
DeepGit: Promoting Exploration and Discovery of Research
Software with Human-Curated Graphs

Yilin Xia

University of Illinois

Urbana-Champaign, IL, USA

yilinx2@illinois.edu

Shin-Rong Tsai

University of Illinois

Urbana-Champaign, IL, USA

srtsai@illinois.edu

Matthew Turk

University of Illinois

Urbana-Champaign, IL, USA

mjturk@illinois.edu

VLDBWorkshop Reference Format:
Yilin Xia, Shin-Rong Tsai, and Matthew Turk. DeepGit: Promoting

Exploration and Discovery of Research Software with Human-Curated

Graphs. VLDB 2025 Workshop: DaSH.

1 INTRODUCTION
Computational methods are central to modern scientific research

[9], and thus research software plays a vital role. Consequently,

familiarizing oneself with a new field involves not only reading

academic publications but also reviewing domain-specific software

tools. However, exploring and discovering such tools remains chal-

lenging, as they are often scattered across various platforms [23]

and many lack formal citations for reference [12, 22]. This challenge

is exacerbated by the fact that the current research software ecosys-

tem lacks centralized discovery platforms comparable to Google

Scholar. Although GitHub (arguably the most popular modern soft-

ware development and distribution platform) offers some support

for locating research software, it is typically biased toward popu-

larity metrics [14] and focuses on individual repositories, lacking

insight into inter-repository relationships. A more structured

approach – considering both repositories and their relationships –

is essential for improving research software discovery, supporting

informed research decisions, and increasing software visibility.

Graphs are commonly used to support relationship-aware ap-

proaches, as they provide intuitive representations of entities and

their connections [6]. In practice, such graphs are often constructed

using automated methods [27]. However, the construction of do-

main knowledge graphs requires explicit conceptualization [1],

and automated techniques often fail to capture domain-specific

nuances that are essential for accurate representations [8]. Further-

more, graph schema is typically defined by the creators, restricting

domain experts and other end-users to predefined queries, thus

reducing their ability to shape the graph’s structure according to

their needs. Therefore, human involvement is crucial in the graph

construction process to capture domain-specific knowledge and

ensure the graph’s relevance.

We introduce DeepGit, an open source, domain-aware engine

that utilizes a human-curated graph for exploring and discovering

research software on GitHub
1
. DeepGit allows users to narrow

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

1
GitHub is used in the initial phase. We will later switch to a more comprehensive

research software database, such as MOSS [21]

Topic-focused 
Metadata

Topic-Centric 
Filtering

Graph 
Construction

Subgraph 
Extraction

Question 
Answering

1
GitHub 

Metadata

2

3

Subgraph

Domain Graph

GraphRAG

5
Hybrid Data 

Representation

4

4

Data Fusion

Data Fusion

Figure 1: DeepGit follows a five-step process: (1) building
a topic-focused knowledge base from GitHub metadata, (2)
constructing a domain graph, (3) extracting subgraphs, (4)
fusing data into a hybrid representation, and (5) enabling
question answering via GraphRAG.

down potential GitHub topics [4], define semantic relationships

among repositories, interactively extract subgraphs by applying

metadata filters, and explore underlying patterns through Graph

Retrieval-Augmented Generation (GraphRAG) [18]. By incorpo-

rating human efforts, DeepGit provides researchers the ability to

customize and construct domain-specific subgraphs to explore, dis-

cover, and review research software. These capabilities also directly

advance findability, one of the fundamental FAIR principles that

promotes the reuse and sustainability of research software [15].

2 DEEPGIT
To actively engage humans in the exploration and discovery process,

DeepGit is composed of three major components: Topic-Centric Fil-

tering, Graph Construction, and Subgraph Extraction & GraphRAG.

2.1 Topic-Centric Filtering
Topic-Centric Filtering is a critical step for subsequent exploration,

as it narrows down the vast GitHub metadata
2
into a domain-

focused dataset. We adopt the topic summarization and modeling

method [13, 24] to guide the following procedure:

Given a topic 𝑋 , DeepGit retrieves a set of repositories R =

{𝑅1, 𝑅2, . . .} from GitHub metadata tagged with 𝑋 , and aggregates

2
Data acquisition involves using GitHub API or DuckDB [20] to query existing meta-

data—provided in JSON format—sourced from Kaggle. The dataset comprises 3,985,968

repositories, totaling 3.07 GB in size [5].

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org


Figure 2: The colored nodes represent 98 repositories tagged
with the "Datalog" topic, connected by 388 edges. Gray nodes
(not all are shown) represent the remaining repositories in
the corpus R′ for logic programming. An edge is drawn be-
tween two repositories if they share at least one logic pro-
gramming topic (e.g., Prolog). Node size reflects an impor-
tance score computed using PageRank. Of particular interest
is the repository "py-typedlogic", which, despite represent-
ing a relatively small community, shares several topics with
other repositories .

all topics contained in R into a set T = {𝑇1,𝑇2, . . .}. The set T is

iteratively refined through a user-centered, three-stage process:

(1) Frequency-Based Filtering: Topics are counted and pre-

sented as a histogram. Users actively select a frequency

range to filter and obtain a subset T
freq

⊆ T .

(2) LLM-Powered Refinement: As T
freq

can remain large,

Large Language Models are utilized for continued refine-

ment, with users customizing prompts to guide the refine-

ment process and get a refined subset T
llm

⊆ T
freq

.

(3) Manual Auditing: Through manual auditing, users review

and add missing topics to enhance T
llm

, yielding the curated

topic set T
final

.

To further refine the knowledge base, users may optionally reap-
ply the above process, treating T

final
as the new input. This itera-

tive procedure continues until no new related topics are identified,

following the spirit of the alternate fix-point method [3]. Finally,

repositories R′
associated with topics in T ′

final
are extracted for

graph construction.

2.2 Graph Construction
With the repository set R′

and its associated metadata, users can

construct a graph 𝐺 = (𝑉 , 𝐸), where 𝑉 represents repositories and

𝐸 ⊆ 𝑉 ×𝑉 denotes edges that are created based on user-specified

criteria. DeepGit provides multiple edge definition strategies, al-

lowing users to enable one or more criteria simultaneously:

• Topic-Based Linking: Repositories sharing a user-defined
number of common topics from T

final
are linked.

• Contributor Overlap: Repositories with sufficient contrib-

utor overlap, based on a user-defined threshold, are linked

to reveal collaboration patterns.

• Shared Organization: Repositories maintained within the

same GitHub organization are linked, highlighting internal

structures within institutions or foundations.

• Common Stargazers: Repositories are linked if they share
a sufficient number of stargazers [11].

• Software Dependency: Using Software Bill of Materials

(SBOM) data [10], an edge is created when a declared de-

pendency relationship exists between repositories.

Using the dimensions described above (which can also be easily

extended with additional ones), users can construct graph 𝐺 that

reflect the specific relationships they are interested in. Once graph𝐺

is created, users can apply graph clustering algorithms (e.g., Louvain

[19]) to identify communities. They can iteratively refine the edge

definition until the resulting clusters align with their needs.

2.3 Subgraph Extraction & GraphRAG
However, navigating a large domain graph can still be overwhelm-

ing [26]. DeepGit addresses this challenge by enabling users to

extract subgraphs based on various criteria. Users can filter the

graph using repository metadata—such as commit activity, star

count, programming language, or subtopic (e.g., Datalog within

Logic Programming). Additionally, they can leverage graph prop-

erties, using clustering algorithms to select specific community

clusters (Figure 2) or ranking methods such as PageRank [2] to

extract high-importance nodes.

Additionally,DeepGit incorporates SubgraphRAG approach [17]

by leveraging graph embeddings that integrate both textual content

— including README files, source code, and research papers refer-

enced by the repositories —with the graph’s relational structure, i.e.,

user-defined edges between repositories. This hybrid representa-

tion allows DeepGit to support more effective question answering,

not only through explicit graph relationships but also uncovering

insights that may not be captured in the subgraph alone.

3 DEMONSTRATION & FUTUREWORK
Core Demonstration: A preliminary version ofDeepGit is already
available [25], enabling exploration of prebuilt graphs in selected

domains (e.g., logic programming). We are currently in the process

of implementing the proposed features. Our objective is to present

a comprehensive demonstration at the workshop.

Future Work. As future work, we plan to incorporate metadata

from platforms [21] beyond GitHub and integrate graph query lan-

guages (e.g., Cypher [7]) into the interface. This will offer users

an alternative method for subgraph extraction. We also intend to

conduct Human-Computer Interaction evaluations (e.g., System Us-

ability Scale [16]) through interviews with domain researchers and

research software engineers (RSEs) from open-source communities

to assess and refine DeepGit.
2



REFERENCES
[1] Bilal Abu-Salih. 2021. Domain-specific knowledge graphs: A survey. Journal of

Network and Computer Applications 185 (2021), 103076.
[2] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual

web search engine. Computer networks and ISDN systems 30, 1-7 (1998), 107–117.
[3] Ashok Chandra and David Harel. 1982. Structure and complexity of relational

queries. Journal of Computer and system Sciences 25, 1 (1982), 99–128.
[4] Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong Nguyen, and Riccardo

Rubei. 2020. Topfilter: an approach to recommend relevant github topics. In

Proceedings of the 14th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). 1–11.

[5] Peter Elmers. 2025. GitHub Public Repository Metadata. https://www.kaggle.

com/datasets/pelmers/github-repository-metadata-with-5-stars

[6] George Fletcher, Jan Hidders, Josep Lluís Larriba-Pey, et al. 2018. Graph Data
Management. Springer.

[7] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and

Andrés Taylor. 2018. Cypher: An evolving query language for property graphs.

In Proceedings of the 2018 international conference on management of data. 1433–
1445.

[8] Marvin Hofer, Daniel Obraczka, Alieh Saeedi, Hanna Köpcke, and Erhard Rahm.

2024. Construction of knowledge graphs: Current state and challenges. Informa-
tion 15, 8 (2024), 509.

[9] Caroline Jay, Robert Haines, and Daniel S Katz. 2020. Softwaremust be recognised

as an important output of scholarly research. arXiv:2011.07571 (2020).
[10] Maya Kaczorowski. 2024. Secure at every step: How GitHub’s dependency graph

is generated. GitHub Blog. https://github.blog/enterprise-software/secure-

software-development/secure-at-every-step-how-githubs-dependency-graph-

is-generated/

[11] Andrei Kashcha, Erik Bjäreholt, and Zachary Blackwood. 2024. anvaka/map-of-
github. https://github.com/anvaka/map-of-github

[12] Daniel S Katz and Neil P Chue Hong. 2024. Special issue on software citation,

indexing, and discoverability. PeerJ Computer Science 10 (2024).
[13] Hannah Kim, Dongjin Choi, Barry Drake, Alex Endert, and Haesun Park. 2019.

TopicSifter: Interactive search space reduction through targeted topic modeling.

In 2019 IEEE Conference on Visual Analytics Science and Technology (VAST).
[14] Simon Koch, David Klein, and Martin Johns. 2024. The Fault in Our Stars: An

Analysis of GitHub Stars as an Importance Metric for Web Source Code. In

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2024.
[15] Anna-Lena Lamprecht, Leyla Garcia, Mateusz Kuzak, Carlos Martinez, Ricardo

Arcila, Eva Martin Del Pico, Victoria Dominguez Del Angel, Stephanie Van

De Sandt, Jon Ison, Paula Andrea Martinez, et al. 2020. Towards FAIR principles

for research software. Data Science 3, 1 (2020), 37–59.
[16] James R Lewis. 2018. The system usability scale: past, present, and future.

International Journal of Human–Computer Interaction 34, 7 (2018), 577–590.

[17] Mufei Li, Siqi Miao, and Pan Li. 2024. Simple is effective: The roles of graphs

and large language models in knowledge-graph-based retrieval-augmented gen-

eration. arXiv preprint arXiv:2410.20724 (2024).
[18] Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong,

Yan Zhang, and Siliang Tang. 2024. Graph Retrieval-Augmented Generation: A

Survey. arXiv:2403.08921 [cs.IR] arXiv preprint arXiv:2403.08921.

[19] Xinyu Que, Fabio Checconi, Fabrizio Petrini, and John A Gunnels. 2015. Scalable

community detection with the louvain algorithm. In 2015 IEEE international
parallel and distributed processing symposium. IEEE, 28–37.

[20] Mark Raasveldt and Hannes Mühleisen. 2019. Duckdb: an embeddable analytical

database. In Proceedings of the 2019 international conference on management of
data. 1981–1984.

[21] MOSS repository contributors. 2024. Map of Open Source Science (MOSS). https:

//github.com/numfocus/MOSS

[22] David Schindler, Erjia Yan, Sascha Spors, and Frank Krüger. 2023. Retracted

articles use less free and open-source software and cite it worse. Quantitative
Science Studies 4, 4 (2023), 820–838.

[23] Alexander Struck. 2018. Research software discovery: An overview. In 2018
IEEE 14th International Conference on e-Science (e-Science). IEEE, 33–37. https:

//doi.org/10.1109/eScience.2018.00016

[24] Shuai Wang, Zhiyuan Chen, Geli Fei, Bing Liu, and Sherry Emery. 2016. Targeted

topic modeling for focused analysis. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining. 1235–1244.

[25] Y. Xia, S.-R. Tsai, and M. Turk. 2025. DeepGit: Promoting Exploration and

Discovery of Research Software. https://go.illinois.edu/deepgit.

[26] Vahan Yoghourdjian, Yalong Yang, Tim Dwyer, Lee Lawrence, Michael Wybrow,

and Kim Marriott. 2020. Scalability of network visualisation from a cognitive

load perspective. IEEE transactions on visualization and computer graphics 27, 2
(2020), 1677–1687.

[27] Lingfeng Zhong, Jia Wu, Qian Li, Hao Peng, and Xindong Wu. 2023. A compre-

hensive survey on automatic knowledge graph construction. Comput. Surveys
56, 4 (2023), 1–62.

3

https://www.kaggle.com/datasets/pelmers/github-repository-metadata-with-5-stars
https://www.kaggle.com/datasets/pelmers/github-repository-metadata-with-5-stars
https://github.blog/enterprise-software/secure-software-development/secure-at-every-step-how-githubs-dependency-graph-is-generated/
https://github.blog/enterprise-software/secure-software-development/secure-at-every-step-how-githubs-dependency-graph-is-generated/
https://github.blog/enterprise-software/secure-software-development/secure-at-every-step-how-githubs-dependency-graph-is-generated/
https://github.com/anvaka/map-of-github
https://arxiv.org/abs/2403.08921
https://github.com/numfocus/MOSS
https://github.com/numfocus/MOSS
https://doi.org/10.1109/eScience.2018.00016
https://doi.org/10.1109/eScience.2018.00016
https://go.illinois.edu/deepgit

	1 Introduction
	2 DeepGit
	2.1 Topic-Centric Filtering
	2.2 Graph Construction
	2.3 Subgraph Extraction & GraphRAG

	3 Demonstration & Future Work
	References

