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Abstract
The goal of opponent modeling is to model the op-
ponent policy to maximize the reward of the main
agent. Most prior works fail to effectively handle
scenarios where opponent information is limited.
To this end, we propose a Limited Information Op-
ponent Modeling (LIOM) approach that extracts
opponent policy representations across episodes
using only self-observations. LIOM introduces a
novel policy-based data augmentation method that
extracts opponent policy representations offline
via contrastive learning and incorporates them as
additional inputs for training a general response
policy. During online testing, LIOM dynamically
responds to opponent policies by extracting oppo-
nent policy representations from recent historical
trajectory data and combining them with the gen-
eral policy. Moreover, LIOM ensures a lower
bound on expected rewards through a balance
between conservative and exploitation. Experi-
mental results demonstrate that LIOM is able to
accurately extract opponent policy representations
even when the opponent’s information is limited,
and has a certain degree of generalization abil-
ity for unknown policies, outperforming existing
opponent modeling algorithms.

1. Introduction
Opponent Modeling (He et al., 2016; Hong et al., 2017;
Zheng et al., 2018; Foerster et al., 2017) is an important
branch of Multi-Agent Reinforcement Learning aimed at
utilizing opponent information to model the opponent in
order to maximize self (i.e., the main agent’s) reward, par-
ticularly when the opponent policy is non-stationary. How-
ever, existing opponent modeling approaches heavily rely
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on the completeness of opponent information, rendering
them limited in accuracy and effectiveness when opponent
observations and actions are unknown. To address this issue,
we propose the Limited Information Opponent Modeling
(LIOM) algorithm, which models the opponent policy solely
based on the main agent’s historical observations. We di-
vide the problem into two stages: offline training and online
testing.

During the offline training stage, we aim to learn a powerful
general policy on a given set of opponent policies, which can
approximate the optimal response policy of any known or
unknown opponent as closely as possible. This requires an
accurate and generalizable representation of opponent poli-
cies as support. To this end, we propose a novel policy-based
data augmentation approach that interacts with opponent
policies with various augmentation policies to generate tra-
jectories for constructing positive and negative samples. We
then extract cross-episode trajectory representations self-
supervisedly via contrastive learning as opponent policy
representations. Then, the opponent policy representations
are further inputted into the reinforcement learning algo-
rithm for learning the general policy. The advantage of the
general policy lies in its ability to generalize to an infinite
number of opponent policies, implying no need for relearn-
ing against new individual opponent policies during online
testing.

During the online testing stage, we encode the recent his-
torical trajectories into opponent policy representations and
use them as additional inputs to the general policy. This dy-
namic response allows us to handle non-stationary opponent
policies. Furthermore, to deal with difficult-to-generalize
opponent policies, we dynamically update a weight based
on the reward, which selects between a conservative Nash
equilibrium policy and an exploitative general policy. This
ensures the lower bound of expected returns.

This paper presents two innovative contributions: (1) oppo-
nent modeling is performed only based on self-observation,
which renders our approach adaptable to almost any environ-
ment. (2) a novel policy-based data augmentation technique
is proposed, which allows for independent extraction of pol-
icy representations without being influenced by policies it
interacts with. Moreover, we introduce a classic algorithm
EXP3 to address the trade-off between conservative and
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exploitation during online testing.

We compared the performance of LIOM with multiple
algorithms in two classic reinforcement learning bench-
marks, Kuhn Poker and Soccer. Our results demonstrate that
LIOM outperforms existing opponent modeling algorithms
in terms of performance against both ”seen” and ”unseen”
opponents.

2. Related Work
2.1. Opponent Modeling

Early opponent modeling research primarily focused on
simple environments with fixed opponent policies. With
the introduction of non-stationary environments, existing
opponent modeling can be categorized into two approaches:
implicit modeling and explicit modeling.

Implicit opponent modeling refers to extracting opponent
information for representation learning during training. He
et al. (2016) proposed an end-to-end training approach by
merging the opponent’s observation with the agent’s obser-
vation using a deep neural network. Hong et al. (2017)
further incorporated opponent action information and fitted
the opponent policy through a neural network. Considering
that the opponent may also have learning behaviors, Foerster
et al. (2017) leveraged recurrent reasoning to estimate the
parameters of the opponent policy network and maximize
the agent’s reward. Raileanu et al. (2018) took a differ-
ent perspective, considering the opponent policy network
parameters of the agent’s own policy and using opponent
observations to make decisions.

Explicit opponent modeling refers to the explicit modeling
of opponent policies, dividing opponent types, and online
detection and response during the interaction process. Ros-
man et al. (2016) first proposed bayesian policy reuse for
multi-task learning, while Hernandez-Leal et al. (2016) ex-
tended this to multi-agent systems by using MDPs to model
opponents and adding a detection mechanism for unknown
opponent policies. In more complex environments, Zheng
et al. (2018) used neural networks to model opponents and
introduced a rectified belief model to improve opponent
detection accuracy and speed. Building on this work, Yang
et al. (2018) introduced the Theory of Mind approach to
defeat opponents using higher-level decision-making meth-
ods in cases where the opponent is also using an opponent
modeling method.

2.2. Contrastive Learning

As the most prevalent self-supervised learning algorithm
in recent years, contrastive learning aims to learn common
features among similar instances while distinguishing dis-
similar instances. Oord et al. (2018) initially proposed

InfoNCE loss, which encodes time-series data. By segre-
gating positive and negative samples, it can extract data-
specific representations. Following this approach, He et al.
(2020) achieved high performance in image classification
by enhancing the similarity between the query vector and its
corresponding key vector, while reducing similarity with the
key vectors of other images. From the perspective of data
augmentation, Chen et al. (2020) applied various transfor-
mations such as random cropping, inversion, grayscale, etc.,
on images, and extracted invariant representations through
contrastive learning. Subsequent works have made further
improvements, achieving performance levels comparable to
supervised learning algorithms on certain tasks.

3. Methodology
We introduce our main algorithm LIOM, the offline training
in Sec. 3.1 and the online testing in Sec. 3.2.

3.1. Offline training

This section first introduces a novel policy data augmenta-
tion method. Then, we introduce the encoder training based
on contrastive learning, where the opponent policy repre-
sentation can be obtained from historical trajectory data.
The policy representation will assist in training the general
response policy and solving online execution policies.

Data augmentation is widely used for representation extrac-
tion, where it can extract important features while disre-
garding irrelevant information. In contrastive learning, data
augmentation is mainly used to create positive and negative
samples. However, the opponent’s policy representation
cannot be learned independently, it can only be extracted
from interaction trajectories. We thus define a policy that in-
teracts with an opponent’s policy as an augmentation policy.
We use some pure policies as augmentation policies since
they take deterministic actions and have a minor effect on
the trajectory representations’ distribution.

By treating the interaction with an augmentation policy as
a form of data augmentation, we can define a policy-based
contrastive loss. For a given N opponent policy set, we
randomly choose two augmentation policies and to interact
with the opponent policies. Then, the obtained trajectories
are encoded to form the set of trajectory representations
{µ1, µ2, ..., µ2N}, where µ2k−1 and µ2k are generated by
the same opponent policy. The loss function can be defined
as:

L =
1

2N

N∑
k=1

[l(2k − 1, 2k) + l(2k, 2k − 1)], (1)

where:

l(i, j) = − log
exp (si,j/τ)∑2N

k=1 1[k ̸=i] exp (si,k/τ)
. (2)
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Figure 1. LIOM consists of two stages: (a) Offline training and (b) Online testing.

Here si,j represents the cosine similarity between trajectory
representation µi and µj , and τ is the temperature coeffi-
cient.

Due to the unknown observation information of the oppo-
nent, inferring the current opponent policy from a single-
episode trajectory is challenging. Therefore, it is necessary
to extract cross-episode opponent policy representations.
The specific procedure is illustrated in Figure 1(a). Let
h denote the number of game episodes required to learn
the policy representations. For a N opponent policy set
{π−1

1 , π−1
2 , ..., π−1

N }, we randomly select two augmented
policies π1

1 and π2
1 . Let opponent policy π−1

i interact with
augmented policy π1

1 , and randomly sample a trajectory set
Dh = {τ1, . . . , τh}. For each trajectory, we use GRU to
extract the features:

zt = fGRU(τt). (3)

It is necessary to further encode and aggregate the repre-
sentations zt obtained from trajectories. In this paper, we
employ the mean operation for aggregation due to simplify
the expression:

µ2i−1 =
1

h

h∑
t=1

fMLP(zt). (4)

Similarly, opponent policies interact with the augmented
policy π2

1 to construct a set of trajectory representations
{µ1, . . . , µ2N}, based on extracted features. By minimizing

contrast loss (Eq. 1), we can obtain the opponent policy
encoder fϕ(·) in offline stage:

µD = fϕ(D). (5)

After that, the opponent policy representation µ is regarded
as labeled information, which assists the agent to make opti-
mal responsive decisions against different opponent policies.
This is particularly important in scenarios where the oppo-
nent’s observations are unknown.

The core idea is to select an opponent policy π−1
k and inter-

act with it, storing the trajectory information τ in the his-
torical trajectory set Dk. Before each episode of the game
starts, the historical trajectory Dh

i for the current episode is
selected from Dk. The opponent policy representation µ is
generated based on Dh

i and a pre-trained opponent policy
encoder fϕ(·), and then it is combined with the observation
o1t of the main agent as a new observation to the critic and
policy networks for training, and the network parameters
are updated using the SAC algorithm. The main advantage
of training a general policy lies in enabling the opponent
policy encoder to obtain relatively accurate representations
of unknown opponent policies, improving generalization.

3.2. Online testing

This section first introduces the representation extraction
method for online opponent policies. Then, we discuss the
choice between conservative and exploitative policies and
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Algorithm 1 LIOM(testing)
Require: Nash equilibrium policy πNE , general policy πµ,

opponent policy encoder fϕ(·), opponent policy set
Πtest, number of testing episodes T , trajectory length
H , number of steps behind h, EXP3 parameters p =
[0.5, 0.5], s = [0, 0], ρ = 1, η = 0.1.

1: for testing episode i = 0 · · ·T − 1 do
2: Initialize history trajectory set D = ∅
3: if i < h then
4: Choose to interact with opponent using πNE , gen-

erating trajectory τi.
5: D ← D ∪ τi.
6: else
7: Cut out historical trajectory Dh

i for current episode
from D.

8: Generate opponent policy representation µ =
fϕ(D

h
i ).

9: Update probability distribution p according to
Eq. (6).

10: Choose policy πi for this episode based on proba-
bility distribution p, generating trajectory τi.

11: Update score s based on chosen policy and Eq. (7).
12: if πi = πµ then
13: D ← D ∪ τi.
14: end if
15: end if
16: end for

present a dynamic response policy that maximizes expected
rewards.

Using the opponent policy encoder fϕ obtained in the offline
training phase and the general policy πµ, LIOM can respond
to the opponent policy in online testing. For opponents with
continuously changing policies, the agent fits the opponent
policy representation µ using the recent h episodes of his-
torical trajectory Dh. The real-time calculated µ is then as
the input of the general policy πµ to continuously adjust the
currently used policy, achieving the optimal response to the
current opponent. However, for unknown opponent poli-
cies, although the general policy and policy representation
theoretically have certain generalization capabilities, the
agent still cannot guarantee to respond to any unknown op-
ponent policy. A conservative and stable policy is, therefore,
necessary to handle this situation.

To maximize expected return during online testing, the algo-
rithm needs to balance between the conservative policy πNE

and the exploitative policy πµ. This scenario can be mod-
eled as a classic Multi-Armed Bandit (MAB) problem, that
is, how to quickly converge to the higher expected return
policy when the return distribution for choosing policies
πNE and πµ is uncertain. We choose to use the EXP3 (Auer
et al., 2002) algorithm to solve the problem. The EXP3

algorithm dynamically maintains an action probability dis-
tribution p, and the probability of choosing action a in the
ith selection is given by:

pi(a) = (1− η)
(1 + ρ)si(a)∑K
j=1(1 + ρ)sj(a)

+
η

K
, (6)

where K is the number of actions, and ρ and η are hyper-
parameters, s represents the score of each action, which is
also dynamically maintained:

si+1(a) = si(a) +
ηr

Kpi(a)
. (7)

Here, a is selected based on the distribution p, and r is
the reward obtained in this selection. In theory, the EXP3
algorithm’s regret R∗

n has a lower bound:

R∗
n ≥ c

√
nK, (8)

where n is the total number of selections, and c is a constant.

Combined with the policy representation estimation and pol-
icy selection algorithm EXP3, we can obtain the online part
of the LIOM algorithm. As shown in Algorithm 1, at the be-
ginning of testing, LIOM uses the Nash equilibrium policy
for a period of interaction. On the one hand, the algorithm
needs enough data to construct the historical trajectory set
D. On the other hand, using the Nash equilibrium policy
for exploration is a more stable approach when there is less
information about the opponent. When there is enough data,
only the trajectory data of interactions between πµ and the
opponent will be kept in D to avoid the influence of trajec-
tory data with different distributions on the performance of
πµ. It is worth noting that the exploration factor η should
not be set too large or too small. Due to the possible changes
in the opponent’s policy, the exploration of policy selection
should be ensured as much as possible.

4. Experiments
The purpose of our experimental research is to compare the
performance of various methods when facing online adver-
sarial scenarios with known, unknown, and non-stationary
opponent policies. Additionally, we analyze the effective-
ness of policy representation and the balance between con-
servative and exploitation.

4.1. Experimental Setup

Environments. We employed two classic multi-agent ad-
versarial environments, Kuhn Poker (Fu et al., 2022) and
Soccer (Zheng et al., 2018). Kuhn Poker is a simplified
version of Texas Hold’em environment where each player
chooses one card from J, Q, and K, and subsequently selects
pass or bet in a turn-based manner. The rules is presented in
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Table 1. Kuhn Poker rules

PLAYER 1 PLAYER 2 PLAYER1 REWARD

PASS PASS ±1
PASS BET PASS (−1, 1)
PASS BET BET ±2
BET BET ±2
BET PASS (1,−1)

Figure 2. Soccer configuration.

Table 1, where±1 represents +1 for the player with a higher
card value, and -1 otherwise. Soccer is a partially observable
environment, as illustrated in Figure 2, where the attacker
(red) moves towards the goal along any path while the de-
fender (blue) tries to stop them, and can only observe the
position of the opponent when they are nearby. The winner
receives a reward of 1, while the loser receives -1. We se-
lected player 1 in Kuhn Poker and the defender in Soccer as
our main agents to control. Due to the unknown hand cards
or positions of the opponent, this presents a multi-agent
competition problem with limited opponent information.

Opponent policies. For each environment, we have de-
signed six opponent policies with distinct styles denoted
by {π0, π1, · · · , π5}. Among them, policies {π0, π1, π2}
constitute the visible policies and are used to form the train-
ing set Πtrain, while policies {π3, π4, π5} serve as invisible
policies. During online testing, we evaluate the effective-
ness of various algorithms on three categories of opponent
policy sets: ”seen”, ”unseen”, and ”mix”.

Comparing methods. The following policies will be com-
pared in LIOM:

• NE: Nash equilibrium policy, a conservative policy that
can be solved through self-play and other methods.

• ORACLE: Oracle policy refers to a policy that is aware

of the opponent policy type and trains separate policy
networks for each type of opponent policy. It can be
considered as the best response policy.

• DRON: An implicit opponent modeling algorithm that
uses opponent information as an additional input to the
network during offline training.

• Deep BPR+: An explicit opponent modeling algorithm
that selects the best response from the offline-trained
policy library using a Bayesian belief model. It can
learn new response policies and update the policy li-
brary by detecting unknown opponents online.

• LIOM w/o EXP3: Only use the general policy πµ to
combat the opponent, where µ is jointly calculated
based on historical trajectories within several episodes.

4.2. Online Testing with Fixed Opponents

Figure 3. The average rewards of different methods when facing
three categories of opponent policy sets in online testing.

In this experiment, we demonstrate the average rewards of
different methods in online testing against three categories
of opponent policy sets (”seen”, ”unseen” and ”mix”).

Based on the average rewards on Kuhn Poker presented
in Figure 3, LIOM exhibits performance inferior only to
the best response policy across all types of opponent pol-
icy sets. In the ”seen” setting, LIOM performs similarly
to LIOM w/o EXP3, indicating that when facing known
opponent policies, LIOM tends to select strategies with
stronger exploitation to achieve best responses. Moreover,
LIOM outperforms DRON significantly, demonstrating the
effectiveness of offline opponent policy representation ex-
traction across episodes. In the ”unseen” setting, LIOM
w/o EXP3 outperforms DRON, suggesting that the gen-
eral policy πµ possesses better generalization capability,
while LIOM surpasses LIOM w/o EXP3, owing to the lower
bound on LIOM’s performance guaranteed by EXP3, which
can handle difficult-to-generalize opponent policies. In the
”mix” setting, LIOM approaches the ORACLE policy for the
known opponent type, indicating that the opponent policy
representation µ inferred from limited opponent information
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Table 2. Average rewards in the interaction with independent opponent policies.

π0 π1 π2

NE −0.046± 1.308 −0.042± 1.274 −0.058± 1.143
ORACLE 0.068± 1.498 0.065± 1.673 0.031± 1.295
DRON 0.069± 1.509 0.025± 1.466 −0.122± 1.301
DEEP BPR+ −0.106± 1.507 −0.063± 1.43 −0.035± 1.307
LIOM W/O EXP3 0.057± 1.505 0.031± 1.49 0.02± 1.297
LIOM 0.055± 1.457 0.04± 1.456 0.018± 1.282

π3 π4 π5

NE −0.061± 1.11 −0.051± 1.175 −0.043± 1.206
ORACLE 0.026± 1.335 −0.039± 1.113 −0.01± 1.42
DRON −0.156± 1.258 −0.093± 1.337 −0.058± 1.377
DEEP BPR+ −0.039± 1.31 −0.098± 1.427 −0.097± 1.379
LIOM W/O EXP3 0.0± 1.326 −0.137± 1.349 −0.153± 1.364
LIOM 0.008± 1.291 −0.065± 1.163 −0.049± 1.197

by contrastive learning can effectively describe both known
and unknown opponents, thereby assisting the general policy
πµ in making decisions.

Based on the average rewards on Soccer shown in Figure
3, we arrive at conclusions similar to those on Kuhn Poker.
The only difference is that in the ”unseen” setting, Deep
BPR+ performs slightly better than LIOM due to its capa-
bility of online learning against unknown opponent policies.
However, the existing opponent modeling methods heavily
rely on the completeness of opponent information, leading
to a significant degradation in modeling accuracy when the
opponent information is limited. Therefore, considering all
settings, LIOM demonstrates superior performance.

4.3. Analysis of Opponent Policy Representations

Figure 4. The true coordinates (left) and representation distribu-
tions (right) of different opponent policies in Kuhn Poker.

In this experiment, we further analyse the effectiveness and
generalization of offline-extracted opponent policy repre-
sentations on Kuhn Poker, as it offers a straightforward
parameterized approach to define opponent policies. Figure
4 shows the true distribution of six opponent policies, as
well as their representation distribution in the representa-

tion space extracted by offline contrastive learning. Note
that, the training of the opponent policy encoder only use
Πtrain = {π0, π1, π2}.

Figure 4 shows that the distribution of opponent policy rep-
resentations, as depicted, closely aligns with the true distri-
bution. This indicates the accuracy and generalization of op-
ponent policy representations extracted through contrastive
learning. As policies cannot be directly represented, Fig-
ure 4 displays the distribution of trajectory representations
obtained from interacting with a randomly augmentation
policy. In fact, opponent policy representations computed by
different augmentation policies exhibit similar distributions,
and the distribution of opponent policy representations is
almost independent of the choice of augmentation policies.
This is because, through contrastive learning, we only ex-
tract the portions of the trajectory representation that are
relevant to opponent policies.

To further illustrate, we show in Table 2 the average returns
of various algorithms interacting with specific opponent
policies. Compared to DRON, LIOM w/o EXP3 performs
better when facing unknown opponent policy π3, indicating
that the learned opponent policy representation has certain
generalization ability. However, LIOM w/o EXP3 performs
worse on opponent policies π4 and π5 than LIOM, which
is consistent with the proximity relationships between dif-
ferent opponent policies as depicted in Figure 4. This also
indicates the necessity of introducing the EXP3 to balance
conservative and exploitative policies.

4.4. Online Testing with Non-stationary Opponents

In this experiment, we present the reward curve against
non-stationary opponents. As shown in Figure 5, LIOM
is capable of inferring the current opponent’s policy rep-
resentation µ based on the recent historical trajectory data
D, which serves as an additional input to the general pol-



Limited Information Opponent Modeling

Figure 5. The reward curve of online testing with non-stationary
opponent policies in Kuhn Poker.

icy πµ. Thus, it can dynamically respond to non-stationary
opponent policies, and its average performance is compa-
rable to the best response policy ORACLE. Additionally,
LIOM selects between conservative Nash equilibrium poli-
cies and exploitative general policies using EXP3, so that
the expected reward falls between the two, but guarantee-
ing a lower bound on the reward when facing unknown
opponents.

5. Conclusion and Future Work
In this paper, we propose a policy-based data augmenta-
tion method that achieves offline cross-episode opponent
policy representation extraction through contrastive learn-
ing. Our approach does not rely on the completeness of
opponent information and can infer the current opponent’s
policy representation through limited information, which is
not achievable by many existing opponent modeling works.
By introducing additional policy representations, a general
policy is trained offline and used as an exploitative policy.
We also use EXP3 to balance between conservative and
exploitation. Results from online testing demonstrate that
LIOM exhibits high expected returns and strong generaliza-
tion ability when facing unknown opponents.

Future work may involve exploring the relationship between
constructing offline policy sets and the generalization ability
of general policies, as well as developing methods for con-
structing augmentation policies in complex environments.
We aim to build a diverse and complete policy set for both
opponent and augmentation policies. However, as problem
scales increase, it becomes difficult for humans to define
”diversity” in the policy representation space, which may
require further decomposition of complex policies to extend
our algorithms to complex environments.
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