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Abstract

The phenomenon of data distribution evolving over time has been observed in a range of
applications, calling for the need for adaptive learning algorithms. We thus study the problem
of supervised gradual domain adaptation, where labeled data from shifting distributions are
available to the learner along the trajectory, and we aim to learn a classifier on a target
data distribution of interest. Under this setting, we provide the first generalization upper
bound on the learning error under mild assumptions. Our results are algorithm agnostic,
general for a range of loss functions, and only depend linearly on the averaged learning error
across the trajectory. This shows significant improvement compared to the previous upper
bound for unsupervised gradual domain adaptation, where the learning error on the target
domain depends exponentially on the initial error on the source domain. Compared with
the offline setting of learning from multiple domains, our results also suggest the potential
benefits of the temporal structure among different domains in adapting to the target one.
Empirically, our theoretical results imply that learning proper representations across the
domains will effectively mitigate learning errors. Motivated by these theoretical insights, we
propose a min-max learning objective to learn the representation and classifier simultaneously.
Experimental results on both semi-synthetic and large-scale real datasets corroborate our
findings and demonstrate the effectiveness of our objectives.

1 Introduction

An essential assumption for the deployment of machine learning models in real-world applications is the
alignment of training and testing data distributions. Under this condition, models are expected to generalize,
yet real-world applications often fail to meet this assumption. Instead, continual distribution shift is widely
observed in a range of applications. For example, satellite images of buildings and lands change over time
due to city development (Christie et al., 2018); self-driving cars receive data with quality degrading towards
nightfall (Bobu et al., 2018; Wu et al., 2019b). Although this problem can be mitigated by collecting training
data that covers a wide range of distributions, it is often impossible to obtain such a large volume of labeled
data in many scenarios. On the other hand, the negligence of shifts between domains also leads to suboptimal
performance. Motivated by this commonly observed phenomenon of gradually shifting distributions, we
study supervised gradual domain adaptation in this work. Supervised gradual domain adaptation models
the training data as a sequence of batched data with underlying changing distributions, where the ultimate
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goal of learning is to obtain an effective classifier on the target domain at the last step. This relaxation of
data alignment assumption thus equips gradual domain adaptation with applicability in a wide range of
scenarios. Compared with unsupervised gradual domain adaptation, where only unlabeled data is available
along the sequence, in supervised gradual domain adaptation, the learner also has access to labeled data
from the intermediate domains. Note that this distinction in terms of problem setting is essential, as it allows
for more flexible model adaptation and algorithm designs in supervised gradual domain adaptation.

The mismatch between training and testing data distributions has long been observed, and it had been
addressed with conventional domain adaptation and multiple source domain adaptation (Duan et al., 2012;
Hoffman et al., 2013; 2018b;a; Zhao et al., 2018; Wen et al., 2020; Mansour et al., 2021) in the literature.
Compared with the existing paradigms, supervised gradual domain adaptation poses new challenges for these
methods, as it involves more than one training domains and the training domains come in sequence. For
example, in the existing setting of multiple-source domain adaptation (Zhao et al., 2018; Hoffman et al.,
2018a), the learning algorithms try to adapt to the target domain in a one-off fashion. Supervised gradual
domain adaptation, however, is more realistic, and allows the learner to take advantage of the temporal
structure among the gradually changing training domains, which can lead to potentially better generalization
due to the smaller distributional shift between each consecutive pair of domains.

Various empirically successful algorithms have been proposed for gradual domain adaptation (Hoffman et al.;
Gadermayr et al., 2018; Wulfmeier et al., 2018; Bobu et al., 2018). Nevertheless, we still lack a theoretical
understanding of their limits and strengths. The first algorithm-specific theoretical guarantee for unsupervised
gradual domain adaptation is provided by Kumar et al. (2020). However, the given upper bound of the
learning error on the target domain suffers from exponential dependency (in terms of the length of the
trajectory) on the initial learning error on the source domain. This is often hard to take in reality and it is
left open whether this can be alleviated in supervised gradual domain adaptation.

In this paper, we study the problem of gradual domain adaptation under a supervised setting where labels
of training domains are available. We prove that the learning error of the target domain is only linearly
dependent on the averaged error over training domains, showing a significant improvement compared to the
unsupervised case. We show that our results are comparable with the learning bound for multiple source
training and can be better under certain cases while relaxing the requirement of access to all training domains
upfront simultaneously. Further, our analysis is algorithm and loss function independent. Compared to
previous theoretical results on domain adaptation, which used l1 distance (Mansour et al., 2009) or W∞
distance to capture shifts between data distributions (Kumar et al., 2020), our results are obtained under
milder assumptions. We use Wp Wasserstein distance to describe the gradual shifts between domains, enabling
our results to hold under a wider range of real applications. Our bound features two important ingredients to
depict the problem structure: sequential Rademacher complexity (Rakhlin et al., 2015) is used to characterize
the sequential structure of gradual domain adaptation while discrepancy measure (Kuznetsov & Mohri, 2017)
is used to measure the non-stationarity of the sequence.

Our theoretical results provide insights into empirical methods for gradual domain adaptation. Specifically,
our bound highlights the following two observations: (1) Effective representation where the data drift is
“small” helps. Our theoretical results highlight an explicit term showing that representation learning can
directly optimize the learning bound. (2) There exists an optimal time horizon (number of training domains)
for supervised gradual domain adaptation. Our results highlight a trade-off between the time horizon and the
learning bound.

Based on the first observation, we propose a min-max learning objective to learn representations concurrently
with the classifier. Optimizing this objective, however, requires simultaneous access to all training domains.
In light of this challenge, we relax the requirement of simultaneous access with temporal models that encode
knowledge of past training domains. To verify our observations and the proposed objectives, we conduct
experiments on both semi-synthetic datasets with MNIST dataset and large-scale real datasets such as FMOW
(Christie et al., 2018). Comprehensive experimental results validate our theoretical findings and confirm the
effectiveness of our proposed objective.
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2 Related Work

(Multiple source) domain adaptation Learning with shifting distributions appears in many learning
problems. Formally referred as domain adaptation, this has been extensively studied in a variety of scenarios,
including computer vision (Hoffman et al.; Venkateswara et al., 2017; Zhao et al., 2019b), natural language
processing (Blitzer et al., 2006; 2007; Axelrod et al., 2011), and speech recognition (Sun et al., 2017; Sim
et al., 2018). When the data labels of the target domain are available during training, known as supervised
domain adaptation, several parameter regularization-based methods (Yang et al., 2007; Aytar & Zisserman,
2011), feature transformations based methods (Saenko et al., 2010; Kulis et al., 2011) and a combination of
the two are proposed (Duan et al., 2012; Hoffman et al., 2013). On the theoretical side of domain adaptation,
Ben-David et al. (2010) investigated the necessary assumptions for domain adaptations, which specifies that
either the domains are needed to be similar, or there exists a classifier in the hypothesis class that can attain
low error on both domains. For the restriction on the similarity of domains, Wu et al. (2019a) proposed
an asymmetrically-relaxed distribution alignment for an alternative requirement. This is a more general
condition for domain adaptation when compared to those proposed by Ben-David et al. (2010), and holds in
a more general setting with high-capacity hypothesis classes such as neural networks. Zhao et al. (2019a)
then focused on the efficiency of representation learning for domain adaption and characterized a trade-off
between learning an invariant representation across domains and achieving small errors on all domains. This
is then extended to a more general setting by Zhao et al. (2020), which provides a geometric characterization
of feasible regions in the information plane for invariant representation learning. The problem of adapting
with multiple training domains, referred to as multiple source domain adaptation (MDA), is also studied
extensively. The first asymptotic learning bound for MDA is studied by Hoffman et al. (2018a). Follow-up
work Zhao et al. (2018) provides the first generalization bounds and proposed efficient adversarial neural
networks to demonstrate empirical superiority. The theoretical results are further explored by Wen et al.
(2020) with a generalized notion of distance measure, and by Mansour et al. (2021) when only limited target
labeled data are available.

Gradual domain adaptation Many real-world applications involve data that come in sequence and
are continuously shifting. This first attempt addresses the setting where data from continuously evolving
distribution with a novel unsupervised manifold-based adaptation method (Hoffman et al.). Following works
Gadermayr et al. (2018); Wulfmeier et al. (2018); Bobu et al. (2018) also proposed unsupervised approaches
for this variant of gradual domain adaptation with unsupervised algorithms. The first to study the problem
of adapting to an unseen target domain with shifting training domains is Kumar et al. (2020). Their result
features the first theoretical guarantee for unsupervised gradual domain adaptation with a self-training
algorithm and highlights that learning with a gradually shifting domain can be potentially much more
beneficial than a Direct Adaptation. The work provides a theoretical understanding of the effectiveness
of empirical tricks such as regularization and label sharpening. However, they are obtained under rather
stringent assumptions. They assumed that the label distribution remains unchanged while the varying class
conditional probability between any two consecutive domains has bounded W∞ Wasserstein distance, which
only covers a limited number of cases. Moreover, the loss functions are restricted to be the hinge loss and
ramp loss while the classifier is restricted to be linear. Under these assumptions, the final learning error is
bounded by O(exp(T )α0), where T is the horizon length and α0 is the initial learning error on the initial
domain. This result is later extended by Chen et al. (2020) with linear classifiers and Gaussian spurious
features and improved by concurrent independent work Wang et al. (2022) to O(α0 + T ) in the setting of
unsupervised gradual domain adaptation. The theoretical advances are complemented by recent empirical
success in gradual domain adaptation. Recent work Chen & Chao (2021) extends the unsupervised gradual
domain adaptation problem to the case where intermediate domains are not already available. Abnar et al.
(2021) and Sagawa et al. (2021) provide the first comprehensive benchmark and datasets for both supervised
and unsupervised gradual domain adaptation.

3 Preliminaries

The problem of gradual domain adaptation proceeds sequentially through a finite time horizon {1, . . . , T}
with evolving data domains. A data distribution Pt ∈ Rd × Rk is realized at each time step with the features

3



Published in Transactions on Machine Learning Research (11/2022)

denoted as X ∈ Rd and labels as Y ∈ Rk. With a given loss function ℓ(·, ·), we are interested in obtaining an
effective classifier h ∈ H : Rd → Rk that minimizes a given loss function on the target domain PT , which is
also the last domain. With access to only n samples from each intermediate domain P1, . . . , PT −1, we seek to
design algorithms that output a classifier at each time step where the final classifier performs well on the
target domain.

Following the prior work (Kumar et al., 2020), we assume the shift is gradual. To capture such a gradual
shift, we use the Wasserstein distance to measure the change between any two consecutive domains. The
Wasserstein distance offers a way to include a large range of cases, including the case where the two measures
of the data domains are not on the same probability space (Cai & Lim, 2020).
Definition 3.1. (Wasserstein distance) The p-th Wasserstein distance, denoted as Wp distance, between
two probability distribution P, Q is defined as Wp(P, Q) =

(
infγ∈Γ(P,Q)

∫
∥x − y∥pdγ(x, y)

)1/p
, where Γ(P, Q)

denotes the set of all joint distribution γ over (X, Y ) such that X ∼ P , Y ∼ Q.

Intuitively, Wasserstein distance measures the minimum cost needed to move one distribution to another.
The flexibility of Wasserstein distance enables us to derive tight theoretical results for a wider range of
practical applications. In comparison, previous results leverage l1 distance (Mansour et al., 2009) or the
Wasserstein-infinity W∞ distance (Kumar et al., 2020) to capture non-stationarity. In practice, however, this
is rarely used and W1 is more commonly employed due to its low computational cost. Moreover, even if pairs
of data distributions are close to each other in terms of W1 distance, the W∞ distance can be unbounded
with a few presences of outlier data. Previous literature hence offers limited insights whereas our results
include this more general scenario. We formally describe the assumptions below.
Assumption 3.1. For all 1 ≤ t ≤ T − 1 and some constant ∆ > 0, the p-th Wasserstein distance between
two domains is bounded as Wp(Pt(X, Y ), Pt+1(X, Y )) ≤ ∆.

We study the problem without restrictions on the specific form of the loss function, and we only assume
that the empirical loss function is bounded and Lipschitz continuous. This covers a rich class of loss
functions, including the logistic loss/binary cross-entropy, and hinge loss. Formally, let ℓh be the loss function,
ℓh = ℓ(h(x), y) : X × Y → R. We have the following assumption.
Assumption 3.2. The loss function ℓh : X × Y → R is ρ-Lipschitz continuous with respect to (x, y), denoted
as ∥ℓh∥Lip ≤ ρ, and bounded such that ∥ℓh∥∞ ≤ M .

This assumption is general as it holds when the input data are compact. Moreover, we note that this
assumption is mainly for the convenience of technical analysis and is common in the literature (Mansour
et al., 2009; Cortes & Mohri, 2011; Kumar et al., 2020).

The gradual domain adaptation investigated in this paper is thus defined as follows
Definition 3.2 (Gradual Domain Adaptation). Given a finite time horizon {1, . . . , T}, at each time step
t, a data distribution Pt over Rd × Rk is realized with the features X ∈ Rd and labels Y ∈ Rk. The data
distributions are gradually evolving subject to Assumption 3.1. With a given loss function ℓ(·, ·) that satisfies
Assumption 3.2, the goal is to obtain a classifier h ∈ H : Rd → Rk that minimizes the given loss function on
the target domain PT with access to only n samples from each intermediate domain P1, . . . , PT −1.

Our first tool is used to help us characterize the structure of sequential domain adaptation. Under the
statistical learning scenario with i.i.d. data, Rademacher complexity serves as a well-known complexity notion
to capture the richness of the underlying hypothesis space. However, with the sequential dependence, classical
notions of complexity are insufficient to provide a description of the problem. To capture the difficulty of
sequential domain adaptation, we use the sequential Rademacher complexity, which was originally proposed
for online learning where data comes one by one in sequence (Rakhlin et al., 2015).
Definition 3.3 (Z-valued tree Rakhlin et al. (2015)). A Z-value tree z is a sequence (z1, . . . , zT ) of T
mappings, zt : {±1}t−1 → Z, t ∈ [1, T ]. A path in the tree is ϵ = (ϵ1, . . . , ϵT −1) ∈ {±1}T −1. To simplify the
notations, we write zt(ϵ) = zt(ϵ1, . . . , ϵt−1).
Definition 3.4 (Sequential Rademacher Complexity Rakhlin et al. (2015)). For a function class F , the
sequential Rademacher complexity is defined as Rseq

T (F) = supz E
[
supf∈F

1
T

∑T
t=1 ϵtf (zt(ϵ))

]
, where the
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supremum is taken over all Z-valued trees (Definition 3.3) of depth T and (ϵ1, . . . , ϵT ) are Rademacher
random variables.

We next introduce the discrepancy measure, a key ingredient that helps us to characterize the non-stationarity
resulting from the shifting data domains. This can be used to bridge the shift in data distribution with the
shift in errors incurred by the classifier. To simplify the notation, we let Z = (X, Y ) and use shorthand ZT

1
for Z1, . . . , ZT .
Definition 3.5 (Discrepancy measure Kuznetsov & Mohri (2020)).

discT = sup
h∈H

(
E
[
ℓh (XT , YT ) | ZT −1

1
]

− 1
T

T∑
t=1

E
[
ℓh (Xt, Yt) | Zt−1

1
])

, (1)

where Z0
1 is defined to be the empty set, in which case the expectation is equivalent to the unconditional case.

We will later show that the discrepancy measure can be directly upper-bounded when the shift in class
conditional distribution is gradual. We also note that this notion is general and feasible to be estimated from
data in practice (Kuznetsov & Mohri, 2020). Similar notions have also been used extensively in non-stationary
time series analysis and mixing processes (Kuznetsov & Mohri, 2014; 2017).

4 Theoretical Results

In this section, we provide our theoretical guarantees for the performance of the final classifier learned in the
setting described above. Our result is algorithm agnostic and general to loss functions that satisfy Assumption
3.2. We then discuss the implications of our results and give a proof sketch to illustrate the main ideas.

The following theorem gives an upper bound of the expected loss of the learned classifier on the last domain
in terms of the shift ∆, sequential Rademacher complexity, etc.
Theorem 4.1. Under Assumptions 3.1, 3.2, with n data points access to each data distribution Pt, t ∈
{1, . . . , T}, and loss function ℓh = ℓ(h(x), y) : X × Y → R, the loss on the last distribution incurred by a
classifier hT obtained through empirically minimizing the loss on each domains can be upper bounded by

E
[
ℓhT

(XT , YT ) | ZT −1
1

]
≤ E

[
ℓh0 (XT , YT ) | ZT −1

1
]

+ 3
T

+ 3M

T

√
8 log 1

δ︸ ︷︷ ︸
E1

+ 1
T

√
VCdim(H) + log(2/δ)

2n
+ O

(
1√
nT

)
︸ ︷︷ ︸

E2

+ 18M
√

4π log TRseq
T −1(F) + 3Tρ∆︸ ︷︷ ︸

E3

, (2)

where ℓh ∈ F , Rseq
T (F) is the sequential Rademacher complexity of F , VCdim(H) is the VC dimension of H

and h0 = argminh∈H
1
T

∑T
t=1 ℓ (h(Xt), Yt).

When ℓh ∈ F is bounded and convex, the sequential Rademacher complexity term is upper bounded by
O(
√

1/nT ) (Rakhlin et al., 2015). For some complicated function classes, such as multi-layer neural networks,
they also enjoy a sequential Rademacher complexity of order O(

√
1/nT ) (Rakhlin et al., 2015). Before we

move to present a proof sketch of Theorem 4.1, we first discuss the implications of our theorem.
Remark 4.1. There exists a non-trivial trade-off between E1 + E2 and E3 through the length T . When T is
larger, all terms except for the terms in E3 will be smaller while the terms in E3 will be larger. Hence, it is
not always beneficial to have a longer trajectory.
Remark 4.2. All terms in (2) except for the last term 3Tρ∆ are determined regardless of the algorithm. The
last term depends on ∆ which measures the class conditional distance between any two consecutive domains.
This distance can potentially be minimized through learning an effective representation of data.
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Comparison with unsupervised gradual domain adaptation Our result is only linear
with respect to the horizon length T and the average loss E

[
ℓh0 (XT , YT ) | ZT −1

1
]
, where h0 =

argminh∈H
1
T

∑T
t=1 ℓ (h(Xt), Yt). In contrast, the previous upper bound given by Kumar et al. (2020),

which is for unsupervised gradual domain adaptation, is O(exp(T )α0), with α0 being the initial error on the
initial domain. It remains unclear, however, if the exponential cost is unavoidable when labels are missing
during training as the result by Kumar et al. (2020) is algorithm specific.

Comparison with multiple source domain adaptation The setting of multiple source domain adapta-
tion neglects the temporal structure between training domains. Our results are comparable while dropping the
requirement of simultaneous access to all training domains. Our result suffers from the same order of error with
respect to the Rademacher complexity and from the VC inequality with supervised multiple source domain
adaptation (MDA) (Wen et al., 2020), which is O (

∑
t αt(ℓhT

(Xt, Yt) + R(F)), where
∑

t αt = 1, αt > 0, ∀t
and R(F) being the Rademacher complexity.Taking the weights αt = 1

T , the error of a classifier h on the
target domain similarly relies on the average error of h on training domains. We note that in comparison our
results scale with the averaged error of the best classifier on the training domains.

While we defer the full proof to the appendix, we now present a sketch of the proof.

Proof Sketch With Assumption 3.1, we first show that when the Wasserstein distance between two consecutive
class conditional distributions is bounded, the discrepancy measure is also bounded.
Lemma 4.1. Under Assumption 3.2, the expected loss on two consecutive domains satisfy Eµ[ℓh(X, Y )] −
Eν [ℓh(X ′, Y ′)] ≤ ρ∆ , where µ, ν are the probability measure for Pt, Pt+1, (X, Y ) ∼ Pt, and (X ′, Y ′) ∼ Pt+1.

Then we leverage this result to bound the loss incurred in expectation by the same classifier on two consecutive
data distributions. We start by decomposing the discrepancy measure with an adjustable summation term as

discT ≤ sup
h∈H

(
1
s

T∑
t=T −s+1

E
[
ℓh (Xt, Yt) | Zt−1

1
]

− 1
T

T∑
t=1

E
[
ℓh (Xt, Yt) | Zt−1

1
])

+ sup
h∈H

(
E
[
ℓh (XT , YT ) | ZT −1

1
]

− 1
s

T∑
t=T −s+1

E
[
ℓh (Xt, Yt) | Zt−1

1
])

.

We show by manipulating this adjustable summation, the discrepancy measure can indeed be directly obtained
through an application of Lemma 4.1. We now start to bound the learning error in interest by decomposing

E
[
ℓhT

(XT , YT ) | ZT −1
1

]
− E

[
ℓh0 (XT , YT ) | ZT −1

1
]

≤2Φ(ZT
1 ) +

(
1
T

T −1∑
t=1

[ℓhT
(Xt, Yt)] − 1

T

T −1∑
t=1

ℓh0 (XT , YT )
)

,

where Φ
(
ZT

1
)

= suph∈H
(
E
[
ℓh (XT , YT ) | ZT −1

1
]

−
∑T

t=1
1
T ℓh (Xt, Yt)

)
. The term Φ

(
ZT

1
)

can be upper
bounded by Lemma B.1 Kuznetsov & Mohri (2020) and thus it is left to bound the remaining term
1
T

∑T −1
t=1 [ℓhT

(Xt, Yt)] − 1
T

∑T −1
t=1 ℓh0 (XT , YT ). To upper bound this difference of average loss, we first

compare the loss incurred by a classifier learned by an optimal online learning algorithm to f0. By classic
online learning theory results, the difference is upper bounded by O

(
1√
nT

)
. Then we compare the optimal

online learning classifier to our final classifier hT and upper bound the difference through the VC inequality
(Bousquet et al., 2004).

Lastly, we leverage Corollary 3 of Kuznetsov & Mohri (2020) with our terms to complete the proof. □

5 Insights for Practice

The key insight indicated by Theorem 4.1 and Remark 4.2 is that the bottleneck of supervised gradual
domain adaption is not only predetermined through the setup of the problem but also relies heavily on ρ∆,
where ∆ is the upper bound of the Wasserstein class conditional distance between two data domains and ρ
is the Lipschitz constant of the loss function. In practice, the loss function is often chosen beforehand and
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remains unchanged throughout the learning process. Therefore, the only term available to be optimized is ∆,
which can be effectively reduced if a good representation of data can be learned for classification. We give a
feasible primal-dual objective that learns a mapping function from input to feature space concurrently with
the original classification objective

A primal-dual objective formulation Define g to be a mapping that maps X ∈ Rd to some feature
space. We propose the learning objective as to learn a classifier h simultaneously with the mapping function
g with the exposure of historical data ZT −1

1 . With the feature g(X) from the target domain, our learning
objective is now E

[
ℓh(g(XT ), YT ))|ZT −1

1
]
− infh∗,g∗ E

[
ℓh∗(g∗(XT ), YT )|ZT −1

1
]
. Intuitively, this can be viewed

as a combination of two optimization problems where both ∆ and the learning loss are minimized.

The objective is hard to evaluate without further assumptions. Thus we restrict our study to the case where
both g and h are parametrizable. Specifically, we assume g is parameterized by ω and h is parameterized by
θ. Then we leverage the Wasserstein-1 distance’s dual representation (Equation 3, Kantorovich & Rubinstein
(1958)) to derive an objective for learning the representation,

W1(P, Q) = sup
γ∈Γ(P,Q)

∫
γ(x)dP (x) −

∫
γ(y)dQ(y) = sup

γ∈Γ(P,Q)
EP [γ(x)] − EQ[γ(y)] . (3)

With this, the following primal-dual objective can be used to concurrently find the best-performing classifier
and representation mapping,

min
θ

max
ω

E
[
ℓhθ,T

(gω(XT ), YT ) | ZT −1
1

]
+ λLD , (4)

where LD = maxt EPt
[gω(Xt)] − EPt+1 [gω(Xt+1)] and λ is a tunable parameter.

One-step and temporal variants Notice that LD relies on the maximum distance across all domains. It
is thus hard to directly evaluate LD without simultaneous access to all domains. With access only to the
current and the past domains, we could optimize the following one-step primal-dual loss at time t instead.

min
θ

max
ω

E
[
ℓhθ,t

(gω(Xt), Yt) | Zt
1
]

+ λLDt , (5)

where LDt
= EPt

[gω(Xt)] − EPt+1 [gω(Xt+1)].

Compared to the objective (4), the one-step loss (5) only gives us partial information, and directly optimizing
it may often lead to suboptimal performance. While it is inevitable to optimize with some loss of information
under the problem setup, we use a temporal model (like an LSTM) to help preserve historical data information
in the process of learning mapping function g. In particular, in the temporal variant, we will be using the
hidden states of an LSTM to dynamically summarize the features from all the past domains. Then, we shall
use the feature distribution computed from the LSTM hidden state to align with the feature distribution at
the current time step.

To practically implement these objectives, we can use neural networks to learn the representation and the
classifier, and another neural network is used as a critic to judge the quality of the learned representations. To
minimize the distance between representations of different domains, one can use W1 distance as an empirical
metric. Then the distance of the critic of the representations in different domains is then minimized to
encourage the learning of similar representations. We note that the use of W1 distance, which is easy to
evaluate empirically, to guide representation learning has been practiced before (Shen et al., 2018). We take
this approach further to the problem of gradual domain adaption.

6 Empirical Results

In this section, we perform experiments to demonstrate the effectiveness of supervised gradual domain
adaptation and compare our algorithm with No Adaptation, Direct Adaptation, and Multiple Source Domain
Adaptation (MDA) on different datasets. We also verify the insights we obtained in the previous section by
answering the following three questions:
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1. How helpful is representation learning in gradual domain adaptation? Theoretically,
effective representation where the data drift is “small” helps algorithms to gradually adapt to the
evolving domains. This corresponds to minimizing the ρ∆ term in our Theorem 4.1. We show that
our algorithm with objective (5) outperforms the objective of empirical risk (No Adaptation).

2. Can the one-step primal-dual loss (5) act as an substitute to optimization objective (4)?
Inspired by our theoretical results (Theorem 4.1), the primal-dual optimization objective (4) should
guide the adaptation process. However, optimization of this objective requires simultaneous access
to all data domains. We use a temporal encoding (through a temporal model such as LSTM) of
historical data to demonstrate the importance of the information of past data domains. We compare
this to results obtained with a convolutional network (CNN)-based model to verify that optimizing
the one-step loss (5) with a temporal model could largely mitigate the information loss.

3. Does the length of gradual domain adaptation affect the model’s ability to adapt? Our
theoretical results suggest that there exists an optimal length T for gradual domain adaptation. Our
empirical results corroborate this as when the time horizon passes a certain threshold the model
performance is saturated.

6.1 Experimental Setting

We conduct our experiments on Rotating MNIST, Portraits, and FMOW, with a detailed description of each
dataset in the appendix. We compare the performance of no adaptation, direct adaptation, and multiple
source domain adaptations with gradual adaptation. The implementation of each method is also included in
the appendix. Each experiment is repeated over 5 random seeds and reported with the mean and 1 std.

6.2 Experimental Results

Table 1: Results on rotating MNIST dataset with Gradual Adaptation on 5 domains, Direct Adaptation, and
No Adaptation.

Rotating MNIST with 5 domains
Gradual Adaptation Direct Adaptation No Adaptation
CNN LSTM CNN LSTM CNN

0-30 degree 90.21 ± 0.48 94.83 ± 0.49 77.97 ± 0.99 89.72 ± 0.73 79.76 ± 3.20
0-60 degree 87.35 ± 1.02 92.52 ± 0.25 73.27 ± 1.51 88.53 ± 0.76 58.36 ± 2.59
0-120 degree 82.38 ± 0.57 89.72 ± 0.35 62.52 ± 1.06 84.30 ± 2.60 38.25 ± 0.61

Table 2: Results on rotating MNIST dataset (5 domains) with Gradual Adaptation, MDA (MDAN) (Zhao
et al., 2018) and Meta-learning (EAML) (Liu et al., 2020).

Rotating MNIST with 5 domains
Gradual Adaptation MDAN EAML

CNN LSTM Maxmin Dynamic
Dynamic
with last

2 domains
CNN

0-30 degree 90.21 ± 0.48 9.83 ± 0.49 93.62 ± 0.87 95.79 ± 0.33 83.04 ± 0.29 79.10 ± 6.99
0-60 degree 87.35 ± 1.02 92.52 ± 0.25 91.99 ± 0.51 92.27 ± 0.26 61.49 ± 0.72 54.64 ± 4.08
0-120 degree 82.38 ± 0.57 89.72 ± 0.35 87.25 ± 0.52 88.57 ± 0.21 41.14 ± 1.77 17.91 ± 10.34
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Table 3: Results on FMOW with Gradual Adaptation with 3 domains, Direct Adaptation, and No Adaptation.

FMOW
No Adaptation

with ERM
Direct Adaptation

with CNN
Gradual Adaptation

with CNN
Gradual Adaptation

with LSTM
33.10 ± 1.94 41.94 ± 2.73 36.86 ± 1.91 43.52 ± 1.40

Learning representations further help in gradual adaptation

On rotating MNIST, the performance of the model is better in most cases when adaptation is considered
(Table 1), which demonstrates the benefit of learning proper representations. With a CNN architecture, the
only exception is when the shift in the domain is relatively small (0 to 30 degree), where the No Adaptation
method achieves higher accuracy than the Direct Adaptation method by 2%. However, when the shift
in domains is relatively large, Adaptation methods are shown to be more successful in this case and this
subtle advantage of No Adaptation no longer holds. Furthermore, Gradual Adaptation further enhances this
outperformance significantly. This observation shows the advantage of sequential adaptation versus direct
adaptation. We further show that the performance of the algorithm monotonically increases as it progress

Table 4: Results on Portraits with Gradual Adaptation for different lengths of horizon T , Direct Adaptation,
and No Adaptation.

Portraits
CNN LSTM

No Adaptation 76.01 ± 1.45 N/A
Direct Adaptation 86.86 ± 0.84 N/A

Gradual - 5 Domains 87.77 ± 0.98 87.41 ± 0.76
Gradual - 7 Domains 89.14 ± 1.64 89.15 ± 1.12
Gradual - 9 Domains 90.46 ± 0.54 89.88 ± 0.54
Gradual - 11 Domains 90.56 ± 1.21 90.93 ± 0.75
Gradual - 12 Domains 91.45 ± 0.27 90.73 ± 0.66
Gradual - 13 Domains 90.54 ± 0.90 91.13 ± 0.35
Gradual - 14 Domains 90.58 ± 0.38 90.35 ± 0.71

to adapt to each domain and learn a cross-domain representation. Figure 1b shows the trend in algorithm
performance on rotating MNIST and FMOW.

One-step loss is insufficient as a substitute, but can be improved by temporal model The
inefficiency of adaptation without historical information appears with all datasets we have considered, reflected
through Table 1, 3, 4. In almost all cases, we observe that learning with a temporal model (LSTM) achieves
better accuracy than a convolutional model (CNN). The gap is especially large on FMOW, the large-scale
dataset in our experiments. We suspect that optimizing with only partial information can lead to suboptimal
performance on such a complicated task. This is reflected through the better performance achieved by Direct
Adaptation with CNN when compared to Gradual Adaptation with CNN and 3 domains (Table 3). In
contrast, Gradual Adaptation with LSTM overtakes the performance of Direct Adaptation, suggesting the
importance of historical representation. Another evidence is that Figure 1b shows that Gradual Adaptation
with a temporal model performs better on all indexes of domains on rotating MNIST and FMOW.

9
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(a) Rotating MNIST (b) FMOW

(c) PCA projection (d) Plot of euclidean distance

Figure 1: Figure 1a compares the training curves on rotating MNIST with maximum rotation of 120
degrees. Figure 1b compares the training curves on FMOW. Figure 1c is the PCA projection plot of learned
representation and Figure 1d plots the Euclidean distance to the target domain of the projections of learned
representations.

Existence of optimal time horizon With the Portraits dataset and different lengths of horizon T ,
we verify that then optimal time horizon can be reached when model performance is saturated in Table 4.
The performance of the model increases drastically when the shifts in domains are considered, shown by
the difference in the performance of No Adaptation, Direct Adaptation, and Gradual Adaptation with 5
and 7 domains. However, this increase in performance becomes relatively negligible when T is large (the
performance gain is saturated when the horizon length is 9 − 14). This rate of growth in accuracy implies
that there exists an optimal number of domains.

Comparison with MDA Lastly, we remark on the results (Table 2 and 5) achieved by Gradual
Adaptation in comparison with MDA methods (MDAN (Zhao et al., 2018), DARN (Wen et al., 2020) and
Fish (Shi et al., 2022)). On Rotating MNIST, we note that Gradual Adaptation outperforms MDA methods
when the shift is large (60 and 120 degree rotation) while relaxing the requirement of simultaneous access to
all source domains. It is only when the shift is relatively small (30-degree rotation), MDA method DARN
achieves a better result than ours. When the MDA method is only presented with the last two training
domains, Gradual Adaptation offers noticeable advantages regardless of the shift in the domains (Table
2). This demonstrates the potential of graduate domain adaptation in real applications that even when
the data are not simultaneously presented it is possible to achieve competitive or even better performance.
One possible reason for this can be illustrated by Figure 1d, in which we plot the PCA projections and the
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Table 5: Results on rotating MNIST dataset with Gradual Adaptation on 5 domains and MDA methods,
Fish (Shi et al., 2022) and DARN (Wen et al., 2020)

Fish DARN Ours
0-30 degree 95.83 ± 0.13 94.20 ± 0.27 94.83 ± 0.49
0-60 degree 90.57 ± 0.37 89.50 ± 0.12 92.52 ± 0.25
0-120 degree 83.26 ± 1.58 82.28 ± 2.42 89.72 ± 0.35

Euclidean distance to the target domain of learned representations. From Figure 1d, we can see that the
gradual domain adaptation method is able to gradually learn an increasingly closer representation of the
source domain to the target domain. This helps our method to make our prediction based on more relevant
features while MDA methods may be hindered by not-so-relevant features from multiple domains.

Comparison with Meta-learning In addition to comparing our method with those achieved by domain
adaptation methods, we also compare our work with Meta-learning for evolving distributions (EAML (Liu
et al., 2020)). In contrast to gradual domain adaptation, these methods instead assume that the testing
distribution is gradually evolving and thus the learned classifier is desired to be adaptive to these changing
targets. In addition, the learned classifier is also asked to “not forget”. Due to the different objectives, we can
see that the baseline method (EAML) is suboptimal on a fixed target with changing training distributions,
when compared to our method (Table 2).

7 Conclusion

We studied the problem of supervised gradual domain adaptation, which arises naturally in applications
with temporal nature. In this setting, we provide the first learning bound of the problem and our results are
general to a range of loss functions and are algorithm agnostic. Based on the theoretical insight offered by
our theorem, we designed a primal-dual learning objective to learn an effective representation across domains
while learning a classifier. We analyze the implications of our results through experiments on a wide range of
datasets.
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