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Abstract

We introduce a new Collaborative Causal Discovery problem, through which we
model a common scenario in which we have multiple independent entities each
with their own causal graph, and the goal is to simultaneously learn all these causal
graphs. We study this problem without the causal sufficiency assumption, using
Maximal Ancestral Graphs (MAG) to model the causal graphs, and assuming
that we have the ability to actively perform independent single vertex (or atomic)
interventions on the entities. If the M underlying (unknown) causal graphs of the
entities satisfy a natural notion of clustering, we give algorithms that leverage this
property, and recovers all the causal graphs using roughly logarithmic inM number
of atomic interventions per entity. These are significantly fewer than n atomic
interventions per entity required to learn each causal graph separately, where n is
the number of observable nodes in the causal graph. We complement our results
with a lower bound and discuss various extensions of our collaborative setting.

1 Introduction

In this paper, we introduce a new model for causal discovery, the problem of learning all the causal
relations between variables in a system. Under certain assumptions, using just observational data,
some ancestral relations as well as certain causal edges can be learned, however, many observationally
equivalent structures cannot be distinguished [Zhang, 2008a]. Given this issue, there has been a
growing interest in learning causal structures using the notion of an intervention described in the
Structural Causal Models (SCM) framework introduced by Pearl [2009].

As interventions are expensive (require carefully controlled experiments) and performing multiple
interventions is time-consuming, an important goal in causal discovery is to design algorithms
that utilize simple (preferably, single variable) and fewer interventions [Shanmugam et al., 2015].
However, when there are latents or unobserved variables in the system, in the worst-case, it is
not possible to learn the exact causal DAG without intervening on every variable at least once.
Furthermore, multivariable interventions are needed in presence of latents [Addanki et al., 2020].
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Figure 1: Examples of M causal
graphs constructed from Lung
Cancer dataset [Lauritzen and
Spiegelhalter, 1988]. Here, the
causal graphs differ only in the
presence of latents (nodes with
dotted square box), but they could
differ elsewhere too.
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On the other hand, in a variety of applications, there is no one true causal structure, different
entities participating in the application might have different causal structures [Gates and Molenaar,
2012, Ramsey et al., 2011, Joffe et al., 2012]. For example, see figure 1. In these scenarios,
generating a single causal graph by pooling data from these different entities might lead to flawed
conclusions [Saeed et al., 2020]. Allowing for interventions, we propose a new model for tackling
this problem, referred here as Collaborative Causal Discovery, which in its simplest form states
that: given a collection of entities, each associated with an individual unknown causal graph and
generating their own independent data samples, learn all the causal graphs while minimizing the
number of atomic (single variable) interventions for every entity. An underlying assumption is that
each entity on its own generates enough samples in both the observational and interventional settings
so that conditional independence tests can be carried out accurately on each entity separately. To
motivate this model of collaborative causal discovery, let us consider two different scenarios.

(a) Consider a health organization interested in controlling incidence of a particular disease. The orga-
nization has a set of M individuals (entities) whose data it monitors and can advise interventions
on. Each individual is an independent entity that generates its own set of separate data samples1.
In a realistic scenario, it is highly unlikely that all the M individuals share the same causal graph
(e.g., see Figures 3a and 3b from Joffe et al. [2012] in Appendix A). It would be beneficial for the
organization to collaboratively learn all the causal graphs together. The challenge is, a priori the
organization does not know the set of possible causal graphs or which individual is associated with
which graph from this set.

(b) An alternate setting is where, we have M companies (entities) wanting to work together to improve
their production process. Each company generates their own data (e.g., from their machines)
which they can observe and intervene on [Nguyen et al., 2016]. Again if we take the M causal
graphs (one associated with each company) it is quite natural to expect some variation in their
structure, more so because we do not assume causal sufficiency (i.e., we allow for latents). Since
interventions might need expensive and careful experimental organization, each company would
like to reduce their share of interventions.

The collaborative aspect of learning can be utilized if we assume that there is some underlying
(unknown) clustering/grouping of the causal graphs on the entities.

Our Contributions. We formally introduce the collaborative causal discovery problem in Section 2.
We assume that we have a collection of M entities that can be partitioned into k clusters such that any
pair of entities belonging to two different clusters are separated by large distance (see Definition 2.1)
in the causal graphs. Due to presence of latents variables, we use a family of mixed graphs known
as maximal ancestral graphs (MAGs) to model the graphs on observed variables. Each entity is
associated with a MAG.

In this paper, we focus on designing algorithms that have worst-case guarantees on the number of
atomic interventions needed to recover (or approximately recover) the MAG of each entity. We
assume that there are M MAGs one for each entity over the same set of n nodes. Learning a MAG
with atomic interventions, in worst case requires n interventions (see Proposition 3.2). We show
that this bound can be substantially reduced if the M MAGs satisfy the property that every pair of
MAGs from different clusters have at least αn nodes whose direct causal relationships are different.
We further assume that entities belonging to same cluster have similar MAGs in that every pair of
them have at most βn (β < α) nodes whose direct causal relationships are different. We refer to this
clustering of entities as (α, β)-clustering (Definition 2.2). A special but important case is when β = 0,
in which case all the entities belonging to the same cluster have the same causal MAG (referred
to as α-clustering, Definition 2.3). An important point to notice is that while we assume there is a
underlying clustering on the entities, it is learnt by our algorithms. Similar assumptions are common
for recovering the underlying clusters, in many areas, for e.g., crowd-sourcing applications [Ashtiani
et al., 2016, Awasthi et al., 2012].

We first start with the observation that under (α, β)-clustering, even entities belonging to the same
cluster could have a different MAG, which makes exact recovery hard without making a significant
number of interventions per entity. We present an algorithm that using at most O(∆ log(M/δ)/(α−
β)2) many interventions per entity, with probability at least 1− δ (over only the randomness of the
algorithm), can provably recover an approximate MAG for each entity. The approximation is such

1As is common in causal discovery, for the underlying conditional independence tests, the data is assumed to
be i.i.d. samples from the interventional/observational distributions.

2



that for each entity we generate a MAG that is at most βn node-distance from the true MAG of that
entity (see Section 3). Here, ∆ is the maximum undirected degree of the causal MAGs. Our idea is to
first recover the underlying clustering of entities by using a randomized set of interventions. Then,
we distribute the interventions across the entities in each cluster, thereby, ensuring that the number of
interventions per entity is small. By carefully combining the results learnt from these interventions
we construct the approximate MAGs. For the number of interventions, the linear dependence on ∆ is
not uncommon for learning causal graphs [Kocaoglu et al., 2017]. Moreover, most real-world causal
bayesian networks are known to have small maximum degrees (see section 5).

Under the slightly more restrictive α-clustering assumption, we present algorithms that can ex-
actly recover all the MAGs using at most min

{
O(∆ log(M/δ)/α), O(log(M/δ)/α+ k2)

}
many

interventions per entity (see Section 4). Again, randomization plays an important role in our approach.

Complementing these upper bounds, we give a lower bound using Yao’s minimax principle [Yao,
1977] that shows for any (randomized or deterministic) algorithm Ω(1/α) interventions per entity is
required for this causal discovery problem. This implies the 1/α dependence in our upper bound in
the α-clustering case is optimal.

Finally, a note about parameters. The (α, β)-clustering is universal, in the sense that any collection
of MAGs will satisfy the (α, β)-clustering property for some value of α, β (with α > β). Ideally,
we would like in our problem instance, α to be close to 1 and β to be close to 0. In most real-world
applications, we would also expect k to be relatively small and M � n, k.

In Section 5, we show experiments on data generated from both real and synthetic networks with
added latents and demonstrate the efficacy of our algorithms for learning the underlying clustering
and the MAGs.

Related Work. A number of algorithms, working under various assumptions, for learning causal
graph (or a causal DAG) using interventions have been proposed in the literature, e.g., [Eberhardt,
2007, Hyttinen et al., 2013, Hu et al., 2014, Shanmugam et al., 2015, Kocaoglu et al., 2017, Ghassami
et al., 2018, Lindgren et al., 2018, Acharya et al., 2018, Bello and Honorio, 2018, Kocaoglu et al.,
2019, Greenewald et al., 2019, Jaber et al., 2020, Addanki et al., 2020, 2021, Tadepalli and Russell,
2021]. Saeed et al. [2020] consider a model where the observational data is from a mixture of
causal DAGs, and outline ideas that recover a union graph (up to Markov equivalence) of these
DAGs, without any interventions. Our setting is not directly comparable to theirs, as we have entities
generating data and doing conditional independence tests independently (no pooling of data from
entities), but show stronger guarantees for recovering causal graphs, assuming atomic interventions.

2 Our Model and Problem Statement

In this section, we introduce the collaborative causal discovery problem. We start with some notations.

Notation. Following the SCM framework [Pearl, 2009], we represent the set of random variables
of interest by V ∪ L where V represents the set of endogenous (observed) variables that can be
measured and L represents the set of exogenous (latent) variables that cannot be measured. We do
not deal with selection bias in this paper. Let |V | = n.

We assume that the causal Markov condition and faithfulness holds for both the observational and
interventional distributions [Hauser and Bühlmann, 2012]. We use conditional independence (CI)
tests of the form u |= v | Z or u |= v | do(w), Z, for some u, v, w ∈ V and Z ⊆ V (See Appendix A
for more details).

Throughout this paper, unless otherwise specified, a path between two nodes is an undirected path. A
path of only directed edges is called a directed path. u is called an ancestor of v and v a descendant
of u if u = v or there is a directed path from u to v. A directed cycle occurs in G when u→ v is in
G and v is an ancestor of u.

Our Model. We assume that we have access to M entities labeled 1, . . . ,M , each of which can
independently generate their own observational and interventional data. Each entity i has an associated
causal DAG Di over V ∪ Li, where Li represents the latent variables of entity i. In modeling the
problem of causal discovery, complications arise in at least two ways:
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(i) Latents. We allow some variables (called latents) in the causal DAG to be unobservable. As
regular DAGs are not sufficient to represent the observed distribution when there are latents, we
use ancestral graphical models that have been proposed as an elegant and useful surrogate for
DAG models with latent variables [Richardson and Spirtes, 2002].

A mixed graph containing directed (←) and bidirected (↔) edges is said to be ancestral if it has
no directed cycles, and whenever there is a bidirected edge u↔ v, then there is no directed path
from u to v or from v to u. An ancestral graph on V (observables) is said to be maximal, if, for
every pair of nonadjacent vertices u, v, there exists a set Z ⊂ V with u, v /∈ Z such that u and v
are m-separated (similar to d-separation, see Definition A.2) conditioned on Z. Every DAG with
latents (and selection variables) can be transformed into a unique maximal ancestral graph (MAG)
over the observed variables [Richardson and Spirtes, 2002].

(ii) Uniqueness. Secondly, with just observational data, if the MAGs M1, . . . ,MM are Markov
equivalent, then, without additional strong assumptions they cannot be distinguished, even if
they are all structurally different. To overcome the problem of being not identifiable within an
equivalence class, we allow for interventions on observed variables. In particular, we focus on
atomic interventions in this paper, which are the simplest and most commonly used intervention
type, modeled through the do-operator [Pearl, 1995]. As it turns out, Maximal Ancestral Graphs
(MAGs) are uniquely identifiable using atomic interventions.2

Our objective will be to minimize these interventions. In particular, since each of these entities
independently generate their own data, so we aim to reduce the number of interventions needed
per entity. In causal discovery, minimizing the number of interventions while ensuring that they
are of small size is an active research area [Pearl, 1995, Shanmugam et al., 2015, Ghassami et al.,
2018, 2019].

Given the M entities, letMi denote the MAG associated with entity i (the MAG constructed from
the DAG Di). Our goal is to collaboratively learn all these MAGsM1, . . . ,MM while minimizing
the maximum number of interventions per entity.

To facilitate this learning, we make a natural underlying clustering assumption that partitions the
entities based on their respective MAGs such that: (i) any two entities belonging to the same cluster
have MAGs that are “close” to each other, (ii) any two entities belonging to different clusters have
MAGs that are “far” apart. Before stating this assumption formally, we need some definitions.

For MAGMi = (V,Ei), we denote the children (through outgoing edges), parent (through incoming
edges), and spouse (through bidirected edges) of a node u ∈ V as

chi(u) = {v | u→ v ∈ Ei}, pai(u) = {v | u← v ∈ Ei}, spi(u) = {v | u↔ v ∈ Ei}. (1)

Also, define an incidence set for a vertex u ∈ V which contains an entry (v, type) for every node v
adjacent to u as

Ni(u) =

{
(v, tail) if u→ v ∈ Ei
(v, head) if u← v ∈ Ei
(v, bidirected) if u↔ v ∈ Ei

}
. (2)

Note that |Ni(u)| is the undirected degree of u inMi. We now define a distance measure between
MAGs that captures structural similarity between them.

Definition 2.1. Given two MAGsMi = (V,Ei) andMj = (V,Ej), define the node-difference as
the set: diff(Mi,Mj) = {u ∈ V | Ni(u) 6= Nj(u)}, and the node-distance as the cardinality of
this set: d(Mi,Mj) = |diff(Mi,Mj)| = |{u ∈ V | Ni(u) 6= Nj(u)}|.

Intuitively, the node distance captures the number of nodes whose incidence relationships differ.
It is easy to observe that the node distance is a distance metric, and captures a strong structural
similarity between the graphs. Two graphsMi,Mj are identical iff d(Mi,Mj) = 0. For e.g., in
Figure 2, we have two MAGs that satisfy d(M12,M13) = 2 as diff(M12,M13) = {x, z}, where
d(M12,M21) = 3 as diff(M12,M21) = {x, y, z}. We are now ready to define a simple clustering
property on MAGs.

2However, in the presence of latents, even with power of atomic interventions, the structure of a causal
DAG is not uniquely identifiable. (see, e.g., In Figure 4 in Appendix A). Similarly, we can show that using
single vertex interventions, we also cannot exactly recover a wider class of acyclic graphs like ADMGs (Acyclic
Directed Mixed Graphs).
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Figure 2: MAGs with (α = 0.75, β = 0.5)-
clustering. Every pair of graphs in C?1 and C?2
differ in at least 3(= 0.75 × 4) nodes, while
pairs of graphs within clusters differ by at most
2(= 0.5× 4) nodes.

Algorithm 1 IDENTIFY-OUTNBR (Ui, u)

1: Input: node u ∈ V , PAG Ui of entity i
2: Output: chi(u)
3: chi(u) = {v | u→ v ∈ Ui}
4: for v ∈ Γi(u) such that u◦−◦v or u◦→v ∈ Ui

do
5: if u 6⊥⊥ v | do(u) then
6: chi(u)← chi(u) ∪ {v}
7: end if
8: end for
9: Return chi(u)

Algorithm 2 IDENTIFY-BIDIRECTED (Ui, u)

1: Input: node u ∈ V , PAG Ui of entity i
2: Output: spi(u)
3: spi(u) = {v | u↔ v ∈ Ui}
4: for v ∈ Γi(u) such that u◦−◦v or u←◦v or
u◦→v ∈ Ui do

5: if u |= v | do(u) and u |= v | do(v) then
6: spi(u)← spi(u) ∪ {v}
7: end if
8: end for
9: Return spi(u)

Definition 2.2 ((α, β)-clustering). LetM1, . . . ,MM be a set of M MAGs. We say that this set of
MAGs satisfy the (α, β)-clustering property, with α > β ≥ 0, if there exists a partitioning of [M ]
into sets (clusters) C?1 , . . . , C

?
k ⊂ [M ] (for some k ∈ N) such that for all (i, j) ∈ [M ]× [M ]:

(i) if i and j belong to same set (cluster), then d(Mi,Mj) ≤ βn;
(ii) if i and j belong to different sets (clusters), then d(Mi,Mj) ≥ αn.

Under this definition, all the M MAGs could be different. See, e.g., Figure 2. With right setting of
α > β we can capture any set of possible M MAGs. Therefore, an algorithm such as FCI [Spirtes
et al., 2000], that constructs PAGs might not be able to recover the clusters, as all the PAGs could
be different, and the node-distance between PAGs does not correlate well with the node-distance
between corresponding MAGs (e.g., see Figure 5 in Appendix A). We use the PAGs generated by FCI
as a starting point for all our algorithms and further refine them. We assume that PAGs generated are
correct (see Appendix B.1 for additional details). With this discussion, we introduce our collaborative
causal graph learning problem as follows:

Assumption: MAGsM1, . . . ,MM (associated with entities 1, . . . ,M respectively) satisfy-
ing the (α, β)-clustering property
Access to each entity: Through conditional independence (CI) tests on observational and
interventional distributions. Each entity generates their own (independent) data samples.
Goal: LearnM1, . . . ,MM while minimizing the max. number of interventions per entity.

An interesting case of the Definition 2.2 is when β = 0.
Definition 2.3 (α-clustering). We say a set of MAGsM1, . . . ,MM satisfy the α-clustering property,
if and only if they satisfy (α, 0)-clustering property.

Note that α-clustering is a natural property, wherein each cluster is associated with a single unique
MAG, and all entities in the cluster have the same MAGs, and same conditional independences.

3 Causal Discovery under (α, β)-Clustering Property

In this section, we present our main algorithm for collaboratively learning causal MAGs under the
(α, β)-clustering property. Missing details from this section are presented in Appendix C.
Definition 3.1 (Partial Ancestral Graph (PAG)). Let [Mi] denote the Markov equivalence class of
the MAGMi and represented by the Partial Ancestral Graph (or PAG) Ui = (V, Êi). Edges Êi have
three kinds of endpoints given by arrowheads (←), circles (◦−) and tails (−).
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All our algorithms are randomized, and succeed with high probability over the randomness introduced
by the algorithm. The idea behind all our algorithms is to first learn the true clusters C?1 , . . . , C

?
k using

very few interventions. Once the true clusters are recovered, the idea is to distribute the interventions
across the entities in each cluster and merge the results learned to recover the MAGs (Section 3.2).
For our algorithms, a lower bound for α and upper bound for β is sufficient. In practice, a clustering
of the PAGs (generated from FCI algorithm) can provide guidance about these bounds on α, β, or
if we have additional knowledge that α ∈ [1 − ε, 1] and β ∈ [0, ε] for some constant ε > 0, then,
we can use binary search, that increases our intervention bounds by log2(nε)/(1− 2ε)2 factor. It is
important to note that none of our algorithms require the knowledge of k

Helper Routines. Let Γi(u) denote all nodes that are adjacent to u in the PAG Ui, i.e., Γi(u) = {v |
(u, v) ∈ Êi}. Given the PAG Ui, Algorithm IDENTIFY-OUTNBR identifies all the outgoing neighbors
of any node u inMi. We look at edges of the form u◦−◦v or u◦→v in Ui incident on u, and identify
if u → v using the CI-test u |= v | do(u). This is based on the observation that any node v that is
a descendant of u (including chi(u)) satisfies u 6⊥⊥ v | do(u). Algorithm IDENTIFY-BIDIRECTED
identifies all the bidirected edges incident on u. If there is an edge of the form u◦−◦v or u←◦v or
u◦→v in the PAG, and v 6∈ chi(u) and u 6∈ chi(v), then it must be a bidirected edge.

Using these helper routines, we give an Algorithm RECOVERG (in Appendix B) that recovers any
MAGMi using n atomic interventions. Complementing this, we show that n interventions are also
required. The missing details are presented in Appendix B.

Proposition 3.2. There exists a causal MAGM such that every adaptive or non-adaptive algorithm
requires Ω(n) many atomic interventions to recoverM.

3.1 Recovering the Clusters

From the (α, β)-clustering definition, we know that a pair of entities belonging to the same cluster
have higher structural similarity between their MAGs than a pair of entities across different clusters.
Let us start with a simplifying assumption that β = 0 (i.e., α-clustering). So, all the MAGs are
separated by a distance of at least αn. We make the observation that to identify that two MAGs, say
Mi andMj belong to different clusters, it suffices to find a node u from the node-difference set
diff(Mi,Mj) and checking their neighbors using Algorithms IDENTIFY-OUTNBR and IDENTIFY-
BIDIRECTED. We argue that (see Claim D.3, Appendix D.2), with probability at least 1 − δ, we
can identify one such node u ∈ diff(Mi,Mj) by sampling 2 log(M/δ)/α nodes uniformly from
V as |diff(Mi,Mj)| = d(Mi,Mj) ≥ αn.3 However, this approach will not succeed when β 6= 0
because now we have MAGs in the same cluster that are also separated by non-zero distance.

Overview of Algorithm (α, β)-BOUNDEDDEGREE. We now build upon the above idea, to recover
the true clusters C?1 , . . . , C

?
k when β 6= 0. As identifying a node u ∈ diff(Mi,Mj) is not sufficient,

we maintain a count of the number of nodes among the sampled set of nodes S that the pair of entities
i, j have the same neighbors, i.e., COUNT(i, j) =

∑
u∈S 1{Ni(u) = Nj(u)}. Based on a carefully

chosen threshold value for the COUNT(i, j), that arises through the analysis of our randomized
algorithm, we classify whether a pair of entities belong to the same cluster correctly.

Overall, the idea here is to construct a graph P on entities (i.e., the node set of P is [M ]). We include
an edge between two entities i and j if COUNT(i, j) is above the threshold (1 − (α + β)/2)|S|.
Using Lemma 3.3, we show that this threshold corresponds to the case where if the entities are from
same true clusters, then the COUNT value corresponding to the pair is higher than the threshold; and
if they are from different clusters it will be smaller, with high probability. This ensures that every
entity is connected only to the entities belonging to the same true cluster. We return the connected
components in P as our clusters.

Theoretical Guarantees. In Algorithm (α, β)-BOUNDEDDEGREE, we construct a uniform sample
S of size O(log(M/δ)/(α− β)2), and identify all the neighbors of S for every entity i ∈ [M ]. As
we use IDENTIFY-BIDIRECTED to identify all the bi-directed edges, the total number of interventions

3For theoretical analysis, our intervention targets are randomly chosen, even with the knowledge available
from PAGs, because in the worst-case the PAGs might contain no directed edges to help decide which nodes to
intervene on. In practice, though if we already know edge orientations from PAG we do not have to relearn them,
and a biased sampling based on edges uncertainties in PAGs might be a reasonable approach.
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Algorithm 3 (α, β)-BOUNDEDDEGREE

1: Input: α > 0, β ≥ 0 (< α), confidence parameter δ > 0, PAGs U1, . . . ,UM of M entities
2: Output: Partition of [M ] into clusters
3: Let S denote a uniform sample of 4 log(M/δ)

(α−β)2 nodes from V selected with replacement.
4: for every entity i ∈ [M ] and u ∈ S do
5: chi(u)← IDENTIFY-OUTNBR(Ui, u)
6: spi(u)← IDENTIFY-BIDIRECTED(Ui, u)
7: pai(u)← Γi(u) \ (chi(u) ∪ spi(u))
8: Construct Ni(u) (defined in (2))
9: end for

10: Let P denote an empty graph on set of entities [M ]
11: for every pair of entities i, j do
12: Let COUNT(i, j) =

∑
u∈S 1{Ni(u) = Nj(u)}

13: if COUNT(i, j) ≥
(

1− α+β
2

)
|S| then

14: Include an edge between i and j in P
15: end if
16: end for
17: Return connected components in P

used by an entity for this step is at most ∆ · |S|. Combining all the above, using the next lemma, we
show that with high probability Algorithm (α, β)-BOUNDEDDEGREE recovers all the true clusters.
Lemma 3.3. If the underlying MAGs M1, . . . ,MM satisfy (α, β)-clustering property with true
clusters C?1 , . . . , C

?
k and have maximum undirected degree ∆. Then, the Algorithm (α, β)-

BOUNDEDDEGREE recovers the clusters C?1 , . . . , C
?
k with probability at least 1− δ. Every entity

i ∈ [M ] uses at most 4(∆ + 1) log(M/δ)/(α− β)2 many atomic interventions.

3.2 Learning Causal Graphs from (α, β)-Clustering

In this section, we outline an approach to recover a close approximation of the causal MAGs of all
the entities, after correctly recovering the clusters using Algorithm (α, β)-BOUNDEDDEGREE. First,
we note that since the (α, β)-clustering allows the MAGs even in the same cluster to be different, the
problem of exactly learning all the MAGs is challenging (with a small set of interventions) as causal
edges learnt for an entity may not be relevant for another entity in the same cluster.

In the scenarios mentioned in the introduction, we expect the clusters to be more homogeneous, with
many entities in the same cluster sharing the same MAG. We provide an overview of Algorithm (α, β)-
RECOVERY that recovers one such MAG called dominant MAG for every cluster. Consider a recovered
cluster C?a , and a partitioning S1

a, S
2
a, · · · of MAGs such that all MAGs in a partition Sia are equal

for all i. We call the MAG Mdom
a corresponding to the largest partition Sdom

a as the dominant
MAG of C?a . The dominant MAG of a cluster is parameterized by γa = |Sdom

a |/|C?a | (fraction
of the MAGs in the cluster that belong to the largest partition). We defer additional details of
Algorithm (α, β)-RECOVERY to Appendix C.1.

Overview of Algorithm (α, β)-RECOVERY. After recovering the clustering using Algorithm (α, β)-
BOUNDEDDEGREE, our goal is to learn the causal graphs. Using Algorithm (α, β)-RECOVERY, we
show that we can learn these graphs approximately up to a distance approximation of βn.

In a cluster C?a , we construct a partitioning of MAGs such that two MAGs belong to a partition if
they are equal. The MAG corresponding to the largest partition is called the dominant MAG. Using
our algorithm, we learn the dominant MAG correctly and return it as an output. As all the MAGs in
the cluster satisfy (α, β)-clustering property, the dominant MAG is within a distance of βn from the
true MAG and therefore is a good approximation of the true MAG.

For learning the dominant MAG, there are two steps. First, we select a node uniformly at random for
every entity and intervene on the node and its neighbors to learn all the edges incident on the node.
Next, we construct the dominant MAG by combining the neighborhoods of each individual node. Let
u be any node and Tu denote the set of all entities which intervened on u in the first step. Now, among
all the neighborhoods identified by the entities in Tu, we do not know which of them correspond to
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that of the dominant MAG. In order to identify this, we use a threshold-based approach and assign
a score to every entity in Tu. The score of an entity i is the number of entities in Tu that has the
same neighborhood of u as that of entity i. Finally, we select the entity with the maximum score and
assign the neighborhood of the entity as the neighborhood of u for the dominant MAG (Lines 12-15
in Algorithm (α, β)-RECOVERY). We argue that if the cluster size is large (see Theorem 3.4), the
neighborhoods of nodes using entities with maximum scores are equal to that of the dominant MAG.
This is because the dominant MAG has the largest partition size, and if a sufficiently large number
of entities (across all partitions) are assigned node u, then, many of them will be entities from the
dominant MAG partition.

As the entities satisfy (α, β)-clustering property, for all entities the recovered MAGs (dominant
MAGs) are close to the true MAGs, and within a distance of at most βn. Note that any MAG from
the cluster is within a distance of at most βn due to (α, β)-clustering property, but naively generating
a valid MAG from a cluster will require n interventions on one entity from Proposition 3.2. Our
actual guarantee is somewhat stronger, as in fact, for the entities whose MAGs are dominant in their
cluster, we do recover the exact MAGs. We have the result:
Theorem 3.4. Suppose M1,M2, · · ·MM satisfy (α, β) clustering property. If γa > 1/2 and
C?a = Ω(n log(n/Mδ)(2γa − 1)2) for all a ∈ [k], then, Algorithm (α, β)-RECOVERY recovers
graphs M̂1, · · · M̂M such that for every entity i ∈ [M ], we have d(Mi,M̂i) ≤ βn with probability
1− δ. Every entity uses at most (∆ + 1) + 4(∆ + 1) log(M/δ)/(α− β)2 many atomic interventions.

4 Causal Discovery under α-Clustering Property

In the previous section, we discussed the more general (α, β)-clustering scenario where we manage
to construct a good approximation to all the MAGs. Now, we show that we can in fact recover all
the MAGs exactly, if we make a stronger assumption. Suppose the MAGsM1, . . . ,MM of the M
entities satisfy the α-clustering property (Defn. 2.3). Firstly, we can design an algorithm similar to
Algorithm (α, β)-BOUNDEDDEGREE (see Algorithm α-BOUNDEDDEGREE, Appendix D.3) that
recovers the causal MAGs exactly with O(∆ log(M/δ)/α) many interventions per entity, succeeding
with probability 1 − δ. Note that this has a better 1/α term in the intervention bound, instead of
1/α2 (when β = 0) term arising in Theorem 3.4. In absence of latents, we can further improve it to
O(log(M/δ)/α) many interventions per entity (see Algorithm NOLATENTS, Appendix D.2).

In this section, we present another approach (Algorithm α-GENERAL) with an improved result that
requires fewer number of interventions, even when ∆ is big, provided that each cluster has at least
Ω(n log(M/δ)) entities. Missing details of Algorithm α-GENERAL are in Appendix D.4.

Overview of Algorithm α-GENERAL. First, using a similar approach as Algorithm (α, β)-
BOUNDEDDEGREE, we construct a uniform sample S ⊆ V , and find all the outgoing neighbors of
nodes in S, for every entity i ∈ [M ]. Then, we construct a graph on entities denoted by P , where
we include an edge between a pair of entities if the outgoing neighbors of the set of sampled nodes
S, and the set of neighbors in PAGs associated with the entities (obtained from FCI) are the same.
However, due to the presence of bidirected edges, it is possible that the connected components of P
may not represent the true clusters C?1 , . . . , C

?
k .

We make the observation that a pair of entities i, j that have an edge in this P and from different true
clusters, can differ only if there is a node u such that u has a bidirected edge u ↔ v inMi, and a
directed edge u← v inMj (or vice-versa). Intervening on both u and v will separate these entities,
our main idea is to ensure that this happens. First, we show how to detect if there are at least two true
clusters in any connected component of P . Then, we identify all the entities belonging to these two
clusters and remove the edges between these entities in P and continue.

More formally, let T1, . . . , Tk′ be the partition of [M ] provided by the k′ connected components of
P and some of these can contain more than one true cluster, hence k′ ≤ k and we focus on detecting
such events. Let π : [M ] → V denote a mapping from the set of entities to the nodes in V such
that π(i) is chosen uniformly at random from V for every entity i. For every entity i, we intervene
on the node π(i). To detect that there are at least two clusters in a given subset Ta of entities, we
show that there are two entities i, j with an edge in P and for some node u ∈ S, we can identify the
neighbor v ∈ Γi(u) ∩ Γj(u) such that u ↔ v is an edge inMi and u ← v is an edge inMj (or
vice-versa). As there are at least Ω(n log(M/δ)) entities in each of these two true clusters in Ta, for
some i, j ∈ Ta, we can show that π(i) = π(j) = v with probability at least 1− δ.
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After detecting the event that a component Ta of P contains entities from at least two different true
clusters (say, C?b and C?c ) due to an edge (u, v) as above, we intervene on v for every entity in Ta.
By intervening on v (and u ∈ S), we can separate all entities in Ta that belong to true clusters C?b
and C?c , and remove edges between such entity pairs from P . We repeat this above procedure of
refining P . In each iteration, we will have removed all edges between every pair of entities belonging
to at least two different true clusters. Since there are at most k2 different true cluster pairs, after k2

iterations the connected components remaining correspond to the true clusters (with high probability).
This can be done without knowing the value of k, by checking whether the connected components in
P change or not after each iteration of the above idea.

Going from Clustering to MAGs. The idea of going from clusters to MAGs is simple and based
on distributing the interventions across the entities in the cluster. Since under α-clustering, enti-
ties belonging to a cluster share the same MAG, combining the results is relatively simpler (see
Appendix D.1). Combining the guarantees of α-GENERAL and α-BOUNDEDDEGREE, we have:
Theorem 4.1. If MAGsM1, . . . ,MM satisfy α-clustering property with true clusters C?1 , . . . , C

?
k

such that minb∈[k] |C?b | = Ω(n log(M/δ)). Then, there is an algorithm that exactly
learns all these MAGs with probability at least 1 − δ. Every entity i ∈ [M ] uses
min

{
O(∆ log(M/δ)/α), O(log(M/δ)/α+ k2)

}
many atomic interventions.

Lower Bound on the Number of Interventions. We now give a lower bound on the number
of atomic interventions needed for every algorithm that recovers the true clusters on the MAGs
M1,M2, · · ·MM . Since a lower bound under α-clustering is also a lower bound under (α, β)-
clustering, we work with the α-clustering property here. First, we show that to identify whether a
given pair of entities i, j belong to the same true cluster or not, every (randomized or deterministic)
algorithm must make Ω(1/α) interventions for both i and j.

Our main idea here is to use the famous Yao’s minimax theorem [Yao, 1977] to get lower bounds on
randomized algorithms. Yao’s theorem states that an average case lower bound on a deterministic
algorithm implies a worst case lower bound on randomized algorithms. To show a lower bound
using Yao’s minimax theorem, we construct a distribution µ on MAG pairs and show that every
deterministic algorithm requires Ω(1/α) interventions for distinguishing a pair of MAGs drawn from
µ. The construction of this distribution is presented in Appendix D.5. We summarize the result:
Theorem 4.2. Suppose the underlying MAGsM1, . . . ,MM satisfy α-clustering property. In order
to recover the clusters with probability 2/3, every (randomized or deterministic) algorithm requires
Ω(1/α) interventions for every entity in [M ].

5 Experimental Evaluation

In this section, we provide an evaluation of our approaches on data generated from real and synthetic
causal networks for learning MAGs satisfying (α, β)-clustering property. We defer additional details,
results, and evaluation for α-clustering to Appendix E.

Causal Networks. We consider the following real-world Bayesian networks from the Bayesian
Network Repository which cover a wide variety of domains: Asia (Lung cancer) (8 nodes, 8 edges),
Earthquake (5 nodes, 4 edges), Sachs (Protein networks) (11 nodes, 17 edges), and Survey (6 nodes,
6 edges). For the synthetic data, we use Erdös-Rényi random graphs (10 nodes). We use the term
“causal network” to refer to these ground-truth Bayesian networks.

Parameters. For each causal network, we start from the corresponding DAG, and generate M MAGs
(one for each entity) split into k clusters that satisfy the (α, β)-clustering property through random
changes to the graph. We also randomly introduce two latents in each graph, and account for them in
MAG constructions. For more details, refer Appendix E. We set number of entities M = 40, number
of clusters k = 2, α = 0.60, β = 0.20, and dominant MAG parameter γ = 0.90 for both the clusters.
For the synthetic data generated using Erdös-Rényi model, we use n = 10, probability of edge 0.3.

Evaluation of Clustering. First, we focus on recovering the clustering using Algorithm (α, β)-
BOUNDEDDEGREE. As a baseline, we employ the well-studied FCI algorithm based on purely
observational data [Spirtes et al., 2000]. After recovering the PAGs corresponding to the MAGs using
FCI, we cluster them by constructing a similarity graph (similar to (α, β)-BOUNDEDDEGREE) defined
on the set of entities (refer Appendix E for more details). For Algorithm (α, β)-BOUNDEDDEGREE,
we first construct a sample S, and perform various interventions based on the set S for every entity
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Causal FCI (α, β)-BOUNDEDDEGREE (Alg. 3) Maximum
Network Precision Recall Accuracy Precision Recall Accuracy # Interventions

Earthquake 0.57± 0.18 0.94± 0.013 0.58± 0.18 0.78± 0.24 0.92± 0.03 0.77± 0.23 4
Survey 0.62± 0.21 0.94± 0.013 0.62± 0.2 0.64± 0.23 0.97± 0.02 0.63± 0.23 5
Asia 0.57± 0.18 0.94± 0.013 0.58± 0.18 0.92± 0.14 0.95± 0.03 0.91± 0.14 5
Sachs 0.52± 0.12 0.94± 0.01 0.52± 0.12 0.89± 0.20 0.96± 0.02 0.88± 0.19 6
Erdös-Rényi 0.62± 0.21 0.94± 0.02 0.62± 0.21 1.0± 0.00 0.95± 0.02 0.97± 0.013 6

Table 1: In this table, we present the precision, recall and accuracy values obtained by our Algo-
rithm (α, β)-BOUNDEDDEGREE and using FCI. Each cell includes the mean value along with the
standard deviation computed over 10 runs. The last column represents the maximum number of inter-
ventions per entity including both Algorithms (α, β)-BOUNDEDDEGREE and (α, β)-RECOVERY.

to obtain the clusters. We also implemented another baseline algorithm (GREEDY) that uses inter-
ventions, based on a greedy idea that selects nodes to set S in Algorithm (α, β)-BOUNDEDDEGREE
by considering nodes in increasing order of their degree in the PAGs returned by FCI. We use this
ordering to minimize the no. of interventions as we intervene on every node in S and their neighbors.

Metrics. We use the following standard metrics for comparing the clustering performance: precision
(fraction of pairs of entities correctly placed in a cluster together to the total number of pairs placed
in a cluster together), recall (fraction of pairs of entities correctly placed in a cluster together to the
total number of pairs in the same ground truth clusters), and accuracy (fraction of pairs of entities
correctly placed or not placed in a cluster to the total number of pairs of entities).

Results. In Table 1, we compare Algorithm (α, β)-BOUNDEDDEGREE to FCI on the clustering
results. For Algorithm (α, β)-BOUNDEDDEGREE, we use a sample S of size 1, and observe in
Figure 8 (Appendix E), that this corresponds to about 3 interventions per entity. With increase in
sample size, we observed that the results were either comparable or better. We observe that our
approach leads to considerably better performance in terms of the accuracy metric with an average
difference in mean accuracy of about 0.25. This is because FCI recovers partial graphs, and clustering
based on the partial information results in poor accuracy. Because of the presence of a dominant
MAG with in each cluster, we observe that the corresponding entities are always assigned to the same
cluster, resulting in high recall for both (α, β)-BOUNDEDDEGREE and FCI. We observe a higher
value of precision for our algorithms, because FCI is unable to correctly classify the MAGs that are
different from the dominating MAG.

Algorithm (α, β)-BOUNDEDDEGREE outperforms the GREEDY baseline for the same sample(S) size.
For example, on the Earthquake and Survey causal networks, Algorithm (α, β)-BOUNDEDDEGREE
obtains the mean accuracy values of 0.77 and 0.63 respectively, while GREEDY for the same number of
interventions obtained an accuracy of only 0.487 and 0.486 respectively. For the remaining networks,
the accuracy values of GREEDY are almost comparable to our Algorithm (α, β)-BOUNDEDDEGREE.

After clustering, we recover the dominant MAGs using Algorithm (α, β)-RECOVERY, and observe
that the additional interventions needed are bounded by the maximum degree of the graphs (see
Theorem 3.4). This is represented in the last column in Table 1. We observe that our collaborative
algorithms use fewer interventions for dominant MAG recovery compared to the number of nodes in
each graph. E.g., in the Erdös-Rényi setup, the number of nodes n = 10, whereas we use at most 6
interventions per entity. Thus, compared to the worst-case, cutting the number of interventions for
each entity by 40%.

6 Conclusion

We introduce a new model for causal discovery to capture practical scenarios where are multiple
entities with different causal structures. Under natural clustering assumption(s), we give efficient
provable algorithms for causal learning with atomic interventions and demonstrate its empirical
performance. Our model can be extended to the setting where all interventions are non-adaptive,
and we plan to study it as part of future work. An interesting future direction would be to use
interventional equivalence classes of DAGs as part of the model, instead of the clustering assumption.
This might require extending the interventional equivalence between DAGs studied in [Hauser and
Bühlmann, 2012, Katz et al., 2019] to the setting without the causal sufficiency assumption and
exploit that for learning.
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