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Abstract

Self-attention has been widely used in deep learning, and recent efforts have been1

devoted to incorporating self-attention modules into convolutional neural networks2

for computer vision. Previous approaches usually use fixed channels to compute3

feature affinity for self-attention, which limits the capability of selecting the most4

informative channels for computing such feature affinity and affects the perfor-5

mance of downstream tasks. In this paper, we propose a novel attention module6

termed Differentiable Attention (DA). In contrast with conventional self-attention,7

DA searches for the locations and key dimension of channels in a continuous space8

by a novel differentiable searching method. Our DA module is compatible with9

either fixed neural network backbone or learnable backbone with Differentiable10

Neural Architecture Search (DNAS), leading to DA with Fixed Backbone (DA-FB)11

and DA-DNAS respectively. We apply DA-FB and DA-DNAS to two computer12

vision tasks, person Re-IDentification methods (Re-ID) and image classification,13

with state-of-the-art results on standard benchmarks and compact architecture14

compared to competing methods, revealing the advantage of DA.15

1 Introduction16

Self-attention, with its success in natural language processing, has recently drawn increasing interest17

beyond the NLP literature. Efforts have been made to introduce self-attention to deep convolutional18

neural networks (CNNs) for computer vision tasks with compelling results. The success of self-19

attention in computer vision is arguably attributed to its capability of capturing fine-grained cues20

and important parts of objects in images, which is particularly helpful for downstream tasks such as21

person Re-IDentification methods (Re-ID) and image classification. For example, non-local neural22

network [1] employs self-attention to aggregate input features to attention enhanced features by23

weighted summation of the input features. The weights in the weighted summation are the pairwise24

feature affinity, which is computed as the dot product between input features. Lacking an effective25

way of selecting channels, previous works [1, 2] use fixed channels to computer such feature affinity,26

and such fixed channels are selected by handcrafted pooling and sampling. As a result, the selected27

channels may not be the most informative ones for the downstream tasks.28

We argue that more informative channels should be selected in the attention modules to calculate29

more meaningful affinities among the features. In this paper, we propose a novel Differentiable30

Attention (DA) module which searches for the most informative channels in a differentiable manner.31

Figure 1 illustrates the difference between the vanilla self-attention and the proposed DA module.32

The main contributions of this paper are as follows.33

First, we propose the Differentiable Attention (DA) module. In contrast with conventional self-34

attention where fixed channels are used to compute pairwise similarity between input features, DA35

selects the most informative channels to compute task-oriented pairwise affinity, which outperforms36

the vanilla self-attention modules by extensive empirical study. DA employs a novel differentiable37

searching algorithm which learns the position and key dimension of the most informative channels38
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in the input features. In contrast with Gumbel-softmax based searching limited to a fixed number39

of options, DA searches for the location and key dimension in a continuous space comprising40

uncountably infinite options for these two parameters. While location and key dimension are integers41

with respect to which the loss function of the neural network is not differentiable, we extend these42

two parameters to real value domain by carefully designed bilinear interpolation, which enables43

differentiable optimization. The location and key dimension of the selected channels form a window,44

and the channels inside the window found by DA are used in the inference process of neural networks45

with DA modules. Since DA with a single window risks loosing informative channels, we further46

extend Single-Window DA to Multi-Window DA so as to further boost the performance of DA. A47

natural window merging process is used to merge overlapping windows obtained by Multi-Window48

DA, which adaptively infers the number of final disjoint windows.49

Second, DA modules are incorporated into either Fixed neural network Backbone or learnable50

backbone with Differentiable Neural Architecture Search (DNAS) algorithm, leading to DA-FB and51

DA-DNAS respectively. DA-DNAS is a new neural architecture search method jointly learning the52

network backbone and the architecture of DA, that is, the location and key dimension of channels.53

We apply DA to two computer vision tasks, person Re-ID and image classification with extensive54

empirical study. DA-FB and DA-DNAS not only outperform current state-of-the-art, but also render55

much more compact architecture compared to competing methods. Notably, DA achieves the mean56

Average Precision and top-1 accuracy of 61.0% and 82.7% with only 12.8% of the FLOPs of the57

model with best precision so far. We also have interesting findings which are of independent interest.58

For example, we find DA tends to be more selective in channel selection in higher layers than it does59

in bottom layers, reflecting the fact that only a few channels have the useful semantic information for60

prediction. By pruning unselected channels, neural networks with DA enjoys smaller parameters than61

their counterparts with vanilla self-attention. Our experiments also suggest that Multi-Window DA62

further improves the performance of Single-Window DA with almost the same neural network size63

and FLOPs.64

1.1 Related Work65

Integrating attention mechanism into CNN models also achieved great success in person Re-ID66

and image classification. Existing works in Re-ID [3, 4] enforce the attention mechanism using67

convolutional operations with small receptive fields on feature maps. There are also works [5, 6]68

exploring external clues of human semantics (pose or mask) as attention or to use them to guide69

the learning of attention. The explicit semantics which represent human structures is helpful for70

determining the attention. However, the external annotation or additional model for pose/mask71

estimation is usually required. Following the success of self-attention in natural language processing72

[7] and its adaption to computer vision tasks [1], recent studies [8, 9, 10] in Person Re-ID also73

adopted self-attention modules and non-local blocks, which aims at enhancing the features of the74

target position via aggregating information from all positions. Self-attention is also used to enhance75

CNNs for image classification and recognition [11, 12]. To the best of our knowledge, all attention76

modules are confined to the regime of fixed channels for computing feature affinity. The proposed77

DA module focuses attention on the most informative channels of input features.78

Our DA module falls in the class of Neural Architecture Search (NAS) methods in the sense that79

the architecture of attention modules, i.e. the channels used to compute feature affinity, is learned.80

Existing NAS methods can be grouped into two categories by optimization scheme, namely Dif-81

ferentiable NAS (DNAS) and Non-differentiable NAS. NAS methods heavily rely on controllers82

based reinforcement learning [13] or evolution algorithms [14] to discover better architecture. The83

search phase of such methods usually cost thousands of GPU hours. Recently, DNAS have shown84

promising results with improved efficiency. DNAS frameworks are able to save a huge amount85

of GPU hours in the search phase. So far all the DNAS methods [15, 16, 15] search for optimal86

options for architecture in a handcrafted and finite option set. They transform the discrete network87

architecture space into a continuous space over which differentiable optimization is feasible, and use88

gradient descent techniques to search the continuous space. However, the continuous space is for the89

coefficients used to interpolating finite architecture options, not for architecture itself. For example,90

DARTS [15] relaxes the originally discrete optimization problem of NAS to a continuous problem in91

terms of the option interpolation coefficients, enabling efficient optimization by Stochastic Gradient92

Descent (SGD). In a similar manner, almost all the other DNAS methods [17, 18] adapt Softmax93

or Gumbel Softmax to search among a finite set of candidate operations. For example, to search94

for the best filter numbers at different convolution layers, FBNet [18, 17], models each option as a95
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term with a Gumbel Softmax mask. In contrast with existing DNAS methods, DA searches for the96

architecture of attention modules in a continuous architecture space with uncountably many options97

for the location and key dimension of channels.98

The rest of this paper is organized as follows. We first revisit the vanilla self-attention in Section 2.1.99

Then we introduce our proposed Differentiable Attention (DA) module and its differentiable searching100

method in Section 2.2. We then introduce the multi-window extension of DA in Section A.1. Lastly,101

we introduce how we integrate DA into fixed neural network backbones and learnable backbones in102

Section B.5, with extensive experimental results in Section 3. The right figure of Figure 1 illustrates103

the overview of a deep neural network with a DA module.104

2 Proposed Approach105
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Figure 1: Left: Comparison between the vanilla self-attention and the proposed Differentiable
Attention (DA). The channels used in these two types of attention modules are illustrated as boxes in
red with notation y. While fixed channels are used in the vanilla self-attention to compute feature
affinity, DA automatically searches for informative channels to compute task-oriented feature affinity.
Please refer to Section 2.1 and Section 2.2 for more details. Right: Deep neural networks with the
vanilla self-attention (top) and DA (bottom) for the Re-ID task. As illustrated by the visualization of
the output feature representation with Grad-CAM, DA captures more accurate parts of human body
than the vanilla self-attention. Please refer to Section A.6 of the supplementary for more visualization
results.

2.1 Revisit Self-Attention and Non-local Block106

Vanilla Self-Attention The self-attention module applied in Transformer [7] is in the form of a107

scaled dot-product. Suppose X is an input feature of shape h× w × c which is reshaped as a matrix108

X ∈ Rhw×c. The vanilla self-attention module applies three projections to X to obtain key (K),109

query (Q), and value (V ) representations. The output is computed as a weighted sum over the value110

V by Attention(Q,K, V ) = softmax(QK⊤
√
dk

)V . Following the success of self-attention in natural111

language processing, non-local block [1] is put forward to integrate self-attention mechanism into112

CNNs for computer vision tasks. In a non-local block, the attention module can be formulated as113

Attention = f(θ(X), ϕ(X))g(X), where θ(·), ϕ(·) and g(·) are transformations applied on the input114

X. Recent work [2] demonstrates that θ, ϕ, and g in this equation can be removed due to CNNs’115

strong capability of function approximation. By using dot-product to model the correlation between116

features, the non-local attention module can be simplified as117

Attention =
1

C(X)
XX⊤X, (1)

where matrix X ∈ Rhw×c is reshaped from the input tensor X. C(X) is a normalization factor similar118

to the softmax function in self-attention. As dot-product is used to compute feature affinity, C(X)119

equals to the number of positions in X. In previous non-local attention module designs [1, 2, 14],120
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Figure 2: Interpolation process in Differentiable Attention. The left figure illustrates the forward and
backward processes for the key dimension l of DA. The right figure illustrates these processes for the
position s of DA.

the channels used to compute the affinity between input features are usually selected by handcrafted121

pooling [1] or sampling [2]. As a result, the feature affinity matrix is expressed as122

r(I0)(X) = X(I0)X(I0)
⊤
, (2)

where X(I0) is a submatrix of X formed by aggregating columns of X with column indices in a set123

I0. For example, LightNL [2] compresses X by setting I0 to {1, 2, . . . , ⌊r × c⌋}, where r is a fixed124

ratio, such as 0.5. Such X(I0) is the channels marked in red in the left figure of Figure 1 for the125

vanilla self-attention, with y = X(I0).126

2.2 Differentiable Attention and Its Differential Searching Method127

Clearly, different channels of the input features encode different information. As a result, handcrafted128

sampling or pooling methods risk overlooking key channels important for feature affinity and using129

uninformative channels to generate the feature affinity matrix r.130

To solve this problem, we propose a novel differentiable searching algorithm to search for the the131

most important channels to compute the feature affinity. In other words, we propose to search for an132

optimal I and the compute the feature affinity matrix by r(I)(X) = X(I)X(I)⊤. Note that I is a subset133

of all the indices of columns of X. For convenience of optimization, we restrict I to consecutive134

indices so that it can be parameterized by a staring location s and a size, or key dimension l. In this135

manner, I is expressed as I(s,l) = {s, s+ 1, . . . , s+ l}, and our goal is reduced to searching for s136

and l. The correlation matrix can be expressed as137

r(I(s,l))(X) = X(I(s,l))X(I(s,l))
⊤
, (3)

where s and l are integers in the conventional setting of attention modules. Note that X(I(s,l)) forms138

a window of channels, so our goal is to search for a window to potentially improve the performance139

of the vanilla self-attention. In the left figure of Figure 1 for DA, X(I(s,l)) is illustrated as a red box140

of learnable location and size/key dimension, where y = X(I(s,l)). Existing DNAS methods [15, 18]141

treat different choices of s and l as different options and adopt Softmax or Gumbel Softmax based142

searching methods to search among a handcrafted and finite option set. The performance of such143

methods highly depends on the choice of option set. Moreover, the searching process of representaive144

DNAS methods, such as FBNetV2 [17], involve a separately tuned temperature parameter which is145

not trained by SGD used to optimize the network weights. As a result, there could be inconsistency146

between searching for architecture and training of neural network weights in the searching process.147

To this end, we propose to search for the starting location s and the key dimension l for DA by a148

novel differentiable searching method where s and l can take fractional values and the network loss149

function is differentiable with respect to s and l . The advantages of the differentiable searching150

method are two-fold. First, it searches for the optimal s and l among uncountably infinite options151

because s and l are in a continuous domain. Second, s and l are optimized by the same SGD152

used to optimize the network weights. As a result, the searching for s and l, or equivalently the153

searching for the architecture of the DA module, is seamlessly incorporated into the optimization154

of other network weights by the regular SGD, so there is no inconsistency between optimization of155

architecture parameters and network weights.156
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To further explore the result of the searching of s and l over the feature map X, we visualized an157

input feature map of DA with searched s and l in Figure 3 deferred to the supplementary. We have158

also marked the X(I0) where I0 is the first half of all the channels of X suggseted by LightNL. As159

shown in this figure, the red-boxed area of X(I(s,l)) is potentially more informative since it exhibits160

more variation in patterns than other areas selected by X(I0).161

To optimize s and l with SGD, we need to first calculate the gradient of the loss function w.r.t. s and162

l. While the loss function of the neural network is not differentiable with respect to integer s and l163

under the conventional setting, DA employs bilinear interpolation to define the correlation matrix164

with fractional s and l. The r(I(s,l))(X) with fractional s and l can be expressed as165

r(I(s,l))(X) =
[
1− sdec sdec

]
R(I(s,l))(X)

[
1− ldec
ldec

]
, (4)

where166

R(I(s,l))(X) =

[
r(I(sint,lint)

)(X) r(I(sint,lint+1))(X)

r(I(sint+1,lint)
)(X) r(I(sint+1,lint+1))(X)

]
. (5)

In equation (5), sint = ⌊s⌋, sdec = s− ⌊s⌋,and lint = ⌊l⌋ , ldec = l − ⌊l⌋ are integral part and decimal167

part of s and l respectively, where ⌊x⌋ denotes the greatest integer less than or equal to x. With the168

bilinear interpolation, we are now able to compute the gradients of the loss function w.r.t. sdec and169

ldec by170

∇sdecL = ∇
r
(I(s,l))(X)

L · ∇sdecr
(I(s,l))(X), (6)

∇ldecL = ∇
r
(I(s,l))(X)

L · ∇ldecr
(I(s,l))(X). (7)

∇sdecr
(I(s,l))(X) and ∇ldecr

(I(s,l))(X) are the gradients of correlation matrix w.r.t. sdec and ldec. With171

equation (4), the gradients of correlation matrix w.r.t. sdec and ldec are computed by172

∇sdecr
(I(s,l))(X) = (1− ldec)(r

(I(sint+1,lint))(X)− r(I(sint,lint))(X))

+ ldec(r
(I(sint+1,lint+1))(X)− r(I(sint,lint+1))(X)),

(8)

and173

∇ldecr
(I(s,l))(X) = (1− ldec)(r

(I(sint,lint+1))(X)− r(I(sint,lint))(X))

+ ldec(r
(I(sint+1,lint+1))(X)− r(I(sint+1,lint))(X)).

(9)

Note that in equation (5), r(I(sint,lint+1))(X) and r(I(sint+1,lint+1))(X) contain one more element than174

r(I(sint,lint))(X) and r(I(sint+1,lint))(X). To make their size compatible in the bilinear interpolation, we175

pad one zero after r(I(sint,lint))(X) and r(I(sint+1,lint))(X).176

In the above formulation, sint and lint are indices for slicing X to compute spatial correlation. Our177

key observation is that, while the network loss function is not differentiable with respect to sint178

and lint, it is indeed differentiable with respect to sdec and ldec based on our calculation. Therefore,179

we can apply regular SGD to optimize sdec and ldec, and update sint and lint whenever the decimal180

values of sdec and ldec are out of the range of (0, 1). Training a neural network with DA using the181

proposed differentiable searching algorithm is described in Algorithm 1. Moreover, Figure 2 shows182

how r(I(s,l))(X) is computed by bilienar interpolation in the forward process, and how lint, ldec, sint,183

sdec are updated in the backward process.184

So far we have introduced our new differentiable searching algorithm for DA which searches for a185

single window of channels, or Single-Window DA. In order to avoid the potential risk of loosing186

informative channels by using only one window and enhance the flexibility of the window searching187

process, we extend the Single-Window DA to Multi-Window DA where multiple windows are188

searched for, which is detailed in Section A.1 of the supplementary.189

2.3 DA with Fixed Backbone and Learnable Backbone190

With our novel differentiable searching method for DA in in Algorithm 1 deferred to the supple-191

mentary, the searching for the architecture of DA can be performed by regular SGD. As a result,192
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DA can be incorporated into arbitrary neural network backbone, and the weights of the backbone193

and the architecture of DA modules can be jointly trained by SGD. To evaluate the performance194

of DA for person Re-ID, we designed two models where DA is incorporated into popular feature195

extraction backbones, such as MobileNetV2, and the learnable backbone by FBNetV2 [17], leading196

to DA-FB and DA-DNAS respectively. Both Single-Window DA and Multi-Window DA can be used197

for DA-FB or DA-DNAS.198

3 Experiments199

In this section, we demonstrate the performance of DA for the Re-ID task. Table 1 shows the200

performance of DA-FB with single-window DA and competing baselines on the three person Re-ID201

datasets. In particular, Table 1 demonstrates that DA-DNAS archives superior results on all the202

standard Re-ID benchmark datasets over other competing Re-ID methods with a compact neural203

architecture. With only 1.809 GFLOPs, DA-DNAS achieves much better performance than existing204

methods which require higher GFLOPs, such as Auto-ReID [10] and ABD-Net [9].205

More results and details are deferred to the supplementary. In the supplementary, Section B.1206

introduces the datasets and evaluation metrics, and Section B.2- Section B.3 detail our results for207

single-window and multi-window DA. Section B.4 further shows the performance of multi-window208

DA on the image classification task on the ILSVRC-12 dataset [19].209

Table 1: Performance of DCS-FB with comparisons to state-of-the-art Re-ID models

Methods Backbones Input Size Params(M) FLOPs(G) Market1501 DukeMTMC-reID MSMT17
mAP R1 mAP R1 mAP R1

Trained from scratch
HACNN [20] Inception 160 × 64 4.5 0.55 79.9 92.3 63.8 80.5 - -
OSNet [21] OSNet 256 × 128 2.2 0.98 81.0 93.6 68.6 84.7 43.3 71.0

Auto-ReID [9] ResNet50 384 × 128 13.1 2.05 74.6 90.7 - - - -
RGA [8] MobileNetV2 256 × 128 5.13 2.63 81.5 92.9 - - - -

Baseline (ours) MobileNetV2 256 × 128 2.22 0.380 78.9 92.0 - - - -
DCS-FB (ours) MobileNetV2 256 × 128 2.23 0.382 84.5 93.9 73.6 85.5 36.9 63.6
DCS-FB (ours) MobileNetV2 - 200 256 × 128 5.09 0.884 87.3 95.1 77.2 88.6 45.9 72.3
DCS-FB (ours) OSNet 256 × 128 2.2 0.98 84.0 93.8 73.2 85.2 36.7 63.4 -

Pre-trained on ImageNet
AANet [22] ResNet50 256 × 128 >23.5 - 85.3 94.7 75.3 84.0 - -
CAMA [23] ResNet50 256 × 128 >23.5 - 84.5 94.7 72.9 85.8 - -

BAT-Net [24] ResNet50 256 × 128 >23.5 - 87.4 95.1 77.3 87.7 - -
ABD-Net [9] ResNet50 384 × 128 69.17 14.1 88.28 95.6 78.59 89.0 60.8 82.3

Auto-ReID [10] ResNet50 384 × 128 13.1 2.05 85.1 94.5 - - 52.5 78.2
OSNet [21] OSNet 256 × 128 2.2 0.98 84.9 94.8 73.5 88.6 52.9 78.7

RGA [8] ResNet50 256 × 128 28.3 - 87.5 96.0 - - 57.5 80.3
DCS-FB (ours) MobileNetV2 256 × 128 2.23 0.382 85.0 94.7 75.2 86.7 52.7 78.2
DCS-FB (ours) MobileNetV2 - 200 256 × 128 5.09 0.884 87.1 95.1 78.6 89.1 54.8 78.5
DCS-FB (ours) OSNet 256 × 128 2.2 0.98 86.4 94.6 75.4 88.7 54.6 79.3
DCS-FB (ours) MobileNetV2 384 × 128 2.23 0.571 86.3 95.0 76.4 88.2 56.2 79.9
DCS-FB (ours) MobileNetV2 - 200 384 × 128 5.09 1.32 88.3 95.3 79.3 90.1 57.8 80.5
DCS-FB (ours) ResNet50 384 × 128 23.5 6.55 88.4 96.0 76.3 88.4 56.2 80.3

DCS-DNAS(ours) - 384 × 128 24.5 1.809 88.3 95.7 79.8 91.1 62.9 83.6
DCS-DNAS(ours) - 384 × 128 13.2 1.235 88.2 95.6 79.5 90.6 62.1 82.8

4 Conclusion210

We presented Differentiable Attention (DA), which searches for the informative channels when211

computing the feature affinity matrix in attention modules. In contrast with conventional self-212

attention modules, DA searches for the location and key dimension of channels in a continuous213

space comprising uncountably infinite options. We also extend DA to a Multi-Window design, which214

further improves the performance of DA. DA with fixed or learnable neural backbones outperforms215

other competing methods for two computer vision tasks, person Re-ID on three public benchmark216

datasets and image classification on the ILSVRC-12 dataset, in terms of prediction accuracy and217

size/FLOPs of the resultant models.218
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Supplementary for Differentiable Attention331

A Additional details in Section 2332

In this section, we first show the visualization of the input feature map of DA with searched s and l333

in Figure 3, and the algorithm for training a deep neural network with Differentiable Attention in334

Algorithm 1.

Figure 3: The visualization of X(I(s,l)) where the feature map X is the input to the third DA module
in MobileNetV2-200 on an image from the DukeMTMC-reID dataset for the Re-ID task. Here
s = 29.049 and l = 37.013, and the shape of X is 96× 128.

335

Algorithm 1 Training a Deep Neural Network with Differentiable Attention

Input: Maximum iterations T , mini-batch of training samples {X1, X2, ..., XN}, network learning rate η,
DA learning rate γ, and the loss function of the network L(X,Ω, sdec, ldec), the percentage p used for the
search of DA in each mini-batch.
Output: The network parameters Ω, DA location parameters ldec, lint, and DA key dimension parameters sdec,
sint
for t = 1, 2, ..., T do

for i = 1, 2, ..., ⌊N × (1− p)⌋ do
Compute the loss L(Xi,Ω, sdec, ldec)
Obtain the gradient of Ω denoted by∇ΩL(Xi,Ω, sdec, ldec)
Ω← Ω− η∇ΩL(Xi,Ω, sdec, ldec)

end for
for i = ⌊N × (1− p)⌋+ 1, ..., N do

Compute the loss L(Xi,Ω, sdec, ldec)

Compute the gradient of correlation matrix w.r.t. sdec denoted by∇sdecr
(I(s,l))(X) with equation (8)

Compute the gradient of sdec denoted by∇sdecL(Xi,Ω, sdec, ldec) with equation (6)
Update sdec ← sdec − γ∇sdecL(Xi,Ω, sdec, ldec)
if 0 ≤ sdec < 1 then

continue
else

sdec ← sdec − ⌊sdec⌋
sint ← sint + ⌊sdec⌋

end if
Compute the loss L(Xi,Ω, sdec, ldec)

Compute the gradient of correlation matrix w.r.t. ldec denoted by∇ldecr
(I(s,l))(X) with equation (9)

Compute the gradient of ldec denoted by∇ldecL(Xi,Ω, sdec, ldec) with equation (7)
Update ldec ← ldec − γ∇ldecL(Xi,Ω, sdec, ldec)
if 0 ≤ ldec < 1 then

continue
else

ldec ← ldec − ⌊ldec⌋
lint ← lint + ⌊ldec⌋

end if
end for

end for
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A.1 Multi-Window Differentiable Attention336

Section 2 introduces our new differentiable searching algorithm for DA which searches for a single337

window of channels, or Single-Window DA. In order to avoid the potential risk of loosing informative338

channels by using only one window and enhance the flexibility of the window searching process,339

we extend the Single-Window DA to Multi-Window DA where multiple windows are searched for.340

We herein define the features with channels selected by each window as X(i) = X(I(si,li)). We341

use (si, li) to denote the starting location and the size or key dimension of each window, where342

i ∈ {1, 2, ...,M} and M is the number of windows. Because channels selected by Multi-Window343

DA are the union of channels selected by all the windows, we need to combine overlapping windows344

together. Overlapping windows are defined as follows. Let O be a sequence of windows, if the union345

of all the windows in O is a window with starting position sO and a key dimension lO, then O is a346

sequence of overlapping windows. Let {(sk1 , lk1), (sk2 , lk2), ..., (skP
, lkP

)} be the starting positions347

and key dimensions of the windows in such O, then sO and lO are computed by348

sO = min
j=1,...,P

skj
, lO = max

j=1,...,P
(skj

+ lkj
)− sO. (10)

In this way, all the M windows of Multi-Window DA can be merged into T disjoint windows with349

T ≤ M . Suppose that {X(O1),X(O2), ...,X(OT )} are the final disjoint windows after merging, then350

the features with channels selected by the union of all the M windows in Multi-Window DA are351

X{M} = Concat
[
X(O1),X(O2), ...,X(OT )

]
. (11)

Then, the correlation matrix in Multi-Window DA can be computed by352

r{M}(X) = X{M}X{M}⊤. (12)

Similar to Single-Window DA, the loss function of a neural network equipped with Multi-Window DA353

is still differentiable with respect to all the starting locations and key dimensions of the M windows,354

which are {si, li}Mi=1. Algorithm 1 can be used to train a neural network with Multi-Window DA, and355

the integral and decimal parts of each si and li are updated according to the same updating rules in356

Algorithm 1 for sint, sdec and lint, ldec. By the aforementioned window merging process, the number357

of final windows T is adaptively inferred. In Section A.5 of the supplementary, we provide statistics358

on how T varies with comparison to M in different settings, and it is showed that Multi-Window359

DA can always learn a very compact set of disjoint final windows which contain potentially richer360

information than than that of Single-Window DA.361

B Additional Experimental Results362

B.1 Datasets and Evaluation Metrics363

In this section, we evaluate our proposed DA modules on three public person Re-ID datasets, i.e.,364

Market-1501 [25], DukeMTMC-reID [26], MSMT17 [27]. Standard Re-ID metrics top-1 accuracy365

(R1), and the mean Average Precision (mAP) are used to evaluate the performance of DA and baseline366

models. Note that for the fairness of comparison, re-ranking [28] and multi-query fusion [29] were367

not used.368

B.2 Single-Window DA369

B.2.1 DA with Fixed Backbones and Learnable Backbones370

DA modules are compatible with popular manually designed feature extraction CNN backbones,371

such as InceptionNet [30], ResNet [31], and MobileNetV2 [32]. In our experiments, we evaluate372

the performance of DA modules on widely used lightweight CNN backbone, MobileNetV2, with373

width 1.0. Similar to ResNet, MobileNetV2 is also built upon bottleneck structures. Following the374

common practices in person Re-ID [8, 9], the attention modules are added after each convolution375

stage. Table 1 shows the performance of DA-FB with Single-Window DA and competing baselines376

on the three person Re-ID datasets. The fixed backbone can be pre-trained on the ImageNet dataset377
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Table 2: Performance of DA-DNAS on
MSMT17

Methods Params(M) FLOPs(G) mAP R1
Auto-ReID [10] 13.1 2.05 52.5 78.2

RGA [8] 28.3 - 57.5 80.3
ABD-Net [9] 69.17 14.1 60.8 82.3
DA-DNAS 13.2 1.235 62.1 82.8
DA-DNAS 24.5 1.809 62.9 83.6

Table 3: Performance of Multi-Window DA
Methods Backbones Market1501 DukeMTMC-reID MSMT17

mAP R1 mAP R1 mAP R1
Single-Window DA

DA-FB MobileNetV2 86.3 95.0 76.4 88.2 56.2 79.9
DA-FB MobileNetV2 - 200 88.3 95.3 79.3 90.1 57.8 80.5

DA-DNAS FBNetV2 88.3 95.7 79.8 91.1 62.9 83.6
Multi-Window DA

DA-FB MobileNetV2 86.2 95.0 76.4 88.2 56.0 79.8
DA-FB MobileNetV2 - 200 88.2 95.4 79.2 90.3 57.8 80.8

DA-DNAS FBNetV2 88.6 96.0 80.1 91.5 63.1 83.9

[19] or not. It can be observed that DA-FB outperforms the corresponding baseline network with378

the same manually designed backbone, reflecting the advantage of searching for the location and379

key dimension of attention models automatically in a continuous space. Notably, with pre-training380

on ImageNet, DA-FB with the backbone of MobileNetV2-200 leads to a model of only 5.09M381

parameters and 1.32G FLOPs achieving mAP and R1 of 79.2% and 90.1% on DukeMTMC-reID.382

To integrate learnable backbone with DA, we adopt the supergraph proposed in FBNetV2 [17] and383

jointly train the network backbone and DA modules following Section B.5. The learned backbone384

is a subgraph of the supergraph learned by the DNAS algorithm. The inverted residual bottleneck385

with 3× 3 convolution kernel is used as the basic building block of the supergraph. DNAS algorithm386

is used to search the channel number of each convolution layer. The experiment results of DA with387

learnable backbone on MSMT17 is shown in Tabel 2. On MSMT17, DA-DNAS achieve the best388

mAP and R1 with only 12.8% of the FLOPs required by the second best model in accuracy, ABD-Net389

[9]. For each neural backbone, a DA module is inserted after each of its four stages. Section B.5390

of the supplementary includes the detailed architecture of MobileNetV2,MobileNetV2-200 and the391

supergraph of FBNetV2 used in the experiments. For DA-FB and DA-DNAS, the architecture of DA,392

which includes location and key dimension of channels, and the architecture of the neural backbone393

(if applicable) are learned during the search phase, and the learned architecture is then trained again to394

obtain the final performance. The training details are included in Section B.6 of the supplementary.395

0

96

(a) (b)
0

96

0

128

(c)

Figure 4: Comparisons between windows
learned by Multi-Window DA and Single-
Window DA inserted after the third stage in
(a) MobileNetV2, (b) MobileNetV2-200 and (c)
FBNetV2 on the Market-1501 dataset

396

B.3 Multi-Window DA397

In this section, we demonstrate the performance of398

Multi-Window DA with comparison to its single-399

window counterpart, that is, Single-Window DA.400

To this end, we replace every Single-Window401

DA in the MobileNetV2, MobileNetV2-200 and402

FBNetV2 in the previous section with a Multi-403

Window DA. The length of each window in the404

Multi-Window DA is initialized to l0. The starting405

positions of different windows are initialized as406

{0, l0 × 1, l0 × 2, ..., l0(M − 1)}, where c is the407

number of channels of the input feature and the408

initial window number is M = ⌈ c
l0
⌉. Note that the409

size of the last window is set to c−l0(M−1) which410

may not be l0. l0 is empirically set to 8 in our exper-411

iments. In this manner, the windows are initialized412

to cover all the channels of the input features be-413

fore searching. It is worthwhile to emphasize that 8 is an empirical choice of the initial window size414

which should be a small number, so that Multi-Window DA can start with many small windows. By415

the window merging process introduced in Section A.1, windows will be merged and the final window416

number can be automatically inferred. The optimization settings for the searching phase and training417

phase are the same as that we used for Single-Window DA in Section B.2. The experiment results of418

Multi-Window DA with comparison to Single-Window DA on three public benchmarks are shown in419

Table 3. The results manifest that Multi-Window DA outperforms Single-Window DA on the public420

benchmarks. The best accuracy on MSMT17, (mAP,R1) of (63.1%,83.9%), is achieved with even421

smaller FLOPs of 1.798M after removing channels not selected by Multi-Window DA, compared to422

1.809M in Table 2. We also visualize the windows learned by Multi-Window DA and Single-Window423

DA inserted after the third stage of MobileNetV2 and MobileNetV2-200 on the Market-1501 dataset424

in Figure 4, where the windows are marked in colors. Figure 4 illustrates that the windows learned425
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by Multi-Window DA sparsely spread over all the channels and select channels not chosen by its426

Single-Window counterpart. The distribution of windows also suggests that Multi-window DA has427

more flexibility in searching for the most informative channels for computing pairwise affinity of428

the input features. In Section B.7, we further study the windows learned by these two variants of429

DA, and show 1) the statistics including the sum of the length of windows compared to the channel430

number of input features; 2) the histogram of window length for Multi-Window DA. We observe that431

Multi-Window DA can adaptively select more compact set of channels in higher layers. Additionally,432

the sum of the window length of Multi-Window DA is usually smaller than the window length of433

Single-Window DA. Notably, In Table 8 and Table 9 of Section B.7 showing the window statistics,434

we observe that while DA selects most channels after Stage 1 of MobileNetV2 and FBNetV2, it only435

selects less than 48.6% channels after Stage 4 for all neural backbones. This suggests that Multi-436

Window DA is capable of searching for the inherent sparsity structure of the channels that contribute437

to capturing task-oriented feature correlation. Such observation is of independent interest, since it438

provides a principled way of identifying redundant channels in models with attention modules.439

B.4 Multi-Widow DA for Image Classification on ImageNet440

Table 4: Performance of Multi-Window DA for Image Classifi-
cation on ImageNet. SA stands for the vanilla self-attention, and
MW-DA stands for Multi-Window DA

Methods FLOPs(M)/#Params(M) Top-1 Top-5
MobileNetV2 327.7/3.51 71.8 90.5

MobileNetV2+SA 330.2/3.51 72.1 91.1
MobileNetV2+MW-DA 329.1/3.51 72.4 91.2

FBNetV2 330.3/7.50 75.7 92.5
FBNetV2+SA 333.2/7.50 75.9 92.9

FBNetV2+MW-DA 331.7/7.50 76.1 93.0

We also evaluate DA for the441

task of large-scale image clas-442

sification. Table 4 shows the443

performance of Multi-Window444

DA with two neural backbones,445

MobileNetV2 and FBNetV2, on446

the ILSVRC-12 dataset [19].447

The architecture of the Mo-448

bileNetV2 and the supergraph449

of FBNetV2 and the location450

where the vanilla Self-Attention451

(SA)/Multi-Window DA (MW-452

DA) modules are inserted into453

the corresponding neural back-454

bones are the same as that used for the Re-ID task in Section B.3, expect for slight adjustment in the455

last layer for classification purpose. It can be observed that while SA improves the accuracy of the456

corresponding baseline, MW-DA further improves the Top-1 accuracy of SA by the same amount457

as the improvement of SA over the baseline (0.3% for MobileNetV2, 0.2% for FBNetV2). Notably,458

such accuracy improvement of MW-DA over SA is promising, as the resultant model even enjoys459

slightly less FLOPs by removing the redundant channels not selected by MW-DA.460

B.5 DA with Fixed Backbones and Learnable Backbones461

We introduce the details about the architecture of MobileNetV2, MobileNetV2-200 and the supergraph462

of FBNetV2 used in the experiments of the main paper.463

MobileNetV2 [33, 32] is an efficient neural network model with depthwise separable convolution464

and inverted residual block as building blocks. The original MobileNetV2 has 53 convolution layers.465

Following the convention of incorporating non-local attention blocks into neural networks [1, 8],466

we insert DA modules to the end of each convolution stage of MobileNetV2. To further explore the467

potential of DA with deeper backbone, we designed a deeper variant of MobileNetV2 with 200 layers468

termed MobileNetV2-200, which is inspired by the design of 200-layer ResNet [34]. Table 5 shows469

the structure of MobileNetV2 and MobileNetV2-200 as well as the positions of DA modules.470

We also combined DA modules and the supergraph of FBNetV2 [17] to propose DA-DNAS where the471

neural network backbone and the DA modules are jointly trained. FBNetV2 employs Differentiable472

Neural Architecture Search (DNAS) algorithm to learn the backbone architecture by choosing options473

in a supergraph. FBNetV2 designs a search space with building blocks inspired by the design of474

MobileNetV2. It features a masking mechanism based on Gumbel Softmax for feature map reuse475

so that it can efficiently search for the number of filters of each convolution layer. We insert DA476

modules into the supergraph of FBNetV2, and the supergraph of FBNetV2 and the positions of DA477

modules are shown in Table 7.478
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Operator t c
n

sMobileNetV2 MobileNetV2-200
conv2d - 32 1 1 2

bottleneck 1 16 1 1 1
bottleneck 6 24 2 3 2

DA Module Inserted
bottleneck 6 32 3 21 2

DA Module Inserted
bottleneck 6 64 4 19 2
bottleneck 6 96 3 18 1

DA Module Inserted
bottleneck 6 160 3 3 2
bottleneck 6 320 1 1 1

DA Module Inserted
conv2d - 1280 1 1 1
avgpool - - 1 1 -
conv2d - - - -

Table 5: The backbone structure of MobileNetV2 and MobileNetV2-200 Each line describes a
sequence of 1 or more identical layers, repeated n times. All layers in the same sequence have the
same number c of output channels. The first layer of each sequence has a stride s and all others use
stride 1. The expansion factor t is always applied to the input feature.

Operator e f
n

sFBNetV2 FBNetV2-Large
conv2d 1 16 1 1 2

bottleneck 1 (12, 16, 4) 1 1 1
bottleneck (0.75, 3.25, 0.5) (16, 28, 4) 1 1 2
bottleneck (0.75, 3.25, 0.5) (16, 28, 4) 2 6 1

DA Module Inserted
bottleneck (0.75, 3.25, 0.5) (16, 40, 8) 1 3 2
bottleneck (0.75, 3.25, 0.5) (16, 40, 8) 2 6 1

DA Module Inserted
bottleneck (0.75, 3.25, 0.5) (48, 96, 8) 1 3 2
bottleneck (0.75, 3.25, 0.5) (48, 96, 8) 2 6 1
bottleneck (0.75, 4.5, 0.75) (72, 128, 8) 4 12 1

DA Module Inserted
bottleneck (0.75, 4.5, 0.75) (112, 216, 8) 1 3 2
bottleneck (0.75, 4.5, 0.75) (112, 216, 8) 3 3 1

DA Module Inserted
conv2d - 1984 1 1 1
avgpool - - 1 1 1

fc - - 1 - -
Table 6: The supergraph of FBNetV2 and FBNetV2-Large (3 × depth), with block expansion rate
e, number of filters f , number of blocks n, and stride of first block s Tuples of three values in the
column of expansion rate e and number of filters f represent the lowest value, highest, and steps
between options (low, high, steps).

The backbone architecture of FBNetV2 is learned in a differentiable manner by SGD, therefore,479

the searching for the backbone architecture and the architecture of our DA modules can be jointly480

performed by SGD. The proposed DA-DNAS jointly searches for the backbone architecture and481

the architecture of DA modules. Similar to the design of MobileNetV2-200, we also designed a482

deeper search space for FBNetV2, termed as FBNetV2-Large. The depth of FBNetV2-Large is 3483

times the depth of the original FBNetV2. The structure of FBNetV2-Large is also shown in Table484

6. Combining our DA module with DNAS algorithm, we are able to search for models of different485

size. To test the performance of our DA module with larger backbone, we also designed a deeper486

version of FBNetV2-Large, which is approximately 6× the depth of the original FBNetV2. Table 7487

shows the supergraph of the deeper FBNetV2-Large. The performance of DA with FBNetV2-Large488

(DA-DNAS (3×)) and the deeper FBNetV2-Large (DA-DNAS (6×)) is shown in Table 2. It can be489

observed that DA-DNAS (6×) outperforms ABD-Net[9] in terms of top-1 accuracy, while the model490

size and FLOPs are fractions of that of ABD-Net.491
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Operator e f n s

conv2d 1 16 1 2
bottleneck 1 (12, 16, 4) 1 1
bottleneck (0.75, 6.25, 0.5) (16, 28, 4) 1 2
bottleneck (0.75, 6.25, 0.5) (16, 28, 4) 12 1

DA Module Inserted
bottleneck (0.75, 6.25, 0.5) (16, 40, 8) 6 2
bottleneck (0.75, 6.25, 0.5) (16, 40, 8) 12 1

DA Module Inserted
bottleneck (0.75, 6.25, 0.5) (48, 96, 8) 6 2
bottleneck (0.75, 6.25, 0.5) (48, 96, 8) 12 1
bottleneck (0.75, 7.5, 0.75) (72, 128, 8) 24 1

DA Module Inserted
bottleneck (0.75, 7.5, 0.75) (112, 216, 8) 6 2
bottleneck (0.75, 7.5, 0.75) (112, 216, 8) 6 1

DA Module Inserted
conv2d - 1984 1 1
avgpool - - 1 1

fc - - - -
Table 7: The supergraph of FBNetV2-Large (6 × depth), with block expansion rate e, number of
filters f , number of blocks n, and stride of first block s Tuples of three values in the column of
expansion rate e and number of filters f represent the lowest value, highest, and steps between options
(low, high, steps).

B.6 Training Details of DA with Fixed Backbones and Learnable Backbones492

B.6.1 DA with Fixed Backbones493

During the search phase, we use input size of 256× 128 with a batch size of 64. Momentum SGD is494

used to optimize both the architecture parameters and network parameters for 300 epochs. In each495

epoch, the network weights are trained with 80% of training samples, and the parameters for positions496

and key dimensions of all DA modules are trained with the remaining 20% of training samples. The497

initial learning rate for architecture parameter is set to 0.3, and cosine schedule is applied. The initial498

learning for network parameters is set to 0.035, and we decay it by 10 at the 150-th and 240-th epoch.499

The architecture parameters and network parameters are updated iteratively during the search phase.500

In the training phase, the size of input images is 256 × 128 for all datasets. Following common501

practice, we also use random cropping, horizontal fiipping, and random erasing to augment the data.502

Both identification loss with label smoothing [35] and triplet loss with hard mining [36] are used to503

supervise the training. All models are trained with momentum SGD for 600 epochs. The momentum504

for SGD is set as 0.9. The initial learning rate is set to 0.035, and we decay the learning rate by 10 at505

the 300-th and 500-th epoch. We set the weight decay of SGD to 0.0005.506

The experiment results of DA with fxied backbone is shown in Tabel 1 of the main paper, where507

DA-FB denotes our model. In the experiments, DA is integrated into multiple CNN backbones508

including OSNet, MobileNetV2, and ResNet50. We compare the performance of our model with509

other state-of-the-art methods on three datasets. For fair comparisons with some state-of-the-art510

methods like Auto-ReID, we have also tried input size of 384× 128.511

B.6.2 DA with Learnable Backbones512

During the search phase, we use input size of 384× 128 with a batch size of 64. Both the architecture513

parameters and network parameters are trained for 300 epochs. In each epoch, the network weights514

are trained with 80% of training samples by SGD. The Gumbel Softmax sampling parameters in the515

supergraph and the parameters for positions and key dimensions of all DA modules are trained with516

the remaining 20% using Adam. The initial learning rate for optimizing architecture parameters is set517

to 0.03, and cosine learning rate schedule is applied. The initial learning rate for network parameters518

is set to 0.035, and it is decayed by 10 at the 150-th and 240-th epoch.519

After the search phase, we pre-train the model on ImageNet. Then we fine-tune the model on the520

Re-ID datasets. During the fine-tuning process, the input images are augmented by random horizontal521
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fiip, normalization, random erasing, and mixup. Adam is used to fine-tune the network. The initial522

learning rate is set to 0.00035. A warmup strategy is used in the fine-tune process. In the beginning,523

the backbone weights are frozen and only the weights associated with classifiers are trained. After 10524

epochs, all layers are freed for training for the remaining 390 epochs. The learning rate is decayed by525

10 after 200 and 300 epochs.

Table 8: Window statistics of Single-Window DA and Multi-Window DA for Re-ID

Methods Backbones Stage 1 Stage 2 Stage 3 Stage 4
sum of

window length
channel
number

sum of
window length

channel
number

sum of
window length

channel
number

sum of
window length

channel
number

Single-Window DA
DA-FB MobileNetV2 23.392 24 30.903 32 57.005 96 126.326 320
DA-FB MobileNetV2 - 200 23.907 24 31.790 32 51.215 96 137.993 320

DA-DNAS FBNetV2 27.011 28 38.033 40 50.016 128 120.360 216
Multi-Window DA

DA-FB MobileNetV2 21.371 (3 → 2) 24 30.209 (4 → 3) 32 52.955 (12 → 6) 96 133.623 (40 → 15) 320
DA-FB MobileNetV2 - 200 19.603 (3 → 1) 24 28.317 (4 → 3) 32 46.669 (12 → 8) 96 119.270 (40 → 13) 320

DA-DNAS FBNetV2 26.367 (4 → 3) 28 37.015 (5 → 2) 40 50.901 (16 → 8) 128 87.216 (27 → 9) 216

526

Table 9: Window statistics of Multi-Window DA for ImageNet Classification

Methods Backbones Stage 1 Stage 2 Stage 3 Stage 4
sum of

window length
channel
number

sum of
window length

channel
number

sum of
window length

channel
number

sum of
window length

channel
number

DA-FB MobileNetV2 22.293 (3 → 1) 24 31.107 (4 → 2) 32 47.692 (12 → 6) 96 128.919 (40 → 13) 320
DA-DNAS FBNetV2 26.739 (4 → 2) 28 37.861 (5 → 2) 40 63.031 (16 → 8) 128 105.397 (27 → 10) 216

B.7 More Details about Multi-Window DA for Re-ID527

The experiment results of Multi-Window DA with comparison to Single-Window DA on three public528

benchmarks are shown in Table 3 of the main paper. The results manifest that Multi-Window DA529

outperforms Single-Window DA on the public benchmarks. To further study the windows learned530

by these two variants of DA, statistics including the sum of the length of windows, and the channel531

number of input features are shown in Table 8 and Table 9 for Re-ID and image classification532

respectively. For Multi-Window DA, the number of windows before and after merging is also533

provided. The sum of window length for Multi-Window DA is the sumber of windows after the534

window merging process. We observe that Multi-Window DA can adaptively learn a compact of535

number of windows in DA. Additionally, the sum of the window length of Multi-Window DA is536

usually smaller than the window length of Single-Window DA. This suggests that Multi-Window DA537

is more capable of searching for the sparsity structure of the channels that are necessary for capturing538

task-oriented feature similarity. Figure 5 and Figure 6 illustrate the histograms of window lengths539

before and after the window merging process in Multi-Window DA inserted after the fourth stage in540

MobileNetV2, MobileNetV2-200 and FBNetV2 on the Market1501 dataset for the ReID task. We541

can see that even after the window merging process, most of the final disjoint windows still have a542

length less than 10. This observation also indicates that Multi-Window DA is able to capture sparse543

structure of the channels that are important for calculating pairwise affinity of the input features.544
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(a) (b) (c)

Figure 5: Histograms of window length before merging in Multi-Window DA inserted after the fourth
stage for (a) MobileNetV2, (b) MobileNetV2-200 and (c) FBNetV2. In (a) and (b), the histogram
is drawn for 40 windows. In (c), the histogram is drawn for 27 windows. In each histogram of this
figure and Figure 6, the horizontal axis denotes the length of windows and the vertical axis denotes
the number of windows.

(a) (b) (c)((bb))

Figure 6: Histograms of window length after the window merging process in Multi-Window DA
inserted after the fourth stage for (a) MobileNetV2, (b) MobileNetV2-200 and (c) FBNetV2. The
number of windows in (a), (b) and (c) are 15, 13 and 9, respectively. The vertical axis denotes the
number of final disjoint windows after the window merging process described in Section 2.3 of the
main paper.
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