, we
investigate an alternative formulation of Eqn.2 as a convolution operation [10]. Since the proposed
neuronal model is a time invariant system, considering the initial hidden state i.e., h[0] to be a 0-vector,
the recurrent relationship can be unrolled as,

h[i] = A
i−1

Bxs[1] +A
i−2

Bxs[2] + · · ·+ABxs[i− 1] +Bxs[i] =

i∑
j=1

(A
i−j

Bxs[j]) (3)

Thus, generalizing it to the entire sequence of length L we get, H = K̂ ∗ Xs, K̂ =

(B,AB, . . . , A
L−1

B) where, ∗ represents the non-circular convolution operation. H represents
the sequence of hidden states (h[1], h[2], . . . , h[L]) of length L. K̂ is a convolutional kernel of length
L as defined above. The output of the neuronal model, i.e. probability of spiking of the neuron at
time t, is given as,

ps[i] = σ((K ∗Xs)i) (4)

where, kernel K = CK̂ = (CB,CAB, . . . , CA
L−1

B); (K ∗Xs)i =
∑i

j=1 Kjxs[i− j + 1] is the

ith term of the non-circular convolution, where Ki = CA
i−1

B. Ps = (ps[1], ps[2], . . . , ps[L]) is
the sequence of probability of spikes from a neuron over the operating time steps. Thus, we can
compute the output sequence parallely by doing convolution of the input sequence of spikes with the
weights of kernel K. The demonstrated sparsity of spikes, as depicted in Fig. 1c, enables leveraging
more efficient fast-fourier transform (FFT) implementations, such as Sparse FFT [11] during traning.
Additionally, each element of the sequence Ps can be computed as a dot product of a vector of
real values (elements of precomputed K) and vector of spikes (subsequence of Xs). Sparse input
spikes further enables skipping unnecessary computations on zero elements within the input signal.
Specialized neuromorphic hardware accelerators [12, 13] can be leveraged to perform this process,
thus avoiding floating point MAC operations during inference.

2.1.3 SpikeSampler Layer

The spiking event of a specific P-SpikeSSM neuron at time t is modeled by a Bernoulli random
variable St. The spike generation process utilizes the output of the neuron, ps[t] (Eqn. 2 & 4), as the
probability of spiking at time t, as demonstrated below:

St =

{
1 if z < ps[t],

0 otherwise,

z ∼ U(0, 1)
(5)
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This seemingly simple sampling process allows the proposed framework to operate in parallel without
incurring significant computational overhead. This SpikeSampling process can be parallelized across
both the sequence dimension and the population of neurons N , to develop a SpikeSampler layer (Fig.
1a), facilitating the scaling of this methodology for more complex long-range dependency tasks.

Surrogate Gradient: The stochastic nature of the SpikeSampler layer introduces challenges during
training, as P-SpikeSSM-based spiking architectures face the problem of non-differentiability of
spikes. To address this and enhance stability of the learning process, during the backward phase of
backpropagation, we use a surrogate operation (St) for the stochastic spiking operation at time t as,

St = E[St] = 0 · P (St = 0) + 1 · P (St = 1) = ps[t] (6)

Parallel Execution in Our Model: The SpikeSampler layer compliments the parallel computational
advantages of the P-SpikeSSM neuron (Eqn. 4), resulting in a parallel and efficient spike generation
process without the additional overhead of an LIF neuron). During the backward phase, the surrogate
gradient (Eqn. 6) is utilized for effective and efficient model training. To efficiently compute the
kernel K, we capitalize on prior theoretical structural findings regarding non-spiking SSMs [6]. By
exploiting the decomposition of matrix A into a sum comprising a normal and low-rank matrix,
we achieve efficient computation of K in O(L) time complexity. More details regarding efficient
computation of K is added in the Appendix B.

2.2 Scaling P-SpikeSSMs to Deeper SNN Architectures

To expand the sequence learning capabilities of the P-SpikeSSM neuronal model and facilitate its
scalability to deeper architectures, we introduce the P-SpikeSSM neuronal layer. This layer comprises
of N P-SpikeSSM neurons. The sparse spiking activity at layer i at time t can be characterized by
analyzing the active neuron ratio, denoted as anri[t]. This ratio is determined by the number of

spikes occurring in that layer at time t, and is defined as: anri[t] =
∑Ni

j=1 sij [t]

Ni
, where Ni is the total

number of neurons in layer i, and sij [t] represents the spiking state of neuron j at time t. The sparse
spiking activity of the P-SpikeSSM neurons is illustrated in Fig. 1c. The high-level architecture of
the SNN features M stacked P-SpikeSSM Encoder layers, each of which encapsulates the layers as
shown in Fig. 1a.

SpikeMixer Block: Since each P-SpikeSSM neuron independently processes input sequence tokens,
a neuron mixer layer in the form of a fully-connected block is introduced. This facilitates the
aggregation of spikes from previous layer of P-SpikeSSM neurons and efficient flow of information
among neuronal layers, ensuring efficient processing of diverse temporal dependencies learned
by various neurons. The output of the SpikeMixer operation is given as fmix[t] = gelu(Is[t] ·
Wfc)where,Is[t] ∈ {0, 1}N are the N spikes from the previous SpikeSampler layer at time t
and Wfc ∈ RN×N is a linear weight. We use gelu function as a non-linearity. The linear layer
in this module avoids floating-point MAC operations since the input to the FC block consists of
spikes. However, due to the gelu() activation, there is element-wise floating-point multiplication of
O(n2) complexity [14], which is still lower than the O(n3) MAC operation in floating-point matrix
multiplications.

FuseClamp Block: The FuseClamp block contains a neuronal layer that combines input spikes with
the SpikeMixer output via a residual connection. This is followed by normalization (N ), which after
which the output is clamped between [0, 1]. As in the P-SpikeSSM neuronal layer, the output is
interpreted as the probability for spiking event at time t for the FuseClamp layer. The operation is
defined as follows: pcfi [t] = σ(N(fmix[t] + xs[t]))

3 Experimentation

In this section, we showcase the efficacy of our proposed S6 neuronal model-based SNN architectures
by evaluating their performance across various long-range dependency based tasks. Additionally,
we conduct analyses to assess net spiking activity and energy/power efficiency of our model. The
experiments were run on Nvidia RTX A5000 GPUs (8) each with 24GB memory.

5



Table 1: Results showing performance of our model against some spiking and non-spiking architec-
tures on test sets of LRA benchmark tasks. Accuracy is used as the metric for all the tasks.

Model SNN ListOps Text Retrieval Image Pathfinder
S4 (Original) [6] No 58.35 76.02 87.09 87.26 86.05
S4 (Improved) [6] No 59.60 86.82 90.90 88.65 94.20
Transformer [15] No 36.37 64.27 57.46 42.44 71.40
Sparse Transformer[16] No 17.07 63.58 59.59 44.24 71.71
Linformer [17] No 35.70 53.94 52.27 38.56 76.34
Linear Transformer ([16]) No 16.13 65.90 53.09 42.34 75.30
FLASH-quad [18] No 42.20 64.10 83.00 48.30 63.28
Spiking LMUFormer [19] Yes 37.30 65.80 79.76 55.65 72.68
Transnormer T2 [20] No 41.60 72.20 83.82 49.60 76.80
BinaryS4D [21] Partial 54.80 82.50 85.30 82.00 82.60
P-SpikeSSM (Our Model) Yes 58.20 81.20 88.53 80.60 84.80

3.1 Long Range Arena Benchmark

To demonstrate the long-range dependency analysis capability of our S6 based architecture, we
leverage the Long Range Arena (LRA) benchmark [16]. This benchmark spans various classification
tasks from textual to image domains. The five tasks in LRA are explained further in the appendix.

While the tasks in the LRA benchmark are highly relevant from a neuromorphic perspective—such
as processing byte sequences for NLP and pixel sequences for image tasks—this area remains largely
unexplored in neuromorphic computing. This is primarily due to two reasons: the inherent limitation
in information retention capacity of vanilla LIF-based SNNs, and the scalability challenge encountered
when training SNNs using BPTT (akin to an RNN) on lengthy sequence lengths. The latter issue
arises from the increased memory overhead resulting from the computational graph. Moreover,
transformer-based non-spiking architectures, which we use for comparison, exhibit suboptimal
performance due to the overhead (while computing attention scores) associated with longer sequence
lengths. In the spiking domain, we contrast our results with those of the spiking version of LMU.

3.1.1 Ablation Study

Our Model Accuracy
w/o Surrogate (S̄t) 70.90
w/o SpikeMixer 68.90
w/o Normalization 77.80
w/ All Components 81.20

Table 2: Results showing the effect of different
components of our proposed SNN architecture on
test accuracy when trained on LRA Text dataset.

We perform experiments to analyze the effect
of various components introduced in this work,
specifically the surrogate (used during training)
for the SpikeSampler layer, the SpikeMixer, and
use of normalization in ClampFuse layer. The
results are shown in Table 2. An energy-analysis
is done in Appendix F to highlight the compu-
tational advantage of our method.

4 Conclusions

We propose a computationally efficient probabilistic spiking framework for addressing long-term
dependency sequence learning tasks. Intead of using LIF neurons, our model uses the output of
P-SpikeSSM neuronal model as the probability for generating spike using the proposed SpikeSampler
layer. To tackle the non-differentiability of this stochastic spiking mechanism, we introduce a
surrogate gradient approach, enabling efficient training. To ensure scalability our architecture
features SpikeMixer and ClampFuse layers, enabling effective sequence processing through simplified
accumulation-based operations. We evaluate our models on multiple tasks of the LRA benchmark.
Our models consistently outperform transformer-based non-spiking counterparts, achieving state-
of-the-art performance among SNN models, while also demonstrating exceptional computational
efficiency due to the inherent sparsity of spiking events.

Limitations and Future Works: To fully capitalize on the energy and power efficiency advantages,
future next steps can consider deploying this model on edge-based devices and neuromorphic chips,
such as the Intel Loihi 2.
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A Deriving Convolutional Representation of S6 Neuronal Dynamics

At time step t, the discretized S6 neuronal model exhibits transition dynamics described as follows:

h[t] = Ah[t− 1] +Bxs[t]

ps[t] = σ(Ch[t])
(S1)

where, h[t] is the hidden state of the neuron, ps[t] is the probability of the spiking event St. A, B, C
are the discretized parameters of the time-invariant system. Considering at time step 0, h[0] = 0, we
get,

h[1] = Bxs[1]

h[2] = ABxs[1] +Bxs[2] (S2)

Unrolling like this to time step i we get,

h[i] = A
i−1

Bxs[1] +A
i−2

Bxs[2] + · · ·+ABxs[i− 1] +Bxs[i] =

i∑
j=1

(A
i−j

Bxs[j]) (S3)

Thus, the convolutional kernel K̂, whose length is given by the length of the input sequence L, is
defined as,

K̂ = (B,AB, . . . , A
L−1

B) (S4)

Now H , i.e., sequence of hidden states can be computed as a non-circular convolution given as,
H = K̂ ∗Xs, where Xs is the input sequence of spikes.

Thus, ps[t] = σ((K ∗Xs)t) = σ(
∑t

j=1 Kjxs[t− j +1]), where K = (CB,CAB, . . . , CA
L−1

B).

B HiPPO-legS Matrix

HiPPO (high-order polynomial projection operators) [22] is a versatile framework that enables the
analysis of various families of measures. Utilizing this operator as either a closed-form ordinary
differential equation (ODE) or a linear recurrence, we can efficiently update the optimal polynomial
approximation as the input function unfolds over time. HiPPO-legS can generalize to different time
scales. HiPPO enables the hidden state to effectively memorize the historical pattern of input spikes
(in our paper). The elements of the HiPPO-legS (Scaled Legendre) matrix ∈ Rn×n is given below,

Amk = −


√
2m+ 1

√
2k + 1, if m > k

m+ 1, if m = k

0, if m < k

(S5)

B.1 Computing Kernel K

The efficient computation of K has been proposed in the literature [6], thus speeding up the parallel
training of the SSM based neuronal architectures. We briefly go over the overview on how it is
achieved. The primary concern in computing K is the repeated multiplication of the state matrix
to create the individual terms Ki. Thus to compute K, the time complexity for a simple approach
of chained multiplication is O(n2L), were n is the hidden state dimension and L is the sequence
length. Now the idea is that, if we had the state matrix to be a diagonal matrix, then theoretically we
could compute K efficiently using Vandermonde product. Thus, the goal is to diagonalize the matrix
A. Now, the ideal scenario is if A is a normal matrix, i.e., it is diagonalizable with a unitary matrix
(UAU−1 is a diagonal matrix, where U is a square matrix such that UH = U−1). A is initialized to
HiPPO matrices which are not normal matrices. However, HiPPO can be decomposed into a diagonal
matrix (Λ) and a low-rank matrix. Following this, we can leverage previous theoretical results [6] on
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reducing the underlying SSM to the computation of Cauchy kernels and calculate K, in linear order
of time complexity w.r.t the sequence length L.

C Related Works

The realm of sequence modeling is primarily dominated by transformer-based architectures. Efficient
implementations like LinFormer ([17]), Performer ([23]), among others, have demonstrated scalability
to long sequence lengths. Meanwhile, non-spiking architectures based on SSMs, such as S4 and
Mamba ([7, 6, 22]), have also shown the capability to handle lengthy sequences. Sequence learning
in SNN-based architectures have primarily been applied to vision-based datasets ([24]) and NLP
datasets ([25, 26, 27, 28]), typically with constrained sequence lengths. However, within the domain
of SNNs, frameworks based on Legendre Memory Units (LMUs) ([19, 29]) has ventured into
exploring long-range dependency tasks.

Previous efforts integrating SSMs within spiking models ([21, 30]) have primarily focused on passing
the SSM output through a layer of LIF neurons to generate spikes. Using non-linear LIF neurons
negates the parallel training efficiency of SSMs, as LIF neurons process information sequentially,
introducing a bottleneck (see Section D). Stan and Rhodes [21] seeks to enhance efficiency by
linearizing LIF neurons. However, because the inputs to their SSM model remain real-valued,
leading to additional floating-point MAC operations, this approach fails to leverage the energy-
saving potential of SNNs. Moreover, the work lacks an analysis of computational efficiency and
energy benefits, particularly concerning neuron firing activity, leaving a critical aspect of model
efficiency unaddressed. Furthermore, from a sequence processing standpoint, the inherent ability
and use of SSMs to capture temporal dependencies renders the addition of LIF neurons superfluous,
introducing unnecessary computational overhead without providing any functional improvements
beyond enabling spike generation.

D LIF Neuron Dynamics
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Figure S1: Computational Flow of LIF-based
SSM Models and SpikeSampler-driven P-
SpikeSSM Neuronal Model.

The continuos-time internal dynamics of a basic LIF
neuron is outlined below,

τm · du
dt

= −(u(t)− urest) +R · I(t) (S6)

where, at time t, u(t) ∈ R is the membrane potential
which can be considered as the hidden state of the
system; I(t) is the input current scaled by a constant
R; τm is the time constant associated with the decay
in membrane potential over time; urest is the resting
membrane potential. LIF neurons thus sequentially
updates its state (u) and uses deterministic heaviside
function for spikes generation.

Sequential Bottelnecking in LIF neurons: The
above sequential process of state update and spike
generation causes a bottleneck during the parallel training of the underlying SSM based framework.
This results in increase in both training and inference time (see Section 3.1.1) compared to our
method. Prior work [21] attempts to linearize LIF neurons for parallel operation with SSMs, but
offers limited analysis on the impact of this parallelization on model performance. In contrast, as
shown in our results, our approach not only surpasses the accuracy achieved by previous methods
across multiple datasets, but does so by being computationally simpler than the former. Addition-
ally, the previous study has not provided evidence for any contributions of LIF neurons to model
performance improvement beyond their use in spike generation.
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Dataset Accuracy
psMNIST 98.3±0.1
SC10 95.4±0.2
LRA: ListOpns 58.0 ±0.2
LRA: Text 80.8 ±0.4
LRA: Retrieval 88.4 ±0.1
LRA: Image 80.0 ±0.6
LRA: Pathfinder 84.6 ±0.2

Table S1: Accuracy statistics across different datasets.

Table S2: Hyper-parameters used for obtaining the best result on individual datasets used for
evaluating S6-based SNN models.

psMNIST SC10 ListOpns Text Retrieval Image Pathfinder
M : #S6 Encoder Layers 2 4 4 4 4 4 4
N : Neurons per Layer 400 256 256 256 200 256 256
n: Hidden State Dim. 64 32 32 16 32 32 64
lr: Learning Rate 0.01 0.002 0.005 0.0005 0.003 0.005 0.0005
Batch Size 64 32 32 64 32 32 32
Epochs 100 50 50 80 50 150 150

E Additional Experimental Results

In Table S2, we list the optimal set of hyper-parameters used for each of the tasks. Primarily batch
normalization was used for normalization. Initializing the state matrix A with HiPPO matrices [22]
leads to optimal performance and rapid convergence. Across a majority of tasks, utilizing HiPPO-legS
(Appendix B) consistently yields the highest accuracy. The step size for discretization (∆) is restricted
between [0.001, 0.1]. The comprehensive statistics of accuracy obtained after running 10 different
instances of each experiment with random seeds is shown in Table S1.

Figure S2: Results obtained from the test
set of the ps-MNIST dataset. This exper-
iment utilizes two P-SpikeSSM neuronal
layers, with each layer containing n neu-
rons, represented on the x-axis. The ac-
curacy achieved is shown on y-axis.

Dataset Details:Long Range Arena Benchmark

To demonstrate the long-range dependency analysis capa-
bility of our spiking architecture, we leverage the Long
Range Arena (LRA) benchmark [16], spanning various
classification tasks from textual to image domains. Fol-
lowing are the five tasks utilized for evaluation,

ListOps: In this task, our focus lies in modeling hierar-
chically structured data within a long-context framework.
The sequence length for this task is upto 2K.

Text: In this task, we process the IMDB dataset [31] of
movie reviews and perform the task of sentiment analysis
in a byte-level. This is done to ensure a long sequence
length of 4K.

Retrieval: In this task, we assess the model’s capacity
to encode and retain compressed representations essential
for matching and retrieval purposes. The input consists of
byte-level sequences (of length 4K) from two documents,
and the goal is to analyze their similarity.

Image: In this task, we perform an image classification
task based on a sequence of pixels of the original image. The dataset is CIFAR-10 and the sequence
length is 1K.

Pathfinder: In this task, we treat a 32×32 image as a sequence of pixels of length 1K. Our objective
is to make a binary decision regarding whether two points, depicted as circles, are linked by a path
composed of dashes.

Memory Footprint: Based on previous analysis [16] on LRA tasks, the Transformer models in
Table 1 are configured with 4 layers, hidden dimension of 256 and 4 attention heads, resulting in
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approximately 600K parameters in total. Our models establish state-of-the-art performance in the
spiking domain and comprehensively outperforms non-spiking transformer based architectures as
shown in Table 1. Furthermore, considering identical parameters (A,B,C) for neurons in the same
layer, the average parameter count of our models across all five LRA tasks is around ≈ 250K,
representing a reduction of ≈ 2.4× compared to the parameter count of the transformers used.

Effect of number of Neurons: The effect of the number of neurons on model performance is
demonstrated in Fig. S2.This demonstrates that as the population of neurons within a single layer
increases, the spikes generated by them more effectively capture the temporal dependencies in the
input sequence.

F Analysis of Energy Efficiency

We perform a preliminary analysis comparing the energy efficiency of a non-spiking S4 model to our
spiking model during parallel execution on a 45nm CMOS circuit ([32]). For 32-bit floating points,
ACC operations (cost .9pJ) consume 5.1× less energy than MAC operations (cost 4.6pJ) ([32]).
Assuming an input sequence length of L, with N neurons per layer across K layers, the dominant
energy cost per layer for the non-spiking S4 model [6] is (L2 +LN2) floating point MAC operations,
representing the combined cost of computation (underlying SSM is operated parallely) in a single S4
layer and following linear layer.

Figure S3: Results obtained after pass-
ing randomly sampled inputs from
ListOps dataset of LRA benchmark
through our model. Figure consists of
Histogram representing the count of neu-
rons associated with mean probability
of spiking (averaged over the entire se-
quence of length L) and Kernel density
estimation (KDE) plot of the data using
an exponential kernel.

For simplicity, we estimate the energy costs using stan-
dard convolution instead of FFT, as implementing FFT
on a neuromorphic chip—which primarily relies on spike-
based accumulative operations—is significantly more com-
plex. Although a complete energy calculation includes
non-linear layers like gelu() and Norm, their contribu-
tion is negligible (O(LN) operations) compared to the
energy cost of the parallel SSM and linear layers. Build-
ing on our previous analysis, the primary computational
cost per P-SpikeSSM Encoder Layer in our spiking model
is given by (IFRin · L2 + IFRo · LN2) floating-point
accumulation (ACC) operations, contributed primarily by
the parallel operation of the P-SpikeSSM and Spiking-
Mixer layer. Here, IFRin represents the firing rate of
the input layer to the P-SpikeSSM neuronal layer, while
IFRo denotes the firing rate of spikes sampled from the
P-SpikeSSM neuronal layer, i.e. input to the SpikeMixer.
As illustrated in Fig. S3, the majority of neurons in the
layer remain dormant during the input sequence, leading
to sparse communication.

To illustrate with a specific example, let us consider the
ListOps dataset. An iso-parametric state-of-the-art non-
spiking S4 model achieves an accuracy of 58.35 (improved
version: 59.60) ([6]), while our P-SpikeSSM achieves 58.20. However, the energy consumption of the
non-spiking model is 4× (2K × 2K +2K × 256× 256) MAC operations, resulting in a total energy
consumption of 2.55mJ, whereas our spiking model consumes only 0.0398mJ. Consequently, our
model is > 64× more energy efficient based on computational cost. Although this methodology does
not include architectural details in the energy analysis, it still highlights the computational efficacy
of our approach. By leveraging the prevalence of inactive neurons and sparse spiking patterns of
active neurons, we achieve significant improvements in energy and power efficiency on neuromorphic
platforms.

12


	Introduction
	Methodology
	P-SpikeSSM Formulation
	P-SpikeSSM Discrete Time Dynamics
	Representing Dynamics as Convolution over Spikes
	SpikeSampler Layer

	Scaling P-SpikeSSMs to Deeper SNN Architectures

	Experimentation
	Long Range Arena Benchmark
	Ablation Study


	Conclusions
	Deriving Convolutional Representation of S6 Neuronal Dynamics
	HiPPO-legS Matrix
	Computing Kernel K

	Related Works
	LIF Neuron Dynamics
	Additional Experimental Results
	Analysis of Energy Efficiency

