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Abstract003

Decomposition-based multi-hop retrieval meth-004
ods rely on many autoregressive steps to break005
down complex queries, which breaks end-006
to-end differentiability and is computation-007
ally expensive. Decomposition-free methods008
tackle this, but current decomposition-free ap-009
proaches struggle with longer multi-hop prob-010
lems and generalization to out-of-distribution011
data. To address these challenges, we introduce012
GRITHopper-7B1, a novel multi-hop dense013
retrieval model that achieves state-of-the-art014
performance on both in-distribution and out-of-015
distribution benchmarks. GRITHopper com-016
bines generative and representational instruc-017
tion tuning by integrating causal language mod-018
eling with dense retrieval training. Through019
controlled studies, we find that incorporating020
additional context after the retrieval process,021
referred to as post-retrieval language model-022
ing, enhances dense retrieval performance. By023
including elements such as final answers dur-024
ing training, the model learns to better con-025
textualize and retrieve relevant information.026
GRITHopper-7B offers a robust, scalable, and027
generalizable solution for multi-hop dense re-028
trieval, and we release it to the community029
for future research and applications requiring030
multi-hop reasoning and retrieval capabilities.031

1 Introduction032

Large Language Models (LLMs) have demon-033

strated remarkable capabilities in reasoning034

(Huang and Chang, 2023), reflection, and decom-035

position, making them indispensable tools for a036

wide range of natural language processing tasks.037

Their generative abilities have been successfully038

leveraged to solve open-domain multi-hop prob-039

lems, where complex questions are broken into040

smaller sub-questions to retrieve supporting evi-041
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Figure 1: Out-of-distribution Multi-Hop Retrieval Per-
formance on the MultiHop-RAG Benchmark (Tang and
Yang, 2024). GRITHopper substantially outperforms
previous state-of-the-art multi-hop retrieval models on
out-of-distribution Benchmarks on deep hops.

dence and reflect on them (Asai et al., 2024; Shao 042

et al., 2023; Guan et al., 2024) in a step-by-step 043

manner. However, such decomposition-based ap- 044

proaches require multiple autoregressive steps and 045

discrete intermediate outputs, which breaks the 046

end-to-end differentiability of the retrieval pipeline 047

and increases computational overhead. 048

Decomposition-free approaches, such as Multi- 049

Hop Dense Retrieval (MDR) (Xiong et al., 2021), 050

and cross-encoder-based methods like Beam Re- 051

triever (Zhang et al., 2024a), enable end-to-end 052

differentiability by not requiring discrete decom- 053

positions, but both suffer from significant lim- 054

itations. MDR offers an efficient and scalable 055

dense retrieval framework by concatenating the 056

query with passages and encoding them into a sin- 057

gle vector representation in one model call per 058

iteration. However, it struggles with more com- 059

plex datasets like MuSiQue (Trivedi et al., 2022), 060

more hops than 2, and performs poorly on out-of- 061

distribution benchmarks. On the other hand, Beam 062

Retriever achieves state-of-the-art in-distribution 063

performance by leveraging cross-encoder architec- 064

tures. Unlike bi-encoders, which independently 065
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Figure 2: Comparison of decomposition-based approaches like (Guan et al., 2024; Shao et al., 2023) to our
encoder-only approach with GRITHopper. While decomposition-based approaches require many auto-regressive
steps to decompose questions, extract answers, and a different model for retrieval, our encoder-only approach only
requires a single forward pass per hop to compute the next dense vector. Example is from (Trivedi et al., 2022).

encode questions and passages to compute simi-066

larity, cross-encoders process both as a single se-067

quence, resulting in linear scaling with respect to068

the number of passages. This makes them only069

suited as a retriever for a few hundred passages070

but not open book retrieval. Despite its strengths,071

it shares MDR’s generalization issues while intro-072

ducing scalability challenges due to its computa-073

tional overhead, making it impractical for large-074

scale open retrieval tasks. These limitations un-075

derscore the need for a scalable and generalizable076

multi-hop retrieval framework that can perform077

well on both in-distribution and out-of-distribution078

benchmarks in open-domain retrieval scenarios.079

To address these challenges, we introduce080

GRITHopper-7B, the first decoder-based end-to-081

end multi-hop dense retrieval model trained on an082

unprecedented scale of multi-hop datasets span-083

ning both question-answering and fact-checking084

tasks. GRITHopper-7B achieves state-of-the-085

art performance across out-of-distribution bench-086

marks (see Figure 1) while preserving the simplic-087

ity and scalability of encoder-only paradigms like088

MDR (see Figure 2). The foundation of GRITHop-089

per lies in GRITLM (Muennighoff et al., 2025),090

a Mistral-7B-based model that integrates causal091

language modeling with dense retrieval training.092

GRITLM’s design sparked a critical debate in the093

field: Does joint optimization of generative and re-094

trieval tasks enhance dense embedding quality?095

While GRITLM initially demonstrated state-of-096

the-art results in retrieval while achieving strong097

performance in generation, subsequent studies098

(Lee et al., 2025) show that contrastive-only ap- 099

proaches, using the same Mistral-7B backbone, 100

outperform GRITLM on key benchmarks such as 101

BEIR (Thakur et al., 2021) and MTEB (Muen- 102

nighoff et al., 2023). 103

This raises fundamental questions about the util- 104

ity of generative objectives in retrieval and sets the 105

stage for a deeper exploration of their role. Build- 106

ing upon a shared data foundation for both the 107

retrieval and generation objective, we incremen- 108

tally add information to the generative component 109

without altering the embedding component. This 110

strategy allows us to assess whether incorporating 111

external information (beyond the retrieval chain) 112

into the generative training can improve dense re- 113

trieval performance. We refer to this approach as 114

post-retrieval language modeling, where we in- 115

clude elements such as final answers and judge 116

the retrieved paragraphs after the retrieval chain. 117

Through this controlled experimental setup, we 118

systematically explore how post-retrieval language 119

modeling influences dense embedding quality, of- 120

fering new insights into their roles in enhancing 121

multi-hop retrieval performance. Our experiments 122

create a novel ReAct style (Yao et al., 2023) end- 123

to-end multi-hop dense retrieval that can conduct 124

neural search via bi-directional attention and con- 125

trol itself (stop the search, answer, or rerank) via 126

causal language modeling. 127

The following research questions guide our 128

study: 129

RQ1: How do decomposition-free approaches 130

compare to decomposition-based approaches? 131
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RQ2: How does GRITHopper generalize on the132

out-of-distribution benchmarks compared to exist-133

ing methods?134

RQ3: What is the effect of combining genera-135

tive and embedding training in multi-hop dense136

retrieval compared to embedding-only training?137

RQ4: If generative training improves dense re-138

trieval performance, does post-retrieval language139

modeling during training further enhance it?140

2 Related Work141

2.1 Multi-Hop Retrieval and Reasoning142

Multi-hop question answering requires models to143

retrieve and integrate information from multiple144

documents to answer complex queries (Trivedi145

et al., 2022; Ho et al., 2020). Decomposition-146

based methods address this by breaking down com-147

plex questions into simpler sub-questions. Wolf-148

son et al. (2020) introduced the Break It Down149

(Break) method, which decomposes questions into150

a sequence of simpler queries. Other methods ex-151

tended decompositions with extensive reasoning152

(Shao et al., 2023; Khot et al., 2023; Yao et al.,153

2023). However, these methods require multi-154

ple autoregressive steps and generate intermedi-155

ate outputs, leading to increased computational156

overhead and disrupting end-to-end differentiabil-157

ity. Decomposition-free approaches have been pro-158

posed to overcome these limitations.159

2.2 Decomposition-Free Multi-Hop Retrieval160

Multi-Hop Dense Retrieval (MDR) (Xiong et al.,161

2021) introduced an approach where the query is162

concatenated with previously retrieved passages,163

and the combined text is encoded into a single164

vector representation using a bi-encoder architec-165

ture. Other works have extended MDR, such as166

BeamDR by adding beam search and Ma et al.167

(2024) by extending MDR multi-hop problems168

longer than 2 hops. While MDR allows for efficient169

and scalable retrieval but has limitations in han-170

dling complex multi-hop queries that require more171

hops than 2 and generalizing to unseen datasets.172

Multi-Hop cross-encoder models (Asai et al.,173

2020), like the BeamRetriever (Zhang et al.,174

2024a), achieve state-of-the-art performance on175

in-distribution datasets by modeling the retrieval176

process by encoding the question with each para-177

graph together. Despite their effectiveness, these178

models face scalability issues due to high compu-179

tational costs, making them less practical for large-180

scale open-domain retrieval tasks. Furthermore, 181

we will show that these methods suffer from over- 182

fitting and fail to generalize on out-of-distribution 183

benchmarks. 184

2.3 Causal Language Modeling and Reward 185

Modeling 186

While Causal language modeling (CLM) is pri- 187

marily used for generation tasks (Radford et al., 188

2019), recent research has combined it with dense 189

retrieval, specifically GRITLM Muennighoff et al. 190

(2025), integrating causal language modeling with 191

contrastive learning by simply adding the next to- 192

ken and contrastive loss. While the method trained 193

on two distinct datasets for retrieval and generation, 194

it leaves much room for exploration on how these 195

two losses work together. 196

In language models, reward modeling can guide 197

the generation process towards more accurate or 198

contextually appropriate responses. Zelikman et al. 199

(2022) and Huang and Chang (2023) explored how 200

self-taught reasoning and reflection can improve 201

reasoning capabilities in language models, which 202

could be beneficial for retrieval tasks that require 203

complex reasoning. To distinguish positive from 204

negative passages, we adopt the approach from 205

(Zhang et al., 2024b) that has shown that language 206

models can simulate reward learning through sim- 207

ple next-token prediction. This comes especially 208

handy for GRITLM’s joint generative and embed- 209

ding objective. 210

3 Problem Statement & Evaluation 211

3.1 Problem Definition 212

In the context of multi-hop retrieval, given a fixed 213

corpus of paragraphs P and a multi-hop-question 214

q, the task is to identify a sequence of paragraphs 215

[p1, p2..., pn] where pi ∈ P , that collectively an- 216

swer q (Trivedi et al., 2022; Ho et al., 2020). 217

Decomposition-free methods (Xiong et al., 2021; 218

Zhang et al., 2024a) concatenate the multi-hop 219

question together with previously retrieved para- 220

graphs [q, p1, p2, .., pn] on the word level and feed 221

them as a single string into an Encoder model E to 222

retrieve the next paragraph as: 223

E(q, p1, p2, . . . , pn)→ E(pn+1) (1) 224

where all candidate passages pn+1 ∈ P are 225

pre-computed offline. Apart from question an- 226

swering, we also adapt fact-checking retrieval as 227
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[claim, p1, p2, .., pn] where paragraphs can either228

be supporting or refuting paragraphs.229

3.2 Datasets230

We use a range of datasets to evaluate our approach.231

We train all models on MuSiQue (Trivedi et al.,232

2022), HotpotQA (Yang et al., 2018), 2WikiMulti-233

HopQA (Ho et al., 2020), Explainable Fever (Ma234

et al., 2024), and HoVer (Jiang et al., 2020). These235

datasets encompass question-answering and fact-236

checking tasks with varying levels of complexity237

and hop depths. For out-of-distribution evaluation,238

we use the MultiHopRAG Benchmark (Tang and239

Yang, 2024) and MoreHopQA (Schnitzler et al.,240

2024).241

3.3 Evaluation242

To demonstrate the performance of all approaches243

at different hop depths, we calculate Hits@k at244

each hop. This metric considers a hop successful245

if the relevant passage is retrieved within the top-k246

results. Importantly, the evaluation only continues247

to the next hop if the previous hop was success-248

ful. This allows us to analyze the performance249

across varying hop depths, highlighting the abil-250

ity of models to retrieve relevant passages in a251

sequential multi-hop setup. If not explicitly men-252

tioned, we evaluate only the retrieval performance.253

In our end-to-end evaluation, we also measure the254

performance of the model to decide when to stop255

retrieval.256

4 Methods257

Our central objective is to understand how inte-258

grating causal language modeling (CLM) with259

dense embedding training impacts multi-hop re-260

trieval (RQ3), and whether adding post-retrieval261

signals (e.g., final answers, judging hard negatives)262

can further improve performance (RQ4). Unlike263

prior work, (Muennighoff et al., 2025), which com-264

bined generative and embedding training on dif-265

ferent datasets, we investigate their interplay un-266

der a unified, controlled setup. This allows us to267

isolate the influence of the generative objective268

on embedding quality. Previous research in lan-269

guage model pretraining has shown that combining270

masked language modeling (MLM) with embed-271

ding training on the same dataset often improves272

downstream representations (Devlin et al., 2019;273

Wu et al., 2020).274

Figure 3: Highlighting the joint training objective (gen-
erative and contrastive) of GRITHopper. Both objec-
tives consume the exact same tokens, except for the
post-retrieval added information to the generative loss
in purple. Note that if the model is used like MDR
without a stopping condition, we keep one forward pass
per hop to generate the embedding, as all action tokens
are only prompt tokens (not output tokens). Only if
we want to use the framework end-to-end by control-
ling when to stop/conduct reranking do we have to do
one/two additional causal forward passes.

4.1 A Shared Dataset for a Controlled Setup 275

To critically evaluate how CLM and embedding 276

objectives affect each other, we start from a shared 277

dataset, where both objectives consume identical 278

tokens. Concretely, consider a multi-hop question 279

q and the sequence of previously retrieved para- 280

graphs [p1, p2, . . . , pn]. The embedding model 281

learns to represent [q, p1, . . . , pn] so that it can 282

retrieve the next relevant paragraph pn+1, while 283

the generative model predicts the next tokens on 284

the same sequence in a causal manner. This con- 285

trolled baseline ensures that any retrieval improve- 286

ment upon adding the generative loss cannot be at- 287

tributed to extraneous factors like domain shifts or 288

additional training data. Instead, it must arise from 289

the generative objective itself, addressing RQ3: 290

does integrating CLM with embedding training, 291

under controlled conditions, enhance retrieval? 292

Starting from this shared dataset, we then in- 293

crementally enrich the generative model’s input 294

with post-retrieval information while keeping the 295

embedding input fixed. This step-by-step strategy 296

ensures that each addition’s impact on retrieval 297

is transparent and attributable solely to the newly 298

introduced elements, addressing RQ4. 299
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1. Adding Final Answers: We append the final300

answer ans to the retrieval chain:301

[q, p1, p2, . . . , pn, ans].302

The embedding objective gets the exact same to-303

kens [q, p1, . . . , pn] as the generative objective,304

while the generative objective now additionally305

predicts the ans.306

2. Adding Hard Negatives: We further augment307

the generative training by introducing an irrelevant308

passage pir, marked as such:309

[q, p1, p2, . . . , pn−1, pir, Irrelevant].310

The model learns to label the irrelevant para-311

graph causally via next-token prediction (Zhang312

et al., 2024b). If retrieval benefits from this, it313

indicates that contrasting positive and negative evi-314

dence in a generative framework helps refine the315

embedding space. This incremental approach, start-316

ing from a pure shared dataset and progressively317

adding final answers and negatives, provides a pre-318

cise experimental lens. We directly measure how319

each augmentation in the generative domain influ-320

ences the embedding model’s retrieval capabilities.321

4.2 ReAct-Style Instruction Tuning for322

End-to-End Multi-Hop Retrieval323

To incorporate these different actions to represent324

the entire multi-hop retrieval as a coherent textual325

sequence, we adapt the ReAct framework (Yao326

et al., 2023). Each retrieval hop, document evalua-327

tion, and final answer production is expressed as a328

short instruction or “action” phrase (see Figure 3).329

All these actions are represented as textual330

strings and integrated into the same sequences used331

by both the embedding and generative objectives.332

Their exact formatting for all multi-hop datasets333

(see §3.2) is described in Algorithm 1 in Appendix334

D. Because these augmented sequences include335

both the retrieval chain (i.e., [q, p1, . . . ]) and the336

action strings, we maintain the shared data dataset337

principle for both embedding and generative train-338

ing. This ReAct adaptation allows us to combine339

everything, final answers, negative passages, and340

retrieval steps, into a single, end-to-end system.341

Crucially, this framework allows the model to:342

• Decide if a retrieved document is relevant or343

not. (Eval in Figure 3)344

• Stop the search early if it encounters an irrel-345

evant paragraph. (after (Eval: Irrelev.) in346

Figure 3)347

• Continue retrieving until all necessary infor- 348

mation is gathered (retrieve next in Figure 349

3) 350

• Finally, produce the answer. (Final Answer: 351

in Figure 3) 352

In other words, the ReAct-style instruction tun- 353

ing not only aligns with our controlled experimen- 354

tal design but also yields a system capable of au- 355

tonomously handling the retrieval pipeline end-to- 356

end. The model can determine how many steps 357

to take and when to stop while providing a real- 358

istic and comprehensive testbed for studying the 359

interplay of CLM and embedding objectives in 360

multi-hop retrieval. 361

5 Experimental Setup 362

We train GRITHopper in two different setups. First, 363

we explore our ablations by fine-tuning one dataset, 364

MuSiQue (Trivedi et al., 2022). MuSiQue offers 365

decomposition steps with which we can ensure 366

highly qualitative hard negatives and is the most 367

difficult multi-hop question answering dataset in 368

our dataset collection, according to Trivedi et al. 369

(2022). Furthermore, we train our core ablations on 370

a large collection of multi-hop datasets (described 371

in §3.2) on two seeds. We explore in Appendix C 372

how we adapt each dataset in detail and describe 373

the hard negative mining in Appendix B.1. 374

5.1 Training 375

GRITHopper-7B is trained on 8 × A100-80GB 376

GPUs with a contrastive batch size of 2048 using 377

GradCache (Luyu Gao, 2021) and a 256 batch size 378

for the generative loss, like GRITLM in a Fully 379

Sharded Data Parallel (FSDP) setup. We train all 380

models for 5 epochs and select the best checkpoint 381

via dense retrieval performance in the distractor 382

setting. 383

5.2 Baselines 384

Our baselines can be split into decomposition-free 385

approaches and decomposition-based approaches. 386

Starting with decomposition-free approaches, we 387

chose GRITLM as our first baseline with the 388

prompting formats we utilize for GRITHopper. 389

GRITLM has also been trained on multi-hop ques- 390

tion answering on HotpotQA and several Fever 391

datasets (Thorne et al., 2018) for single-step re- 392

trieval. Secondly, we train BeamRetriever (beam 393

size 1), the current state-of-the-art method for 394

multi-hop retrieval and MDR, on MuSiQue as well 395
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as our entire dataset collection (see §3.2). How-396

ever, MDR has only been trained on a fixed number397

of 2 hops. Therefore, we remove any additional398

hops after the second hop in our experiments. For399

MDR, we choose RoBerta-Large (Liu et al., 2019),400

and for BeamRetriever and Deberta-v3-Base (He401

et al., 2023), we find that these models perform402

best among Large and XL variations with the cor-403

responding architectures. For more details on how404

we explored different base models for these archi-405

tectures, see appendix A. Besides decomposition-406

free methods like GRITHopper, BeamRetriever,407

and MDR, we add an additional baseline using408

decompositions. For this, we employ a simple one-409

step-at-a-time decomposition (like (Guan et al.,410

2024) but with only one try for a fair comparison)411

method using Qwen 2.5 32B (and GPT4o on two412

datasets) for decomposing the multi-hop problem413

into a single sub-question with 4 few-shot samples.414

In the second step, we use GRITLM to embed the415

sub-query and retrieve candidates. If a supporting416

paragraph is retrieved within the top-k range, we417

continue by asking Qwen/GPT4o to extract the an-418

swer and use the previously solved sub-questions419

to decompose the next sub-query. We provide the420

prompt templates and GPT4o generation outputs421

in the appendix A.3.422

6 Experiments and Discussion423

In this section, we first investigate GRITHopper’s424

ablations in detail, as these represent the core base-425

lines for the first decoder-based multi-hop dense426

retrieval model. We then compare GRITHopper427

to existing methods in an open retrieval setting,428

including decomposition-free BERT-based models429

(MDR, BeamRetriever), general instruction-tuned430

retrieval models (GRITLM), and decomposition-431

based approaches with GPT-4o and Qwen. Subse-432

quently, we focus specifically on decomposition-433

based methods (RQ1) and analyze GRITHop-434

per’s out-of-distribution generalization capabilities435

(RQ2), highlighting its robustness over previous436

state-of-the-art approaches. We discuss inference437

compute in Appendix E and training time in Ap-438

pendix F.439

6.1 Evaluating Generative Objectives and440

Post-Retrieval Information (RQ3, RQ4)441

As GritHopper is the first decoder-based442

decomposition-free Multi-Hop Dense retriever,443

we extensively ablate our training objective to444

Model Average Hits@1

Dense Retrieval

GRITHopper (Answers & Reward) 82.32
GRITHopper (Answers) 82.08
GRITHopper (no post lm) 80.78
GRITHopper (Contrastive Only) 78.02

Cross Encoder

BeamRetriever Large (all datasets) 85.10
BeamRetriever (all datasets) 81.78
BeamRetriever (MuSiQue Only) 80.98
GRITHopper ReRank∗ 59.04

End-to-End Retrieval

GRITHopper end-to-end∗ 75.00
BeamRetriever end-to-end 38.21

Table 1: MuSiQue distractor-setting dense retrieval per-
formance. All GRITHopper models are trained only on
the MuSiQue dataset. ∗ Uses GRITHopper (Answers &
Reward). No post lm stands for causal modeling only
on the retrieval chain

Dataset Avg. Hits@1 for GRITHopper with:

Ans + Rew Ans No Post

In Distribution
ExFever 87.10 91.81 89.69
MuSiQue 76.16 75.95 75.22
Hover 93.34 94.29 94.36

Zero-Shot Benchmarks
MoreHopQA 96.14 95.80 94.68
MultiHopBench 51.74 54.03 51.13

Table 2: GRITHopper trained on all datasets in open
retrieval performance. Results are averaged over two
seeds. Ans includes the final answer in the generative
samples. Rew includes reward modeling to distinguish
negatives from positives, while No Post does not in-
clude post-retrieval language modeling.

motivate our auxiliary training signals, including 445

1. only contrastive learning (like MDR, just 446

GRITLM fine-tuned on additional multi-hop 447

datasets) 448

2. contrastive + causal language modeling with 449

no post-retrieval information (same data for 450

causal + contrastive) 451

3. contrastive + causal language modeling with 452

final answers 453

4. contrastive + causal language modeling with 454

final answers and causal negative 455

to address our research questions, RQ3 & RQ4. 456

We first conduct a series of controlled experi- 457

ments on the MuSiQue dataset under the distractor 458

setting (see Table 1) and then move to training 459

on all datasets in Table 2 on open retrieval aver- 460

aged across two seeds. This scenario allows us to 461
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isolate and compare the effects of different genera-462

tive strategies (with and without final answers) and463

reward modeling before deploying the chosen con-464

figurations in the more challenging open retrieval465

environment.466

On MuSiQue, our best-performing GRITHopper467

variant uses both final answers and reward mod-468

eling, achieving a Hits@1 score of 82.32. Even469

without reward modeling, adding the final answer470

results in a still-impressive Hits@1 score of 82.08.471

Compared to a purely contrastive approach (like472

MDR) without generative signals (78.02), these473

findings demonstrate that causal language mod-474

eling on the same dataset (80.78) improves per-475

formance (RQ3). Building on that, the inclusion476

of final answers (part of RQ4) substantially im-477

proves retrieval accuracy (82.08) and is essential478

for outperforming BeamRetriever in distribution479

on MuSiQue (81.78). The final answer during480

training provides a clearer retrieval target, guid-481

ing the model to select more relevant passages at482

each hop. However, when scaling these ablations483

to all datasets (Table 2), reward modeling, while484

effective in the distractor setting, led to overfitting485

in open retrieval. Specifically, the GRITHopper486

observing negatives causally during training (cross-487

encoder training) caused a 7.32% drop in Average488

Hits@1 when transitioning from the distractor set-489

ting to open retrieval on MuSiQue, compared to a490

milder 5.09% drop for its counterpart (only with491

Answers), averaged over two seeds. This is even492

more extreme with BeamRetriever, which excels493

under conditions closely matching its training dis-494

tribution (distractor setting in Table 1) but struggles495

to generalize on the same dataset in open retrieval496

(Table 3). Here, the DeBerta Large version, while497

achieving the strongest results under distractors498

(see Table 1), performs worse than the base variant499

in open retrieval; we explore this further in Ap-500

pendix A.1. These findings suggest that learning501

difficult negatives causally can improve discrim-502

ination on difficult distractors but hinder broader503

generalization in dense retrieval. By contrast, Grad-504

Cache’s large in-batch negatives provide a more505

robust discriminative learning signal while having506

a slight disadvantage of “hand-crafted” distractor507

discrimination. Thus, while both generative train-508

ing and final answers prove beneficial (answering509

RQ3 and partially RQ4 affirmatively), reward mod-510

eling offers only limited gains and at a considerable511

cost to generalization. Furthermore, we compare512

the end-to-end performance of the models to stop 513

after the correct amount of hops; BeamRetriever 514

can do so by comparing the scores from the cur- 515

rent and the previous hop; if it decreases, it stops 516

(see (Zhang et al., 2024a) Appendix C). However, 517

we find that these scores are biased to decrease 518

after the first hop, often leading to premature stop- 519

ping. GRITHopper seems to be more robust in this 520

scenario (see Table 1). However, we find a slight 521

misalignment in the causal and dense retrieval per- 522

formance, which we explore in Appendix B.2. 523

6.2 Comparison to Existing Methods on Open 524

Retrieval 525

Table 3 summarizes the performance of var- 526

ious models on both in-distribution and out- 527

of-distribution benchmarks across different hop 528

depths. We compare GRITHopper to GRITLM, 529

BeamRetriever, MDR, and Qwen 32B / GPT4o + 530

GRITLM with decompositions. 531

Across all evaluated tasks, GRITHopper consis- 532

tently outperforms all other techniques, including 533

the state-of-the-art model Beam-Retriever, while 534

being significantly more efficient, as we explore 535

in appendix E. For example, on the most diffi- 536

cult dataset, the out-of-distribution MultiHopRAG 537

benchmark, GRITHopper, achieves a significant 538

improvement in Hits@1 at deeper hops. GRITLM, 539

a previous generative-retrieval hybrid model, per- 540

forms well for the first hop but struggles with 541

deeper hops. BeamRetriever, despite demonstrat- 542

ing strong performance in in-distribution tasks, 543

exhibits a substantial performance drop when 544

tested on the out-of-distribution MultiHopRAG 545

benchmark, highlighting its tendency to overfit 546

on datasets it was trained on. Similarly, while 547

GRITLM is strong in certain scenarios, it cannot 548

match GRITHopper’s robustness across multiple 549

datasets and more complex multi-hop problems. In 550

contrast, GRITHopper maintains strong retrieval 551

quality even when encountering unseen data (RQ2). 552

MDR degrades in the scenario the most. 553

6.3 Decomposition-Based Approaches (RQ1) 554

We now turn our focus to decomposition-based 555

methods. The Qwen 32B + GRITLM decom- 556

position approach breaks a complex multi-hop 557

query into sub-questions. While this can simplify 558

the reasoning steps, it introduces a notable trade- 559

off in retrieval specificity. As shown in Table 3, 560

the decomposition-based approach demonstrates a 561
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Model Hits@1 Hits@5 Hits@10

1 2 3 4 Avg 1 2 3 4 Avg 1 2 3 4 Avg

MuSiQue
GRITHopper (ours) 94.25 76.13 55.45 32.10 76.42 99.59 96.32 85.92 57.04 93.18 99.79 98.59 91.07 69.63 95.85
GRITLM 91.15 57.51 22.32 5.43 60.51 99.50 91.31 65.49 35.56 86.18 99.96 96.61 83.26 51.85 92.61
MDR 81.75 45.18 - - 63.47 94.37 71.04 - - 82.71 96.73 78.82 - - 87.77
Beam Retriever 88.75 60.70 30.73 12.84 62.80 95.45 85.40 65.84 41.48 82.85 97.02 90.44 77.25 51.60 88.07
Qwen 2.5 32B + GRITLM decomposition 82.62 45.72 13.91 1.48 51.06 95.45 76.25 36.05 13.09 72.19 96.69 82.91 46.61 17.78 77.39
GPT4o + GRITLM decomposition 81.96 48.53 13.39 1.98 51.81 95.82 79.19 33.39 9.63 72.74 97.35 85.35 42.23 14.81 77.58

Explainable Fever
GRITHopper (ours) 96.88 92.20 85.38 - 93.02 99.79 99.29 98.72 - 99.40 99.94 99.53 99.13 - 99.63
GRITLM 91.13 54.88 17.28 - 63.83 99.47 82.89 41.89 - 82.99 99.79 88.47 51.98 - 87.12
MDR 92.93 77.16 - - 85.13 99.08 94.11 - - 96.62 99.44 95.97 - - 97.72
Qwen 32B + GRITLM decomposition 63.24 29.88 11.93 - 40.90 83.74 55.14 31.87 - 63.27 88.96 63.61 40.14 - 70.34

HoVer
GRITHopper (ours) 95.86 91.56 91.69 92.31 93.88 99.79 99.61 99.43 100.00 99.69 99.95 99.68 99.71 100.00 99.83
GRITLM 95.81 88.09 83.95 88.46 91.81 99.89 99.53 98.28 96.15 99.57 99.89 99.76 98.85 100.00 99.74
MDR 84.77 65.69 - - 77.10 96.60 89.51 - - 93.75 97.98 92.51 - - 95.78
Beam Retriever 98.04 88.96 85.96 76.92 93.42 99.47 97.56 97.71 100.00 98.61 99.73 97.79 97.71 100.00 98.84
Qwen 32B + GRITLM decomposition 75.38 61.44 50.43 46.15 67.69 82.23 74.84 68.19 69.23 78.09 84.24 78.15 72.21 73.08 80.78

Zero-Shot Multi-Hop RAG Benchmark
GRITHopper (ours) 76.98 55.92 27.89 18.59 55.87 98.63 89.22 60.97 51.76 84.80 99.78 94.90 71.43 64.32 90.17
GRITLM 78.23 27.23 4.85 2.51 40.19 98.49 75.21 33.76 16.33 71.98 99.87 91.04 59.86 36.93 84.75
MDR 19.56 2.22 - - 10.89 41.60 9.36 - - 25.48 50.55 15.12 - - 32.84
Beam Retriever 43.24 13.13 5.95 2.76 22.22 60.09 28.47 19.56 14.07 37.52 68.56 37.03 27.89 19.85 45.83
Qwen 32B + GRITLM decomposition 53.30 29.53 11.31 6.78 33.33 79.56 60.27 36.05 28.89 60.68 86.74 71.00 50.09 42.96 70.96
GPT4o + GRITLM decomposition 67.23 47.27 19.81 8.54 46.83 91.18 79.51 49.91 29.15 74.82 96.41 88.12 64.80 47.74 84.04

Zero-Shot MoreHopQA
GRITHopper (ours) 96.96 93.92 - - 95.44 99.91 99.19 - - 99.55 100.00 99.73 - - 99.87
GRITLM 98.75 95.53 - - 97.14 100.00 98.84 - - 99.42 100.00 99.73 - - 99.87
MDR 88.73 75.58 - - 82.16 98.30 90.79 - - 94.54 99.46 93.47 - - 96.47
Beam Retriever 97.85 93.02 - - 95.44 99.82 98.21 - - 99.02 100.00 98.39 - - 99.19
Qwen 32B + GRITLM decomposition 96.24 55.19 - - 75.72 99.55 65.38 - - 82.47 100.00 68.78 - - 84.39

Table 3: Open Retrieval comparison on different hop depths. We compare our best GRITHopper (with Answers but
no reward modeling) to BeamRetriever, GRITLM, MDR, and a decomposition-based approach.

larger gap between Hits@1 and Hits@5 compared562

to other methods. Specifically, the average gap563

from Hits@1 to Hits@5 for the decomposition ap-564

proach is 13.95, which is significantly higher than565

GRITHopper’s 7.44, BeamRetriever’s 6.57, and566

GRITLM’s 8.45.567

This substantial gap suggests that generated sub-568

queries often underspecify the necessary context,569

causing initial retrieval inaccuracies. While rel-570

evant passages appear among the top-k retrieved571

documents, the first-ranked results are more likely572

to be off-target. By contrast, GRITHopper’s end-to-573

end differentiability preserves the full complexity574

of the query, yielding more specific embeddings575

that ensure relevant passages appear at the top, re-576

ducing the need for multiple autoregressive steps.577

7 Conclusion578

We introduced GRITHopper-7B, a novel multi-579

hop dense retrieval model that achieves state-of-580

the-art performance across both in-domain and out-581

of-distribution datasets. By training on extensive582

multi-hop datasets in question-answering and fact-583

checking, GRITHopper-7B outperforms previous584

decomposition-based methods while maintaining585

the efficiency of dense encoders. Our study demon- 586

strated that decomposition-free approaches like 587

GRITHopper surpass decomposition-based meth- 588

ods in multi-hop retrieval tasks due to better query 589

specificity and reduced computational overhead. 590

GRITHopper generalizes exceptionally well on 591

out-of-distribution benchmarks, confirming its ro- 592

bustness across diverse datasets. We found that 593

integrating causal language modeling with embed- 594

ding training substantially enhances dense retrieval 595

performance compared to embedding-only train- 596

ing. Additionally, incorporating post-retrieval lan- 597

guage modeling by including final answers further 598

improves the model’s ability to retrieve relevant 599

passages, while causal negatives lead to stronger 600

distractor but worse open retrieval performance. 601

We have demonstrated how its generative training 602

enables GRITHopper for end-to-end retrieval, out- 603

performing previous state-of-the-art methods. We 604

release GRITHopper-7B to the community as a 605

resource for future research in natural language 606

processing tasks requiring complex reasoning and 607

retrieval capabilities. 608
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8 Limitations609

Despite its state-of-the-art performance,610

GRITHopper-7B has several limitations:611

• Scalability Challenges for Large Corpora:612

While GRITHopper efficiently handles open-613

domain multi-hop retrieval, the reliance on614

pre-computed dense embeddings limits its615

scalability for extremely large corpora. The616

computational cost of creating and maintain-617

ing dense representations for frequent updates618

remains for a 7B model significant.619

• Dependency on High-Quality Hard Nega-620

tives: GRITHopper relies on effective hard621

negative mining to train contrastive objectives.622

This dependency may limit its applicability623

in domains or datasets lacking high-quality624

distractor annotations or the ability to mine625

suitable negatives. This is something we espe-626

cially observe in reward learning, where there627

are substantial performance drops on datasets628

where we lack information on answers and629

sub-questions (like Fact-Checking) to deter-630

mine which makes a passage irrelevant or rel-631

evant.632

• Computational Overhead for Training:633

The integration of both embedding and gen-634

erative objectives requires substantial GPU635

resources (e.g. 8 × A100-80GB GPUs). This636

makes GRITHopper less accessible for re-637

search groups with limited computational re-638

sources.639

• Sensitivity to Dataset Characteristics:640

GRITHopper performs exceptionally well on641

multi-hop tasks with well-defined retrieval642

chains (e.g., MuSiQue, HoVer). However,643

its performance on tasks with noisier or less644

structured retrieval chains (e.g., conversa-645

tional QA) remains untested, highlighting po-646

tential brittleness to dataset variability.647

• Multi-Hop Dense Retrieval Model Since,648

in contrast to GRITLM, we do not train on649

(retrieval-independent) instruction datasets in650

parallel, we do not expect that the model651

will perform well on generation on other652

tasks. Thus, our model is intended only for653

decomposition-free multi-hop dense retrieval.654

• Absence of Directly Comparable Baselines 655

for Decoder-based Multi-Hop Dense Re- 656

trieval: 657

A central challenge in evaluating our ap- 658

proach arises from the lack of directly com- 659

parable baselines. Previous models either (a) 660

employed decoder-based architectures but fo- 661

cused solely on single-hop retrieval for max- 662

imum 2-hop problems using only the ques- 663

tion and no further context (e.g., GRITLM, 664

(Muennighoff et al., 2025, p. 48)), or (b) ad- 665

dressed multi-hop retrieval problems but ex- 666

clusively utilized BERT-based architectures 667

(e.g., MDR, BeamRetriever). As GRITHop- 668

per represents the first decoder-based model 669

explicitly designed for decomposition-free 670

multi-hop dense retrieval tasks, direct com- 671

parisons to prior work are inherently con- 672

strained. To address this, we (a) fine-tuned 673

GRITLM on multi-hop datasets to establish a 674

relevant decoder-based baseline and (b) from 675

there conducted comprehensive ablation stud- 676

ies to clearly quantify and isolate the effects 677

of each component within GRITHopper’s de- 678

sign. Furthermore, (c) we increased the size 679

of encoder models (e.g. DeBERTaXL) for pre- 680

vious decomposition-free multi-hop retrieval 681

models, which resulted in overfitting and di- 682

minished performance (see Appendix A.1). 683

• Limited Exploration of End-to-End Re- 684

trieval Dynamics: While GRITHopper en- 685

ables end-to-end retrieval with generative out- 686

puts, its ability to reliably optimize retrieval 687

dynamics is not yet at the optimum. For e.g., 688

the best stopping performance is achieved at 689

75%, but since we focus on selecting the best 690

dense retriever, the stopping performance is 691

at 71.22%. This choice ensures the best gen- 692

eralization in embedding performance, which 693

typically differs from the optimal generative 694

performance. Future work should explore 695

whether scaling the dataset further can help 696

close this gap between causal language mod- 697

eling and dense retrieval. 698

9 Ethics 699

The development and deployment of 700

GRITHopper-7B raise two key ethical con- 701

siderations. First, the model’s reliance on 702

large-scale datasets introduces the risk of propa- 703

gating biases present in the training data (Prakash 704
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and Lee, 2023; Schramowski et al., 2022),705

potentially leading to skewed retrieval outcomes706

or amplification of misinformation. Additionally,707

the open-domain nature of the retrieval task708

heightens the risk of retrieving sensitive or709

harmful content, which could pose challenges710

in privacy and content moderation. Second,711

GRITHopper’s decomposition-free approach712

reduces interpretability compared to methods that713

produce intermediate outputs, making it harder714

to explain and trust its decisions in high-stakes715

scenarios.716
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Generative verifiers: Reward modeling as next-token 915
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A Baselines 918

A.1 Beam Retriever 919

The Beam Retriever (Zhang et al., 2024a) em- 920

ploys a cross-encoder architecture and relies on 921
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beam search to determine the number of steps922

required for retrieving multi-hop evidence. Un-923

like methods that have a predetermined number924

of computations, the Beam Retriever dynamically925

expands or shrinks the retrieval process, which926

is why the authors train with a Batch Size of 1.927

Because large-scale parallelization on GPUs re-928

quires a uniform number of computations, this929

variability makes batching and distributed training930

for the model infeasible. Attempting to scale the931

Beam Retriever beyond DeBERTa-Base results in932

both performance degradation in open-retrieval and933

over-fitting on the distractor setting while facing934

dramatically increased training times. We tested935

ModerdBert Large (Warner et al., 2024), DeBerta936

Large, DeBerta XL and the DeBerta base variant937

of the original paper. As highlighted in Table 4, we938

find that larger models, while achieving substantial939

performance improvements in the distractor set-940

ting, drop in performance in open retrieval on the941

same dataset. Showcasing the overfitting tendency942

to only train on distractors.943

Model MuSiQue
Distractor Open Retrieval

DeBERTa Base 81.78 62.80
DeBERTa Large 85.10 61.90
DeBERTa XL 72.36 58.24
ModernBert Large 74.53 60.06

Table 4: BeamRetriever Performance on MuSiQue Dis-
tractor vs. MuSiQue Open Retrieval

A.2 MDR944

Multi-Hop Dense Retrieval (MDR) (Xiong et al.,945

2021) is natively designed for exactly two-hop re-946

trieval. Efforts to extend MDR to more than two947

hops by adapting the loss function, as suggested948

by Ma et al. (2024), led to instabilities in our ex-949

periments, including scenarios where the model’s950

embeddings collapse. Since MDR’s loss is com-951

puted at the sample level, adapting it for varying952

hop lengths becomes non-trivial. These complex-953

ities, combined with the need to maintain large954

batch sizes for good generalization, hindered scal-955

ing to larger models or additional hops.956

We train MDR on 8 × A100-80GB GPUs and957

find that batch size must decrease as model size958

grows. For instance, we can use a batch size of959

16× 8 for base models, 8× 8 for roberta/deberta960

large ones, and only 2 × 8 for the largest vari-961

ant (DeBerta XL). This reduction in batch size962

likely impacts the model’s generalization capabil- 963

ities. Table 5 in the main paper shows that even 964

scaling MDR to RoBERTa-Large yields only mi- 965

nor improvements, and attempts to go beyond this 966

configuration or handle more than two hops fail 967

due to the aforementioned instabilities. To remain 968

fair to the original authors, we report MDR re- 969

sults that remain as close as possible to their origi- 970

nal setup. Bringing MDR up to today’s standards 971

would likely involve adopting modern embedding 972

objectives with techniques like gradient caching 973

and instruction-tuned LLM backbones approaches 974

we have integrated in our ablations with GRITHop- 975

per, where combining generative and embedding 976

training yields superior performance compared to 977

contrastive-only baselines (like MDR). 978

A.3 Decompostion based approach 979

As discussed in Section 5.2, our decomposition- 980

based baseline uses a step-by-step query decompo- 981

sition approach. Each complex multi-hop question 982

is decomposed into simpler sub-questions, and at 983

each step we retrieve supporting paragraphs and 984

extract the relevant answer. 985

We employ four prompt templates for decompo- 986

sition: 987

1. First-Hop Sub-Question Generation: Gen- 988

erates the initial sub-question from the origi- 989

nal multi-hop question. 990

2. Second-Hop (Next) Sub-Question Genera- 991

tion: Generates the next sub-question given 992

the original question and the previously an- 993

swered sub-questions. 994

3. Third-Hop (Next) Sub-Question Genera- 995

tion: Similar to second-hop but for the third 996

hop. 997

4. Fourth-Hop (Next) Sub-Question Genera- 998

tion: Similar to above, for the fourth hop. 999

Finally, we have an Answer Extraction 1000

Prompt, used after retrieving paragraphs, to ex- 1001

tract the answer snippet. 1002

Note on Evaluation Fairness: We evaluate re- 1003

trieval performance at each hop by checking if the 1004

correct evidence appears within the top-k retrieved 1005

paragraphs. This evaluation is independent of the 1006

sub-questions order. Thus, regardless of how a 1007

model decomposes the problem, the evaluation re- 1008

mains fair and consistent across all methods. 1009

Transparency of GPT4o experiments We pro- 1010

vide the code for our GPT4o experiments and 1011
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Model Hits@1 Hits@5 Hits@10

1 2 3 4 Avg 1 2 3 4 Avg 1 2 3 4 Avg

Comparison to other models on MuSiQue
GRITHopper (ours) 93.09 74.93 55.19 32.10 75.48 99.75 95.86 86.44 58.02 93.22 99.88 97.77 93.05 71.36 96.03
GRITLM 91.15 57.51 22.32 5.43 60.51 99.50 91.31 65.49 35.56 86.18 99.96 96.61 83.26 51.85 92.61
Beam Retriever 88.75 60.70 30.73 12.84 62.80 95.45 85.40 65.84 41.48 82.85 97.02 90.44 77.25 51.60 88.07
Qwen 32B + GRITLM decomposition 82.62 45.72 13.91 1.48 51.06 95.45 76.25 36.05 13.09 72.19 96.69 82.91 46.61 17.78 77.39

MDR on MuSiQue
DeBerta Base 62.43 20.60 - - 41.52 79.98 40.67 - - 60.32 85.52 49.28 - - 67.40
Deberta Large 74.35 32.06 - - 53.21 85.97 52.25 - - 69.11 89.78 59.95 - - 74.87
XL DeBerta 87.05 48.37 - - 67.71 96.07 75.42 - - 85.75 97.60 82.75 - - 90.17
Roberta Large 86.06 50.19 - - 68.12 95.32 76.71 - - 86.02 96.40 82.42 - - 89.41

MDR on all Datasets
Roberta Large 81.75 45.18 - - 63.47 94.37 71.04 - - 82.71 96.73 78.82 - - 87.77

Table 5: MDR ablations on different backbone architecturs

Prompt B.1: Decomposition of next Sub-
Question

You are given a multi-hop question and the answers
to previous sub-questions. Given this information,
break down the multi-hop question into the next
smaller sub-question that can be answered by re-
trieving information via a search engine.
(Few-shot Examples: Multi-hop question +
previous answers)
Input:
Multi-hop Question: {multi_hop_question}
Previous Sub-Questions and Answers: {history}

Output:
Next Sub-Question: {generated_sub_question}

Prompt B.2: Answer Extraction

You are given a question and a paragraph that con-
tains the answer. Extract the relevant part of the
paragraph that answers the sub-question. Ensure that
the answer is as concise and accurate as possible.
(Few-shot Examples: Question + Retrieved
Paragraph)
Input:
Question: {sub_question}
Retrieved Paragraph: {retrieved_paragraph}

Output:
Answer: {extracted_answer}

Figure 4: Decomposition and Answer Extraction Prompt Templates. Few-shot examples include similar multi-hop
problems with previously answered sub-questions and answers, demonstrating a consistent step-by-step structure.
We provide a custom decomposition instruction for the first hop and provide custom 4 few-shot samples for each
additional hop.

GPT4o generations as part of our anonymous1012

GitHub Repository.1013

Evaluation. For evaluation, we follow a stan-1014

dard hits@k metric at each hop. We compare all1015

models on their ability to retrieve the correct ev-1016

idence at hop 1, then at hop 2, and so forth. To1017

ensure a fair comparison, we do not rely on the1018

self-correctness of decomposition-based methods1019

as they inherently involve autoregressive genera-1020

tion, which allows multiple retries. In contrast, our1021

decomposition-free approach computes a single1022

dense embedding per step, making it significantly1023

more efficient. While self-correction could im-1024

prove performance, it introduces additional ineffi-1025

ciencies, contradicting the goal of comparing meth-1026

ods under the most efficient setting. Importantly,1027

decomposition-based methods already require sep-1028

arate models for generation and embedding, further 1029

increasing computational cost. 1030

B Training of GRITHopper 1031

In this section, we describe how GRITHopper was 1032

trained and how we derived the used training setup. 1033

B.1 Hard Negative Mining and Curriculum 1034

Learning 1035

de Souza P. Moreira et al. (2024) have shown 1036

that mining difficult hard negatives is essential for 1037

achieving good dense retrieval performance. We 1038

employ the strongest GRITHopper model from 1039

our preliminary experiments, which has only been 1040

trained with distractors as hard negatives, to search 1041

via dense search the most difficult examples across 1042

the entire dataset for our final training run. For 1043
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datasets like MuSiQue that provide entire decom-1044

positions (sub-questions with sub-answers for each1045

hop), we filter distractors that contain the sub-1046

answer. For other datasets where we are not able1047

to filter this way, we filter negatives that have a1048

cosine similarity higher than 0.95 to the positive1049

paragraph. We select 10 hard negatives for the con-1050

trastive loss for each positive sample and add the1051

most difficult one to our generative loss. We find1052

that this is essential for making the causal reward1053

learning work. Initially, we employed a curriculum1054

learning approach: after each epoch, we used the1055

current model’s predictions to mine new negatives1056

for the subsequent epoch. However, longer training1057

(beyond two or more epochs) led to overfitting and1058

hindered out-of-distribution performance. We also1059

tried taking the model checkpoints from one epoch1060

to mine negatives, and then re-initializing a fresh1061

model with those mined negatives. This approach1062

did prove beneficial and improved 4% on MusiQue1063

in preliminary experiments.1064

B.2 Causal vs Dense Retrieval Performance1065

We find that when training on all datasets, the1066

peek performance on causal performance is only1067

reached after 3 times longer training than for op-1068

timal embedding performance, leading to overfit-1069

ting. To not sacrifice embedding generalization,1070

GritHopper on all datasets has, therefore, a slightly1071

weaker end-to-end performance at 71.22 than its1072

MuSiQue Only version at 75. We observe this1073

also in the re-ranking performance which is sig-1074

nificantly lower at 59.04, and although extended1075

training improves re-ranking to up to 76.78, it still1076

does not surpass the embedding performance while1077

leading to overfitting on the dense retrieval task.1078

C Detailed Dataset adaptations1079

We first discuss the evaluation dataset specifics for1080

evaluation and then our Training Dataset construc-1081

tion.1082

C.1 Detailed dataset statistics for Evaluation1083

We show the evaluation dataset statistics in Table 7.1084

We use all paragraphs used for solving the multi-1085

hop problems as negatives for our open retrieval1086

setting. We do not add even more examples as1087

this would make a comparison to the current state-1088

of-the-art model BeamRetriever impossible. This1089

gives us a candidate pool between 2000 samples for1090

MoreHopQA and up to 20000 samples in Explain-1091

able Fever in our experiments. This already can 1092

lead to BeamRetriever requiring up to 400 hours 1093

to solve one dataset as we discuss in Appendix E. 1094

C.1.1 Training Dataset 1095

We use the entire dataset of MuSiQue, HotpotQA 1096

as well as Hover. In Hover and ExFever, however, 1097

we find that not all hops are multi-hop if we remove 1098

duplicated evidence in the same sample, resulting 1099

in some 1-hop problems. The 2WikiMultiHopQA 1100

consist of only 2 hop and 4 hop problems, as we 1101

have a large amount from 2 hop problems already 1102

from HotpotQA, we only take 4 hop problems from 1103

there to not further unbalance the length of hops. 1104

While the post-retrieval information for MultiHop 1105

Question answering is clear, for fact-checking, we 1106

adapt whether the claim is supportive or unsupport- 1107

ive as the final answer. From Hover, we only use 1108

supporting paragraphs as it has no refuted label, 1109

making incomplete/irrelevant as positives unsuit- 1110

able for contrastive learning.

Dataset Total Samples Samples Per Hop
Hop 1 Hop 2 Hop 3 Hop 4

MuSiQue 19,938 0 14,376 4,387 1,175
HoVer 10,280 3,762 5,579 883 56
HotpotQA 90,447 0 90,447 0 0
ExFever 28,774 1,272 17,444 10,058 0
2WikiMultiHopQA 34,942 0 0 0 34,631
Total 184,070 5,034 127,846 15,328 35,862

Table 6: Training dataset statistics, including the to-
tal number of samples and the distribution of samples
across different hop depths for each dataset. The final
row shows the aggregate totals, providing an overview
of the dataset scale when training across all datasets.

1111

C.1.2 Open Evaluation statistics 1112

Dataset total Samples Per Hop
1 2 3 4

MoreHopQA 1,118 0 1,118 0 0
ExFever 8,038 166 4,671 3,201 0
MuSiQue 2,417 0 1,252 760 405
MultiHopBench 2,556 0 1,079 778 398
Hover 1,885 617 919 323 26

Table 7: Dataset statistics for the open retrieval evalua-
tion setup. The table includes the number of multi-hop
problems and the distribution of samples across differ-
ent hop depths for each dataset.
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In this section, we compare the computational1113

complexity of a cross-encoder-based multi-hop1114

retriever (e.g., Beam Retriever) and a dense bi-1115

encoder-based multi-hop retriever (e.g., GRITHop-1116

per and MDR) under the scenario where both must1117

consider the entire corpus of P passages at each1118

retrieval hop. This corresponds directly to the set-1119

ting in our experiments, where the Beam Retriever1120

processes all P passages at every hop without a1121

first-stage filter, resulting in prohibitively long run-1122

times.1123

D Algorithm Dataset formatting 1124

Algorithm 1 Dataset Construction for Multi-Hop
Retrieval. For each multi-hop problem, the algo-
rithm iterates through each hop (decomposition
step). At each hop, it creates a contrastive sample
consisting of the current retrieval prompt, a posi-
tive paragraph (supporting evidence), and a mined
hard negative paragraph. Additionally, it generates
a causal (generative) negative sample indicating
the irrelevance of the mined negative paragraph.
After processing all hops, the final generative posi-
tive sample includes the complete retrieval chain
followed by the final answer. One random negative
generative sample from the set of causal negatives
is also selected to balance the dataset.
Input: Multi-hop dataset D = {(q,P, a)}, where
q is the question, P is the set of paragraphs,
Ps ⊆ P are supporting paragraphs, and a is the
final answer.
Output: Generative samples Sg, Contrastive sam-
ples Sr.

1: Initialize Sg ← ∅, Sr ← ∅
2: Set instructions InstQ, InstD, and actions
3: for (q,P, a) ∈ D do
4: P ← InstQ + q
5: ▷ Initialize retrieval prompt
6: Sneg ← ∅
7: for i = 1 to |Qd| do
8: ▷ Iterate through decomposition steps Qd

9: P ← Qd[i]
10: Dneg ← mine_negative(P,P)
11: Dpos ← Ps[i]
12: Sr ← Sr ∪ (P,Dpos, Dneg)
13: Pneg ← P + Document: Dneg

14: Pneg ← Pneg + Eval(neg)
15: Sneg ← Sneg ∪ Pneg

16: ▷ next continue with positive chain
17: P ← P + Document: Dpos

18: P ← P + Eval(pos)
19: if i ̸= |Qd| then ▷ Final step
20: P ← P + Retr
21: end if
22: end for
23: Pfinal ← P + Answer: a
24: Sg ← Sg ∪ Pfinal

25: Sg ← Sg ∪ random_select(Sneg)
26: ▷ to balance positive and negatives
27: end for
28: return Sg,Sr
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E Complexity Analysis1125

Notation:1126

• Q: Number of queries.1127

• H: Average number of hops per query.1128

• P : Total number of passages in the corpus.1129

• Lq: Length (in tokens) of the query plus pre-1130

viously retrieved context.1131

• Lp: Length (in tokens) of a passage.1132

• Cmodel(L): Compute cost of a single forward1133

pass on an input of length L.1134

• Csearch(P ): Compute cost of searching P pre-1135

encoded embeddings (sub-linear in P using1136

ANN indexes).1137

E.1 Cross-Encoder (Beam Retriever)1138

The cross-encoder must re-encode each passage1139

together with the query at every hop. Without any1140

pre-retrieval pruning, it compares against all P1141

passages each time:1142

O(Q ·H · P · Cmodel(Lq + Lp)).1143

Since every passage is processed through the cross-1144

encoder at every hop, runtime grows linearly with1145

P and H . For large P , this becomes extremely1146

time-consuming (e.g., hundreds of hours).1147

E.2 Dense Bi-Encoder (GRITHopper)1148

Dense retrieval encodes all P passages once of-1149

fline:1150

O(P · Cmodel(Lp)).1151

At inference time, each hop only requires encoding1152

the query and performing a vector search over P :1153

O(Q ·H · [Cmodel(Lq) + Csearch(P )]).1154

Because the passages are already encoded, the cost1155

per hop is dominated by a single query encoding1156

and efficient similarity search. This typically takes1157

orders of magnitude less time than re-encoding P1158

passages at every hop.1159

E.3 Discussion1160

Under identical conditions, considering all P pas-1161

sages at each hop, the Beam Retriever’s complexity1162

grows as O(Q ·H · P ) with a high per-pass token1163

cost, resulting in very long runtimes (e.g., over 4001164

hours in our ExFever open-retrieval experiments).1165

In contrast, GRITHopper amortizes passage encod-1166

ing and relies on fast search structures, completing1167

the same task in 8 minutes and 20 seconds. This1168

substantial practical difference in runtime reflects1169

the asymptotic advantage of dense retrieval for 1170

large-scale, multi-hop scenarios. 1171

F Training Time Comparison 1172

See Table 8. 1173
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Model Trained Epochs Best Perf. Epoch # GPUs Training Time (h) Total GPU Hours

GritHopper (7B) 5 1-2 8 181 1448

BeamRetriever DeBERTa XL 10 (default: 20) -∗ 1 452 452
BeamRetriever DeBERTa Large 20 14 1 289 289
BeamRetriever DeBERTa Base 20 7 1 112 112

Table 8: Training time comparison of different retrieval models trained on all datasets. The table shows the base
model, the number of trained epochs, the best performance epoch, the number of GPUs used, the total training time
in hours, and the total GPU hours (number of GPUs × training time). -∗ performance plateau was not reached.
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