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ABSTRACT

Data selection is designed to accelerate learning with preserved performance.
To achieve this, a fundamental thought is to identify informative data samples
with significant contributions to the training. In this work, we propose Evolved
Sampling (ES), a simple yet effective framework for dynamic sampling along
the training process. This method conducts batch level data selection based on
the dynamics of losses and augmented loss differences, which enables flexible
frequency tuning, and hence significantly reduces the back propagation time with
maintained model performance. Due to its conciseness, ES is also readily extensible
to incorporate set level data selection (to form ES with pruning, ESWP) for
further accelerations. As a plug-and-play framework, ES(WP) consistently achieves
lossless training accelerations across various pre-training and post-training tasks,
saving up to nearly 45% wall-clock time. Our results motivate further investigations
on the data efficiency aspect of modern large-scale machine learning.

1 INTRODUCTION

Deep learning has showcased remarkable performance across a variety of real-world applications,
particularly leading to unparalleled successes of large “foundation” models (Touvron et al. (2023);
Rombach et al. (2022)). On the other hand, since these large models are usually trained on web-scale
datasets, the overall computation and memory loads are considerably increasing and unsustainable,
calling for more efficient developments of modern large-scale machine learning.

Efficient learning involves several aspects, centering around models, data, optimization, systems,
and so on (Shen et al. (2023)). For data-efficient machine learning, the core is to properly evaluate
the importance per data sample in the original (large) datasets. A broad array of methods is applied
in a static manner, or known as the offline (coreset) selection, where the samples’ importance is
determined before the formal training. By leveraging feature representations of data (Swayamdipta
et al. (2020); Xie et al. (2023b)), this importance can be either evaluated based on a variety of metrics
such as distances (Huang et al. (2023); Xia et al. (2023); Abbas et al. (2023)), uncertainties (Coleman
et al. (2020); Margatina et al. (2021)), errors (Toneva et al. (2019); Paul et al. (2021)), etc., or learned
via procedures from the meta optimization (Killamsetty et al. (2021c;b); Jain et al. (2024); Wang
et al. (2022)) and dataset distillation (Nguyen et al. (2021); Wang et al. (2022); Zhao & Bilen (2023)),
or directly assessed by LLMs (Sachdeva et al. (2024)). See more detailed discussions in Appendix
Sec. A. However, these approaches can be prohibitively expensive to apply in practice, since their
potential dependence on feature representations requires additional (pre-)training in advance.

Another array of methods lies in a dynamic sense, or known as the online (batch) selection, where
the samples’ importance is simultaneously evaluated along the training process. Dynamic sampling
methods can be further divided into two categories: set level selection, to prune the whole dataset
at the beginning of each epoch (Qin et al. (2024); Raju et al. (2021); Thao Nguyen et al. (2023);
Attendu & Corbeil (2023)), and batch level selection, to sample subsets from original batches for
back propagation (Kawaguchi & Lu (2020); Katharopoulos & Fleuret (2017; 2018); Mindermann
et al. (2022)). Nevertheless, these dynamic sampling methods leverage similar strategies to evaluate
the samples’ importance. Based on the naive intuition that samples’ contributions to the learning
are directly associated with gradient updates, it is natural to re-weight data samples with scales of
gradients or losses during training. Sampling methods based on the gradients (Hanchi et al. (2022);
Wang et al. (2024b); Gu et al. (2025); Wang et al. (2025; 2024a)) usually suffer from significant
computation and memory loads. Sampling methods based on the loss dynamics can involve current
losses (Jiang et al. (2019); Loshchilov & Hutter (2016); Qin et al. (2024); Thao Nguyen et al. (2023);
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Kumar et al. (2023); Balaban et al. (2023)) and historical losses (Attendu & Corbeil (2023); Raju et al.
(2021); Sagawa et al. (2020)) and also adopt reference models (Mindermann et al. (2022); Deng et al.
(2023); Xie et al. (2023a)). See more detailed discussions in Appx. A. However, these approaches
exploit the information of losses inadequately by only involving “absolute” loss values, without finer
considerations on their dynamical “variations” during training.

To tackle these issues, we propose a simple novel dynamic sampling framework, Evolved Sampling
(ES). Unlike previous sampling methods, ES determines the importance/weights of data samples based
on both (zero-order) losses and additional (first-order) loss differences along the training dynamics.
By augmenting and balancing these two orders, ES can flexibly tune the portion of oscillations (high
frequencies) presented in loss signals, and conducts batch level selection without the demand of
pre-trained reference models. Importantly, ES employs an equivalent dynamical scheme to compute
sampling weights without explicitly storing historical losses, and only computations regarding losses
are involved to implicitly calculate the required loss differences, implying the negligible memory
costs and mild computation overhead additionally introduced by weight calculations. Due to its
simplicity, ES is effortless to implement, while significantly reducing the number of samples used
for back propagations (BPs) and consequently saving the overall wall-clock time without degrading
the overall performance. Moreover, ES facilitates convenient extensions to data pruning on the set
level, i.e., Evolved Sampling with Pruning (ESWP), leading to further accelerations with lossless
learning performance. We demonstrate the differences in details between our proposed methods
(ES/ESWP) and previous dynamic sampling methods in Tab. 1.

Table 1: Comparison of different dynamic sampling methods. The “history” denotes whether the
method uses historical (loss) information along the training. The “dif” column stands for whether the
method uses dynamical variations of losses during the training. The last column summarizes the ratio
of samples used for back propagations (BPs) relative to the standard training. Here, r stands for the
pruning ratio for set level methods (pruning data samples of the whole epoch), and b/B represents
the pruning ratio for batch level methods (selecting a mini-batch b (subset) from a meta-batch B).

set batch history dif pct. of samples for BP

UCB (Raju et al. (2021)) ✓ ✓ 1− r
KA (Thao Nguyen et al. (2023)) ✓ 1− r

InfoBatch (Qin et al. (2024)) ✓ 1− r
Loss (Katharopoulos & Fleuret (2017)) ✓ b/B

Order (Kawaguchi & Lu (2020)) ✓ b/B
ES (ours) ✓ ✓ ✓ b/B

ESWP (ours) ✓ ✓ ✓ ✓ (1− r)b/B

Our contributions can be summarized as follows:

• On the theoretical side, we provide quantitative convergence analysis of the loss re-weighted
gradient descent (GD) under idealized settings. Motivated by this, we propose a simple novel
dynamic sampling framework ES(WP) that can implicitly incorporate (and balance) additional
dynamical differences of losses without explicitly storing historical values and calculating
variations. By further injecting higher-order dynamical information, one can flexibly tune the
portion of oscillations (high frequencies) presented in loss signals with quantitative guidance.

• On the empirical side, we carry out extensive experiments to verify the effectiveness, efficiency,
and flexibility of ES(WP). It is shown that ES(WP) consistently achieves lossless training
accelerations across various pre-training and post-training tasks, saving up to 45% training time.

The rest of this paper is organized as follows. In Sec. 2, we provide the motivation of loss-based
dynamic sampling methods. In Sec. 3, we present the proposed methods with theoretical justifications
and complexity analysis. Experiments and ablation studies are provided in Sec. 4. The discussions
and outlook are provided in Sec. 5. Related works and all the details of proofs and experiments are in
the appendices.

Notations. We use normal letters to denote scalars, and boldfaced lower-case letters for vectors.
We denote the cardinality of a set S by |S|. Let [n] := {1, 2, . . . , n} for n ∈ N+. Let 1n ∈ Rn be
the vector of all ones. ⌈c⌉ represents the smallest positive integer such that ⌈c⌉ ≥ c. We use the big-O
notation f(t) = O(g(t)) to represent that f is bounded above by g asymptotically, i.e., there exists a
universal c > 0, t0 > 0 such that f(t) ≤ cg(t) for any t ≥ t0.
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2 PRELIMINARIES AND MOTIVATIONS

2.1 PRELIMINARIES

The classic setting of general machine learning tasks is as follows. Given a dataset D := {zi}ni=1
with zi := (xi, yi) (labeled) or zi := xi (unlabeled) of the size n ∈ N+, the goal is to solve
the empirical risk minimization (ERM) problem: min

θ∈Θ
L̂n(θ) := 1

n

∑n
i=1 ℓi(θ), where ℓi(θ) :=

ℓ(f(xi;θ), yi) or ℓi(θ) := ℓ(f(xi;θ)). Here, ℓ(·, ·) or ℓ(·) denotes the non-negative loss function,
and L̂n(θ) represents the empirical averaged loss over n data samples. When n is large, a common
routine is to compute stochastic gradient on a random batch instead of the whole training set. For
instance, starting from an initialization θ(0) = θ0, the SGD optimizer updates model parameters by
θ(t+ 1) = θ(t)− ηt∇θL̂n(θ(t)) ≈ θ(t)− ηt

B

∑
j∈Bt
∇θℓj(θ(t)), where {ηt}t∈N denotes learning

rates, and Bt ⊂ [n] denotes the batch with the size |Bt| = B ≤ n. The standard sampling method is
to draw the batch {zij}Bj=1 ⊂ D uniformly without replacement for ⌈n/B⌉ iterations in one epoch,
which we refer as the standard batched sampling (baseline, no data selection).

2.2 THEORETICAL MOTIVATIONS

Obviously, the standard batched sampling takes equal treatment to data samples. This can be
inefficient since different samples may have varied importance to the learning task at different training
stages: As the training proceeds, there are inevitably samples that are fitted more accurately compared
with the others, leading to lower priority to learn these better-fitted samples in the sequel. Hence, it is
necessary to assign adaptive weights for data samples during training.
Convergence of loss re-weighted GD. As discussed before, it is intuitively reasonable to measure
the samples’ importance with scales of losses along the training, putting more weights on samples
with larger losses. The experiments in Katharopoulos & Fleuret (2017) and Kawaguchi & Lu (2020)
have suggested that this kind of “loss-weighted” gradient decent dynamics can accelerate learning in
practice compared to vanilla GD (without data re-weighting). To step further, this work develops
these former literatures in theory by first mathematically proving the following convergence rate.
Proposition 2.1 (Reduced version; see a full version in Prop. B.1). Consider the continuous-time
idealization of the loss-weighted gradient decent, i.e.

d

ds
θ̂lw
n (s) = −

n∑
i=1

ℓi(θ̂
lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

∇θℓi(θ̂
lw
n (s)), (2.1)

with the initialization θ̂lw
n (0) = θ0. Assume that there exists θ∗ such that L̂n(θ

∗) = 0 and ℓi(·) is
convex for each i ∈ [n]. Then, we have the more-than sub-linear convergence rate of Eq. (2.1), i.e.,
there exists s0 ∈ [0, s] such that

L̂n(θ̂
lw
n (s0))− L̂n(θ

∗) ≤ 1

2s
∥θ0 − θ∗∥22 −

1

s

∫ s

0

∆(s′)ds′, s > 0, (2.2)

where ∆(·) is a positive-valued function on [0,∞).

Prop. 2.1 suggests that (under certain regularity conditions) the loss-weighted gradient flow converges
more than sub-linearly to the global minimum, while the standard gradient flow (i.e. the continuous-
time idealization of vanilla GD) only has the sub-linear convergence.1

To formulate, for any i ∈ [n] and t ∈ N, define wi(t) as the (unnormalized) weight of the i-th sample
at the t-th (training) step. For the standard batched sampling, we obviously have the uniform weights:
wi(t) ≡ 1/n. For the loss-weighted sampling Eq. (2.1), one calculates the sampling probability as

pi(t) ∝ wi(t) = ℓi(θ(t)), (2.3)
i.e., the weight is set as the current (non-negative) loss value. On top of that, there are also some
variants of loss-weighted sampling strategies: For instance, Kumar et al. (2023) sets wi(t) =
g(ℓi(θ(t))), where the function g(·) is pre-defined based on the theory of robust optimization;
Kawaguchi & Lu (2020) directly selects top-q samples in terms of current losses per training step,
which can be regarded as another realization of Kumar et al. (2023).

1Although this sharper convergence bound cannot imply learning accelerations solely in theory, accelerations
are often observed in practical simulations (e.g. Table 1, 3 and Figure 3, 4 in Kawaguchi & Lu (2020)).
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3 METHODS AND ANALYSIS

3.1 EVOLVED SAMPLING

In general machine learning tasks, the typical behaviors of averaged losses often appear decent trends
overall, but can oscillate meanwhile due to the noises in training dynamics. This introduces the
instability issue of sampling schemes (e.g. Eq. (2.3)) applied in practice, i.e., the loss-weighted
sampling scheme like Eq. (2.3) is intrinsically sensitive to possibly large variations of (individual)
losses and not robust to possible noises. In addition, although sampling schemes based on loss values
require only lightweight calculations compared to those of e.g. gradient-weighted sampling, they
basically ignore higher-order directional information in the training dynamics of the latter. In this
regard, to additionally exploit the higher-order information (like gradient-weighted sampling) while
maintaining the lightweight calculations (of loss-weighted sampling), we propose to use the sampling
scheme Eq. (3.1) based on Prop. 3.1.

Proposition 3.1. For any i ∈ [n] and t ∈ N, define the sampling probability as

pi(t) ∝ wi(t) = β1si(t− 1) + (1− β1)ℓi(θ(t)),

si(t) = β2si(t− 1) + (1− β2)ℓi(θ(t))
(3.1)

with si(0) = 1/n, and β1, β2 ∈ [0, 1] as two hyper-parameters (commonly β1 ≤ β2). Then for any
β2 ̸= 1, we have

wi(t) = (1− β2)

t∑
k=1

βt−k
2 ℓi(θ(k)) + (β2 − β1)

t−1∑
k=1

βt−1−k
2 (ℓi(θ(k + 1))− ℓi(θ(k)))︸ ︷︷ ︸

losses’ dynamical differences

+O(βt
2).

(3.2)
Furthermore, consider the SGD optimizer with the sampling scheme Eq. (3.1), i.e. θ(t + 1) =
θ(t)− ηt

∑
j∈Bt

pj(t)∇θℓj(θ(t)). Then, for t≫ 1, we have

wi(t) ≈ (1− β2)

t∑
k=1

βt−k
2 ℓi(θ(k))

− (β2 − β1)

t−1∑
k=1

βt−1−k
2 ηk

〈
∇θℓi(θ(k)),

∑
j∈Bk

pj(k)∇θℓj(θ(k))

〉
, (3.3)

where ci(k) :=
〈
∇θℓi(θ(k)),

∑
j∈Bk

pj(k)∇θℓj(θ(k))
〉

denotes the inner product between the i-th
sample’s gradient and full gradient at the k-th iteration.

The proof is deferred to Appx. B.2. Intuitively, ci(k) represents the individual-to-whole gradient
“alignment” along training trajectories. As shown in Eq. (3.3), despite that there are only calculations
regarding values of losses in the sampling scheme Eq. (3.1), Eq. (3.1) implicitly leverages additional
correlations between gradients to determine sample weights: When the individual gradient positively
correlates with the whole gradient (i.e. the better-learned sample with in step learning directions), we
have ci(k) > 0, and its sample weight is decreased as the second term of wi(t) is negative; conversely,
when the individual gradient negatively correlates with the whole gradient (i.e. the worse-learned
sample without in step learning directions), we have ci(k) < 0, and its sample weight is increased as
the second term of wi(t) is positive.

We discuss more implications of Prop. 3.1 as follows:

• The sampling scheme Eq. (3.1) reduces to Eq. (2.3) when setting β1 = β2 = 0,2 hence it is an
extension by augmenting the information of losses’ dynamical differences.

• Prop. 3.1 suggests that one can incorporate additional dynamical variations of losses into the
calculation of sampling weights through Eq. (3.1), without explicitly storing historical losses
and calculating differences (as in Eq. (3.2)), making Eq. (3.1) an efficient sampling scheme by
saving both memory and computation compared to Eq. (3.2).

2Also, it is obvious that Eq. (3.1) reduces to the standard batched sampling when setting β1 = β2 = 1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Based on Eq. (3.2), the strengths of losses and their dynamical differences can be flexibly
balanced via the hyper-parameters (β1, β2). By setting (β1, β2) → (0+, 1−), we are able to
exploit the long-term historical information during training (via β2), while simultaneously
responding to current losses (via β1) and thus can get the best of both world.3

Figure 1: The output weights of different sam-
pling schemes, where the black curve denotes
Eq. (2.3), while the red curve represents Eq. (3.1)
((β1, β2) = (0.5, 0.9)). Here, we draw the black
curve as a decayed function with random pertur-
bations, to mimic typical behaviors of loss curves
in general machine learning. It is shown that the
sampling scheme Eq. (2.3) is sensitive w.r.t. oscil-
lations. However, when losses oscillate, the sam-
pling scheme Eq. (3.1) reacts moderately by not
only reserving some portion of dynamical details
of losses (high frequency information), but also
remaining necessary robustness by capturing the
overall trend (low frequency information), with
the flexibility to trade off in between by tuning
(β1, β2). See theoretical analysis in Sec. 3.2.

Figure 2: An illustration of ES(WP). At the
beginning of the e-th epoch, we optionally
randomly prune the whole dataset (“prun-
ing”), according to the probability propor-
tional to the weights {wi(e)}ni=1 defined in
Eq. (3.1). At the t-th step, we first sample a
meta-batch Bt uniformly without replacement
from the remaining dataset; then we sample a
mini-batch bt fromBt for BP, according to the
sampling probability pi(·) defined in Eq. (3.1).
Note that the scores/weights of samples are
updated using the latest model parameters.
At the first/last few epochs, we optionally use
the “annealing” strategy (Qin et al. (2024)),
i.e. the standard batched sampling without
data selection. See the algorithm details in
Appx. C.

More intuitions. We further explain why augmented (loss) differences should work intuitively.
Let β2 > β1. Given any data sample zi, if its total loss variations accumulated up to t are positive
(say, ℓi(·) always increases), the augmented “difference” term in Eq. (3.2) is positive and hence its
sampling weight is increased, which is reasonable since the model continually underfits zi and should
then value zi more. Conversely, if its loss variations accumulated up to t are negative (say, ℓi(·)
always decreases), the augmented “difference” term in Eq. (3.2) is negative and hence its sampling
weight is decreased, which is also reasonable since the model continually fits zi well and should then
value zi less. That is, the augmented “difference” term in Eq. (3.2) plays a role of “damping”. More
quantitative justifications can be derived via the frequency analysis (see Sec. 3.2).

We establish the following estimate on the convergence rate of SGD weighted by the sampling scheme
Eq. (3.1), and its proof is deferred in Appx. B.3.
Theorem 3.2. Assume that ℓi(·) is convex and Li-smooth (i.e. ∥∇θℓi(θ1)−∇θℓi(θ2)∥ ≤ Li∥θ1 −
θ2∥) for each i ∈ [n], and there exists θ∗ such that L̂n(θ

∗) = 0. Then, for the SGD optimizer with
the sampling scheme Eq. (3.1), i.e. θ(t+ 1) = θ(t)− ηt

∑
j∈Bt

pj(t)∇θℓj(θ(t)), with the constant
learning rate ηt ≡ η = 1/(2L) (L := maxi∈[n] Li), we have

L̂n

(
1

T

T−1∑
t=0

θ(t)

)
− L̂n(θ

∗) ≤
2LE ∥θ(0)− θ∗∥22

T
− 1

T

T−1∑
t=0

R(t), (3.4)

where R(t) := E
∑

j∈Bt

(
pj(t)− 1

B

)
[ℓj(θ(t))− ℓj(θ

∗)] denotes the remainder. Furthermore, there
exists (β1, β2) such that R(t) ≥ 0 for any t ∈ N, leading to the more-than sub-linear convergence.

3In fact, by Eq. (3.1), it is obvious that smaller β1 and larger β2 give larger coefficients of the current loss
ℓi(θ(t)) and historical score si(t− 1), respectively, hence we are focusing on the importance of both current
losses and historical weights by setting (β1, β2) → (0+, 1−).
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Remark 1. Discussions on assumptions:

• The convexity and L-smoothness conditions are widely-adopted and also standard in proving
the convergence of (S)GD in optimization literature (e.g. Garrigos & Gower (2023)). Under
the non-convex setting, typically the convergence to only stationary points can be guaranteed
for general smooth functions (see e.g. Khaled & Richtárik (2023)).

• For the condition L̂n(θ
∗) = 0, it simply means that the optimal training loss can be zero.

There are empirical evidences to support this assumption even for neural networks (see e.g.
Figure 1 (a) in Zhang et al. (2017)).

ES(WP) framework. We refer the scheme Eq. (3.1) as Evolved Sampling (ES), which conducts
data selection on batch level. To further incorporate set level selection, we extend ES to prune
data at each epoch, leading to Evolved Sampling With Pruning (ESWP) framework as illustrated
in Fig. 2. Note that we optionally adopt annealing techniques to enhance performance. For the
essential differences between ES(WP) and previous dynamic sampling methods, one can refer to
the taxonomy outlined in Tab. 1. As a plug-and-play framework, ES(WP) can be integrated into any
optimizers applied to different tasks, while some recently developed sampling methods (Wang et al.
(2024a; 2025)) only work for SGD. In practice, the simple and elegant design of the sampling scheme
Eq. (3.1) turns out to be surprisingly effective, as shown in extensive experiments.
Remark 2. Here, we allow the randomness to keep samples with lower weights in training, which
reduces the biases (and possibly inactive samples) compared to directly discarding them.

3.2 THEORETICAL BENEFITS OF EVOLVED SAMPLING VIA FOURIER ANALYSIS

In this section, we provide mathematical justifications for the sampling scheme Eq. (3.1) by charac-
terizing its frequency properties. To achieve this, we first view ℓ(t)(:= ℓ(θ(t))), s(t), w(t) defined
in the sampling scheme Eq. (3.1) all as signals in time. For ease of notation, we omit the sample
index i here. For a signal in time f(t) (with appropriate regularities), we consider the Laplace
transform L{f}(ω) =

∫∞
0

e−ωtf(t)dt, ω ∈ C. Then, according to the Fourier analysis, |L{f}(iω0)|
represents the magnitude of f ’s ω0-frequency for ω0 > 0 (i2 = −1). We have the following result.
Theorem 3.3. Consider a continuous-time idealization of the sampling scheme Eq. (3.1):

w(t) = s(t) +
β2 − β1

1− β2
s′(t), s′(t) = (1− β2)(ℓ(t)− s(t)), (3.5)

with s(0) = 1/n, and β1, β2 ∈ (0, 1) as two hyper-parameters. Then we have

L{w}(ω) = (β2 − β1)ω + (1− β2)

ω + (1− β2)
L{ℓ}(ω) +O(1/n), (3.6)

implying that the transfer function H(ω) = (β2−β1)ω+(1−β2)
ω+(1−β2)

satisfies

|H(iω0)| ≤ 1, lim
ω0→+∞

|H(iω0)| = |β2 − β1|. (3.7)

The proof is provided in Appx. B.4. Based on Thm. 3.3, we conclude that (i) for all frequencies in
the loss signal ℓ(t) = ℓ(θ(t)), the weight signal w(t) calculated by the sampling scheme Eq. (3.1)
does not enlarge them, hence is more stable in the frequency domain given oscillations in loss signals;
(ii) for high frequencies in the loss signal ℓ(t) = ℓ(θ(t)), the weight signal w(t) calculated by the
sampling scheme Eq. (3.1) reserves a |β2 − β1|-portion, which can be tuned via betas (frequency
tuning). This suggests that the sampling scheme Eq. (3.1) can not only stably capture the overall
trend (low frequency), but also flexibly tune the portion of details (high frequency) in loss signals.
See illustrations in Fig. 2 and Fig. 8.

3.3 UNVEILING THE ACCELERATION EFFECTS VIA COMPLEXITY ANALYSIS

Computation efficiency. The primary source of savings comes from the substantial reduction in
the effective batch size during BP, compared with standard sampling (no data selection). Although
ES(WP) introduces an extra forward pass (FP) on the selected mini-batch (can be omitted if selection
is performed only at the set level, e.g., ESWP), the overhead is modest since FP requires much fewer
FLOPs than BP. Consequently, the reduction in BP dominates the overall time complexity, leading to
a significant acceleration effect, as observed empirically in Sec. 4.1.
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Memory efficiency. From Eq. (3.1), the only additional memory cost of ES(WP) is to store the
current score/weight value of each sample, which is negligible compared to the memory cost high-
dimensional data itself. Moreover, because ES(WP) reduces the effective sample size in BP, it further
decreases memory usage (also verified numerically in Sec. 4.1).

More significant benefits under resource constraints. The advantages of ES(WP) become even
more significant in low-resource scenarios where GPU memory is limited and gradient accumulation
is required, a typical scenario in fine-tuning large models (e.g., LLMs). In this setting, multiple BP
passes must be executed before completing a single model update. Suppose the micro-batch size on
each GPU is bmicro. Then under standard sampling, the number of BP per update step is ⌈B/bmicro⌉.
In contrast, ES(WP) requires only ⌈b/bmicro⌉ BP passes. When bmicro ≤ b, the time spent on BP
under standard sampling can be up to B/b times greater than with ES(WP), underscoring the stronger
acceleration of our method in memory-constrained training.

3.4 HYPER-PARAMETERS TUNING

The primary hyper-parameters are betas in the sampling scheme Eq. (3.1), which are designed to
balance dynamical losses and their differences during training. In experiments, we take the default
values of (β1, β2), which are obtained by a fine-grained grid search in small-scale simulations
(Sec. 4.3). These defaults are consistently validated to be (locally) optimal in small-scale experiments,
and their superior effectiveness remains in large-scale tasks (Sec. 4.1, (ii) & (iii), Sec. 4.2).4 The
other hyper-parameters, including mini-batch sizes, the pruning ratio and annealing epochs, are all
responsible for trade-offs between the learning performance and training speed. All of them are
user-defined, similar to previous data selection methods such as Qin et al. (2024); Thao Nguyen et al.
(2023); Raju et al. (2021). We also perform comprehensive ablations in Sec. 4.3.

4 EXPERIMENTS

In this section, we provide numerical simulations on the proposed method ES(WP) to demonstrate its
superiority in terms of effectiveness, efficiency, robustness and flexibility.5

4.1 EFFECTIVENESS AND EFFICIENCY

We compare the proposed methods ES/ESWP, with a group of former dynamic sampling approaches,
including the standard batched sampling (Baseline), purely random pruning (Random), Ordered
SGD (Order; Kawaguchi & Lu (2020)), Loss (Katharopoulos & Fleuret (2017), i.e., the sampling
scheme Eq. (2.3)), InfoBatch (Qin et al. (2024)), KAKURENBO (KA; Thao Nguyen et al. (2023)),
UCB (Raju et al. (2021)). For fair comparisons, all these sampling methods are loss-based, hence
much more light-weighted than gradient-based ones, and do not require to (pre)-train or exploit
additional models. See Appx. A, Paragraph “Dynamic sampling” for detailed discussions. For
all sampling methods, the hyper-parameters used in data pre-processing and optimization follow
standard configurations and are maintained the same (see more details in Appx. D). All reported
results are evaluated on the average of 3-4 independent random trials.

Configurations. For ES/ESWP, the default hyper-parameters are as follows: In Eq. (3.1), (β1, β2) =
(0.2, 0.9) for ES, (β1, β2) = (0.2, 0.8) for ESWP; for both ES and ESWP, the ratio of mini-batch
size (b) over meta-batch size (B) is b/B = 25%; if applicable, the annealing ratio is 5%, i.e., no data
selection is performed at the first/last 5% epochs; for ESWP (and Random), the pruning ratio is 20%.
For the two batch level data selection methods (Order, Loss), we apply the same mini/meta-batch
size as ES(WP). For InfoBatch, KA and UCB (set level data selection methods), we use the default
hyper-parameters in original papers (see more details in Appx. D.7).

4Notably, here we follow a common routine of hyper-parameters tuning, which is also adopted in e.g. Qin
et al. (2024); Wang et al. (2024b); Thao Nguyen et al. (2023), to reuse default hyper-parameters (obtained by
grid search in small-scale simulations) in large-scale experiments, without further tuning. This also indicates
that the joint effect of betas is robust, and the gain of ES(WP) is not from simply introducing/tuning more
hyper-parameters, but essentially from the augmented losses’ differences.

5We will release the code after acceptance.
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Results. We report the test classification accuracy and overall wall-clock time for the evaluation of
both effectiveness and efficiency. The results are as follows.

(i) For small-scale tasks, we train ResNet models on CIFAR datasets, and summarize the performance
of different sampling methods in Tab. 2. It is shown that the batch level data selection methods
(Loss, Order, ES) typically exhibit limited accelerations on these small-scale tasks, since these
methods often require additional forward propagation overheads that are not negligible compared to
BPs. Nevertheless, ES is the only algorithm that achieves lossless accelerations across all sampling
methods. Notably, ESWP saves the most computation time while maintaining the best performance
(also comparable to Baseline) among set level data selection methods (UCB, KA, InfoBatch).

Table 2: The test accuracy (%) and saved time of
training ResNet models on CIFAR datasets.

CIFAR-10 (R-18) CIFAR-100 (R-18) CIFAR-100 (R-50)

Baseline 95.4 78.8 81.1

Random 95.3↓0.1 18% 78.4↓0.4 20% 80.8↓0.3 19%

UCB (Raju et al. (2021)) 95.2↓0.2 18% 77.6↓1.2 18% 80.5↓0.6 24%
KA (Thao Nguyen et al. (2023)) 95.3↓0.1 21% 78.1↓0.7 21% 80.2↓0.9 24%

InfoBatch (Qin et al. (2024)) 95.3↓0.1 21% 78.4↓0.4 24% 80.4↓0.7 28%

Loss (Katharopoulos & Fleuret (2017)) 95.3↓0.1 11% 78.4↓0.4 10% 80.5↓0.6 12%
Order (Kawaguchi & Lu (2020)) 95.4↑0.0 11% 78.5↓0.3 10% 80.9↓0.2 12%

ES 95.4↑0.0 10% 78.8↑0.0 10% 81.1↑0.0 11%

ESWP 95.3↓0.1 24% 78.6↓0.2 24% 80.6↓0.5 31%

Table 3: The test accuracy and saved time of
fully fine-tuning ViT-Large on ImageNet-1K.

Time ↓ Acc. (%)

Baseline − 84.4

Random 24.5% 84.5↑0.1

UCB 23.6% 84.2↓0.2
KA 25.3% 84.3↓0.1

InfoBatch 23.5% 84.7↑0.3

Loss 36.4% 84.3↓0.1
Order 38.2% 84.2↓0.2

ES 26.0% 84.7↑0.3

ESWP 40.7% 85.0↑0.6

Selected samples by ES(WP). In Appx. D.2, we provide a visualization of selected samples by
ES(WP). Following Mindermann et al. (2022), we also plot the test accuracy versus the number of
samples used for back propagations (BPs) for Baseline and ES/ESWP in Fig. 10. It is clear that
ES/ESWP can significantly reduce the BP calculation costs and thus improve the learning efficiency.

(ii) For large-scale tasks, we fully fine-tune ViT-Large on ImageNet-1K, and summarize the perfor-
mance in Tab. 3. Under this setting, ES consistently achieves the best performance among batch level
data selection methods and the second-to-highest accuracy across all sampling methods. Notably,
ESWP attains the highest accuracy and the most significant wall-clock time reduction, suggesting
that ESWP inherits the advantages of both set and batch level data selection methods. In addition, it
is observed that the training speed-up of batch level methods gets far more significant given these
large-scale tasks, conversely surpassing the set level methods compared to (i). This is due to the
dominance of the saved computation in BPs. Furthermore, many sampling methods achieve higher
accuracies than Baseline, implying the huge potential of data selection in large-scale deep learning.
We also numerically evaluate the corresponding overall memory usage of ES (49.7GB) and ESWP
(49.1GB), which are also reduced compared to Baseline (52.4GB), verifying the efficiency of ES(WP)
in terms of memory loads besides computation costs for large-scale tasks.

(iii) For (large-scale) distributed learning tasks, we pre-train ViT-Large using MAE (He et al. (2022)),
and then fine-tune on ImageNet-1K without data selection. We plot the re-construction loss curves in
Fig. 3 and report final accuracy after fine-tuning in Tab. 4. It is shown that ESWP achieves lossless
acceleration over Baseline, and consistently outperforms the previous SOTA method InfoBatch.

(iv) For NLP tasks, we fully fine-tune ALBERT-Base-v2 on GLUE, and summarize the results in
Tab. 5. Across most datasets and on average, ES/ESWP outperforms all the other sampling methods,
and shows improved performance over Baseline with significant reduction of computation time.

4.2 LOW-RESOURCE SETTINGS: MORE ACCELERATION IN LLM FINE-TUNING

In this section, we investigate the low-resource setting by fine-tuning Qwen2.5-Math-1.5B (Yang
et al. (2024)) on a single NVIDIA A100 (40GB). We sample 30K instances from NuminaMath CoT
(LI et al. (2024)), and conduct SFT with a maximum token length 1024 and thus bmicro = 8. We set
B = 32, b = 8 and the pruning ratio as 0.2 for ESWP. The averaged evaluation results on MATH500
(Hendrycks et al. (2021)), AIME24, and OlympiadBench (He et al. (2024)) are shown in Fig. 4,
where we evaluate the model after 1K, 2K, and 4K training steps. Under this low-resource setting,
the time cost of BPs is significant due to gradient accumulations, whereas ESWP can reduce this
cost by selecting a much smaller effective mini-batch, thereby achieving learning accelerations. This
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Figure 3: Re-construction losses of MAE-
based pre-training of ViT-Large on ImageNet-
1K. The number in the bracket in the legend is
the validation accuracy (%) after fine-tuning,
and r stands for the pruning ratio.

Table 4: Pre-training time and fine-tuning accuracy.

Time (h) Time ↓ Acc. (%)

Baseline 48.1 − 84.9

InfoBatch 37.6 21.8% 84.6↓0.3

ESWP (r = 0.3) 35.1 27.0% 84.9↑0.0

ESWP (r = 0.5) 27.1 44.7% 84.6↓0.3

Table 5: The validation metric (%) and saved time of
fully fine-tuning ALBERT-Base-v2 on GLUE.

CoLA SST2 QNLI QQP MNLI-m MRPC RTE STSB Avg. Time↓
Baseline 56.7 92.2 91.1 90.3 84.7 88.5 74.0 89.6 83.4 -

InfoBatch 57.9 92.1 91.2 90.3 84.5 89.2 73.8 89.7 83.6↑0.2 28.3%

Loss 55.1 92.3 91.4 90.2 84.4 88.6 69.6 89.5 82.6↓0.8 20.8%

Order 55.4 92.6 91.3 90.1 80.9 84.6 63.2 89.4 80.9↓2.5 20.8%

ES 58.4 92.4 91.4 90.2 84.5 88.7 75.8 89.6 83.9↑0.5 20.2%

ESWP 57.5 93.1 91.7 90.0 84.7 89.8 72.8 89.4 83.6↑0.2 33.1%

highlights the superiority of ESWP in computation-constrained and memory-limited environments,
where ESWP shows accelerations with improved performance compared to Baseline. More details
are provided in Appx. D.6.

Figure 4: The evaluation results of Qwen SFT averaged on MATH500, AIME24, and OlympiadBench
under the low-resource setting.

4.3 ABLATION STUDIES

Loss differences, annealing and pruning. We numerically test the effectiveness of the
most important component adopted in ES(WP), i.e. the augmented dynamical differ-
ences of losses. For completeness, we also test the effect of the annealing technique
and pruning strategy. Here, we perform ablations on combinations of “Loss” (the sam-
pling scheme Eq. (2.3)), β1 = β2 = 0), “NonDif” (corresponding to β1 = β2, see
Eq. (3.2)), “Dif” (Eq. (3.1)), corresponding to general betas β1 ̸= β2) and “A” (Annealing).

Table 6: Ablations on the effect
of augmented dynamical differ-
ences of losses and annealing.

ResNet-50 ALBERT-Base
CIFAR-100 CoLA

Loss 80.5 55.1
Loss + A 80.8 55.8

Loss + NonDif 80.5 57.6
Loss + Dif 81.1 57.5

Loss + A + NonDif 80.4 57.6
ES = Loss + A + Dif 81.1 58.4

Table 7: Ablations on
pruning strategies. Here
Random denotes purely
random data pruning.

CoLA
ALBERT-Base

SST-2
ALBERT-Base

Baseline 55.0, − 91.9, −
Random 53.9↓1.1, 18% 91.7↓0.2, 20%

ES 56.2↑1.2, 16% 92.0↑0.1, 15%
ESWP 54.7↓0.3, 24% 92.3↑0.4, 24%

From Tab. 6, it is observed that: (i)
Annealing is an effective technique to
boost performance; (ii) Although sam-
pling only involving historical losses
(“NonDif”) can contribute to the im-
provements, the additional incorpo-
ration of dynamical loss differences
consistently provides more substantial
benefits to the learning process (see
consistent non-trivial improvements
for various datasets and models in the
last two rows of Tab. 6). In Tab. 7, we further ablate for the pruning strategies: Eq. (3.1) used in
ESWP versus naive random data pruning. It is shown that both the performance and efficiency of
purely random pruning are consistently and substantially worse than ESWP.
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Trade-offs between performance and speed. We emphasize that batch sizes (b, B), the pruning
ratio and annealing epochs in ES(WP) are all user-defined, and flexible to trade off between learning
performance and training costs. We evaluate different values of b/B when fine-tuning ViT-Large on
ImageNet-1K, and varied pruning ratios when training R-18 on Cifar-100. The results are illustrated
in Fig. 5. It is shown that ES robustly achieves lossless acceleration when b/B ≥ 1/16; when the
data selection is too aggressive (b/B ≤ 1/32), the performance degrades as expected (Fig. 5, left),
due to the increase of variances in stochastic gradients. Also, there is a clear trade-off between the
performance and speed shown in Fig. 5 (right), where setting the pruning ratio around 20% ∼ 30%
seems efficient. We further evaluate different annealing ratios (“ar”; i.e., annealing epochs over total
epochs) when training R-18 on CIFAR-100 (see Tab. 8), showcasing its robustness.

2 5 2 4 2 3 2 2 2 1

b/B in ES

83.6

83.8

84.0

84.2

84.4

84.6

84.8

85.0

Ac
cu

ac
y 

(%
)

10

15

20

25

30

35

40

45

Sa
ve

d 
Ti

m
e 

(%
)

0.1 0.2 0.3 0.4 0.5
pruning ratio in ESWP

94.7

94.8

94.9

95.0

95.1

95.2

95.3

Ac
cu

ac
y 

(%
)

20

25

30

35

40

45

50

Sa
ve

d 
Ti

m
e 

(%
)

Figure 5: Trade-offs between learning accuracy and wall-clock time.

Table 8: Ablations on the an-
nealing (default in bold).

ar 0.0 0.05 0.075 0.1

Acc. (%) 78.60 78.79 78.32 78.20

Choices of (β1, β2). To investigate the impact of newly introduced hyper-parameters (betas) in ES,
we test different choices of (β1, β2) when training ResNet-18 on CIFAR datasets and ALBERT-Base
model on the CoLA dataset. The results shown in Fig. 6 roughly verify the “optimality” of defaults
((β1, β2) = (0.2, 0.9)). In addition, we test denser betas around the defaults when training ResNet-18
on the CIFAR-100 (see Fig. 7), further verifying the (local) optimality of defaults.
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Figure 6: The effect of (β1, β2).
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Figure 7: Local opti-
mality of default betas.

5 CONCLUSION

In this work, we propose a simple yet effective framework, Evolved Sampling, which can be
applied to general machine learning tasks to improve the data efficiency in a dynamic manner.
By further adopting dynamical differences and flexibly tuning frequencies of historical losses to
determine samples’ importance for data selection, Evolved Sampling can achieve lossless training
with significant accelerations. Studies in the future may include three aspects: (i) More rigorous
mathematical analysis on the effect of data selection (Kolossov et al. (2024)); (ii) More specific
applications, such as data selection on domain mixtures (Chen et al. (2023); Xie et al. (2023a));
(iii) More efficient and scalable implementations, such as data parallelism (You et al. (2017; 2020)).
These directions are certainly worthy of explorations in the future.
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approximate original datasets with smaller (weighted) subsets, typically achieved by clustering in
representation spaces (Xia et al. (2023); Abbas et al. (2023); Sorscher et al. (2022)). Uncertainty-
based methods use probability metrics such as the confidence, entropy (Coleman et al. (2020)) and
distances to decision boundaries (Ducoffe & Precioso (2018); Margatina et al. (2021); Dasgupta
et al. (2019); Liu et al. (2021)). Sampling methods based on errors assume that training samples with
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more contributions to errors are more important. Errors are evaluated with merics such as forgetting
events (Toneva et al. (2019)), GRAND & EL2N score (Paul et al. (2021)), and sensitivity (Langberg &
Schulman (2010); Munteanu et al. (2018)). The meta optimization methods apply a bilevel framework
to learn the re-weighting. In general, existing studies such as RETRIEVE (Killamsetty et al. (2021c)),
GLISTER (Killamsetty et al. (2021b)), MOLERE (Jain et al. (2024)), CAFE (Wang et al. (2022)) and
so on, consider the data selection as the outer objective (over selection weights), and the optimization
of model parameters on selected subsets as the inner objective. Dataset distillation aims to synthesize
an informative but smaller subset from the original (large) dataset. Although there are multiple
implementations to reduce the overall loads, such as distributed kernel computation (Nguyen et al.
(2021)), category decoupling (Wang et al. (2022)), random modeling (Zhao & Bilen (2023)) and
so on, the dataset distillation still requires to optimize over both the model and data, and is hence
expensive. A recent work Sachdeva et al. (2024) also leverages the zero-shot reasoning capability of
instruction-tuned large language models (LLMs) to directly assess the quality of data examples. As is
discussed before, these static sampling methods require extra training, leading to considerable costs
in both computation and memory.

Dynamic sampling Methods to sampling dynamically typically leverage metrics based on losses
and gradients along the training process. Loss-adaptive sampling re-weights data points during the
training according to current losses (Jiang et al. (2019); Loshchilov & Hutter (2016); Schaul et al.
(2016); Kawaguchi & Lu (2020); Qin et al. (2024); Thao Nguyen et al. (2023); Kumar et al. (2023);
Balaban et al. (2023); Katharopoulos & Fleuret (2017); Shrivastava et al. (2016); Das et al. (2024))
and historical losses (Attendu & Corbeil (2023); Raju et al. (2021); Oren et al. (2019); Sagawa et al.
(2020)). To name a few, Ordered SGD (Kawaguchi & Lu (2020)) selects top-q samples in terms of
the loss ranking per training step. InfoBatch (Qin et al. (2024)) randomly prunes a portion of less
informative samples with losses below the average and then re-scales the gradients. KAKURENBO
(Thao Nguyen et al. (2023)) combines current losses with the prediction accuracy and confidence to
design a sampling framework with moving-back. Kumar et al. (2023) and Balaban et al. (2023) assign
weights as functions of current losses based on the robust optimization theory. Attendu & Corbeil
(2023) and Raju et al. (2021) use the exponential moving average over past losses for sampling. There
are also studies adopting additional reference models, including Mindermann et al. (2022); Deng et al.
(2023); Xie et al. (2023a) and so on. These methods either use the information of losses inadequately,
or require to train or exploit extra architectures. Gradient-based sampling methods involve (i) gradient
matching, such as CRAIG (Mirzasoleiman et al. (2020)) and GRAD-MATCH (Killamsetty et al.
(2021a)), which approximate the “full” gradients computed on original datasets via the gradients
computed on subsets; (ii) gradient adaption, where the sampling probability is basically determined
by current scales of gradients (Hanchi et al. (2022); Katharopoulos & Fleuret (2018)). Obviously,
gradient-based sampling methods lead to much more computation and memory overheads than
loss-based methods. A recent work Wang et al. (2024b) uses a intricate layer-wise sampling scheme
with complex variance control, which develops former literature Zhao & Zhang (2015); Alain et al.
(2015); Needell et al. (2014) applying importance sampling methods to accelerate the convergence by
reducing variances. A very recent work Gu et al. (2025) also leverages the optimal control theory
(i.e. Pontryagin’s maximum principle, PMP) to formulate and decide sampling weights, where both
the gradient and Hessian are computed and all historical checkpoints are stored. Obviously, these
methods usually suffer from significant computation and memory loads, since extra complexities of at
least model dimensions are introduced at every training step. Although there are other gradient-based
data selection methods (e.g. Wang et al. (2024a): local approximation-based selection; Wang et al.
(2025): counterfactual-based selection) developing computation reduction techniques such as the
ghost inner-product (of gradients) and generalized Gauss-Newton approximation (of Hessians), these
methods are not directly extendable to other popular optimizers like Adam.

Set level versus batch level Dynamic sampling methods can be divided into two categories based
on the level where data selection is performed: (i) set level selection, to prune the whole dataset at the
beginning of each epoch (Qin et al. (2024); Raju et al. (2021); Thao Nguyen et al. (2023); Attendu
& Corbeil (2023)); (ii) batch level selection, to sample subsets from the original batches for back
propagations (Kawaguchi & Lu (2020); Katharopoulos & Fleuret (2017; 2018); Mindermann et al.
(2022)). These two types of methods, facilitating training accelerations from different perspectives,
are not mutually exclusive. However, to the best of our knowledge, we are not aware of any algorithms
combining both of them.
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B PROOFS AND SUPPLEMENTAL THEORY

B.1 PROOF OF PROP. 2.1

Proposition B.1 (A full version of Prop. 2.1). Consider the continuous-time idealization of the
gradient decent, i.e. the standard gradient flow training dynamics (no data selection)

d

dt
θ̂n(t) = −∇θL̂n(θ̂n(t)) = −

1

n

n∑
i=1

∇θℓi(θ̂n(t)), θ̂n(0) = θ0, (B.1)

and its loss-weighted variant

d

ds
θ̂lw
n (s) = −

n∑
i=1

ℓi(θ̂
lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

∇θℓi(θ̂
lw
n (s)), θ̂lw

n (0) = θ0. (B.2)

Assume that there exists θ∗ ∈ Θ such that L̂n(θ
∗) = 0,6 and ℓi(·) is convex for each i ∈ [n]. Then,

we have the more-than sub-linear convergence rate of Eq. (B.2), i.e., there exists s0 ∈ [0, s] such that

L̂n(θ̂
lw
n (s0))− L̂n(θ

∗) ≤ 1

2s
∥θ0 − θ∗∥22 −

1

s

∫ s

0

∆(s′)ds′, s > 0, (B.3)

where ∆(·) is a positive-valued function on [0,∞). Moreover, for any s, t ≥ 0 such that L̂n(θ̂n(t)) =

L̂n(θ̂
lw
n (s)) ≜ l ≥ 0,7 we have

d

ds
∥θ̂lw

n (s)− θ∗∥22 ≤ −2 (l +∆(s)) , (B.4)

d

dt
∥θ̂n(t)− θ∗∥22 ≤ −2l. (B.5)

Proof. For any θ ∈ Θ, by convexity we have

d

dt
∥θ̂n(t)− θ∥22 = 2

〈
θ̂n(t)− θ,

d

dt
θ̂n(t)

〉
=

2

n

n∑
i=1

〈
θ − θ̂n(t),∇θℓi(θ̂n(t))

〉
≤ 2

n

n∑
i=1

(
ℓi(θ)− ℓi(θ̂n(t))

)
, (B.6)

and
d

ds
∥θ̂lw

n (s)− θ∥22 = 2

〈
θ̂lw
n (s)− θ,

d

ds
θ̂lw
n (s)

〉
= 2

n∑
i=1

ℓi(θ̂
lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

〈
θ − θ̂lw

n (s),∇θℓi(θ̂
lw
n (s))

〉
≤ 2

n∑
i=1

ℓi(θ̂
lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

(
ℓi(θ)− ℓi(θ̂

lw
n (s))

)
. (B.7)

Note that
n∑

i=1

[
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

(
ℓi(θ)− ℓi(θ̂

lw
n (s))

)
− 1

n

(
ℓi(θ)− ℓi(θ̂n(t))

)]

=

n∑
i=1

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)(
ℓi(θ)− ℓi(θ̂

lw
n (s))

)
+

1

n

n∑
i=1

(
ℓi(θ̂n(t))− ℓi(θ̂

lw
n (s))

)
6One can find empirical evidences of this assumption (the optimal training loss can be zero) in e.g. Zhang

et al. (2017) (Figure 1 (a)).
7For example, at the initialization, L̂n(θ̂n(0)) = L̂n(θ0) = L̂n(θ̂

lw
n (0)).
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= −
n∑

i=1

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)(
ℓi(θ̂

lw
n (s))− ℓi(θ)

)
︸ ︷︷ ︸

T1

+
(
L̂n(θ̂n(t))− L̂n(θ̂

lw
n (s))

)
︸ ︷︷ ︸

T2

, (B.8)

we analyze T1, T2 separately.

(i) T1: Note that if ℓi(θ̂
lw
n (s))∑n

j=1 ℓj(θ̂lw
n (s))

≤ 1
n for any i ∈ [n], we get ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂lw
n (s))

= 1
n for

any i ∈ [n], which holds in the zero probability and implies the triviality. Let I+ :={
i ∈ [n] :

ℓi(θ̂
lw
n (s))∑n

j=1 ℓj(θ̂lw
n (s))

> 1
n

}
̸= ∅, and i+min := argmini∈I+ ℓi(θ̂

lw
n (s)), and similarly

I− :=

{
i ∈ [n] :

ℓi(θ̂
lw
n (s))∑n

j=1 ℓj(θ̂lw
n (s))

≤ 1
n

}
̸= ∅, and i−max := argmaxi∈I− ℓi(θ̂

lw
n (s)). Obviously,

ℓi+min
(θ̂lw

n (s)) > 1
n

∑n
j=1 ℓj(θ̂

lw
n (s)) ≥ ℓi−max

(θ̂lw
n (s)), hence δ(s) := ℓi+min

(θ̂lw
n (s))− ℓi−max

(θ̂lw
n (s)) > 0

for any s ≥ 0. Notice that L̂n(θ
∗) = 0⇔ ℓi(θ

∗) = 0, ∀i ∈ [n], we have

T1

∣∣
θ=θ∗ =

∑
i∈I+

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)(
ℓi(θ̂

lw
n (s))− ℓi(θ

∗)
)

+
∑
i∈I−

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)(
ℓi(θ̂

lw
n (s))− ℓi(θ

∗)
)

=
∑
i∈I+

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)
ℓi(θ̂

lw
n (s)) +

∑
i∈I−

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)
ℓi(θ̂

lw
n (s))

≥
∑
i∈I+

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)
ℓi+min

(θ̂lw
n (s)) +

∑
i∈I−

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)
ℓi−max

(θ̂lw
n (s))

=
∑
i∈I+

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)(
ℓi−max

(θ̂lw
n (s)) + δ(s)

)
+
∑
i∈I−

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)
ℓi−max

(θ̂lw
n (s))

= ℓi−max
(θ̂lw

n (s))

n∑
i=1

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)
+ δ(s)

∑
i∈I+

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)
= ℓi−max

(θ̂lw
n (s))(1− 1) + ∆(s) = ∆(s), (B.9)

where ∆(s) := δ(s)
∑

i∈I+

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂lw
n (s))

− 1
n

)
> 0 for any s ≥ 0. By continuity, T1

∣∣
θ
≥

∆(s)/2 > 0 also holds for any θ ≈ θ∗.

(ii) T2: It measures the difference between losses under the standard and loss-weighted gradient flow.

Combining Eq. (B.7), Eq. (B.8) with Eq. (B.9) yields that

d

ds
∥θ̂lw

n (s)− θ∗∥22 ≤ 2

[
1

n

n∑
i=1

(
ℓi(θ

∗)− ℓi(θ̂n(t))
)
− T1

∣∣
θ=θ∗ + T2

]
≤ 2

[(
L̂n(θ

∗)− L̂n(θ̂n(t))
)
−∆(s) +

(
L̂n(θ̂n(t))− L̂n(θ̂

lw
n (s))

)]
= 2

[(
L̂n(θ

∗)− L̂n(θ̂
lw
n (s))

)
−∆(s)

]
, (B.10)

which gives

L̂n(θ̂
lw
n (s))− L̂n(θ

∗) ≤ −1

2

d

ds
∥θ̂lw

n (s)− θ∗∥22 −∆(s) (B.11)

⇒
∫ s2

s1

L̂n(θ̂
lw
n (s))ds− (s2 − s1) · L̂n(θ

∗) ≤ −1

2

(
∥θ̂lw

n (s2)− θ∗∥22 − ∥θ̂lw
n (s1)− θ∗∥22

)
−
∫ s2

s1

∆(s)ds
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≤ 1

2
∥θ̂lw

n (s1)− θ∗∥22 −
∫ s2

s1

∆(s)ds (B.12)

for any s2 > s1 ≥ 0. That is

1

s2 − s1

∫ s2

s1

L̂n(θ̂
lw
n (s))ds− L̂n(θ

∗) ≤ 1

2(s2 − s1)
∥θ̂lw

n (s1)− θ∗∥22 −
1

s2 − s1

∫ s2

s1

∆(s)ds,

or for any s > 0,

1

s

∫ s

0

L̂n(θ̂
lw
n (s′))ds′ − L̂n(θ

∗) ≤ 1

2s
∥θ0 − θ∗∥22 −

1

s

∫ s

0

∆(s′)ds′

<
1

2s
∥θ0 − θ∗∥22, (B.13)

which proves Eq. (B.3) by the mean value theorem of integrals. Recall that Eq. (B.6) can be rewritten
as

d

dt
∥θ̂n(t)− θ∗∥22 ≤ 2

(
L̂n(θ

∗)− L̂n(θ̂n(t))
)
. (B.14)

Compared with Eq. (B.10), for any s, t ≥ 0 such that L̂n(θ̂n(t)) = L̂n(θ̂
lw
n (s)), we have Eq. (B.10)’s

RHS < Eq. (B.14)’s RHS = −2L̂n(θ̂n(t)) ≤ 0, which implies a sharper convergence bound of the
loss-weighted gradient flow (at the same loss level with the standard gradient flow). The proof is
completed.

Prop. B.1 suggests that, under certain regularity conditions, the loss-weighted gradient flow converges
more than sub-linearly to the global minimum, while the standard gradient flow (i.e the continuous-
time idealization of vanilla GD) only has the sub-linear convergence. In addition, at the same loss
level, the convergence bound of loss-weighted gradient flow is sharper than that of standard gradient
flow. This theoretical characterization, together with practical simulations (e.g., Table 1, 3 and Figure
3, 4 in Kawaguchi & Lu (2020)), fundamentally gives chances to potential learning accelerations by
leveraging the loss information in the gradient-based training dynamics.

B.2 PROOF OF PROP. 3.1

Proof. Define w(t) := [wi(t)]i∈[n], s(t) := [si(t)]i∈[n], and l(t) := [ℓi(θ(t))]i∈[n] for any t ∈ N.
The sampling scheme Eq. (3.1) can be rewritten as

w(t) = β1s(t− 1) + (1− β1)l(t),

s(t) = β2s(t− 1) + (1− β2)l(t), s(0) = 1/n.
(B.15)

In Eq. (B.15), let the first equation minus the second, we get

w(t)− s(t) = (β2 − β1)(l(t)− s(t− 1)). (B.16)

The second equation gives

s(t)− s(t− 1) = (1− β2)(l(t)− s(t− 1)). (B.17)

Combining Eq. (B.16) with Eq. (B.17), we have

w(t) = s(t) +
β2 − β1

1− β2
(s(t)− s(t− 1)), (B.18)

which proves the first equality.

Expanding the second equation, by induction we get

s(t) = βt
2s(0) + (1− β2)

t∑
k=1

βt−k
2 l(k), (B.19)

hence

s(t)− s(t− 1) = βt−1
2 (β2 − 1)s(0) + (1− β2)

[
t∑

k=1

βt−k
2 l(k)−

t−1∑
k=1

βt−1−k
2 l(k)

]
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= −(1− β2)β
t−1
2 s(0) + (1− β2)

[
βt−1
2 l(1) +

t∑
k=2

βt−k
2 l(k)−

t−1∑
k=1

βt−1−k
2 l(k)

]

= −(1− β2)β
t−1
2 s(0) + (1− β2)

[
βt−1
2 l(1) +

t−1∑
k=1

βt−1−k
2 (l(k + 1)− l(k))

]

≈ (1− β2)

t−1∑
k=1

βt−1−k
2 (l(k + 1)− l(k)) (B.20)

for relatively large t, and the approximation error is exponentially small (due to limt→+∞ βt
2 = 0 for

any β2 ∈ (0, 1)). Combining Eq. (B.18), Eq. (B.19) and Eq. (B.20) yields Eq. (3.2).

Given the stochastic gradient descent (SGD) training dynamics, the model parameters are updated by

θ(t+ 1) = θ(t)− ηt
∑
j∈Bt

pj(t)∇θℓj(θ(t)), (B.21)

where {ηt}t∈N denotes learning rates, and Bt ⊂ [n] denotes the subset of {1, 2, · · · , n}, with the
(batch) size |Bt| = B. Then, by Taylor expansion, we have

ℓi(θ(k + 1))− ℓi(θ(k)) =
〈
∇θℓi(θ(k)),θ(k + 1)− θ(k)

〉
+O(∥θ(k + 1)− θ(k)∥22) (B.22)

= −ηkci(k) +O(∥θ(k + 1)− θ(k)∥22), (B.23)

where ci(k) :=
〈
∇θℓi(θ(k)),

∑
j∈Bk

pj(k)∇θℓj(θ(k))
〉

denotes the inner product between the i-th
sample’s gradient and full gradient at the k-th iteration, representing the individual-to-whole gradient
“alignment” along training trajectories. This yields

(β2 − β1)

t−1∑
k=1

βt−1−k
2 (ℓi(θ(k + 1))− ℓi(θ(k)))

= − (β2 − β1)

t−1∑
k=1

βt−1−k
2 [ηkci(k) +O(∥θ(k + 1)− θ(k)∥22)]

(i)
≈ − (β2 − β1)

t−1∑
k=1

βt−1−k
2 ηkci(k)− (β2 − β1)

∑
k=t−O(1)

βt−1−k
2 ·O(∥θ(k + 1)− θ(k)∥22)]

(ii)
≈ − (β2 − β1)

t−1∑
k=1

βt−1−k
2 ηkci(k), (B.24)

where (i) is due to the fact that βs
2 (β2 ∈ (0, 1)) is exponentially small for relatively large s > 0 and

t≫ 1, and (ii) is a consequence of convergence. The proof is completed.

B.3 PROOF OF THM. 3.2

We begin by proving some lemmas. The first two lemmas and their proofs are standard, and can be
found in e.g. Garrigos & Gower (2023).

Lemma B.2. If f : Rd 7→ R is L-smooth, then for any x,y ∈ Rd, we have

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥22. (B.25)

Proof. For any fixed x,y ∈ Rd, let ϕ(t) := f(x+ t(y − x)). Then we have

f(y)− f(x) = ϕ(1)− ϕ(0) =

∫ 1

0

ϕ′(t)dt =

∫ 1

0

⟨∇f(x+ t(y − x)),y − x⟩dt
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= ⟨∇f(x),y − x⟩+
∫ 1

0

⟨∇f(x+ t(y − x))−∇f(x),y − x⟩dt

≤ ⟨∇f(x),y − x⟩+
∫ 1

0

∥∇f(x+ t(y − x))−∇f(x)∥2∥y − x∥2dt

≤ ⟨∇f(x),y − x⟩+
∫ 1

0

Lt∥y − x∥22dt

= ⟨∇f(x),y − x⟩+ L

2
∥y − x∥22, (B.26)

where Cauchy–Schwarz inequality and the L-smoothness property are successively applied. The
proof is completed.

Lemma B.3. If f : Rd 7→ R is convex and L-smooth, then for any x,y ∈ Rd, we have

1

2L
∥∇f(y)−∇f(x)∥22 ≤ f(y)− f(x)− ⟨∇f(x),y − x⟩ . (B.27)

Proof. Fix any x,y ∈ Rd. By convexity and L-smoothness, for any z ∈ Rd, we have

f(x)− f(y) = f(x)− f(z) + f(z)− f(y)

≤ ⟨∇f(x),x− z⟩+ ⟨∇f(y),z − y⟩+ L

2
∥z − y∥22. (Lem. B.2) (B.28)

Take z = y − (∇f(y)−∇f(x))/L to minimize the right hand side, we get

f(x)− f(y) ≤ ⟨∇f(x),x− y⟩ − 1

2L
∥∇f(y)−∇f(x)∥22, (B.29)

which completes the proof.

We also need the following norm estimate on the product between matrices and probability-like
vectors.
Lemma B.4. For any matrix G := [g1, · · · , gn] ∈ Rm×n, and any vector p := [p1, · · · , pn]⊤ ∈ Rn

satisfying
∑n

i=1 pi ≤ 1 with pi ≥ 0 for all i ∈ [n], we have

∥Gp∥22 =

∥∥∥∥∥
n∑

i=1

pigi

∥∥∥∥∥
2

2

≤
n∑

i=1

pi∥gi∥22. (B.30)

Proof. It is straightforward to verify that

∥Gp∥22 =

(
n∑

i=1

pigi

)⊤ n∑
j=1

pjgj =

n∑
i=1

n∑
j=1

pipjg
⊤
i gj

≤ 1

2

n∑
i=1

n∑
j=1

pipj(∥gi∥22 + ∥gj∥22) ≤
n∑

i=1

pi∥gi∥22, (B.31)

which completes the proof.

Now we are ready to prove the main theorem.

Proof. Given the SGD training dynamics θ(t+ 1) = θ(t)− ηt
∑

j∈Bt
pj(t)∇θℓj(θ(t)), we have

∥θ(t+ 1)− θ∗∥22 = ∥(θ(t+ 1)− θ(t)) + (θ(t)− θ∗)∥22
= ∥θ(t+ 1)− θ(t)∥22 + ∥θ(t)− θ∗∥22 + 2 ⟨θ(t+ 1)− θ(t),θ(t)− θ∗⟩

= ∥θ(t)− θ∗∥22 +

∥∥∥∥∥∥ηt
∑
j∈Bt

pj(t)∇θℓj(θ(t))

∥∥∥∥∥∥
2

2

− 2

〈
ηt
∑
j∈Bt

pj(t)∇θℓj(θ(t)),θ(t)− θ∗

〉
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=: ∥θ(t)− θ∗∥22 + I1 + I2. (B.32)

For I1, by Lem. B.4 we have

I1 = η2t

∥∥∥∥∥∥
∑
j∈Bt

pj(t)∇θℓj(θ(t))

∥∥∥∥∥∥
2

2

≤ η2t
∑
j∈Bt

pj(t)∥∇θℓj(θ(t))∥22. (B.33)

Due to the optimality of θ∗, we have ∇θℓi(θ
∗) = 0 for any i ∈ [n]. Recall that ℓi(·) is Li-smooth,

we derive by Lem. B.3 that

∥∇θℓj(θ(t))∥22 = ∥∇θℓj(θ(t))−∇θℓj(θ
∗)∥22

≤ 2Lj [ℓj(θ(t))− ℓj(θ
∗)− ⟨∇ℓj(θ∗),θ(t)− θ∗⟩]

= 2Lj [ℓj(θ(t))− ℓj(θ
∗)] , (B.34)

which gives

I1 ≤ 2η2t
∑
j∈Bt

Ljpj(t) [ℓj(θ(t))− ℓj(θ
∗)] . (B.35)

For I2, by convexity we have

I2 = 2ηt
∑
j∈Bt

pj(t) ⟨∇θℓj(θ(t)),θ
∗ − θ(t)⟩

≤ 2ηt
∑
j∈Bt

pj(t)(ℓj(θ
∗)− ℓj(θ(t)))

= −2ηt
∑
j∈Bt

pj(t) [ℓj(θ(t))− ℓj(θ
∗)] . (B.36)

Therefore, we obtain

∥θ(t+ 1)− θ∗∥22 ≤ ∥θ(t)− θ∗∥22 + 2ηt
∑
j∈Bt

(ηtLj − 1)pj(t) [ℓj(θ(t))− ℓj(θ
∗)] . (B.37)

Let L := maxi∈[n] Li, and set ηt ≤ 1/(2L). Then, take the expectation (conditioned on (θ(s))s≤t)
over both sides of Eq. (B.37), we have

E ∥θ(t+ 1)− θ∗∥22 ≤ ∥θ(t)− θ∗∥22 + 2ηt
∑
j∈Bt

(ηtLj − 1)pj(t) [ℓj(θ(t))− ℓj(θ
∗)]

≤ ∥θ(t)− θ∗∥22 − ηt
∑
j∈Bt

pj(t) [ℓj(θ(t))− ℓj(θ
∗)]

= ∥θ(t)− θ∗∥22 − ηt
1

B

∑
j∈Bt

[ℓj(θ(t))− ℓj(θ
∗)]

− ηt
∑
j∈Bt

(
pj(t)−

1

B

)
[ℓj(θ(t))− ℓj(θ

∗)] , (B.38)

and by law of total expectation,

E ∥θ(t+ 1)− θ∗∥22 ≤ E ∥θ(t)− θ∗∥22 − ηtE
1

B

∑
j∈Bt

[ℓj(θ(t))− ℓj(θ
∗)]

− ηtE
∑
j∈Bt

(
pj(t)−

1

B

)
[ℓj(θ(t))− ℓj(θ

∗)]

= E ∥θ(t)− θ∗∥22 − ηt

[
L̂n(θ(t))− L̂n(θ

∗)
]

− ηtE
∑
j∈Bt

(
pj(t)−

1

B

)
[ℓj(θ(t))− ℓj(θ

∗)] . (B.39)
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Then by telescoping sum, we obtain

E ∥θ(T )− θ∗∥22 ≤ E ∥θ(0)− θ∗∥22 −
T−1∑
t=0

ηt

[
L̂n(θ(t))− L̂n(θ

∗)
]

−
T−1∑
t=0

ηtE
∑
j∈Bt

(
pj(t)−

1

B

)
[ℓj(θ(t))− ℓj(θ

∗)] , (B.40)

which yields
T−1∑
t=0

ηt

[
L̂n(θ(t))− L̂n(θ

∗)
]
≤ E ∥θ(0)− θ∗∥22 −

T−1∑
t=0

ηtR(t), (B.41)

where R(t) := E
∑

j∈Bt

(
pj(t)− 1

B

)
[ℓj(θ(t))− ℓj(θ

∗)] denotes the remainder. Therefore
T−1∑
t=0

ηt∑T−1
s=0 ηs

[
L̂n(θ(t))− L̂n(θ

∗)
]
≤

E ∥θ(0)− θ∗∥22∑T−1
s=0 ηs

−
T−1∑
t=0

ηt∑T−1
s=0 ηs

R(t), (B.42)

and by convexity

L̂n(θ̄T )− L̂n(θ
∗) ≤

E ∥θ(0)− θ∗∥22∑T−1
s=0 ηs

−
T−1∑
t=0

ηt∑T−1
s=0 ηs

R(t), (B.43)

with θ̄T :=
∑T−1

t=0
ηt∑T−1

s=0 ηs
θ(t). For ηt ≡ η = 1/(2L), Eq. (B.43) gives

L̂n

(
1

T

T−1∑
t=0

θ(t)

)
− L̂n(θ

∗) ≤
2LE ∥θ(0)− θ∗∥22

T
− 1

T

T−1∑
t=0

R(t). (B.44)

Next, we provide a sufficient condition to bound the remainder term 1
T

∑T−1
t=0 R(t) (from below). For

instance, in the sampling scheme Eq. (3.1), there exists (β1, β2) such that
(wi(t)− wj(t))(ℓi(θ(t))− ℓj(θ(t))) ≥ 0 (B.45)

for any i, j ∈ [n] and t ∈ N (e.g. when β1 → 0+).8 Therefore, for any t ∈ N, we have

0 ≤
B∑
i=1

B∑
j=1

(pi(t)− pj(t))(ℓi(θ(t))− ℓj(θ(t)))

=

B∑
i=1

B∑
j=1

(pi(t)ℓi(θ(t)) + pj(t)ℓj(θ(t))− pi(t)ℓj(θ(t))− pj(t)ℓi(θ(t)))

= B

B∑
i=1

pi(t)ℓi(θ(t)) +B

B∑
j=1

pj(t)ℓj(θ(t))−
B∑
i=1

pi(t)

B∑
j=1

ℓj(θ(t))−
B∑
i=1

ℓi(θ(t))

B∑
j=1

pj(t)

= 2B

B∑
i=1

pi(t)ℓi(θ(t))− 2

B∑
i=1

pi(t)

B∑
i=1

ℓi(θ(t)) = 2B

B∑
i=1

pi(t)ℓi(θ(t))− 2

B∑
i=1

ℓi(θ(t)),

(B.46)
which gives

1

B

B∑
i=1

ℓi(θ(t)) ≤
B∑
i=1

pi(t)ℓi(θ(t)). (B.47)

Hence, by the fact that L̂n(θ
∗) = 0⇔ ℓi(θ

∗) = 0, ∀i ∈ [n], we get

R(t) = E

∑
j∈Bt

pj(t)ℓj(θ(t))−
1

B

∑
j∈Bt

ℓj(θ(t))

 ≥ 0, (B.48)

which completes the proof.
8This means the order consistency: When one sample’s loss is larger/smaller than that of the other, so does

its weight.
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Remark 3. We emphasize again that the the order consistency Eq. (B.45) is a sufficient condition:
∃(β1, β2) s.t. Eq. (B.45) holds⇒ R(t) ≥ 0⇒ 1

T

∑T−1
t=0 R(t) ≥ 0, while the reverse does not hold.

That is, to guarantee 1
T

∑T−1
t=0 R(t) ≥ 0, one can include more betas, at least from the continuity of

the sampling scheme Eq. (3.1) w.r.t. hyper-parameters.

B.4 PROOF OF THM. 3.3

Proof. Consider a continuous-time idealization of the sampling scheme Eq. (3.1):

s(t) = β2s(t− 1) + (1− β2)ℓ(t)⇒ s(t)− s(t− 1) = (1− β2)(ℓ(t)− s(t− 1)) (B.49)

⇒ s′(t) = (1− β2)(ℓ(t)− s(t)), (B.50)

with ℓ(t) := ℓ(θ(t)), and β2 ̸= 0. Similarly,

w(t) = β1s(t− 1) + (1− β1)ℓ(t)⇒ w(t)− s(t) = (β2 − β1)(ℓ(t)− s(t− 1))

⇒ w(t) = s(t) + (β2 − β1)
s(t)− s(t− 1)

1− β2
(by Eq. (B.49))

⇒ w(t) = s(t) +
β2 − β1

1− β2
s′(t)

⇒ w(t) = (β2 − β1)ℓ(t) + (1− β2 + β1)s(t). (by Eq. (B.50))
(B.51)

Since L{·} is linear and satisfies L{f ′}(ω) = ωL{f}(ω)− f(0), we have

Eq. (B.50)⇒ L{s′}(ω) = (1− β2)(L{ℓ}(ω)− L{s}(ω)) = ωL{s}(ω)− s(0)

⇒ L{s}(ω) = 1− β2

ω + (1− β2)
L{ℓ}(ω) + s(0)

ω + (1− β2)
, (B.52)

and

Eq. (B.51)⇒ L{w}(ω) = (β2 − β1)L{ℓ}(ω) + (1− β2 + β1)L{s}(ω)

=
(β2 − β1)ω + (1− β2)

ω + (1− β2)
L{ℓ}(ω) + (1− β2 + β1)

ω + (1− β2)
s(0), (by Eq. (B.52))

(B.53)

=
(β2 − β1)ω + (1− β2)

ω + (1− β2)
L{ℓ}(ω) + L

{
(1− β2 + β1)s(0) · e−(1−β2)t

}
(ω)

=
(β2 − β1)ω + (1− β2)

ω + (1− β2)
L{ℓ}(ω) +O(1/n). (recall s(0) = 1/n)

(B.54)

Then, the transfer function is H(ω) = (β2−β1)ω+(1−β2)
ω+(1−β2)

, with

|H(iω0)| =
∣∣∣∣ (β2 − β1)iω0 + (1− β2)

iω0 + (1− β2)

∣∣∣∣ =
√

(β2 − β1)2ω2
0 + (1− β2)2

ω2
0 + (1− β2)2

, (B.55)

and

|H(iω0)| ≤ 1, lim
ω0→+∞

|H(iω0)| = |β2 − β1|. (B.56)

The proof is completed.

B.5 ES TO SOLVE A DRO PROBLEM

From another perspective, ES can be also reformulated as a solution to a distributionally robust
optimization (DRO) problem, or more specifically the minimax optimization problem

min
θ∈Θ

max
p∈∆n

Ln(θ;p) :=

n∑
i=1

pi(ℓi(θ)− ℓref
i ), (B.57)
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where ∆n denotes the (n− 1)-dimensional probability simplex. This objective leads to a stronger
requirement for robust performances on both typical and rare samples compared to the regular ERM
(Shalev-Shwartz & Wexler (2016)). Different from traditional DRO, Eq. (B.57) introduces a reference
loss ℓref

i , with the excess loss ℓi(θ)− ℓref
i measuring the improvement of the model on the i-th sample

with respect to a reference model (typically pre-trained; see e.g. Oren et al. (2019); Xie et al. (2023a);
Mindermann et al. (2022)). The second advantage of ES is to naturally leverage losses of historical
models along the training dynamics as a proxy of the reference loss ℓref

i in Eq. (B.57), which can be
continuously updated without explicitly (pre-)training additional models.

Specifically, we have the following proposition.

Proposition B.5. Consider to solve the minimax objective Eq. (B.57) via gradient ascent-descent{
p(t) ∝ w(t) := w(t− 1) + (1− β1)(ℓ(θ(t))− ℓref(θ(1 : t− 1))),
θ(t+ 1) := θ(t)− ηθt

∑n
i=1 pi(t)∇θℓi(θ(t)),

(B.58)

where the reference loss is defined as ℓref(θ(1 : t)) := [ℓref
i (θ(1 : t))]i∈[n] with ℓref

i (θ(1 : t)) :=
1−2β1+β1β2

1−β1
ℓi(θ(t))+

β1(1−β2)
2

1−β1

∑t−1
k=1 β

t−1−k
2 ℓi(θ(k))+

β1(1−β2)β
t−1
2

n(1−β1)
, i ∈ [n]. Then, the dynamics

Eq. (B.58) is consistent with gradient descent sampled with the sampling scheme Eq. (3.1).

Proof. The problem Eq. (B.57) can be solved in an alternative gradient descent-ascent manner:

θ(t+ 1) = θ(t)− ηθt

n∑
i=1

pi(t)∇θℓi(θ(t)),

wi(t+ 1) = wi(t) + ηwt (ℓi(θ(t+ 1))− ℓref
i ), pi(t) =

wi(t)∑
j wj(t)

.

(B.59)

The sampling scheme Eq. (3.1) updates the weights as

wi(t+ 1) = wi(t) + (1− β1)(ℓi(θ(t+ 1))− ℓi(θ(t))) + β1(si(t)− si(t− 1)). (B.60)

By Eq. (B.19), we get

si(t)− si(t− 1) = −(1− β2)β
t−1
2 si(0)− (1− β2)

2
t−1∑
k=1

βt−1−k
2 ℓi(θ(k)) + (1− β2)ℓi(θ(t)),

hence

wi(t+ 1) = wi(t) + (1− β1)(ℓi(θ(t+ 1))− ℓi(θ(t)))− β1(1− β2)β
t−1
2 si(0)

− β1(1− β2)
2
t−1∑
k=1

βt−1−k
2 ℓi(θ(k)) + β1(1− β2)ℓi(θ(t)). (B.61)

Let

ℓref
i =

1− 2β1 + β1β2

1− β1
ℓi(θ(t)) +

β1(1− β2)
2

1− β1

t−1∑
k=1

βt−1−k
2 ℓi(θ(k)) +

β1(1− β2)β
t−1
2

1− β1
si(0),

(B.62)
then we have

wi(t+ 1) = wi(t) + (1− β1)(ℓi(θ(t+ 1))− ℓref
i ), (B.63)

which coincides with the update formula Eq. (B.59) with ηwt = 1− β1. The proof is completed.

C MORE DETAILS OF ALGORITHMS

This section presents more details of the ES(WP) sampling framework.
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Annealing (optional) Notably, similar to the loss-weighted sampling scheme Eq. (2.3) and its
further variants, the sampling scheme Eq. (3.1) also assigns different weights on the respective
gradient of data samples, leading to a biased estimation on the true gradient ∇θL̂n(·) (with uniform
individual weights). Inspired by Qin et al. (2024), we adopt the annealing strategy, to perform normal
training (with the standard batched sampling, no data selection) at the last few epochs. Besides, to
get better initializations of the weights {wi(·)}i∈[n], we also apply the annealing strategy at the first
few epochs.

Combining the sampling scheme Eq. (3.1) with the annealing strategy, we obtain the Evolved
Sampling (ES) framework (formalized in Alg. 1).

Algorithm 1 Evolved Sampling (With Pruning)

Require: Dataset D = {zi}ni=1, optimizer (e.g. Adam)
Require: Pruning ratio r, meta-batch size B, mini-batch size b ≤ B, total epochs E, annealing

epochs (Eastart , Eaend), hyper-parameters β1, β2 ∈ (0, 1)
Initialize the scores/weights s(0) = w(0) = 1

n1n, t = 0
for e = 0, 1, · · · , E − 1 do

if Eastart ≤ e < E − Eaend then
Sample a sub-dataset De (|De| = (1− r)|D|) from D without replacement, according to the
probability p′i(e) ∝ wi(e) ▷ pruning

else
Set De = D

end if
for j = 0, 1, · · · , ⌈ |De|

B ⌉ − 1 do
Sample a meta-batch Bt (|Bt| = B) uniformly from De without replacement
Compute the loss ℓi(θ(t)) for zi ∈ Bt
Update score: si(e+ 1)← β2si(e) + (1− β2)ℓi(θ(t)) for zi ∈ Bt
Update the weight: wi(e+ 1)← β1si(e) + (1− β1)ℓi(θ(t)) for zi ∈ Bt
if Eastart ≤ e < E − Eaend then

Sampling a mini-batch bt (|bt| = b) from Bt without replacement, according to the
probability pi(e+ 1) ∝ wi(e+ 1)
Update model: θ(t+ 1)← optimizer(θ(t); bt)

else
Update model: θ(t+ 1)← optimizer(θ(t);Bt) ▷ annealing

end if
t← t+ 1

end for
end for

Pruning (optional) Note that applying the sampling scheme Eq. (3.1) to meta-batches (with the
batch size B) in fact introduces data selection in a batch level, since one can always select a smaller
batch (with the batch size b < B) out of the meta-batch, according to the sampling probability pi(t)
defined in Eq. (3.1). For more aggressive data pruning and enhanced data efficiency, we can further
extend ES by involving the set level data selection. That is, randomly pruning the whole dataset
according to the probability proportional to the weights {wi(e)}ni=1 at the beginning of the e-th epoch.
This is formalized as Evolved Sampling with Pruning (ESWP) in Alg. 1.

D MORE DETAILS OF EXPERIMENTS

In this section, we present further experimental results and details. We run all the experiments with
one NVIDIA A100 (80GB) with the mixed-precision training except the pre-training of ViT-Large
on ImageNet-1K. All the algorithms are implemented based on PyTorch (Paszke et al. (2019)) and
Timm (Wightman et al. (2019)). For InfoBatch, our implementation is adapted from Qin et al. (2024).
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Figure 8: The output weights of different sampling schemes, where the black curves denote Eq. (2.3),
while the red curves represent Eq. (3.1) (from left to right: β1 = 0.1, 0.5, 0.8, and β2 ≡ 0.9). Here,
we draw the black curve as a decayed function with random perturbations, to mimic typical behaviors
of loss curves in general machine learning tasks. It is shown that the sampling scheme Eq. (2.3) is
usually sensitive w.r.t. oscillations. However, when losses oscillate, the sampling scheme Eq. (3.1)
reacts moderately by not only reserving some portion of dynamical details of losses (high frequencies),
but also remaining necessary robustness by capturing the overall trend (low frequencies), with the
flexibility to trade off in between by tuning (β1, β2).

D.1 ILLUSTRATIONS ON SYNTHETIC DATASETS

D.2 SELECTED SAMPLES BY ES(WP)

Figure 9: Visualization of the number of selected samples for BP of each class in ESWP (ResNet-50,
Cifar-100), following Figure 6 in Thao Nguyen et al. (2023). Here, it shows the result of the first 50
classes. The number on top of each column shows the rank over 100 classes (a lower rank indicates
a higher number of selected samples). It is shown that ES(WP) can automatically adjust selected
samples at different training stages.

D.3 EXPERIMENTS ON CIFAR DATASETS

For computer vision (CV) tasks, we train ResNet-18/50 (R-18/50) models on CIFAR-10/100 datasets,
using SGD for 200 epochs, with B = 128/256 for ResNet-18/50 (b/B = 50% for ResNet-50).
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Figure 10: Learning dynamics of different data selection methods: Test accuracy versus the number
of samples used for back propagations (BPs).

For the experiments on the CIFAR-10/100 datasets, we use the SGD optimizer with the momentum
0.9 and weight decay 5 × 10−4. We apply the OneCycle scheduler (Smith & Topin (2019)) with
the cosine annealing. For CIFAR-10, the maximal learning rate is 0.2 for the baseline and set level
selection methods, while 0.05 for batch level selection methods due to larger variances of stochastic
gradients and 0.08 for ESWP. For CIAFR-100 trained with ResNet-18/50, the maximal learning rates
for all the sampling methods are 0.05/0.2, following Qin et al. (2024).

D.4 EXPERIMENTS OF FULL FINE-TUNING

Vision Transformer. We fine-tune ViT-Large model on ImageNet-1K with a meta-batch size
B = 256 for 10 epochs, using the Adam optimizer with the OneCycle scheduler (Smith & Topin
(2019)) with the cosine annealing and a maximal learning rate of 2× 10−5.

ALBERT. Following the setup in Xie et al. (2023b) (Table 8), we use the AdamW optimizer and
the polynomial decay scheduler with warm up.

D.5 EXPERIMENTS OF PRE-TRAINING

We conduct the MAE-based pre-training of ViT-Large on ImageNet-1K using 4×A100 GPUs.
Following the setup in He et al. (2022), we train for 300 epochs with a 40-epoch warmup, base
learning rate 1.5×10−4, weight decay 0.05, and batch sizes (B, b) = (256, 256) per GPU for ESWP,
i.e., there is no batch level data selection. In our implementation, the sampling procedure of ESWP is
conducted by an additional round of synchronization.

After pre-training, we fine-tune the model for 50 epochs with a 5-epoch warmup, using the standard
batched sampling (no data selection) with the batch size B = 256 per GPU.

D.6 EXPERIMENTS ON FINE-TUNING QWEN

Training Details We conduct experiments on a single A100 (40GB) GPU to investigate the low-
resource regime. Our implementation builds upon the verl framework.9 We set the batch sizes
B = 32, b = bmicro = 8, and use the AdamW optimizer with a learning rate of 1 × 10−5, which
follows a cosine decay scheduler with a warm-up ratio of 0.1. We set the total epoch as 10 and
evaluate the model after 1K, 2K, and 4K training steps.

Evaluation Details The detailed breakdown of pass@1 results are shown in Tab. 9. We use a
temperature of 1.0, top p=1, the default chat template and Chain-of-Thought (CoT) prompting for
evaluation.

9https://github.com/volcengine/verl
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Table 9: Pass@1 accuracy on MATH500, AIME24, and Olympiad Bench under different training
budgets.

Method (Steps, Time) MATH500 AIME24 Olympiad Bench Averaged

Baseline (1K, 50min) 61.8 6.7 26.2 31.6
Baseline (2K, 100min) 59.6 10.0 27.7 32.4
Baseline (4K, 200min) 63.4 13.3 25.2 34.0

ESWP (1K, 26.5min) 61.8 10.0 27.4 33.1
ESWP (2K, 53min) 65.2 10.0 28.6 34.6
ESWP (4K, 106min) 65.6 16.7 32.1 38.1

D.7 COMPARISON METHODS: DEFAULT HYPER-PARAMETERS

For all the other data selection methods, we also use their default hyper-parameters in original papers
in our experiments. Therefore, the comparisons and evaluations are fair in terms of hyper-parameters.
We list the default hyper-parameters of all the other data selection methods as follows:

• InfoBatch (Qin et al. (2024)): pruning ratio r = 0.5, annealing ratio 1− δ = 0.125;
• KAKURENBO (Thao Nguyen et al. (2023)): pruning ratio r = 0.3, confidence threshold
τ = 0.7;

• UCB (Raju et al. (2021)): pruning ratio r = 0.3, decay parameter β = 0.8, confidence
bound c = 1;

• Loss (Katharopoulos & Fleuret (2017)), Order (Kawaguchi & Lu (2020)): the same batch
sizes as ES.

THE USE OF LLMS

This work uses LLMs only to confirm the correct usage of English words and phases.
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