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ABSTRACT

It is well known that large deep architectures are powerful models when ade-
quately trained, but may exhibit undesirable behavior leading to confident incor-
rect predictions, even when evaluated on slightly different test examples. Test data
characterized by distribution shifts (from training data distribution), outliers, and
adversarial samples are among the types of data affected by this problem. This
situation worsens whenever data are biased, meaning that predictions are mostly
based on spurious correlations present in the data. Unfortunately, since such cor-
relations occur in the most of data, a model is prevented from correctly general-
izing the considered classes. In this work, we tackle this problem from a meta-
learning perspective. Considering the dataset as composed of unknown biased
and unbiased samples, we first identify these two subsets by a pseudo-labeling
algorithm, even if coarsely. Subsequently, we apply a bi-level optimization al-
gorithm in which, in the inner loop, we look for the best parameters guiding the
training of the two subsets, while in the outer loop, we train the final model taking
benefit from augmented data generated using Mixup. Properly tuning the contri-
butions of biased and unbiased data, followed by the regularization introduced by
the mixed data has proved to be an effective training strategy to learn unbiased
models, which show superior generalization capabilities. Experimental results on
synthetically and realistically biased datasets surpass state-of-the-art performance,
as compared to existing methods.

1 INTRODUCTION

In classification tasks, it is widely recognized that deep learning architectures can learn large amount
of data, reaching unprecedented outstanding performance. However, such models are also very sen-
sitive to data, meaning that they are prone to errors with high confidence whenever test samples are
drawn from a distribution different from that of the training set. One reason is that, in certain condi-
tions, these models have problems to generalize well the classes considered as they likely memorize
the training data rather than learning the salient characteristics of each category of examples. This
behavior is especially evident when training data are biased, i.e., samples include spurious correla-
tions with class labels or, in other words, the trained model learns some “shortcuts” to classify data,
so failing to generalize the class properly. For example, a fish can be classified as such due to the
presence of the blue sea and not for the fish semantic information, hence a model likely fails in case
the input image depicts a fish located in a brown table market. Such shortcuts are learnt since most
of the samples are characterized by the bias (fishes in the sea) while only a few samples are unbiased
(fishes in unusual contexts), which prevents from generalizing the class properly.

When optimizing models under the presence of biased data, the ground-truth knowledge of the bias
is typically beneficial. For instance, having an additional annotation regarding whether the fish is
in the sea or not can be used to drive the optimization towards a data representation invariant to
such attribute (See Figure 1(a)). Several methods approached the problem in this way and sought
for a data representation invariant to a known factor (Alvi et al. (2018); Kim et al. (2019); Li &
Vasconcelos (2019); Wang et al. (2019); Ragonesi et al. (2020); Sagawa et al. (2019)): we term this
problem supervised debiasing, i.e. the knowledge of the bias acts as an auxiliary data annotation
that can be useful to consider in training in order to get invariance with respect to it.

However, the hypothesis of having an additional label is unrealistic in most practical scenarios as it
requires great effort during data annotation, and in some cases can even be impossible whenever the
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Figure 1: Problem description. (a) Biased dataset occurs when there is an imbalance regime re-
garding pairs (class, domain), where each class is observed mostly under one distribution, leaving
other options under-represented. This results in trained models which do not generalize well. In the
case of supervised debiasing case, one has additional annotations regarding the domain distribution.
(b) In the unsupervised debiasing case, one has only access to the class labels. A possible approach
to distinguish biased/unbiased samples is via pseudo-labeling. (c) The plots show that the loss for
the biased samples are decreasing much faster than the loss for unbiased samples, proving that the
former can be learnt more easily than the latter. (Best viewed in color)

control of data gathering is unfeasible, hence the urge of methods that can generalize even without
this additional supervision.

For these reasons, we face here the more challenging setting of the unsupervised debiasing problem,
i.e., we assume that the ground-truth knowledge of the bias is not readily available. Hence, we
attempt to (implicitly) infer this information while debiasing our model and achieving a successful
generalization on the test set (See Figure 1(b)).

In this paper, we devised a two-stage algorithm tackling the unsupervised debiasing problem. First,
we separate biased from unbiased samples through a pseudo-labeling approach. Second, equipped
with such (noisy) pseudo-labels, we manage the problem of learning from this data using a Meta-
Learning approach (inspired by Finn et al. (2017)) to produce a data representation that can accom-
modate both biased and unbiased samples. The method consists of a bi-level optimization strategy,
in which learning from biased and unbiased samples are treated as meta-tasks in the inner loop,
while the outer loop uses augmented samples as a meta-validation task. We use MixUp (Nam et al.
(2020)) as the technique to augment the dataset producing meta-validation data: in this way, we feed
the model with data that can be as much “neutral” as possible by mixing samples of the biased split
with those of the unbiased split. We aim to produce synthetic samples which are unusual, and there-
fore represents cases that are under-represented in the original training data, overall regularizing and
improving the training. We show that mixing the two subsets brings improvement not only for the
biased samples but also keeps high accuracy on the biased ones, avoiding catastrophic forgetting.

We validate our method on several benchmarks that are both synthetic with controlled bias (colored
MNIST and Corrupted CIFAR-10) and more realistic (Waterbirds and BAR), showing outstanding
performance as compared with existing methods.

To recap, the contributions of our work are:

• We propose to face the unsupervised debiasing problem by introducing a two-stage approach
that, after the initial coarse identification of the biased and unbiased samples, can modulate the
contribution of each example during the model training by a meta-learning strategy.

• Specifically, we consider learning from biased and unbiased samples as separate meta-tasks, and
we generate new data by augmentation, which we treat as a (meta-)validation task. By jointly
optimizing the original meta-training tasks and the generated meta-validation task, we inject a
strong regularization in the training process leading to more general representation learning.

• Our approach, validated on datasets with controlled bias and realistic benchmarks, showed to
outperform state-of-the-art performance by a significant margin.

The rest of the paper is organized as follows. In Section 2, we describe the works close to our
proposal, highlighting the original aspects introduced. Section 3 reports our method, where we detail
our two-stage approach. Section 4 presents the results and a thorough ablation analysis. Section 5
wrap-ups the work and sketches the future research directions.
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2 RELATED WORK

Learning from biased data can be seen as a specific case of Out-Of-Distribution (OOD) domain gen-
eralization. This topic has been addressed with different methodologies, including meta-learning.
Here, we briefly review the most related literature.

Learning from biased data. The problem of learning from biased data has been explored in past
years in the supervised debiasing setting, i.e. when labels for the factor (bias) to be removed are
readily available. Several methods approached the problem seeking an invariant data representation
to a known factor. Such approaches rely on adversarial learning (Alvi et al. (2018); Kim et al.
(2019)), variational inference (Moyer et al. (2018)), Information Theory (Ragonesi et al. (2020)),
re-sampling strategies (Li & Vasconcelos (2019)), or robust optimization (Sagawa et al. (2019).

Few recent works (Bahng et al. (2020); Levy et al. (2020); Nam et al. (2020); Liu et al. (2021)) have
addressed the unsupervised debiasing problem that we face in this work. Bahng et al. (2020) formal-
izes the cross-bias problem where malicious shortcuts exist, easing the fit of training data, whereas
the same shortcuts result useless for the inference stage. This hampers the model’s generalization
capability: the solution is learning a debiased model which is statistically independent from the one
computed by a parallel computational stream that is guaranteed to be affected by the bias by design.
In Nam et al. (2020), the nature of the aforementioned “shortcuts” are analyzed in terms of fitting
speed at training time. Nam et al. show that biased samples are learnt faster than the unbiased ones.
The relative difficulty of each sample is cast into a weight that modulates its learning rate: in this
way, at training time, it is given more importance to the few outlying samples that do not follow the
shortcuts. To this end, an ensemble of networks is trained, similarly to Bahng et al. (2020). Levy
et al. (2020) provide statistical bounds and tackle the problem via robust optimization, considering
a worst case loss of a sub-population of the dataset (typically samples with the highest loss). In Liu
et al. (2021), the training data is split into two subsets relying on the predictions of a baseline model.
The most difficult samples (likely those that do not follow shortcuts), are then upsampled.

Our work does not rely on an ensemble of networks to have a reference biased model. Instead, we
perform a pseudo-labeling approach to split the dataset in two subsets and then treat them as two
separate tasks to be learned via meta-learning. We also avoid data upsampling as in Liu et al. (2021)
and Li & Vasconcelos (2019), whereas we pursue a data augmentation approach to combine biased
and unbiased samples. Inspired by Mixup (Zhang et al. (2017)), we mix factors which are peculiar
of the bias regime (likely representing a shortcut to infer the class) with those that do not follow
such rules. The newly generated samples are expected to break the spurious correlations that affect
the original data and allow the model to better generalize.

Meta-Learning for Out-Of-Distribution domain generalization. A class of meta-learning meth-
ods based on bi-level optimization (e.g., Model Agnostic Meta-Learning (Finn et al. (2017))), relies
on an inner-loop stage optimizing model’s meta-parameters on source data, and an outer-loop stage
that updates the model parameters on (meta-)validation data. This nested optimization which in-
volves computing a gradient through a gradient, has been shown to be effective for a fast adaptation
of the model to the validation data. The goal is learning from an (empirical) training task distribution
so to generalize and learn faster (i.e., with fewer samples) the validation task.

Subsequently, other methods have tackled the problem of Domain generalization (DG) (Li et al.
(2017); Balaji et al. (2018); Li et al. (2019), to cite a few), casting the problem of learning from
multiple tasks to learning from multiple distributions/domains. We adopt the same general scheme,
however we face a considerably distinct problem: while in DG, different domains are fairly balanced,
we deal with a severe data imbalance, that is, biased vs. unbiased, seen here as domains. This
domain data imbalance is so dramatic that the model likely learns domain attributes to perform
inference, hampering its generalization capabilities. This requires a tailored solution that we found
effective through data augmentation, in order to attempt to reduce the imbalance problem. Moreover,
differently from previous methods that rely on multiple source domains, we relax the hypothesis of
having domain labels. Hence, we apply a pseudo-labeling method to discriminate the training set
in two subsets that corresponds to different distributions. In fact, since one needs a meta-validation
set to train the outer loop, our solution is to produce it, by generating synthetic validation data using
data augmentation. This resulted quite effective even if the two subsets are noisy, that is, even if
they do not perfectly identify the real distributions.
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3 THE METHOD

We consider supervised classification problems with a training setDtrain = {xk, yk, dk}Nk=1, where
xk are raw input data, yk class labels and dk domain labels. In the case of a biased dataset, Dtrain
has several classes yi, i = 1, ..., C, which are considered to be observed under different domains
dj , j = 1, ..., D; D can be different from C but here, for clarity and without losing generality, we
consider the case of D = C. When the majority of samples of a specific class yi is observed under
a single domain dj , while other domains are under represented in the dataset, we say that the pair
(yi, dj) is biased, i.e. there is a spurious correlation between class and domain.

We define Dbias as the subset of training samples that exhibit spurious correlations and Dunbias
as the subset of samples with under represented pairs. Such subsets are highly imbalanced, i.e.
|Dbias| >> |Dunbias|. For instance, in a cats vs. dogs classification problem, most of the cats may
be observed in an indoor home environment, while most of the dogs may be observed in outdoor
scenes. For both classes, very few images are outside of the main distribution.

We aim to tackle the unsupervised debiasing problem, which means that we do not have access
to domain labels d nor to other bias information, hence we can just consider a training set only
containing input data and class label, D = {xk, yk}Nk=1.

We want to train a parametric inference model pθ(y|x) on D to be deployed on test data Dtest not
seen during training. A neural network fθ, with parameters θ, is used to approximate the distri-
bution pθ(y|x). The parameters θ are usually found via Empirical Risk Minimization (ERM), i.e.
minimizing the expected Cross-Entropy loss over the training data:

θ∗ = argmin
θ

E
x,y∼D

L(D, fθ), where L(D, fθ) = yT log(σ(fθ(x))), (1)

where σ is the softmax function. In such scenario, when trained via ERM, a model focuses mostly
on the more numerous biased samples, underfitting the unbiased ones: this results in a biased model
that uses spurious correlation (e.g., background) as a possible way to make inference, instead of
correctly learning the class semantic. In general, Dtest follows a data distribution different from
Dtrain, i.e. the biased pairs may be not the majority of samples. Hence it is important to have a
model that can be deployed on both biased and unbiased pairs.

Our method tackles the unsupervised debiasing problem with a two-stage approach. In the first
stage, we separate biased from unbiased samples through a pseudo-labeling algorithm. Equipped
with such pseudo-labels, we train a model to produce a data representation that can accommodate
both biased and unbiased samples. In the following, we detail the two main stages of our method.

3.1 BIAS IDENTIFICATION

In this stage, our goal is to split the training set D into two disjoint subsets D̂bias and D̂unbias that
should resemble the actual, ground-truth Dbias and Dunbias. In Nam et al. (2020), it is shown how
the biased samples are learnt faster than the unbiased ones: the imbalanced nature of the dataset
makes the model more prone to learn first the numerous biased samples and later those unbiased.
This behaviour can be observed by looking at the loss function trends of the two subsets (See Fig.
1(c)). We exploit the fact that samples from Dbias are easily learnt during training, to design a
strategy for splitting the dataset. We train a neural network fφ via ERM until it reaches a training
accuracy of γ, where γ is a hyper-parameter denoting the target accuracy. When the model reaches
the desired accuracy level, the training stops and a forward pass of the entire training set is per-
formed. Now, samples that are correctly predicted are assigned to D̂bias while those not correctly
predicted are assigned to D̂unbias. More formally:

D̂γbias = {x ∈ D | σ(f
γ
φ (x)) = y}

D̂γunbias = {x ∈ D | σ(f
γ
φ (x)) 6= y}

(2)

Using γ as hyper-parameter is convenient for two reasons. First, our setting of the amount of desired
accuracy is dataset agnostic. This is different from prior work (Liu et al. (2021)) that employs a
similar strategy, but with the hyper-parameter controlling the number of epochs to train the model:
in that case, the number of epochs are strictly dependent on the dataset that the model is trained
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Figure 2: Starting from the current parameter configuration θ, gradients on L(D̂bias, fθ) and
L(D̂unbias, fθ) are evaluated to produce the new configuration θ∗. The regularization step using
mixed data aims at producing a contribution that decreases the loss function on D̂bias, D̂unbias, and
D̂mix, simultaneously, the latter estimated over the configuration θ∗. (Best viewed in color)

on. Second, we can have a precise control of the amount of samples assigned to the two splits, e.g.
γ = 0.85 implies that 85% of training data are assigned to D̂bias and 15% to D̂unbias. Obviously,
especially in real use cases, we do not know the correct assignments of the samples to the splits, so
we have to rely on a priori setting of this parameter.

3.2 BIAS-INVARIANT REPRESENTATION LEARNING

Provided with pseudo-labels for the two estimated subsets D̂bias and D̂unbias, we deal with the
problem of learning data representations that are not only good for the biased data but can generalize
well to unbiased samples. We adopt a neural network fθ, trained from scratch, and we designed a
bi-level optimization algorithm inspired by meta-learning to learn efficiently from such data.

Inner loop step. This is a meta-training step where we seek the best parameters θ for the two subsets
D̂bias and D̂unbias via gradient descent:

θ∗ = θ − η ∇θ [(1− γ) L(D̂bias, fθ) + γ L(D̂unbias, fθ)] (3)

where η is the learning rate. In this step, the two splits of the training data are treated as two
separate tasks: we scale the two loss functions with two coefficients to deal with data imbalance
(|D̂bias| >> |D̂unbias|). To rebalance the contributions from the two splits, an obvious choice is to
set weights inversely proportional to the cardinality of the two subsets, which is nothing else than
the fixed and controllable hyper-parameter γ.

Outer loop step. Standard meta-learning usually optimizes for the meta-test task using the param-
eters found in the inner loop, relying on a (typically small and clean) validation set. Here, we get
rid of this assumption since do not have access to any held-out nor clean data, therefore we opt for
a data augmentation approach in order to provide unseen data to the model.

We seek a representation that can conciliate both biased and unbiased samples and at the same time
prevent the model from overfitting the meta-training data (the two subsets D̂bias and D̂unbias), which
is a common problem in meta-learning. We take inspiration from Mixup (Zhang et al. (2017)) as a
way to combine samples from the two subsets. Mixup provides a convex combination of both input
samples and labels and it has demonstrated its efficacy as an effective regularizer. Specifically, we
feed the model with samples resulting from the mix of examples from biased and unbiased data,
aiming at likely breaking the shortcuts present in the dataset (see Fig. 2).

We construct D̂mix by mixing samples of D̂bias, D̂unbias, sampling the parameter λ ∼ Beta(α, β):
xmix = λ x̂1 + (1− λ) x̂2
ymix = λ ŷ1 + (1− λ) ŷ2

x̂1, ŷ1 ∈ Dbias , x̂2, ŷ2 ∈ Dunbias
(4)

Computed the augmented samples xmix, ymix, the model is updated in the outer loop:

L := (1− γ) L(D̂bias, fθ) + γ L(D̂unbias, fθ)︸ ︷︷ ︸
Weighted ERM

+ζ L(D̂mix, fθ∗)︸ ︷︷ ︸
Regularizer

(5)
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Algorithm 1 Learning to learn unbiased representations
1: Input: Dataset D, initialized weights θ0, learning rate η, hyper-parameters ζ, γ, T .
2: Output: learned weights θ
3: Initialize: θ ← θ0
4: Identify D̂bias and D̂unbias by a pseudo-labeling method (Eq. 2) (γ controls the accuracy)
5: for t = 1, ..., T do
6: Sample (xb,yb), (xu,yu) uniformly from D̂bias and D̂unbias

7: Compute θ∗ (Eq. 3) . Inner loop step
8: Sample (x̂1, ŷ1), (x̂2, ŷ2) uniformly from D̂bias and D̂unbias

9: Construct D̂mix (Eq. 4) . Produce augmented samples
10: Update θ (Eq. 5) . Outer loop step

where ζ is a hyper-parameter controlling the regularization. Note that the first two losses are evalu-
ated on the current parameters configuration θ, while the loss over the augmented samples is evalu-
ated in the meta-state θ∗ (see Eq. 3). This implies that the model has to compute a gradient through
a gradient, similarly to what happens in optimization-based meta-learning methods. The hyperpa-
rameter ζ controls the amount of regularization in the final loss: if ζ = 0, the method corresponds to
a (weighted) ERM in which the contributions of the losses on the two subsets are scaled by (1− γ)
and γ. When ζ > 0 the weighted ERM optimization trajectory is corrected by the regularization
term. This corresponds to find parameters θ that are good for both D̂bias and D̂unbias, but can also
possibly reduce the loss value on the newly generated data samples D̂mix. Accuracy is not so af-
fected by the choice of the ζ value: indeed, it increases as long as this ζ assumes positive values up
to reaching high performance quite steadily, after that the contribution of the regularization becomes
too strong and accuracy decreases. We set the value of ζ to a fixed value (= 10) for all experiments.
Further analysis on this parameter is reported in the Appendix. The complete method is summarized
in Algorithm 1.

4 EXPERIMENTS

In the following, we show the effectiveness of models trained by our method in a series of bench-
marks, ranging from toy problems with synthetic biases to realistic image classification applications.
We compare with methods that tackle the same bias problem in both supervised and unsupervised
way.

4.1 SYNTHETIC BIAS: COLORED MNIST AND CORRUPTED CIFAR-10

To control the bias in the data and for the sake of comparison, we adopt two benchmarks that have
been employed by Nam et al. (2020), namely colored MNIST and corrupted CIFAR-101,2. The first
is a modified version of the standard digit recognition dataset (LeCun & Cortes (2010)), in which
colors are added in order to artificially induce a bias in the dataset. The dataset is made of 60,000
training RGB images and 10 classes to be predicted. Specifically, each sample is colored with a
color tone which is randomly sampled from a Gaussian distribution whose mean is specific for each
class; in practice, each class in the training data is observed mostly under a certain color tone, while
the test set has no specific correlation between classes and colors and is balanced.

Corrupted CIFAR-10 has been introduced by Hendrycks & Dietterich (2019). There are 50,000
training RGB images and 10 classes. The bias here stems from the fact that each image is corrupted
with a specific noise (e.g., Gaussian blur, salt and pepper noise, etc.). Specifically, each class has
a privileged type of noise under which it is observed during training (e.g., most of car images are
corrupted with motion blur). There are two versions of the dataset, namely Corrupted CIFAR-101

and Corrupted CIFAR-102: in the two versions different types of noise affecting data are present.

4.2 REALISTIC BIAS: WATERBIRDS AND BIAS ACTION RECOGNITION

We tested our method on real images datasets using Waterbirds and Bias Action Recognition (BAR).
Waterbirds has been introduced by Sagawa et al. (2019) and combines bird photos from the Caltech-
UCSD Birds-200-2011 (CUB) dataset (Welinder et al. (2010)) with background images from the

6



Under review as a conference paper at ICLR 2022

Figure 3: Examples of biased training data and unbiased data (with red boundary) from Waterbirds and BAR.

Places dataset (Zhou et al. (2018)). There are 4,795 training images and the goal is to distinguish
two classes, namely landbird and waterbird. The bias here is represented by the background of the
images: most landbirds are observed with land background while most waterbirds are observed with
a marine background.

BAR has been introduced by Nam et al. (2020) as a realistic benchmark to test model’s debiasing
capabilities. It is constructed using several data sources and consists of 1,941 photos of people
performing several actions, and the task is to distinguish them in 6 classes: Climbing, Diving, Fish-
ing, Racing, Throwing and Vaulting. The bias arises from the context in which action photos are
observed at training: for instance, climbing actions are performed in a dry mountain scenario at
training time, whereas in the test set, they are set in a snowy environment. For more details, readers
can refer to the original paper.

4.3 PERFORMANCES

We report the performance of our approach on the different benchmarks above mentioned; accuracy
is the metric adopted. Since we deal with biased training data and balanced data in testing, we
report both accuracies on the testing subset of unbiased samples only, those under-represented in
the training data, as well as over the entire test set (biased + unbiased), to assess how much we
lose on the biased samples. In fact, as we learn features having higher generalization capacity,
spurious correlations are likely less exploited to classify biased examples, and this may cause a drop
in performance on such samples.

For Colored-MNIST, our network fθ is an MLP with 3 hidden layers with 100 neurons each. We
used pre-trained ResNet-18 (on ImageNet (Krizhevsky et al. (2012))) as a backbone for Corrupted
CIFAR-10 and BAR, and pre-trained ResNet-50 as backbone for Waterbirds. We remove the last
layer from such backbones, adding a 2-layer MLP head on top of it.

The meta-parameter θ∗ is computed only for the last two fully connected layers while the backbone
is trained with only the contribution of the weighted ERM in Eq. 5 (ζ = 0). We set the learning
rate η = 0.001 for all datasets with batch size= 256 on synthetic biased data = 128 for realistic
bias. We used Adam (Kingma & Ba (2015)) as optimizer. All the experiments comply the same
evaluation protocol used in the competing methods for a fair comparison. All implementation details
are reported in the Appendix.

Results on the synthetic bias datasets. We first show the results on synthetically biased datasets
in Tables 1 and 2, reporting the overall average accuracy and the one for unbiased samples only,
respectively. We compare against two baselines, a model trained by Empirical Risk Minimization
(ERM) and our method with ζ = 0, which cancels out the contribution of the regularization brought
by the outer loop step in Eq. 5. This second baseline only weighs the contributions of the two splits
found via pseudo-labeling. We also compare our approach with several methods to learn unbiased
representations, either using annotation for the bias or not. For the methods requiring explicit knowl-
edge of the bias, we consider REPAIR (Li & Vasconcelos (2019)), which does sample upweighting,
and Group-DRO (Sagawa et al. (2019)), which tackles the problem using robust optimization. We
finally report the performance of our direct competitor, Learning from Failure (LfF) (Nam et al.
(2020)), which is able to learn a debiased model without exploiting the labeling of the bias.

We consider different ratios of the bias (ranging from 95% up to 99.5%) as in Nam et al. (2020).
This ratio indicates the actual percentage of the dataset belonging to Dbias and Dunbias. Since we
do not know such ratio, in all experiments, we fix the hyper-parameter γ = 0.85, i.e. we consider
85% of the training data as biased, and therefore assigned to D̂bias, and the remaining 15% to
D̂unbias. Since γ is a sensitive parameter, we provide an ablation analysis in which we show how
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Dataset Bias ratio ERM Li et al. (2019) Sagawa et al. (2019) Nam et al. (2020) Ours, ζ = 0 Ours, ζ = 10

Colored-MNIST

95% 77.6± 0.44 82.5± 0.59 84.5± 0.46 85.3± 0.94 82.3± 0.99 89.3 ± 1.02
98% 62.3± 1.47 72.9± 1.47 76.3± 1.53 80.5± 0.45 73.8± 0.87 83.4 ± 0.97
99% 50.3± 0.16 67.3± 1.69 71.3± 1.76 74.0± 2.21 68.3± 0.98 81.6 ± 0.96
99.5% 35.3± 0.13 56.4± 3.74 59.7± 2.73 63.4± 1.97 57.1± 1.05 72.2 ± 0.87

Corrupted CIFAR-101

95% 45.2± 0.22 48.7± 0.71 53.1± 0.53 59.9± 0.16 54.3± 1.40 63.3 ± 1.11
98% 30.2± 0.77 37.9± 0.22 40.2± 0.23 49.4± 0.78 44.4± 0.90 56.2 ± 0.89
99% 22.7± 0.97 32.4± 0.35 32.1± 0.83 41.4± 2.34 33.4± 0.91 50.5 ± 0.98
99.5% 17.9± 0.86 26.3± 1.06 29.3± 0.11 31.7± 1.18 26.1± 0.94 43.3 ± 0.97

Corrupted CIFAR-102

95% 41.3± 0.46 54.1± 1.01 57.9± 0.31 58.6± 1.18 53.8± 1.21 62.5 ± 0.91
98% 28.3± 0.77 44.2± 0.84 46.1± 1.11 48.7± 1.68 43.2± 0.96 55.2 ± 0.98
99% 20.7± 0.81 38.4± 0.26 39.6± 1.04 41.3± 2.08 37.0± 0.99 49.8 ± 1.01
99.5% 17.4± 0.85 31.0± 0.42 .342± 0.74 34.1± 2.39 30.6± 0.89 43.6 ± 1.32

Table 1: Accuracy on whole test set. Accuracy (in %) evaluated on biased + unbiased test samples for
different bias ratios. Best performance are marked in bold.

Dataset Bias ratio ERM Li et al. (2019) Sagawa et al. (2019) Nam et al. (2020) Ours, ζ = 0 Ours, ζ = 10

Colored-MNIST

95% 75.2± 0.87 83.3± 1.23 83.1± 0.81 85.8± 0.66 82.1± 0.88 89.2 ± 1.09
98% 58.1± 0.56 73.4± 0.79 74.3± 1.09 80.7± 0.56 73.3± 0.73 83.4 ± 0.85
99% 44.8± 0.84 68.3± 0.75 69.6± 0.63 74.2± 1.94 67.6± 0.92 81.6 ± 0.79
99.5% 28.1± 0.45 57.3± 0.61 57.1± 0.78 63.5± 1.94 56.8± 0.79 72.1 ± 0.94

Corrupted CIFAR-101

95% 39.4± 0.75 50.0± 0.89 49.0± 0.48 59.6± 0.03 54.3± 0.89 63.3 ± 1.10
98% 22.6± 0.45 38.9± 0.64 35.1± 0.92 48.7± 0.70 44.1± 0.83 56.1 ± 0.92
99% 14.2± 0.91 33.0± 0.57 28.0± 0.68 39.5± 2.56 32.3± 0.84 49.6 ± 0.85
99.5% 10.5± 0.28 26.5± 0.46 24.4± 0.48 28.6± 1.25 25.6± 0.91 42.1 ± 0.88

Corrupted CIFAR-102

95% 34.9± 0.84 54.5± 1.04 54.6± 0.61 58.6± 1.04 53.6± 0.86 62.3 ± 1.04
98% 20.5± 0.64 44.6± 0.83 42.7± 0.77 48.9± 1.61 43.8± 0.84 55.5 ± 0.98
99% 12.1± 0.75 38.8± 0.75 37.1± 1.22 40.8± 2.06 36.4± 0.93 49.7 ± 0.94
99.5% 10.0± 0.84 31.4± 0.53 30.9± 0.89 32.0± 2.51 29.8± 0.91 43.0 ± 0.85

Table 2: Results on unbiased test samples. Accuracy (in %) evaluated only on the unbiased samples for
different bias ratios. Best performance are marked in bold.

the performance changes as γ varies (see Section 4.4 below). Moreover, we set ζ = 10 throughout
all the experiments: in Appendix A, we report an ablation about this parameter.

We can observe consistent better results with respect to the competitors, for all datasets and all
possible bias ratios. Interestingly, the difference from the baselines increases as the dataset is more
biased (higher bias ratio): this indicates that our method is more effective as the bias is more severe.
The weighted ERM (ζ = 0) is already a strong baseline that surpasses, in some cases, the former
debiasing methods. Please, note that for both the unbiased samples and, in average, over the whole
test set, the improvement is significant by a large margin, with a minimum of about 4% up to 17%.
This denotes that our approach is not only better at generalizing over unbiased samples, but also
maintains high accuracy over the biased examples.

Results on the realistic biased datasets. In these trials, we still compare against the ERM baseline
and Group DRO, as supervised method as before, and four unsupervised algorithms, LfF (Nam
et al. (2020)), CVaR DRO (Levy et al. (2020)), ReBias (Bahng et al. (2020)), and JTT (Liu et al.
(2021)). Performances are reported in Figure 4(a). For these datasets, we remind that we do not
have the full control of the bias ratios. Differently from Colored MNIST and Corrupter CIFAR-10,
which have a balanced test set, Waterbirds test set is imbalanced: the goal is to increase the accuracy
on the unbiased samples without dropping the overall test accuracy, i.e. finding a good trade-off
between generalizing to unbiased samples keeping high performance on biased data as well. We
score favorably with respect to other unsupervised methods: we reach the second highest accuracy
on biased samples, statistically similar to JTT (which scores slightly higher), but we outperform it
over the whole test set, in average. We show also competitive performance against the supervised
method Group DRO: without using any bias supervision, our method surpasses its average test
accuracy even if the accuracy on biased data results lower (owing to the supervision). Concerning
the BAR dataset, our method outperforms all other competitors by a considerable margin. Since
there is no ground-truth for the bias, we only reported the average accuracy on the whole test set.

4.4 ABLATION STUDY

We conducted an ablation analysis using Corrupted CIFAR-101 (bias ratio= 95%), to assess the
contribution of each step characterizing our approach. First, we want to test the robustness of the
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Method Bias supervision Waterbirds BAR
Avg. Acc. Acc. Unbias Avg. Acc.

ERM No 97.3% 72.6% 53.5%
CVaR DRO (Levy et al. (2020)) No 96.0% 75.9% -
LfF (Nam et al. (2020)) No 91.2% 78.0% 62.9%
ReBias (Bahng et al. (2020)) No - - 59.7%
JTT (Liu et al. (2021)) No 93.3% 86.7% -

Group DRO (Sagawa et al. (2019)) (Supervised) Yes 93.5% 91.4% -

Ours (ζ = 10) No 94.1% 86.5% 64.3%

(a)

(b)

Figure 4: Results on Waterbirds and BAR. (a) Performance on the whole (Avg.) and unbiased (Unbias) only
test set: comparisons with baseline, unsupervised and supervised methods (see text for discussion). Ablation
on γ. (b) We set γ = 0.8, 0.85, 0.9, 0.95 and reported the related final accuracy. We compare with ERM
baseline, Nam et al. (2020) and our method using the ground-truth bias knowledge as an oracle, i.e., imposing
D̂bias = Dbias and D̂unbias = Dunbias.

Set 1 Set 2

Bias ratio
95% 98% 99% 99.5%

Acc. all Acc. unbias Acc. all Acc. unbias Acc. all Acc. unbias Acc. all Acc. unbias

No augmentation 58.8% 55.3% 46.1% 41.5% 40.0% 34.8% 33.6% 27.1%

D̂bias D̂bias 35.2% 29.7% 34.0% 28.4% 32.9% 26.7% 32.0% 27.5%
D̂unbias D̂unbias 60.2% 63.1% 54.1% 55.3% 48.4% 48.7% 40.4% 42.5%

D̂bias D̂unbias 63.8% 63.3% 56.4% 55.9% 50.9% 49.4% 43.1% 42.7%

Table 3: Ablation analysis on the augmentation strategies. We report the accuracy resulting from different
augmentation strategies and no augmentation, by varying the bias ratio. Our strategy results the winner over all
the other mixing policies.

classification performance towards the choice of the hyper-parameter γ that governs the amount of
data that we assign to the pseudo-labeled subsets. Results can be seen in Figure 4(b): we observe
that by varying γ from 80% to 95%, the final accuracy does not change sensibly, meaning that the
initial training of the network fφ is not a critical step as long as the biased training samples can be
learnt faster than the unbiased ones.

Second, we tested different strategies to perform data augmentation in the outer loop step. We
combined samples from D̂bias and D̂unbias (Eq. 4). In Table 3 we report the results when sampling
x̂1, x̂2 from different combinations of the subsets. Mixing both samples from D̂bias overfits the
biased data and results in the worst accuracy, while mixing both samples from D̂unbias increases
the generalization on unbiased samples but provides suboptimal results, especially for the biased
subset. Samples from D̂bias mixed with D̂unbias corresponds to our policy, which provides the best
performance. We also report the case in which no augmentation is performed (first row), i.e. xmix,
ymix are just drawn from D.

5 CONCLUSIONS

We proposed a novel solution for the problem of unsupervised debiasing using a meta-learning
strategy. After having subdivided by a pseudo-labeling method the training dataset into two subsets
of biased and unbiased samples, we treated them as tasks to be learned a bi-level optimization
algorithm. The key idea aimed at better generalization is the mixing of the two subsets to provide
the model with unseen data that can break the learning of the spurious correlations between data and
class labels. As future directions, we point out two main problems to be addressed. First, designing
more robust strategies to perform the pseudo-labeling stage to reach and perhaps even surpass the
performance using ground-truth bias knowledge. Second, finding more refined ways of combining
biased and unbiased samples to allow the model to reach a better generalization.
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A ABLATION STUDY ON ζ

We set different values of ζ, i.e., [0, 1, 10, 100, 1000] on the synthetic biased dataset Corrupted
CIFAR-101 with bias ratio= 95%, and we show in Figure 5 the accuracy on the whole test set and
on the unbiased samples. We note that there is a large range, 1 < ζ < 100, in which the accuracy
is reaching high values for both subsets (please, note the logarithmic scale in the x axis). This
empirically shows that ζ is not so a sensitive parameter with respect to the proposed strategy, and
for this reason, we fix ζ = 10 in all our experiments.

Figure 5: Test accuracy for unbiased samples (Green) and generic samples (Red) for different values of ζ. X
axis is in logarithmic scale. For ζ = 0.0 we have the weighted ERM of Eq. 5.

B IMPLEMENTATION DETAILS

We report some additional details regarding the experimental section: we followed prior works (Nam
et al. (2020); Liu et al. (2021); Sagawa et al. (2019)) in order to have results as much comparable as
possible.

Colored MNIST. We used an MLP with 3 hidden layers with 100 neurons each as fθ. We set
learning rate η = 0.001, batch size= 256, hyperparameters γ = 0.85, ζ = 10 and trained for
K = 100 epochs. We used Adam (Kingma & Ba (2015)) as optimizer.

Corrupted CIFAR-101, 2. We used the Pytorch implementation of ResNet-18 (He et al. (2015))
with pre-training on ImageNet (Krizhevsky et al. (2012)). We removed the last layer and added a
2-layers MLP with 256 neurons in the hidden layer on top of the backbone. We set learning rate
η = 0.001, batch size= 256, hyperparameters γ = 0.85, ζ = 10 and trained for K = 100 epochs.
We used Adam as optimizer. We used random crops as data augmentation as in Nam et al. (2020).
We compute θ∗ only for the MLP-head parameters: in other words, the backbone is not involved in
the meta-learning process but is trained only with the Weighted ERM contribute of Eq. 5.

Waterbirds. We used pre-trained ResNet-50 (He et al. (2015)) (following Liu et al. (2021)). We
removed the last layer and added a 2-layers MLP with 256 neurons in the hidden layer on top of the
backbone. We set learning rate η = 0.001, batch size= 128, hyperparameters γ = 0.85, ζ = 10
and trained for K = 100 epochs. We used Adam as optimizer (with weight decay= 0.0001) and
no data augmentation. We compute θ∗ only for the MLP-head parameters as we do for Corrupted
CIFAR-10.

BAR. We used pre-trained ResNet-18 (He et al. (2015)) from which we removed the last layer and
added a 2-layers MLP with 256 neurons in the hidden layer on top of the backbone. We set learning
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rate η = 0.001, batch size= 128, hyperparameters γ = 0.85, ζ = 10 and trained for K = 100
epochs. We used Adam as optimizer (with weight decay= 0.0001) and random resized crops as
data augmentation as in Nam et al. (2020) We compute θ∗ only for the MLP-head parameters as we
do for Corrupted CIFAR-10.
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