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Abstract

Studies of active learning traditionally assume the target and source data stem from
a single domain. However, in realistic applications, practitioners often require
active learning with multiple sources of out-of-distribution data, where it is unclear
a priori which data sources will help or hurt the target domain. We survey a wide
variety of techniques in active learning (AL), domain shift detection (DS), and
multi-domain sampling to examine this challenging setting for question answering
and sentiment analysis. Among 18 acquisition functions from 4 families of methods,
we find H-Divergence methods, and particularly our proposed variant DAL-E, yield
effective results, averaging 2-3% improvements over the random baseline. Our
findings yield the first comprehensive analysis of both existing and novel methods
for practitioners faced with multi-domain active learning for natural language
tasks.

1 Introduction
New natural language problems, outside the watershed of core NLP, are often strictly limited by
a dearth of labeled data. While unlabeled data is frequently available, it is not always from the
same source as the target distribution. This is particularly prevalent for tasks characterized by
(i) significant distribution shift over time, (ii) personalization for user subgroups, or (iii) different
collection mediums (see detailed examples discussed in Appendix A.1).

A widely-used solution to this problem is to bootstrap a larger training set using active learning
(AL): a method to decide which unlabeled training examples should be labeled on a fixed annotation
budget (Cohn et al., 1996; Settles, 2012). Dor et al. (2020); Siddhant & Lipton (2018) survey active
learning methods in NLP and find notable gains over random baselines. However, most active
learning literature in NLP assumes the unlabeled source data is drawn from the same distribution as
the target data (Dor et al., 2020). This simplifying assumption avoids the frequent challenges faced
by practitioners in multi-domain active learning. In this realistic setting, there are multiple sources
of data (i.e. domains) to consider. Where active learning baselines traditionally select examples the
model is least confident on (Settles, 2009), in this setting it could lead to distracting examples from
very dissimilar distributions.
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A few previous works investigated active learning under distribution shifts, though mainly in image
classification, with single source and target domains. Kirsch et al. (2021) finds that BALD, which is
often considered the state of the art for unshifted domain settings, can get stuck on irrelevant source
domain or junk data. Zhao et al. (2021) and Saha et al. (2011) address label and covariate shift
respectively, but not general distribution shift.

In this work we empirically examine four separate families of methods (uncertainty-based, H-
Divergence, reverse classification accuracy, and semantic similarity detection) over several question
answering and sentiment analysis datasets, following (Lowell et al., 2019; Elsahar & Gallé, 2019),
to provide actionable insights to practitioners facing this challenging variant of active learning for
natural language.

While previous work has investigated similar settings (Saha et al., 2011; Liu et al., 2015; Zhao
et al., 2021; Kirsch et al., 2021; He et al., 2021) we contribute, to our knowledge, the first rigorous
formalization and broad survey of methods within NLP. We find that many families of techniques for
active learning and domain shift detection fail to reliably beat random baselines in this challenging
variant of active learning, but certain H-Divergence methods are consistently strong. Our analysis
identifies stark dissimilarities of these methods’ example selection, and suggests domain diversity is
an important factor in achieving strong results.

2 Multi-Domain Active Learning
Suppose we have multiple domains D1, D2, ..., Dk.3 Let one of the k domains be the target set
DT , and let the other k − 1 domains comprise the source set DS =

⋃
i ̸=T

Di. Assume we have small

samples of labeled data points (x, y) from DT (Dtrain
T , Ddev

T , Dtest
T ∼ DT .4) and a large sample of

unlabeled points (x) from the source domains (DS =
⋃
i ̸=T

Di). We have the following task:

1. Choose n samples from DS to label.
Dchosen

S ⊂ DS , |Dchosen
S | = n, selected by argmaxx∈DS

Af (x) where Af is an acquisition
function: a policy to select unlabeled examples from DS for labeling.

2. Train a model M on Dfinal−train, validating on Ddev
T .

Dfinal−train = Dtrain
T ∪Dchosen

S

3. Evaluate M on Dtest
T , giving score s.

For Step 1, the practitioner chooses n samples with the highest scores according to their acquisition
function Af . M is fine-tuned on these n samples, then evaluated on Dtest

T to demonstrate Af ’s ability
to choose relevant out-of-distribution training examples.

3 Methods

We identify four families of methods relevant to active learning over multiple shifted domains:
Uncertainty methods, H-Divergence techniques, Semantic Similarity Detection, and Reverse
Classification Accuracy. We derive ∼18 active learning variants, comprising the most prevalent
and effective from prior work, and novel variants of existing paradigms for the multi-domain active
learning setting (see KNN, R̃CA and DAL-E).

Uncertainty methods are common in standard active learning for measuring example uncertainty
or familiarity to a model. Our uncertainty baselines consist of Confidence (CONF), which scores
candidates based on the maximum value in the softmax output; Entropy (ENTR), which calculates
the entropy over the softmax output; Energy (ENG), which calculates an energy score over the output
logits, and is less susceptible to overconfidence issues of softmax approaches; and Bayesian Active
Learning by Disagreement (BALD) measures prediction disagreement over multiple inference
passes with dropout. We break each uncertainty method into two sub-methods: the first chooses
samples in ascending order of score and the second in descending order. See A.3.1 for acquisition
functions.

3We define a domain as a dataset collected independently of the others.
4|Dtrain

T | = 2000
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H-Divergence techniques train classifiers for domain shift detection. Ben-David et al. (2006, 2010)
formalize the divergence between two domains as the H-Divergence, which they approximate as
the difficulty for a discriminator to differentiate between the two.5 We explore two variants of
Discriminative Active Learning (DAL), which applies this concept to the active learning setting
(Gissin & Shalev-Shwartz, 2019)6. The first, Discriminative Active Learning - Target (DAL-T),
trains a discriminator to distinguish between target and source examples and selects the source
examples that the discriminator most confused with the target. The second, Discriminative Active
Learning - Error (DAL-E), which is a novel variant, trains a discriminator to distinguish between
source examples and erroneous target examples, selecting source samples that were most confused
with erroneous target samples. See Appendix A.3.2 for more details.

Semantic Similarity Detection finds data points similar to points in the target domain. Nearest
neighbour methods (KNN) are used to find examples that are semantically similar. Using sentence
encoders we can search the source set DS to select the top k nearest examples by cosine similarity to
the target set, which is represented as the mean embedding of Dtrain

T . See Appendix A.3.4 for more
details.

Reverse Classification Accuracy (RCA) estimates how effective a source set is as a training data
for target test set DT (Fan & Davidson, 2006; Elsahar & Gallé, 2019). This involves pseudo-labeling
source examples to train child models. Then, for active learning, we randomly sample from the
domain that trained the best performing child model. Standard RCA only selects examples from one
domain. We develop a novel variant which samples from multiple domains, proportional to their
relative performance on the target domain. See Appendix A.3.3 for more details.

4 Experiments

Experiments are conducted on two common NLP tasks: question answering (QA) and sentiment
analysis (SA), each with several available domains. See Appendix A.2.1 for details about the datasets.

To evaluate methods for the multi-domain active learning task, we conduct the experiment described
in Section 2 for each acquisition method, rotating each domain as the target set. Model M , a BERT-
Base model (Devlin et al., 2019), is chosen via hyperparameter grid search over learning rate, number
of epochs, and gradient accumulation. See Algorithm 1 in Appendix Section A.2 for full details.

5 Results
Results can be seen in Figure 1. We observe for both question answering (QA) and sentiment analysis
(SA), most methods manage to outperform the no-extra-labelled data baseline (0% at the y-axis)
and very narrowly outperform the random selection baseline (red line). Consistent with prior work
(Lowell et al., 2019), active learning strategies in NLP have brittle and inconsistent improvements
over random selection.

H-Divergence methods categorically achieved the highest and most reliable scores, both as a family
and individual methods, represented in the top 3 individual methods 11 / 18 times for QA, and 20 /
24 times for SA. For QA, BALD↑ and DAL-E∗ had the best mean and median scores respectively,
and for SA DAL-E achieved both the best mean and median scores. Among these methods, our
proposed DAL-E variants routinely outperform DAL-T variants by a small margin on average. We
believe this is because DAL-E captures both notions of domain similarity and uncertainty. By design
it prioritizes examples that are similar to in-domain samples, but also avoids those which the model
already performs well on.

Among Uncertainty methods, for SA methods which select for higher uncertainty vastly outper-
formed those which selected for low uncertainty. The opposite is true for QA. This suggests the
diversity of QA datasets contain more extreme (harmful) domain shift than the (mostly Amazon-based)
SA datasets.7 In both settings, the right ordering of examples with BALD (epistemic uncertainty)
achieves the best results in this family of methods, over the others, which rely on total uncertainty.

5The approximation is also referred to as Proxy A-Distance (PAD) from (Elsahar & Gallé, 2019)
6Hyperparameter choices and training procedures are detailed in the Appendix.
7Accordingly, we attempt to derive a relationship between domain distance and method performance in

Appendix A.6, but find intuitive calculations of domain distance uninterpretable.
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(a) Sentiment Analysis performance improvement (Accuracy %) by acquisition method.
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(b) Question Answering performance improvement (F1 %) by acquisition method.

Figure 1: Performance by Method: The improvement of each acquisition method over the model
given no extra labelled data. Boxplot and whiskers denote the median, quartiles and min/max scores
aggregated across each target domain and sample sizes (n = {8000, 18000, 28000}). The red line
represents the median performance of a baseline that randomly selects examples to annotate.

Among Reverse Classification Accuracy methods, our R̃CA variant also noticeably outperforms
standard RCA and most other methods, aside from DAL and BALD. Combining R̃CA with an
example ranking method is a promising direction for future work, given the performance it achieves
selecting examples randomly as a Domain Budget Allocation strategy.

Lastly, the Semantic Similarity Detection set of methods only rarely or narrowly exceed random
selection. Intuitively, task-agnostic representations (KNN) outperform KNN∗, given the task-agnostic
sentence encoder was optimized for cosine similarity.

Embedding Ablations To see the effects of embedding space on KNN and DAL, we used both a
task-specific and task-agnostic embedding space. While a task-specific embedding space reduces the
examples to features relevant for the task, a task-agnostic embedding space produces generic notions
of similarity, unbiased by the task model.

According to Figure 1, KNN outperforms KNN∗. In the QA setting, KNN∗’s median is below the
random baseline’s. In both plots, KNN∗’s whiskers extend below 0, indicating that in some cases the
method actually chooses source examples that are harmful to target domain performance.

For DAL methods, task-agnostic and task-specific embeddings demonstrated mostly similar median
performances. Notably, the boxes and whiskers are typically longer for task-specific methods than
task-agnostic methods. This variability indicates certain target datasets may benefit significantly from
task-specific embeddings, though task-agnostic embeddings achieve more consistent results.

Further Experiments Further experimental work can be seen in the Appendix. In Appendix
A.5, we examine example rankings and find that different families show close to no relationship,
suggesting that families rely on orthogonal notions of similarity to rank examples. In Appendix A.5.3,
we explore questions relating to (i) selecting from many or one domain, (ii) selecting a whole domain
or individual examples, and (iii) treating the pool as one single set versus breaking it into respective
domains.
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6 Conclusion
We examine a challenging variant of active learning where target data is scarce, and multiple shifted
domains operate as the source unlabeled dataset. For practitioners facing multi-domain active learning,
we benchmark 18 acquisition functions, demonstrating the H-Divergence family of methods and
our variant DAL-E achieve best results. Our analysis shows the importance of example selection in
existing methods. Combining families of methods, or trying domain adaptation techniques on top of
selected example sets, offer promising directions for future work.
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A Appendix

A.1 Real World Settings

In this section, we enumerate real-world settings in which a practitioner could be interested in
multi-domain active learning methods. We expect multi-domain active learning to be applicable to
cold starts, rare classes, personalization, and settings where the modelers are constrained by privacy
considerations, or a lack of labelers with domain expertise.

• In the cold start scenario, for a new NLP problem, there is often little to no target data
available yet (labeled or unlabelled), but there are related sources of unlabelled data to try.
Perhaps an engineer has collected small amounts of training data from an internal population.
Because the data size is small, the engineer is considering out-of-domain samples, collected
from user studies, repurposed from other projects, scraped from the web, etc..
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• In the rare class scenario, take an example of a new platform/forum/social media company
classifying hate speech against a certain minority group. Perhaps the prevalence of positive,
in-domain samples on the social media platform is small, so an engineer uses out-domain
samples from books, other social media platforms, or from combing the internet.

• In a personalization setting, like spam filtering or auto-completion on a keyboard, each
user may only have a couple hundred of their own samples, but out-domain samples from
other users may be available in greater quantities.

• In the privacy constrained setting, a company may collect data from internal users, user
studies, and beta testers; however, a commitment to user privacy may incentivize the
company to keep the amount of labeled data from the target user population low.

• Lastly, labeling in-domain data may require certain domain knowledge, which would
lead to increased expenses and difficulty in finding annotators. As an example, take a text
classification problem in a rare language. It may be easy to produce out-domain samples by
labeling English text and machine translating it to the rare language, whereas generating
in-domain labeled data would require annotators who are fluent in the rare language.

In each of these settings, target distribution data may not be amply available, but semi-similar
unlabelled domains often are. This rules out many domain adaptation methods that rely heavily on
unlabelled target data.

We were able to simulate the base conditions of this problem with sentiment analysis and question
answering datasets, since they are rich in domain diversity. We believe these datasets are reasonable
proxies to represent the base problem, and yield general-enough insights for a practitioner starting on
this problem.

A.2 Reproducibility

A.2.1 Datasets

We choose question answering and sentiment analysis tasks as they are core NLP tasks, somewhat
representative of many classification and information-seeking problems. Multi-domain active learning
is not limited to any subset of NLP tasks, so we believe these datasets are a reasonable proxy for the
problem.

For question answering, we employ 6 diverse QA datasets from the MRQA 2019 workshop (Fisch
et al., 2019), which includes SQuAD (Rajpurkar et al., 2016), NewsQA (Trischler et al., 2016),
TriviaQA (Joshi et al., 2017), SearchQA (Dunn et al., 2017), HotpotQA (Yang et al., 2018), and
Natural Questions (Kwiatkowski et al., 2019).8 We sample 60k examples from each dataset for
training, 5k for validation, and 5k for testing. Questions and contexts are collected with varying
procedures and sources, representing a wide diversity of datasets.

For the sentiment analysis classification task, we use Amazon datasets following (Blitzer et al., 2007)
and (Ruder & Plank, 2018) by randomly selecting 6 Amazon multi-domain review datasets, as well
as Yelp reviews (Asghar, 2016) and IMDB movie reviews datasets (Maas et al., 2011). 9 Altogether,
these datasets exhibit wide diversity based on review length and topic (see Table 1). We normalize all
datasets to have 5 sentiment classes: very negative, negative, neutral, positive, and very positive. We
sample 50k examples for training, 5k for validation, and 5k for testing.

Both question answering and sentiment analysis datasets are described in Table 1.

A.2.2 Model Training

For reproducibility, we share our hyper-parameter selection in Table 2. Hyper-parameters are taken
from Longpre et al. (2019) for training all Question Answering (QA) models since their parameters
are tuned for the same datasets in the MRQA Shared Task. We found these choices to provide stable
and strong results across all datasets. For sentiment analysis, we initially experimented on a small
portion of the datasets to arrive at a strong set of base hyper-parameters to tune from.

8The workshop pre-processed all datasets into a similar format, for fully answerable, span-extraction QA:
https://github.com/mrqa/MRQA-Shared-Task-2019.

9https://jmcauley.ucsd.edu/data/amazon/, https://www.yelp.com/dataset, https://ai.
stanford.edu/~amaas/data/sentiment/.
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Table 1: Datasets: The question answering (left) and sentiment analysis (right) datasets in our
experiments. Left: Query source (Q), Context source (C), mean query length (|Q|), and whether the
query was written independently from the context (Q ⊥ C). Right: mean review length (|R|) and the
percent representation of negative (-), neutral (N) and positive (+) labels.

MRQA Datasets Sentiment Datasets
Dataset Q C |Q| Q ⊥ C Dataset |R| - N +
SQuAD Crowd Wiki 11 ✗ Amzn-Books 144 12.1 8.8 79.1
NewsQA Crowd News 8 ✓ Amzn-Health 80 9.3 7.0 83.7
TriviaQA Trivia Web 16 ✓ Amzn-Music 132 36.2 9.1 54.7
SearchQA Jeopardy Web 17 ✓ Amzn-Software 126 14.2 8.1 77.6
HotpotQA Crowd Wiki 22 ✗ Amzn-Sports 84 49.9 0.0 50.1
Natural-QS Search Wiki 9 ✓ Amzn-Tools 89 15.3 7.9 76.8

Imdb 230 16.4 7.5 76.1
Yelp 109 24.3 10.7 65.0

Our BERT question answering modules build upon the standard PyTorch (Paszke et al., 2019)
implementations from HuggingFace, and are trained on one NVIDIA Tesla V100 GPU.10.

Table 2: Hyperparameter selection for task models.
Model Parameter Value

Base Pre-trained Model BERT-base
Model Size (# params) 108.3M
Learning Rate 5e− 5
Optimizer Adam
Gradient Accumulation 1
Dropout 0.1
Lower Case False

Question Answering model
Avg. Train Time 2h 20m
Batch Size 25
Num Epochs 2
Max Query Length 64
Max Sequence Length 512

Sentiment Classifcation model
Avg. Train Time 43m
Batch Size 20
Num Epochs 3
Max Sequence Length 128

A.2.3 Experimental Design

For more detail regarding the experimental design we include Algorithm 1, using notation described
in the multi-domain active learning task definition.

A.3 Method Details

In this section, we describe each method in more detail. Each method produces a full ranking of
examples in the source set DS . To rank examples, most acquisition methods train an acquisition
model, MA, using the same model architecture as M . MA is trained on all samples from Dtrain

T ,
except for DAL and KNN, which split Dtrain

T into two equal segments, one for training MA and one
for an internal model. Some methods have both ascending and descending orders of these rankings

10https://github.com/huggingface/transformers

9

https://github.com/huggingface/transformers


Algorithm 1 EXPERIMENTAL DESIGN

1: for each Acquisition Function Af do
2: for each Target set DT ∼ D do
3: Dtrain

T , Ddev
T , Dtest

T ∼ DT

4: DS := {x ∈ D | x /∈ DT }
5: MA ← TRAIN(Dtrain

T , Ddev
T )

6: Dchosen ← [Rankx∈DSAf (x,MA)][: n]

7: Dfinal−train = Dtrain
T ∪Dchosen

8: M ← GRIDSEARCH(Dfinal−train, Ddev
T )

9: (Af , DT ) = s
Af

T ←M(Dtest
T )

10: end for
11: end for
12: return Scores Dictionary (Af , DT )→ s

Af

T

(denoted by ↑ and ↓ respectively, in the method abbreviations), to test whether similar or distant
examples are preferred in a multi-domain setting.

Certain methods use vector representations of candidate examples. We benchmark with both task-
agnostic and task-specific encoders. The task-agnostic embeddings are taken from the last layer’s CLS
token in Reimers & Gurevych (2019)’s sentence encoder (Appendix for details). The task-specific
embeddings are taken from the last layer’s CLS token in the trained model MA. Let E be the encoder
function.

The motivation of the task-specific variant is that each example’s representation will capture task-
relevant differences between examples while ignoring irrelevant differences.11 The versions of DAL
and KNN methods that use task-specific vectors are denoted with “∗” in their abbreviation. Otherwise,
they use task-agnostic vectors.

A.3.1 Uncertainty Method Acquisition Functions

Let Y be the set of all possible labels produced from the model M(x) and ly be the logit value for
y ∈ Y . Let P (y|x) be the probabilities from the softmax output.

CONF has an acquisition function:

ACONF(x,MA) = −max(P (y|x)), (1)

and ENTR an an acquisition function:

AENTR(x,MA) = −
|Y |∑
i=1

P (yi|x) · logP (yi|x). (2)

For ENG, the acquisition function is:

AENG(x,MA) = −T log
∑
y∈Y

ely/T , (3)

where we chose T = 1 to maximize the distinction between in- and out-domain predictions.

For BALD, we conduct T = 20 forward passes on x. ŷt = argmaxiP (yi|x)t, representing the
predicted class on the t-th model pass on x. Following (Lowell et al., 2019), ties are broken by taking
the mean label entropy over all T runs. The acquisition function is:

ABALD(x,MA) = 1− count(modet∈T (ŷt))

T
. (4)

We note that Siddant and Lipton’s presentation of BALD is more closely related to the Variation
Ratios acquisition function described in Gal et al. (2017) than the description of dropout as a Bayesian
approximation given in Gal & Ghahramani (2016). In particular, Gal et al. (2017) found that
Variation Ratios performed on par or better than Houlsby’s BALD on MNIST but was less suitable
for ISIC2016.

11For instance, consider in one domain every example is prefixed with “Text:” while the other is not — telling
the difference is trivial, but the examples could be near-identical with respect to the task.
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A.3.2 Discriminative Active Learning Model (DAL)

For the following methods, let Dtrain−B
T be the 1k examples from Dtrain

T that were not used to train
MA. We use samples both from Dtrain−B

T and DS to train the discriminator, g. We assign samples
origin labels l, which depend on the DAL variant. Samples from DS with discriminator predictions
closest to 1 are selected for labeling. The acquisition scoring function for each DAL method and
training set definition, respectively, are:

ADAL(x, g, E) = g(E(x))

{(E(x), l) | x ∈ Dtrain−B
T ∪DS}

DAL-T trains a discriminator g to distinguish between target examples in Dtrain−B
T and out-of-

distribution examples from DS . For DAL-T, l = 1Dtrain−B
T

(x).

DAL-E is a novel variant of DAL. DAL-E’s approach is to find examples that are similar to those
in the target domain that MA misclassified. We partition Dtrain−B

T further into erroneous samples
Derr

T and correct samples Dcorr
T , where Dtrain−B

T = Derr
T ∪Dcorr

T . For DAL-E, l = 1Derr
T

(x).

We use an XGBoost decision tree (Chen & Guestrin, 2016) as DAL’s discriminator model. DAL’s
training set is created using the methods detailed in Section ??. The training set is then partitioned into
five equally sized folds. In order to predict on data that is not used to train the discriminator, we use
5-fold cross validation. The model is trained on four folds, balancing the positive and negative classes
using sample weights. The classifier then predicts on the single held-out fold. This process is repeated
five times so that each example is in the held out fold exactly once. Custom model parameters are
shown in Table 3; model parameters not shown in the table are the default XGBClassifier parameters
in xgboost 1.0.2. The motivations for choice in model and architecture are the small amount of target
domain examples requiring a simple model to prevent overfitting and the ability of decision trees to
capture collective interactions between features.

A.3.3 Reverse Classification Accuracy

Reverse Classification Accuracy (RCA) estimates how effective source set Di,i∈S is as a training
data for target test set DT (Fan & Davidson, 2006; Elsahar & Gallé, 2019). Without gold labels for
Di we compute soft labels instead, using the BERT-Base MA trained on the small labeled set Dtrain

T .
We then train a child model Mi on Di using these soft labels, and evaluate the child model on Ddev

T .
RCA chooses examples randomly from whichever domain i produced the highest score si.

ARCA = 1D(argmaxi∈S si)
(x)

R̃CA : τi =
si

sT − si
, |Dchosen

i | = τi∑
j

sj

Standard RCA only selects examples from one domain Di. We develop a novel variant which samples
from multiple domains, proportional to their relative performance on the target domain Ddev

T . RCA-
smoothed (R̃CA) selects |Dchosen

i | examples from source domain i, based on the relative difference
between the performance si (of child model Mi trained on domain i with pseudo-labels from MA)
on the target domain, and the performance sT of a model trained directly on the target domain Ddev

T .
Since these strategies directly estimates model performance on the target domain resulting from
training on each source domain, RCA and R̃CA are strong Domain Budget Allocation candidates.

A.3.4 Nearest Neighbour / Semantic Similarity

For question answering, where an example contains two sentences (the query and context), we refer
to KNN-Q where we only encode the query text, KNN-C where we only encode the context text,
or KNN-QC where we encode both concatenated together. The acquisition scoring function per
example is:

AKNN(x,E) = CosSim(E(x),Mean(E(Dtrain
T ))
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Table 3: Hyperparameter selection for DAL discriminators.

Model Parameter Value
DAL Discriminator

Model Type XGBoost
Model Size (# trees) 10
Model Size (maximum depth) 2

Learning Rate 0.1
Objective binary:logistic
Booster gbtree
Tree Method gpu_hist
Gamma 5
Min Child Weight 5
Max Delta Step 0
Subsample 1
Colsample Bytree 1
Colsample Bynode 1
Reg Alpha 0
Reg Lambda 5
Scale Pos Weight 1

Table 4: MQRA F1 scores from each active learning method over every training set size and target
domain. The best performances are bolded and underlined.

Train Target random CONF↑ CONF↓ ENTR↑ ENTR↓ ENG↑ ENG↓ BALD↑ BALD↓ DAL-E∗ DAL-T∗ DAL-E DAL-T RCA R̃CA KNN∗ KNN-C KNN-Q KNN-QC

10000

HOTPOTQA 65.76 64.15 64.38 64.59 66.03 65.39 62.39 63.13 61.45 65.42 65.33 63.58 63.18 65.19 65.33 62.25 64.28 63.98 63.51
NATURALQ 63.05 61.59 62.14 64.61 63.56 61.52 62.44 58.35 61.56 63.0 62.79 62.54 62.7 58.72 62.73 59.75 61.94 63.28 61.84
NEWSQA 53.51 47.72 51.82 54.14 52.85 52.54 48.06 55.61 52.76 51.36 50.93 54.41 54.69 55.93 54.31 50.77 53.13 55.52 52.91
SEARCHQA 62.83 58.46 63.84 63.12 64.25 62.18 63.22 63.26 65.12 62.6 62.59 63.28 63.31 62.32 62.03 61.84 63.84 63.27 62.39
SQUAD 75.97 73.23 75.33 76.28 73.41 76.22 73.07 75.65 73.13 76.61 76.75 77.0 76.88 77.0 76.25 76.74 74.24 75.08 74.94
TRIVIAQA 61.44 58.19 60.17 59.75 57.57 59.64 59.4 60.02 58.32 61.89 61.24 61.94 61.06 58.88 60.81 60.45 59.98 60.82 60.37

20000

HOTPOTQA 66.29 64.12 64.3 65.15 67.53 65.86 63.86 67.51 63.76 67.05 67.13 64.48 64.23 65.81 66.78 61.96 64.14 64.68 64.13
NATURALQ 63.62 63.65 62.12 64.87 64.11 63.3 60.32 64.86 63.63 63.99 64.14 63.98 63.38 59.21 63.76 60.34 61.54 63.81 62.43
NEWSQA 54.71 48.32 52.68 55.44 54.78 53.01 47.56 57.69 55.2 52.15 52.1 55.62 56.29 57.33 57.47 50.16 53.55 55.5 54.94
SEARCHQA 62.53 61.93 64.08 63.51 62.56 61.46 63.21 64.27 67.22 62.92 63.14 63.65 63.3 62.13 63.01 62.24 64.88 63.32 63.84
SQUAD 76.32 75.33 75.53 77.61 72.17 76.54 72.79 78.02 74.15 77.51 77.72 77.7 77.59 78.57 78.0 77.79 75.93 76.56 76.27
TRIVIAQA 62.45 61.37 61.97 61.64 61.21 62.38 60.2 61.74 60.54 63.38 62.56 62.7 61.99 59.76 61.65 62.54 61.83 62.08 62.84

30000

HOTPOTQA 65.98 64.79 66.33 64.43 68.3 65.76 63.39 69.17 63.44 67.09 67.51 64.91 65.34 65.92 67.79 62.32 64.09 65.85 64.86
NATURALQ 63.61 63.49 63.18 64.51 64.65 63.87 62.68 66.4 63.62 64.66 65.12 64.84 64.24 59.18 63.64 61.63 62.32 64.24 62.66
NEWSQA 55.18 47.73 54.26 56.79 54.48 54.62 48.38 58.4 56.7 53.48 53.48 55.63 56.17 57.7 56.84 49.19 54.89 56.24 54.54
SEARCHQA 62.28 61.9 62.86 63.73 63.5 62.17 63.85 66.67 68.61 62.97 63.61 63.52 63.3 61.89 62.99 62.4 63.7 63.37 63.76
SQUAD 77.75 74.1 76.78 76.98 75.08 76.76 73.08 78.7 77.04 79.21 78.71 78.08 79.24 80.18 78.38 78.76 75.77 77.88 77.13
TRIVIAQA 63.2 62.34 61.98 62.01 61.87 62.98 60.13 61.85 62.49 64.36 64.35 63.21 62.97 61.36 62.81 63.22 62.94 62.91 63.89

A.3.5 Task Agnostic Embeddings

To compute the semantic similarity between two examples, we computed the example embeddings
using the pre-trained model from a sentence-transformer (Reimers & Gurevych, 2019). We used the
RoBERTa large model, which has 24 layers, 1024 hidden layers, 16 heads, 355M parameters, and fine
tuning on the SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018), and STSBenchmark
(Cer et al., 2017) datasets. Its training procedure is documented in https://www.sbert.net/
examples/training/sts/README.html.

A.4 Full Method Performances

We provide a full breakdown of final method performances in Tables 4 and 5.

A.4.1 Effect of Sample Size on Strategy

Originally, we hypothesized Single Pool Strategy methods would perform better on smaller budget
sizes as they add the most informative data points regardless of domain. On the other hand, we
thought that if the budget size is large, Domain Budget Allocation would perform best, as they
choose source domains closest to the target domain. Based on Figures 1b and 1a, we were not able to
draw conclusions about this hypothesis, as each sample size n = {8000, 18000, 28000} produced
roughly similar winning methods. Future work should include a wider range of budget sizes with
larger changes in method performance between sizes.
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Table 5: Sentiment accuracy scores from each active learning method over every training set size and
target domain. The best performances are bolded and underlined.

Train Size Target random CONF↑ CONF↓ ENTR↑ ENTR↓ ENG↑ ENG↓ BALD↑ BALD↓ DAL-E∗ DAL-T∗ DAL-E DAL-T RCA R̃CA KNN∗ KNN

10000

AMZN-B 65.04 68.66 65.36 65.32 68.08 66.38 68.62 64.46 68.2 67.16 66.98 68.28 67.68 67.24 68.3 65.66 67.06
AMZN-H 66.36 68.98 66.32 67.36 68.84 65.98 69.3 66.64 69.36 70.04 68.4 69.32 69.1 69.6 69.14 68.52 68.84
AMZN-M 68.38 70.2 67.3 68.1 69.66 67.4 70.4 67.42 69.74 70.42 69.4 70.16 70.06 69.88 70.08 69.44 69.56
AMZN-SO 61.06 63.94 61.92 61.38 64.32 62.42 64.3 61.24 64.3 63.46 63.04 64.2 64.22 62.4 64.12 63.72 64.42
AMZN-SP 64.92 67.12 64.22 64.68 66.5 64.68 66.1 64.06 67.58 67.12 66.66 68.04 67.62 68.14 66.98 66.16 66.94
AMZN-T 65.4 67.88 65.94 65.54 67.26 65.56 68.02 64.64 67.8 68.44 65.68 67.86 68.24 66.66 67.06 65.36 67.64
IMDB 58.05 59.32 59.48 58.76 58.78 58.88 58.54 58.02 59.9 59.68 60.46 60.4 60.52 59.94 59.52 58.96 60.1
YELP 66.75 64.94 63.82 64.36 65.58 63.46 65.88 64.42 66.38 66.06 66.4 65.84 66.98 66.0 67.04 66.24 65.46

20000

AMZN-B 64.68 69.12 65.92 65.18 68.46 67.08 69.04 66.5 68.88 68.18 65.64 68.16 68.68 67.9 67.88 66.26 67.64
AMZN-H 67.16 69.46 65.04 64.94 69.54 65.94 70.32 65.32 69.84 70.32 68.08 69.94 70.04 70.16 70.28 67.66 69.18
AMZN-M 68.76 70.86 66.2 67.84 69.98 66.18 70.82 66.7 70.52 71.48 69.56 70.84 70.54 71.32 69.86 68.78 70.28
AMZN-SO 61.5 64.98 62.1 62.28 65.56 61.66 65.2 61.82 65.34 64.7 64.74 64.88 64.56 63.18 64.22 64.26 65.3
AMZN-SP 65.68 67.18 65.04 63.78 67.14 65.66 66.34 63.52 67.36 68.22 68.78 68.36 68.72 68.42 67.54 65.32 67.84
AMZN-T 65.92 68.1 66.26 65.04 68.44 65.52 68.18 64.76 69.02 69.62 65.76 69.72 69.1 67.12 68.38 66.6 68.58
IMDB 58.58 59.56 58.88 58.38 58.74 59.74 58.76 58.84 58.96 60.2 60.76 60.1 60.06 59.94 60.54 59.38 59.98
YELP 66.39 66.52 62.92 64.34 65.74 63.34 66.18 64.06 66.62 67.6 66.9 67.2 66.16 65.98 66.86 65.46 67.4

30000

AMZN-B 65.18 68.96 65.02 63.42 68.9 65.96 69.12 63.72 69.42 68.86 67.16 69.22 68.08 68.2 69.06 66.32 68.42
AMZN-H 67.0 71.1 64.82 64.62 69.92 64.78 70.54 63.56 70.38 70.86 67.96 70.38 70.6 70.32 70.2 68.46 70.74
AMZN-M 69.48 70.96 67.16 66.34 70.5 68.06 71.14 66.48 71.14 71.56 70.28 70.38 71.0 71.28 70.98 68.92 70.64
AMZN-SO 62.94 66.06 62.0 61.56 66.06 61.76 65.98 60.52 66.36 65.88 66.0 65.58 65.8 63.44 65.98 64.58 66.22
AMZN-SP 67.06 67.82 63.44 63.08 68.0 64.14 67.82 63.6 69.16 68.7 67.86 69.38 68.56 68.42 68.3 66.24 67.96
AMZN-T 66.1 69.04 65.8 66.14 68.2 66.96 69.0 63.4 69.62 70.22 67.08 70.0 69.62 68.1 68.8 67.2 69.72
IMDB 59.67 58.9 59.84 57.9 59.1 59.66 59.3 58.58 59.76 59.78 61.58 60.7 60.8 60.6 60.32 60.4 60.64
YELP 66.93 66.28 63.68 64.28 66.7 63.38 67.34 63.62 67.16 66.78 67.46 68.2 66.94 66.22 67.18 65.54 67.82
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Figure 2: Similarities of Example Rankings Measured by Kendall’s Tau Coefficients, for QA
(above diagonal) and SA (below diagonal). Kendall’s Tau coefficient is computed between the
example rankings of each pair of methods. The heatmap contains these coefficients averaged over
each target dataset (some cells are crossed out for SA since SA’s KNN methods don’t have C/Q/QC
variants). 1 indicates a perfect relationship between the rankings, 0 means no relationship, and -1
means an inverse relationship.

A.5 Comparing Example Rankings

For each setting, we quantify how similar acquisition methods rank examples from DS . In Figure
2, for each pair of methods, we calculate the Kendall’s Tau coefficient between the source example
rankings chosen for a target domain, then average this coefficient over the target domains. Kendall’s
Tau gives a scores [−1, 1], with -1 meaning perfect anti-correlation, 0 meaning no correlation, and 1
meaning perfect correlation between the rankings. Methods from different families show close to no
relationship, even if they achieve similar performances, suggesting each family relies on orthogonal
notions of similarity to rank example relevance. This suggests there is potential for combining
methods from different families in future work.

In Sentiment tasks, all uncertainty methods had highly correlated examples. In QA, ENTR had little
correlation with any method. This is likely due to the significantly larger output space for QA models.
Compared to only 5 label classes in SA, question answering models distribute their start and end
confidences over sequences of up to 512, with multiple feasible answer candidates. Embedding space
also largely influences the examples that methods chose. DAL methods had higher correlations with
each other when they share the same embedding space; i.e. DAL-E’s ranking has a higher correlation
with DAL-T than with DAL-E∗.

A.5.1 Kendall’s Tau Definition

Kendall’s Tau is a statistic that measures the rank correlation between two quantities. Let X and
Y be random variables with (x1, y1), (x2, y2), ..., (xn, yn) as observations drawn from the joint
distribution. Given a pair (xi, yi) and (xj , yj), where i ̸= j, we have:
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yj−yi

xj−xi
> 0 : pair is concordant

yj−yi

xj−xi
< 0 : pair is discordant

yj−yi

xj−xi
= 0 : pair is a tie

Let nc be the number of concordant pairs and nd the number of discordant pairs. Let ties add 0.5 to
the concordant and discordant pair counts each. Then, Kendall’s Tau is computed as:12

τ = nc−nd

nc+nd
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Figure 3: Kendall Tau scores normalized by intra-family scores according to the family of the method
on the y-axis (with uncertainty-ascending and uncertainty-descending as distinct families). If the
cell’s corresponding Kendall Tau score is within the intra-family range, it’s value will be in [0, 1].
Below the range is negative, and above the range is greater than 1.

A.5.2 Inter-Family Comparison

Here, we extend on our comparison of example rankings by presenting plots of Kendall Tau scores
normalized by intra-family scores in Figure 3. For the sentiment setting, the ranges of intra-family
Kendall Tau coefficients are smaller than the MRQA setting. Methods in the uncertainty family have
especially strong correlations with each other and much weaker with methods outside of the family.
For H-divergence based methods, intra-family correlations are not’t as strong as for the uncertainty
family; in fact, the Kendall Taus between DAL-E/KNN and DAL-T/KNN appear to be slightly
within the H-divergence intra-family range.

12https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/kendell.htm
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Furthermore, intra-family ranges are quite large for all families in the MRQA setting. For each
method, there is at least one other method from a different family with which it had a higher Kendall
Tau coefficient than the least similar methods of its own family.

A.5.3 Properties of Optimal Example Selection

We examine three properties of optimally selected examples: (i) whether selecting from many diverse
or one single domain leads to better performance, (ii) whether the selection of a domain or individual
examples matters more to performance, and (iii) whether selection strategies can benefit from source
domain information rather than treating samples as drawn from a single pool? Our findings regarding
properties of optimal selection include:

• Selecting a diversity of domains usually outperforms selecting examples from a single
domain.

• Acquisition functions such as DAL-E∗ do rely on example selection, mainly to avoid the
possibility of large negative outcomes.

• Allocating a budget for each domain may improve performance. Surprisingly, even random
selection from an “optimal” balance of domains beats our best performing acquisition
methods most of the time.

Are Many Diverse or One Single Domain Preferable? To answer this question we conduct a full
search over all combinations of source datasets. For each target set, we fix 2k in-domain data points
and sample all combinations of other source sets in 2k increments, such that altogether there are 10k
training data points. For each combination of source sets, we conduct a simple grid search, randomly
sampling the source set examples each time, and select the best model, mimicking standard practice
among practitioners.

The result is a comprehensive search of all combinations of source sets (in 2k increments) up to 10k
training points, so we can rank all combinations of domains per target, by performance. Tables 6a
and 6b show the optimal selections, even as discrete as 2k increments, typically select at least two or
more domains to achieve the best performance. However, 1 of 6 targets for QA, or 2 of 8 for the SA
tasks achieve better results selecting all examples from a single domain, suggesting this is a strong
baseline, if the right source domain is isolated. We also report the mean score of all permutations to
demonstrate the importance of selecting the right set of domains over a random combination.

Domains or Examples? Which is more important, to select the right domains or the right examples
within some domain? From the above optimal search experiment we see selecting the right combi-
nation of domains regularly leads to strong improvements over a random combination of domains.
Whether example selection is more important than domain selection may vary depending on the
example variety within domains. We narrow our focus to how much example selection plays a role
for one of the stronger acquisition functions: DAL-E∗.

We fix the effect of domain selection (the number of examples from each domain) but vary which
examples are specifically selected. Using DAL-E∗’s distribution of domains, we compare the mean
performance of models trained on it’s highest ranked examples against a random set of examples
sampled from those same domains. We find a +0.46 ± 0.25% improvement for QA, and +0.12 ±
0.19% for SA. We also compare model performances trained on random selection against the lowest
ranked examples by DAL-E∗. Interestingly, we see a -1.64 ± 0.37% performance decrease for QA,
and -1.46 ± 0.56% decrease for sentiment tasks. These results suggest that example selection is an
important factor beyond domain selection, especially for avoiding bad example selections.

Single Pool or Domain Budget Allocation Does using information about examples’ domains
during selection lead to better results than treating all examples as coming from a single unlabeled
pool? In our main set of experiments, the RCA acquisition functions follow the Domain Budget
Allocation strategy, which allocates an example budget for each domain. All other acquisition
functions follow Single Pool strategies, which treat all source samples as coming from a single pool.
Based on median performance, R̃CA outperformed all other methods (we’re including BALD here
due to inconsistency in performance between QA and SA) except for those in the H-Divergence
family. This suggests that using domain information during selection can lead to performance gains.

The Optimal Domain Search experiments, shown in Tables 6a and 6b, further suggest that allocating
a budget from each domain can improve performance. For 8 out of our 14 experiments, selecting
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Table 6: Optimal Domain Search: The optimal distribution of examples is shown per target domain,
in 2k increments. The underlined value indicates the “Single source Domain" (2k in-domain, 8k
source domain) that gave best results. On the right we show the F1 score for this optimal distribution,
the mean score across all distribution combinations, the best Single source Domain, and the Best
Acquisition Function (from Figure 1). Typically allocating optimal domain budgets and the best
acquisition functions both performed strongly.

(a) Optimal domain search for Question Answering (QA).

Optimal Sample F1 Score

SQ NE TR SE HT NQ Optimal Mean Single
Domain Best AF

SQUAD 2k 8k 0 0 0 0 78.0 74.0 78.0 77.0
NEWSQA 6k 2k 0 2k 0 0 56.1 52.0 55.2 55.9
TRIVIAQA 2k 4k 2k 0 0 2k 62.9 58.8 61.8 61.9
SEARCHQA 4k 0 0 2k 2k 2k 64.4 61.2 63.5 65.1
HOTPOTQA 6k 0 0 0 2k 2k 67.1 63.6 66.4 66.0
NATURALQ 2k 4k 0 0 2k 2k 63.7 59.8 63.0 64.6
MEAN 65.4 61.5 64.6 65.1

(b) Optimal domain search for Sentiment Analysis (SA).

Optimal Sample Accuracy Score

A-B A-H A-M A-SO A-SP A-T IM YE Optimal Mean Single
Domain Best AF

AMZN-B 2k 0 0 2k 2k 0 4k 0 69.0 66.5 67.6 68.7
AMZN-H 0 2k 0 0 0 8k 0 0 69.8 67.8 69.8 70.0
AMZN-M 0 0 2k 0 0 2k 6k 0 70.8 69.0 70.1 70.4
AMZN-SO 2k 0 2k 2k 4k 0 0 0 64.7 62.6 64.7 64.4
AMZN-SP 0 2k 0 2k 2k 4k 0 0 67.5 65.3 67.5 68.1
AMZN-T 0 8k 0 0 0 2k 0 0 68.4 65.7 68.4 68.3
IMDB 4k 2k 0 2k 0 0 2k 0 60.2 57.8 59.9 60.5
YELP 0 2k 0 4k 2k 0 0 2k 67.0 64.9 66.1 67.0
MEAN 67.2 64.9 66.6 67.2

random samples according to the optimal domain distribution outperform any active learning strategy.
While the optimal domain distributions were not computed a priori in our experiments, this result
shows the potential for Domain Budget Allocation strategies. Future work could reasonably improve
our results by developing an acquisition function that better predicts the optimal domain distributions
than R̃CA, or to even have greater performance gains by budgeting each domain, then applying an
active learning strategy (e.g. DAL-E) within each budget.

A.6 Relating Domain Distances to Performance

We investigated why certain methods work better than others. One hypothesis is that there exists a
relationship between between target-source domain distances and method performance. We estimated
the distance between two domains by computing the Wasserstein distance between random samples of
3k example embeddings from each domain. We experimented with two kinds of example embeddings:
1. A task agnostic embedding computed by the sentence transformer used in the KNN method, and 2.
A task specific embedding computed by a model trained with the source domain used in the DAL∗
method. Given that there are k − 1 source domains for each target domain, we tried aggregating
domain distances over its mean, minimum, maximum, and variance to see if Wasserstein domain
distances could be indicative of relative performance across all methods.

Figure 4, Figure 5, Figure 6, and Figure 7 each show, for a subset of methods, the relationship between
each domain distance aggregation and the final performance gap between the best performing method.
Unfortunately, we found no consistent relationship for both MRQA and the sentiment classification
tasks. We believe that this result arose either because our estimated domain distances were not reliable
measures of domain relevance, or because the aggregated domain distances are not independently
sufficient to discern relative performance differences across methods.
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Figures 4-7: The average domain distance is calculated by finding the distance between 3k examples
from DT and the combined set made from choosing 3k examples from each domain in DS . Since the
Wasserstein metric is symmetric, this yields k points for comparison.

Figure 4: Average Wasserstein domain distance vs performance.

Figure 5: Minimum Wasserstein domain distance vs method performance.

Figure 6: Maximum Wasserstein domain distance vs method performance.
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Figure 7: Wasserstein Domain distance variance vs performance.
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