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ABSTRACT

Inferring trajectories from longitudinal spatially-resolved omics data is fundamen-
tal to understanding the dynamics of structural and functional tissue changes in
development, regeneration and repair, disease progression, and response to treat-
ment. We propose ContextFlow, a novel context-aware flow matching framework
that incorporates prior knowledge to guide the inference of structural tissue dynam-
ics from spatially resolved omics data. Specifically, ContextFlow integrates local
tissue organization and ligand-receptor communication patterns into a transition
plausibility matrix that regularizes the optimal transport objective. By embedding
these contextual constraints, ContextFlow generates trajectories that are not only
statistically consistent but also biologically meaningful, making it a generalizable
framework for modeling spatiotemporal dynamics from longitudinal, spatially
resolved omics data. Evaluated on three datasets, ContextFlow consistently out-
performs state-of-the-art flow matching methods across multiple quantitative and
qualitative metrics of inference accuracy and biological coherence.

1 INTRODUCTION

Flow matching (Lipman et al., 2023) is an emerging paradigm that provides an efficient approach for
learning the complex latent dynamics, or normalizing flows (Papamakarios et al., 2021), of a system
of variables, while enabling parametric flexibility to model data distributions. Inferring the underlying
dynamics from sparse and noisy observations is a central challenge in many domains (Gontis et al.,
2010; Brunton et al., 2016; Pandarinath et al., 2018; Li et al., 2025), where continuous trajectories
are rarely captured; instead, cross-sectional snapshots, collected at discrete time points, are typically
available. In single-cell RNA sequencing (scRNA-seq), this challenge becomes especially critical
as the destructive nature of profiling technologies yields only unpaired population-level snapshots
over time. Uncovering temporal dynamics from such snapshot data is essential for understanding
developmental processes, disease progression, treatment and perturbation responses (Wagner & Klein,
2020). Traditional approaches often rely on heuristics or computationally intensive likelihood-based
generative models, which struggle with scalability and flexibility in high-dimensional single-cell data.
Flow matching overcomes these challenges by directly learning continuous latent dynamics that are
constrained to match observed population-level distributions at sampled time points.

The state and function of cells within a tissue are affected by interactions with neighboring cells,
extracellular matrix components, and local signaling gradients (Rao et al., 2021). Recent advances in
spatial omics technologies, particularly spatial transcriptomics (ST), allow gene expression profiling
without tissue dissociation, thereby preserving spatial context and providing a complementary view
of cellular organization. The dynamics of complex cellular processes is affected by the tissue
microenvironment, where cells engage in reciprocal communication with their neighbors (Dimitrov
et al., 2022; Tanevski et al., 2025). A growing body of work highlights the critical role of spatial
cell–cell communication patterns in shaping cellular phenotypes (Armingol et al., 2021). In particular,
location-specific communication circuits between distinct cell types dynamically interact to reprogram
cellular states and influence tissue-level behavior (Mayer et al., 2023; Aguadé-Gorgorió et al., 2024;
Zheng et al., 2025). These insights, made possible by the spatiotemporal resolution of transcriptomics
data, pave the way for understanding the mechanisms by which cellular interactions drive tissue
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Figure 1: ContextFlow integrates local tissue organization and ligand-receptor communications to
learn biologically meaningful trajectories from spatial omics data. Prior knowledge acts as a soft
filter that discourages implausible transitions while preserving flexibility in trajectory inference.

organization and function in organogenesis (Chen et al., 2022), regeneration (Ben-Moshe et al., 2021;
Wei et al., 2022), disease progression (Kukanja et al., 2024), and treatment response (Liu et al., 2024).

Optimal transport (OT) has become a foundational framework to align spatially resolved samples and
infer putative developmental or temporal couplings (Zeira et al., 2022; Liu et al., 2023). As a result,
state-of-the-art flow matching frameworks such as minibatch-OT flow matching (MOTFM) (Tong
et al., 2024) use OT-derived couplings to define conditional paths to train velocity fields, thus over-
coming the lack of generative capabilities in optimal transport. The OT formulation adopted in
MOTFM, however, does not account for the contextual richness present in spatial transcriptomics
and can result in trajectories that are statistically optimal yet biologically implausible (see Figure 3a
in Appendix G.1 for an illustration). While recent studies have extended widely-used OT objec-
tives (Halmos et al., 2025; Ceccarelli et al., 2025) for spatial transcriptomics, they primarily focus on
pairwise alignment of populations across conditions or modalities and do not explicitly incorporate
the cell–cell communication patterns that drive cellular state transitions.

To address the above limitations, we introduce a novel flow matching-based framework, ContextFlow,
that incorporates spatial priors for modeling temporal tissue dynamics (Figure 1). By encoding local
tissue organization and ligand-receptor-derived spatial communication patterns into prior-regularized
optimal transport formulations, ContextFlow fully exploits the contextual richness of spatial omics
data and embeds both structural and functional aspects of tissue organization into its objective, thereby
generating more biologically informed trajectories. In summary, our contributions are as follows:

• We leverage local tissue organization and local ligand–receptor communication patterns to extract
biologically meaningful features from spatial omics data, and encode them into a biologically-
informed transition plausibility matrix to constrain temporal dynamics (Section 3.2).

• We design two novel integration schemes—cost-based and entropy-based—that incorporate
the prior knowledge into an OT-coupled flow matching framework, both amenable to efficient
Sinkhorn optimization and scalable on modern hardware (Section 3.3).

• Comprehensive experiments on regeneration and developmental datasets demonstrate that Con-
textFlow consistently outperforms baseline methods under both interpolation and extrapolation
settings across metrics that capture biological plausibility and statistical fidelity (Section 4).

2 PRELIMINARIES

2.1 FLOW MATCHING BASICS

Flow matching (Lipman et al., 2023) is a simulation-free and sample-efficient generative framework
for training continuous normalizing flows (Chen et al., 2018). Given a pair of source and target
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data distributions over Rd with densities q0 = q(x0) and q1 = q(x1), the problem task is to learn a
time-varying velocity vector field uθ : [0, 1]× Rd → Rd, whose continuous evolution is captured by
a function in the form of a neural-net-based model with weights θ, that can transform q0 to q1 through
integration via an ordinary differential equation (ODE). To be more specific, flow matching (FM)
seeks to optimize θ by minimizing a simple regression loss between uθ and a target time-varying
velocity vector field ut : [0, 1]× Rd → Rd as follows:

min
θ

Et∼U(0,1),x∼pt(x)
∥∥uθ(t,x)− ut(x)∥∥2. (1)

Here, U(0, 1) is the uniform distribution over [0, 1], and pt : [0, 1] × Rd → R+ denotes a time-
varying probability path induced by ut such that (i) pt is a probability density function for any
t ∈ [0, 1], (ii) pt satisfies the two boundary conditions: pt=0 = q0 and pt=1 = q1, and (iii) the
connection between pt and ut can be characterized by the transport equation (Villani et al., 2008):
∂pt(x)
∂t = −∇ · (ut(x)pt(x)), where ∇ is the divergence operator. From a dynamical system’s view,

ut defines an ODE system dx = ut(x)dt. The corresponding solution to the ODE, usually termed
as the probability flow, can then transport any x0 ∼ q0 to a point x1 ∼ q1 along ut from t = 0
to t = 1. While the flow matching objective in Equation 1 is simple and intuitive, it is generally
intractable in practice: the closed-form velocity vector field ut is unknown for arbitrary source and
target distributions (q0 and q1), and multiple valid probability paths pt may exist between them.

2.2 CONDITIONAL FLOW MATCHING

The central idea of conditional flow matching is to express the target probability path pt via a mixture
of more manageable conditional probability paths (Lipman et al., 2023). By marginalizing over some
conditioning variable z, both pt and ut can be constructed using their conditional counterparts:

pt(x) =

∫
pt(x|z)q(z)dz, ut(x) =

∫
ut(x|z)

pt(x|z)q(z)
pt(x)

dz, (2)

where q(z) denotes the distribution of the conditioning variable z, and pt(x|z) is selected such that
the boundary conditions are satisfied:

∫
pt=0(x|z)q(z) = q0 and

∫
pt=1(x|z)q(z) = q1. Theorem

1 of Lipman et al. (2023) proves that pt and ut defined by Equation 2 satisfy the transport equation,
suggesting that pt is a valid probability path generated by ut. To avoid the intractable integrals,
Lipman et al. (2023) proposed the following optimization of conditional flow matching (CFM), and
proved its equivalence to the original flow matching objective in terms of gradient computation:

min
θ

Et∼U(0,1),z∼q(z),x∼pt(x|z)
∥∥uθ(t,x)− ut(x|z)∥∥2. (3)

By choosing an appropriate conditional velocity vector field ut(x|z), we can train the neural network
using Equation 3 without requiring a closed-form solution of the conditional probability path pt(x|z),
thus avoiding the intractable integration operation. Therefore, the remaining task is to define the
conditional probability path and velocity vector field properly such that we can sample from pt(x|z)
and compute ut(x|z) efficiently for solving the optimization problem in Equation 3.

Gaussian Conditional Probability Paths. A specific choice proposed in Lipman et al. (2023) is
Gaussian conditional probability paths and their corresponding conditional velocity vector fields:

pt(x|z) = N (x | µt(z), σt(z)2I), ut(x|z) =
σ′
t(z)

σt(z)
(z − µt(z)) + µ′

t(z), (4)

where µt : [0, 1]× Rd → Rd denotes the time-varying mean of the Gaussian distribution, µ′
t is its

derivative with respect to time, σt : [0, 1]× Rd → R+ stands for the time-varying scalar standard
deviation, and σ′

t stand for the corresponding derivative. In particular, Lipman et al. (2023) set
q(z) = q(x1), µt(z) = tx1, and σt(z) = 1− (1−σ)t. Then, we can see that ut(x|z) transports the
standard Gaussian distribution pt=0(x|z) = N (x; 0, I) to a Gaussian distribution with mean x1 and
standard deviation σ, namely pt=1(x|z) = N (x;x1, σ

2) for any target point x1. By letting σ → 0,
the marginal boundary conditions can easily be verified. Tong et al. (2024) further generalized the
application scope to arbitrary source distributions, by setting

q(z) = q(x0)q(x1), µt(z) = (1− t)x0 + tx1, σt(z) = σ. (5)

This choice satisfies the boundary conditions pt=0(x) = q0 and pt=1(x) = q1 when σ → 0. Based
on Equation 4, the conditional velocity vector field has a simple analytical form ut(x|z) = x1 − x0.
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2.3 FLOW MATCHING WITH OPTIMAL TRANSPORT COUPLINGS

The conditionals construction specified by Equation 5 corresponds to the simplest choice of indepen-
dent coupling, where z = (x0,x1) with source x0 and target x1 are independently sampled from
q(z) = q(x0)q(x1). The use of couplings for constructing the sampling paths in the CFM framework
naturally connects to the optimal transport theory (Villani et al., 2008). Choosing OT-based couplings
has several advantages over independent coupling, including smaller training variance and more
efficient sampling (Pooladian et al., 2023; Tong et al., 2024).

Since the classical Kantorovich’s formulation (refer Appendix E) has computational complexity that
is cubic with respect to the sample size, a popular alternative is to add an extra regularization term,
resulting in entropic optimal transport (EOT), to approximately solve the optimal transport problem
while reducing the computational costs from cubic to quadratic:

π∗
eot(ϵ) := argminπ∈Π(q0,q1)

∫
Rd×Rd

∥x0 − x1∥22 dπ(x0,x1) + ϵH(π | q0 ⊗ q1), (6)

where ϵ > 0 is the regularization parameter, and H(π | q0 ⊗ q1) denotes the relative entropy (or
Kullback-Leibler divergence) with respect to π and the product measure q0 ⊗ q1. The optimization
problem in Equation 6 can be viewed as a special case of the static Schrödinger bridge prob-
lem (Bernton et al., 2022), which can be efficiently solved in a mini-batch fashion via the Sinkhorn
algorithm (Cuturi, 2013). Theoretically, one can prove that π∗

eot(ϵ) recovers the Kantorovich’s OT
coupling π∗

ot when ϵ → 0 (see Equation 16 in Appendix E for its formal definition) and π∗
eot(ϵ)

corresponds to the independent coupling q0 ⊗ q1 when ϵ→∞.

3 REGULARIZING THE FLOW WITH SPATIAL PRIORS

3.1 PROBLEM FORMULATION

We focus on the task of inferring spatiotemporal trajectories, i.e., inferring the dynamic evolution
of the cell states across time from spatially resolved gene expression data. Let 0 = t1 < t2 <
. . . < tm+1 = 1 be a sequence of normalized time points. For simplicity, we use [m] to denote
the set {1, 2, . . . ,m}. For any i ∈ [m+ 1], let qi be the data distribution at time ti over Rd. Given
{Xti}i∈[m+1], where Xti = [xi(k)]k∈[ni] is the expression matrix at time ti consisting of ni snapshot
data sampled from qi, the objective is to learn a neural velocity vector field uθ : [0, 1]× Rd → Rd to
faithfully characterize the temporal evolution of spatially resolved tissues over time, such that the
induced probability path pt can describe the state of each cell at time t ∈ [0, 1]. This task can be
viewed as a continuous temporal generalization of the pairwise generative modeling task described in
Section 2.1.

A promising candidate solution is conditional flow matching with entropic OT couplings (EOT-
CFM), by targeting linear conditional velocity vector fields for each pair of consecutive time points.
Specifically, for any t ∈ [0, 1] satisfying t ∈ [ti, ti+1], define

p(x|z) = N
(
ti+1 − t
ti+1 − ti

xi +
t− ti

ti+1 − ti
xi+1, σ

2I

)
, ut(x|z) =

xi+1 − xi
ti+1 − ti

, (7)

where the conditioning variable is selected as z = (xi,xi+1), and p(z) is the joint probability
measure with marginals qi and qi+1 corresponding to the EOT coupling π∗

eot(ϵ) defined in Equation
6. It can be easily verified that the above construction satisfies the boundary condition at each time
point ti. To train uθ, we can randomly sample a mini-batch of data at each time, run the Sinkhorn
algorithm (Cuturi, 2013) to obtain the entropic OT couplings for each consecutive pair, and iteratively
update the model weights θ using stochastic gradient descent with CFM regression loss (Equation 3).

Despite their enhanced ability to model system dynamics, state-of-the-art OT-CFM frameworks lack
provisions to fully exploit the contextual richness and integrate the biological prior knowledge that
can be inferred from other associated data modalities. Existing approaches can generate statistically
optimal trajectories by targeting probability paths induced by (entropic) OT couplings along the
temporal dimension. However, they may overlook important functional or structural prior information,
leading to biologically implausible trajectories (see Figure 3a in Appendix G.1 for an illustration).
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3.2 INTRODUCING SPATIAL PRIORS & TRANSITIONAL PLAUSIBILITY

To faithfully model the spatial context and cellular organization of spatial omics data, we introduce
two types of spatial priors and explain how they relate to the transitional plausibility between locations
and cell states at different time points.

Spatial Smoothness. Tissues are well-organized systems. Within a microenvironment, neighboring
cells respond to the same set of external mechanical stimuli and intercellular communication, which
affects their states in a similar manner and results in local smoothness of cell-type-specific expression.
Due to tissue heterogeneity, we cannot assume a common reference coordinate frame across tissue
samples or even slices at ti and tj at a larger scale. However, the same heterogeneity allows us to
consider the spatial coherence and neighborhood consistency (Greenwald et al., 2024; Ceccarelli
et al., 2025) as a proxy for relative cell localization, which cannot change significantly across short
time intervals. Therefore the aggregate expression within the microenvironment of each cell can be
used to quantify the transitional plausibility in consecutive time points.

Specifically, let ci = (xi, si) and cj = (xj , sj) be cells at time points ti and tj , respectively, where
xi,xj ∈ Rd denote their gene expression profiles, and si, sj ∈ R2 denote their spatial coordinates in
the relative tissue reference frame. Let TP(ci, cj) denote the transitional plausibility, i.e., the likeli-
hood that ci evolves to cj between ti and tj . Spatial smoothness suggests that TP(ci, cj) is inversely
related to the difference between the average expression profiles of their local neighborhoods:

SS(ci, cj) =

∥∥∥∥ 1

|Nr(ci)|
∑

c∈Nr(ci)

x(c)− 1

|Nr(cj)|
∑

c∈Nr(cj)

x(c)

∥∥∥∥2
2

, (8)

where Nr(ci) = {c : ∥s(c) − s(ci)∥2 ≤ r} denotes the set of neighboring cells of ci in the same
tissue slice, |Nr(ci)| is the cardinality of Nr(ci), and x(c) is the gene expression profile of cell c.

Cell-Cell Communication Patterns. Cell–cell communication (CCC) has a critical role in the
regulation of numerous biological processes, including development, apoptosis, and the maintenance
of homeostasis in health and disease (Armingol et al., 2024). A major type of CCC is ligand–receptor
(LR) signaling, in which ligands expressed by one cell bind to cognate receptors on another, initiating
intracellular cascades that ultimately affect the state of the cell (i.e., its expression profile) (Armingol
et al., 2021). There are numerous databases of prior knowledge of ligand-receptor binding and
computational methods that use these databases to systematically link gene expression with the
activity of ligand-receptor-mediated communication.

Specifically, we can represent each cell ci by a vector fLR ∈ Rp, where each entry corresponds
to one of p possible ligand–receptor pairs and encodes the extent of ci’s participation in commu-
nication through that pair. The TP(ci, cj) between cells in different tissue slices is higher when
they exhibit similar ligand-receptor communication patterns fLR (see Figure 7 for an illustration).
We define LR(ci, cj), the dissimilarity between the ligand–receptor communication patterns in the
microenvironments of cells ci and cj , as:

LR(ci, cj) = ∥ fLR(Nr(ci))− fLR(Nr(cj))∥22 , (9)

3.3 CONTEXTFLOW: CFM WITH CONTEXT-AWARE OT COUPLINGS

Our proposed framework, graphically depicted in Figure 1, consists of the following three main steps:

Transitional Plausibility Matrix. First, we create a sequence of transitional plausibility matrices
(TPMs) to encode the biological priors for each pair of consecutive time points. Specifically, let
Mi,i+1 ∈ Rni×ni+1 be the TPM with respect to the set of cells measured at time ti and at time ti+1,
with size ni and ni+1 respectively, where the (k, l)-th entry of Mi,i+1 indicates how plausibly the
k-th cell measured at ti will evolve to the l-th cell measured at ti+1, defined as follows:[

Mi,i+1

]
kl

= λ · SS (ci(k), ci+1(l)) + (1− λ) · LR (ci(k), ci+1(l)) , (10)

where λ ∈ [0, 1] is a trade-off hyperparameter that balances the contribution of the spatial smoothness
prior (SS) and the ligand–receptor communication prior (LR).

Prior-Regularized OT Couplings. The transitional plausibility matrices capture our spatially
informed prior on cell-cell transitions between consecutive time points, which can naturally be

5
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incorporated in the EOT formulation (Equation 6) to promote couplings that maintain the structural
and functional properties of the tissue organization. We propose two techniques for prior integration:

Prior-Aware Cost Matrix (PACM). Consider the empirical counterpart of Equation 6 with respect to
time ti and time ti+1. Our first approach incorporates the transitional plausibility matrix directly into
the transport cost:

min
Π∈Rni×ni+1

∑
k,l

Πkl

[
α · ∥xi(k)− xi+1(l)∥22 + (1− α) ·

[
Mi,i+1

]
kl

]
︸ ︷︷ ︸

Prior-Aware Cost Function

−ϵ
∑
k,l

Πkl log Πkl, (11)

where the transport plan Π satisfies the boundary conditions:
∑
lΠkl = 1/ni for any k ∈ [ni], and∑

k Πkl = 1/ni+1 for any l ∈ [ni+1], and α ∈ [0, 1] controls the trade-off between the original
Euclidean cost and the prior-aware cost derived from the transitional plausibility. If [Mi,i+1]kl is
high, Equation 11 will impose a higher transport cost between the k-cell at time i to the j-cell at time
i+ 1. This aligns with our assumption that such transitions are implausible.

Prior-Aware Entropy Regularization (PAER). While the prior-aware cost matrix approach penalizes
couplings in accordance with our spatial priors, it defines a different OT problem characterized by a
modified cost function. Consequently, the standard interpretation of OT as minimizing the transport
energy between two transcriptomic distributions no longer holds. Since the scales of the pairwise
distances often differ, normalization of the cost terms is required to enable meaningful comparison.
This normalization, however, may result in couplings that deviate from their original counterparts
(Proposition 1 and Corollary 1 in the Appendix C). Besides, selecting an appropriate α in Equation 11
introduces an additional layer of tuning, increasing computational overhead. Therefore, we propose a
second approach to integrate the biological priors without introducing additional hyperparameters:

min
Π∈Rni×ni+1

∑
k,l

Πkl∥xi(k)− xi+1(l)∥22 − ϵ
∑
k,l

Πkl log(Πkl/[M̂i,i+1]kl)︸ ︷︷ ︸
Prior-Aware Entropy Regularization

, (12)

where [M̂i,i+1]kl = exp(−[Mi,i+1]kl)/
∑
l exp(−[Mi,i+1]kl) denotes the prior joint probability ma-

trix induced by Mi,i+1. Intuitively, the lower the cost [Mi, i+ 1]kl, the larger the entry [M̂i, i+ 1]kl,
reflecting a higher plausibility of the transition from cell k at ti to cell l at ti+1. The entropy regular-
ization term in Equation 12 thus biases the learned transport plan toward the prior M̂i,i+1 rather than
a uniform baseline, providing a soft mechanism for incorporating biological prior knowledge.

ContextFlow. Finally, we apply the Sinkhorn algorithm (Cuturi, 2013) to solve the optimization
problem in Equation 11 or Equation 12 to obtain the spatial context-aware EOT couplings, and train
the neural velocity vector field uθ based on stochastic gradient descent by minimizing the multi-time
generalization of Equation 3 with respect to conditionals pt(x|z) and ut(x|z) defined according
to Equation 7. The pseudocode for the proposed method, named Conditional Flow Matching with
Context-Aware OT Couplings (ContextFlow), is detailed in Algorithm 1 in Appendix D.

In particular, to apply the Sinkhorn algorithm to solve our prior-aware entropy regularization problem
in Equation 12, we make use of the following theorem, a generalized result of Peyré et al. (2019).
Theorem 1. Let C ∈ Rn0×n1 be a cost matrix and M ∈ Rn0×n1 be a prior transition probability
matrix. Suppose Π∗

CTF−H is the solution to the following prior-aware optimal transport problem:

Π∗
CTF−H = argminΠ∈Rn0×n1

∑
k,l

ΠklCkl + ϵ
∑
k,l

Πkl log(Πkl/Mkl),

where ϵ > 0 is the regularization parameter. Then, we can show that Π∗
CTF−H can be computed by

Sinkhorn and takes the form diag(u) ·M⊙ exp(−C/ϵ) · diag(v), where ⊙ denotes element-wise
multiplication, and u ∈ Rn0 ,v ∈ Rn1 are vectors satisfying the marginalization constraints.

Theorem 1, proven in Appendix B, suggests a new Gibbs kernel K = M ⊙ exp(−C/ϵ), which
combines both the transport cost and the prior joint probability matrices. When ϵ→ 0, Π∗

CTF → Π∗
ot,

thereby recovering the standard OT couplings in Equation 16. When ϵ→∞, the optimal coupling
Π∗

CTF → diag(u) ·M · diag(v), which corresponds to a plan that aligns with the prior defined by
M rather than the independent couplings obtained with Entropic-OT (Section 2.3). This has the same
effect as constraining our transport plan through the proposed prior and, by extension, the flow. By
varying the parameter ϵ, we can thus efficiently optimize for a desirable coupling via the Sinkhorn
algorithm.
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Table 1: Interpolation at the middle holdout time point for the Brain Regeneration dataset.

Sampling Method λ α Weighted W2 W2 MMD Energy

Next Step

CFM – – 2.618± 0.142 2.579± 0.197 0.043± 0.003 12.505± 1.271
MOTFM – – 2.567± 0.088 2.476± 0.161 0.040± 0.003 11.269± 1.388

CTF-C
1 0.8 2.423± 0.164 2.293± 0.103 0.037± 0.001 9.874± 0.659
0 0.2 2.396± 0.028 2.100± 0.102 0.033± 0.003 8.577± 0.976
0.5 0.8 2.442± 0.173 2.353± 0.241 0.035± 0.004 9.008± 2.094

CTF-H
0 – 2.528± 0.143 2.534± 0.180 0.040± 0.004 11.192± 1.304
1 – 2.316± 0.141 1.969± 0.221 0.030± 0.004 6.359± 1.336
0.5 – 2.519± 0.167 2.412± 0.158 0.039± 0.004 10.304± 1.808

IVP

CFM – – 4.216± 0.463 4.266± 0.308 0.170± 0.029 32.413± 5.122
MOTFM – – 4.198± 0.319 4.452± 0.243 0.173± 0.017 33.149± 3.321

CTF-C
1 0.8 3.603± 0.300 3.816± 0.310 0.127± 0.018 24.271± 3.992
0 0.2 3.465± 0.232 3.641± 0.320 0.119± 0.025 23.055± 5.939
0.5 0.8 4.015± 0.351 3.974± 0.442 0.140± 0.038 27.592± 6.669

CTF-H
0 – 3.925± 0.267 4.375± 0.297 0.164± 0.013 32.034± 3.270
1 – 3.905± 0.395 4.188± 0.685 0.074± 0.014 18.728± 2.689
0.5 – 3.917± 0.343 4.159± 0.455 0.147± 0.022 29.613± 4.822

4 EXPERIMENTS

Datasets. We evaluate ContextFlow on three longitudinal spatial transcriptomics datasets: Axolotl
Brain Regeneration (Wei et al., 2022), Mouse Embryo Organogenesis (Chen et al., 2022), and Liver
Regeneration (Ben-Moshe et al., 2021). For all the datasets, the gene expression values are log-
normalized, and we extract the top 50 principal components (PCs) as feature vectors. The strength of
ligand–receptor interactions in the microenvironment was inferred using spatially informed bivariate
statistics implemented in LIANA+ (Dimitrov et al., 2024), where we applied the cosine similarity
metric to gene expression profiles. Interaction evidence was aggregated using the consensus of
multiple curated ligand–receptor resources, ensuring robustness of the inferred signals.

Baselines & Metrics. We benchmark ContextFlow using its two prior integration strategies—cost-
regularized (CTF-C) and entropy-regularized (CTF-H)—against several baselines. As a non-spatial
baseline, we include conditional flow matching (CFM), which uses only transcriptomic data with
random couplings. We further compare against minibatch-OT flow matching (MOTFM), which
leverages OT-derived couplings but does not incorporate spatial priors. For evaluation, we employed
2-Wasserstein distance (W2), a commonly used OT-based metric, and metrics such as MMD and
Energy Distance for statistical fidelity. Furthermore, to assess the biological plausibility of our
predicted dynamics, we evaluate them using a cell-type-weighted Wasserstein distance (Weighted
W2), where the weights correspond to the relative frequency of each cell type in the dataset. Exact
metric definitions are present in the Appendix F. All reported metrics are averaged across 10 runs.

Sampling. A trained velocity field can be evaluated through the samples it generates. We consider
two variants. Initial value problem sampling (IVP) integrates the learned gradient starting from
the first observed batch of cells and evolves them toward a later time point. IVP provides the most
comprehensive evaluation of flow quality, as errors can accumulate across steps. In contrast, next-step
sampling (Next Step) integrates the gradient only from the most recently observed batch of cells, thus
limiting error propagation but providing a less stringent test of long-term trajectory fidelity.

4.1 AXOLOTL BRAIN REGENERATION

We first evaluate ContextFlow on longitudinal Stereo-seq spatial transcriptomic data coming from a
post-traumatic brain regeneration study of the Salamander (axolotl telencephalon) species (Wei et al.,
2022). The dataset contains samples from five developmental stages, with replicates collected from
different individual organisms at each stage. For our CTF-C method, we present the best ablated α in
the main text, with full ablation results across different α values provided in Appendix H.

For interpolation, we hold out the middle time point during training and evaluate it using samples
generated by the trained velocity field uθ via both IVP and next-step sampling. Table 1 presents
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Table 2: Extrapolation on the last holdout time point for the Brain Regeneration dataset.

Sampling Method λ α Weighted W2 W2 MMD Energy

Next Step

CFM – – 7.124± 0.443 7.133± 0.533 0.275± 0.011 76.947± 5.661
MOTFM – – 7.619± 0.611 7.769± 0.763 0.272± 0.007 85.352± 8.140

CTF-C
1 0.5 6.968± 0.608 6.969± 0.628 0.265± 0.009 77.025± 6.056
0 0.5 7.244± 0.804 7.146± 0.775 0.265± 0.003 80.424± 10.376
0.5 0.5 7.188± 0.391 6.931± 0.260 0.267± 0.005 78.992± 6.195

CTF-H
0 – 6.914± 0.471 7.198± 0.726 0.266± 0.009 76.149± 8.436
1 – 7.505± 0.667 7.338± 0.601 0.263± 0.006 83.425± 8.793
0.5 – 7.243± 0.479 7.157± 0.641 0.270± 0.007 79.826± 8.067

IVP

CFM – – 6.633± 1.312 7.116± 1.084 0.143± 0.037 60.573± 21.756
MOTFM – – 6.503± 0.720 6.352± 0.592 0.162± 0.038 56.452± 15.932

CTF-C
1 0.5 6.260± 0.616 7.681± 4.003 0.157± 0.039 52.478± 12.010
0 0.5 6.614± 0.710 6.854± 0.740 0.201± 0.023 70.370± 9.099
0.5 0.5 6.696± 0.427 6.481± 0.387 0.195± 0.024 66.212± 3.542

CTF-H
0 – 6.243± 0.760 6.220± 0.751 0.195± 0.020 61.316± 10.288
1 – 5.277± 0.936 6.021± 1.192 0.099± 0.007 27.777± 8.621
0.5 – 6.254± 0.819 5.973± 0.757 0.156± 0.025 54.330± 12.089

Table 3: Interpolation (time 5) and extrapolation (time 8) results on the Organogenesis dataset.

Method λ α
Next Step (Interpolation) IVP (Interpolation) Next Step (Extrapolation)

Weighted W2 W2 Weighted W2 W2 Weighted W2 W2

MOTFM – – 1.892± 0.028 1.873± 0.086 3.251± 0.676 3.418± 0.727 1.626± 0.066 1.682± 0.096

CTF-C

1 0.5 1.865± 0.030 1.852± 0.093 3.137± 0.407 4.093± 1.187 1.685± 0.096 1.714± 0.160
0 0.8 1.882± 0.022 1.869± 0.049 2.938± 0.476 3.904± 1.120 1.773± 0.053 1.880± 0.180
0.5 0.8 1.888± 0.033 1.839± 0.134 3.200± 0.403 3.555± 0.637 1.768± 0.058 1.858± 0.120
1 0.2 1.880± 0.020 1.922± 0.078 3.260± 0.880 5.264± 3.060 1.683± 0.058 1.803± 0.117
0 0.2 1.900± 0.035 1.912± 0.057 2.953± 0.425 3.816± 0.970 1.715± 0.123 1.860± 0.267

CTF-H
0 – 1.884± 0.027 1.862± 0.123 3.244± 0.713 3.946± 1.671 1.505± 0.057 1.397± 0.088
1 – 1.898± 0.029 1.866± 0.097 5.200± 0.799 6.306± 1.037 1.890± 0.046 1.877± 0.103
0.5 – 1.871± 0.030 1.919± 0.067 2.814± 0.414 3.233± 0.567 1.636± 0.060 1.684± 0.099

the results. Across multiple evaluation metrics, ContextFlow with entropy regularization (CTF-H)
produces trajectories that most closely match the ground truth. CTF-H consistently achieves the best
or comparable performance relative to CTF-C, despite the latter being explicitly tuned across multiple
α values. This highlights the computational efficiency and superior generalization ability of CTF-H,
as it avoids the need for additional hyperparameter tuning while maintaining strong performance.

For extrapolation, we evaluate generation on the last holdout time point, representing the most
challenging test of generalizability for the velocity fields uθ, as it lies outside the training time horizon.
As shown in Table 2, CTF-H again consistently achieves the best overall performance, particularly
under IVP-Sampling, where errors are most likely to accumulate. This result further reinforces the
robustness and reliability of CTF-H across the entire sampling horizon. Finally, Figure 3 (Appendix
G.1) demonstrates that incorporating spatial priors enables ContextFlow to produce substantially
fewer biologically implausible couplings compared to its context-free counterpart.

4.2 MOUSE EMBRYO ORGANOGENESIS

We further evaluated ContextFlow on the larger Mouse Organogenesis Spatiotemporal Atlas (MOSTA)
Stereo-seq dataset (Chen et al., 2022) spanning measurements from 8 developmental time points.
For the interpolation study of this dataset, we held out time point 5 during training and evaluated its
generation during testing. Table 3 shows the evaluation results. We observe that ContextFlow, with
both integration strategies, outperforms MOTFM across all metrics, showcasing the effectiveness
of the contextual information. While CTF-C shows stronger performance under next-step sam-
pling—albeit only after fine-tuning the trade-off parameter α—CTF-H consistently outperforms it in
the more challenging IVP-Sampling setting. On the extrapolation task, integrating to the final time
point, CTF-H again achieves the strongest performance, underscoring that the entropy-regularized
formulation not only removes the need for additional parameter tuning but also offers more robust
generalization to unseen temporal horizons.
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(a) Brain Regeneration (b) Organogenesis
Figure 2: KL-Divergence between predicted and ground-truth cell type distributions.

Table 4: Interpolation results on the middle holdout time point for the Liver Regeneration dataset.
MOTFM CTF-C CTF-H

(λ, α) – (1, 0.5) (0, 0.5) (0.5, 0.8) (0, –) (1, –) (0.5, –)

W2 34.303± 1.448 33.506± 1.148 32.741± 1.864 33.045± 1.644 32.682± 1.472 33.481± 1.001 33.414± 0.995

Figure 2 reports the KL-Divergence between normalized histograms of predicted and ground-truth cell
types from ContextFlow and MOTFM. In both cases, CTF exhibits lower divergence on average across
time points, indicating that the trajectories generated by our model better preserve the biological
composition of cell types over time. The cell type progression is further visualized in Figure 9
(Appendix H.6). We show that ContextFlow predicts temporal cell type trajectories that evolve
smoothly and consistently across consecutive developmental stages. Early progenitor populations,
such as neural crest and mesenchyme, progressively diminish as development advances, while
terminal fates, including muscle, cartilage primordium, and liver, emerge at later stages. Major
lineages such as brain, heart, and connective tissue remain continuous throughout, demonstrating that
ContextFlow captures biologically coherent and temporally consistent developmental dynamics.

4.3 LIVER REGENERATION

Finally, we evaluate ContextFlow on a Visium spatial transcriptomics dataset profiling the temporal
dynamics of mouse liver regeneration following acetaminophen-induced injury (Ben-Moshe et al.,
2021), collected across three distinct regeneration stages. Unlike the earlier datasets resolved at
single-cell resolution, Visium data is captured at the level of 55 micron diameter spots, capturing
the joint expression of multiple cells. Since direct cell-type information is unavailable, we restrict
evaluation to the 2-Wasserstein distance. Moreover, since evaluation is performed on the middle of the
three time points, IVP and next-step predictions coincide. Table 4 presents the results. Consistent with
the previous findings, CTF-H achieved the lowest reconstruction error, indicating that incorporating
contextual information improves trajectory estimation even in aggregated spot-level measurements.

5 CONCLUSION

We introduced ContextFlow, a contextually aware flow matching framework that leverages spatial
priors and biologically motivated constraints to learn more plausible trajectories from snapshot
spatial transcriptomic data, addressing a central challenge of existing methods. The entropic variant
of ContextFlow is theoretically grounded, which always yields OT couplings constrained by prior
knowledge, promoting stability and consistency with the imposed contextual constraints. Across
three diverse datasets, we showed that ContextFlow consistently improves over state-of-the-art
baselines even in challenging Initial Value Problem sampling settings, underscoring the importance
of our contextually informed priors. In addition, we demonstrated that our framework reduces the
number of biologically implausible couplings and results in coherent and temporally consistent
developmental trajectories while maintaining strong quantitative performance across Wasserstein,
MMD, and Energy metrics. These results highlight the value of embedding biological context into
generative flow models. Future works can adapt our methods to reconstruct tissues and learn spatial
latent dynamics by formulating the flow in space (rather than time), or leverage multi-marginal
OT formulations for optimizing temporal flows. Looking forward, ContextFlow offers a principled
foundation for modeling perturbations and disease progression, bridging generative power with
biological interpretability.
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A RELATED WORK

A.1 FLOW MATCHING

Normalizing flows provide a parametric framework for characterizing transformations of a random
variable into desired distributions (Papamakarios et al., 2021). These transformations can be realized
through either finite (Rezende & Mohamed, 2015) or continuous compositions (Chen et al., 2018). The
loss functions used in such formulations typically require computing Jacobians or integrating the flows
at each forward pass, making them computationally expensive. Flow matching (FM) (Lipman et al.,
2023; Albergo & Vanden-Eijnden, 2022; Liu et al., 2022) addresses this limitation by reducing the
training of the velocity field to a regression problem, thereby making normalizing flows substantially
more scalable. To ensure valid conditional paths at intermediate time points, samples are coupled
either randomly or via optimal transport (Pooladian et al., 2023; Tong et al., 2024). Owing to this
scalability, FM has been rapidly adopted across scientific domains, including biology and the life
sciences (Li et al., 2025). In transcriptomics, for example, Klein et al. (2024) employed an FM
backbone to approximate OT maps for drug response modeling and cross-modal translation tasks.
Entropic OT formulations have also been applied to infer cellular trajectories (Tong et al., 2024;
Rohbeck et al., 2025), generate imaging-based cell morphology changes (Zhang et al., 2025), and
simulate spatial transcriptomics data from histology images (Huang et al., 2025).

Despite these advances, existing work does not address how to meaningfully incorporate biologi-
cal prior knowledge to constrain the velocity field, limiting the biological plausibility of inferred
trajectories.

A.2 OPTIMAL TRANSPORT

Omics studies frequently generate uncoupled measurements across conditions, modalities, or time
points, which must be integrated into a unified representation to provide a more comprehensive
view of the underlying biology. Optimal transport (OT) has recently gained popularity for this task,
as it provides a geometry-based approach to couple probability distributions (Bunne et al., 2024;
Klein et al., 2025). In spatial transcriptomics (ST), several OT formulations have been introduced
depending on context. For instance, Zeira et al. (2022) and Liu et al. (2023) proposed PASTE and
PASTE2 to align ST data from adjacent tissue slices, while DeST-OT (Halmos et al., 2025) integrates
spatio-temporal slices by modeling cell growth and differentiation. Rahimi et al. (2024) developed
DOT, a multi-objective OT framework for mapping features across scRNA-seq and spatially resolved
assays, and Ceccarelli et al. (2025) introduced TOAST, a spatially regularized OT framework for slice
alignment and annotation transfer.

While these methods are primarily designed to align biological data across space, time, or modality,
they do not address the problem of trajectory inference toward biologically plausible solutions,
leveraging biological priors to constrain or bias the transport plan.

B PROOFS OF MAIN THEORETICAL RESULTS

Proposition 1. Let C ∈ Rn0×n1 be a cost matrix and M ∈ Rn0×n1 a prior transition matrix with
positive entries. Consider the entropy-regularized OT formulation:

Π∗ = argminΠ≥0

∑
k,l

ΠklCkl + ϵ
∑
k,l

Πkl log(Πkl) .

Let Π̃∗ be the EOT-coupling where the cost is scaled by a normalization constant c or C̃ij =
Cij

c . Let
the regularization parameter ϵ > 0 be the same in both cases. Then, for indices (i, j) and (k, l),

Π̃∗
ij

Π̃∗
kl

≤ γ
(
Π∗
ij

Π∗
kl

) 1
c

,

where γ depends on Π∗
ij , c and the OT marginal constraints a, b.

Proof. For the original optimal transport (OT) formulation, we note:

Π∗
ij = uiKijvj , Kij = e−Cij/ϵ,

13
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with the constraints Π∗1 = a and Π∗⊤1 = b.

Let
Π

∗1/c
ij = u

1/c
i K

1/c
ij v

1/c
j ,

where:
K̃ij = K

1/c
ij = exp (−Cij/(cϵ))

is the kernel for the scaled/normalized OT formulation. Let Π̃∗
ij be the coupling for the scaled version,

then:
Π̃∗
ij = ũiK̃ij ṽj .

Thus, there exist scaling factors αi, βj ∈ R such that:

ũi = αiu
1
c
i ,

ṽj = βjv
1
c
j .

This implies:
Π̃∗
ij = (αiu

1/c
i )K̃ij(βjv

1/c
j ),

=⇒ Π̃∗ = diag(αu1/c)K̃ diag(βv1/c), (g1)

=⇒ Π̃∗ = diag(α)Π1/c diag(β).

Subject to the constraints: ∑
i

αiβjΠ
∗1/c
ij = ai,

∑
i

αiβjΠ
∗1/c
ij = bj .

For any pair (i, j)&(k, l), we can express:

Π̃∗
ij

Π̃∗
kl

=
αi
αk

βj
βl

(
Π∗
ij

Π∗
kl

)1/c

.

Taking logarithms on both sides, we have:

log

(
Π̃∗
ij

Π̃∗
kl

)
= log(αi)− log(αk) + log(βj)− log(βl) +

1

c
log

(
Π∗
ij

Π∗
kl

)
.

Let log(α) = ϕ and log(β) = ψ, then:

log

(
Π̃∗
ij

Π̃∗
kl

)
= (ϕi − ϕk) + (ψj − ψl) +

1

c
log

(
Π∗
ij

Π∗
kl

)
.

This implies: ∣∣∣∣∣log
(
Π̃∗
ij

Π̃∗
kl

)
− 1

c
log

(
Π∗
ij

Π∗
kl

)∣∣∣∣∣ ≤ |ϕi|+ |ϕk|+ |ψj |+ |ψl|.
From Proposition 3 B, we have:

max
i
ϕi ≤ E, max

i
ψi ≤ E.

Thus: ∣∣∣∣∣log
(
Π̃∗
ij

Π̃∗
kl

)
− 1

c
log

(
Π∗
ij

Π∗
kl

)∣∣∣∣∣ ≤ 4E.

14
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Therefore:

−4E +
1

c
log

(
Π∗
ij

Π∗
kl

)
≤ log

(
Π̃∗
ij

Π̃∗
kl

)
≤ 4E +

1

c
log

(
Π∗
ij

Π∗
kl

)
.

This implies:
Π̃∗
ij

Π̃∗
kl

≤ exp(4E)

(
Π∗
ij

Π∗
kl

)1/c

.

Let γ = exp(4E), then:
Π̃∗
ij

Π̃∗
kl

≤ γ
(
Π∗
ij

Π∗
kl

)1/c

.

Corollary 1. Let C ∈ Rn0×n1 be a cost matrix and M ∈ Rn0×n1 a prior transition matrix with
positive entries. Consider the entropy-regularized OT formulation:

Π∗ = argminΠ≥0

∑
k,l

ΠklCkl + ϵ
∑
k,l

Πkl log(Πkl) .

Let Π̃∗ be the EOT-coupling in the case when cost is scaled by a normalization constant c or
C̃ij =

Cij

c . Let the regularization parameter ϵ > 0 be the same in both cases. Then:

H(Π̃ij) ≥ mH(Πij)− s,

where m and s are constants that depend on Π∗, the marginalization constants a, b and the normal-
ization constant c.

Proof. From equation (g1) in Proposition 1 above, we know that:

Π̃∗
ij = (Π∗

ij)
1/c · exp(ϕi, ψj)

and from Proposition 2, we have that,

Π̃∗
ij ≤ (Π∗

ij)
1/c · e2E

⇒ log(Π̃∗
ij) ≤

1

c
log(Π∗

ij) + 2E

⇒ −Π̃∗
ij log(Π̃

∗
ij) ≥ −

1

c
(Π∗

ij)
1/c−1 ·Π∗

ij log(Π
∗
ij) · e2E − 2E · e2E · (Π∗

ij)
1/c

For c≫ 1, 1
c → 0:

⇒ −Π̃∗
ij log(Π̃

∗
ij) ≥ −

1

cΠ∗
ij

·Π∗
ij log(Π

∗
ij) · e2E − 2E · e2E · (Π∗

ij)
1/c

⇒ −Π̃∗
ij log(Π̃

∗
ij) ≥ −

1

cΠ∗
min

·Π∗
ij log(Π

∗
ij) · e2E − 2E · e2E · (Π∗

ij)
1/c

Summing for all (i, j) we get,

H(Π̃∗) ≥ mH(Π∗)− s,

where m = e2E

cΠ∗
min

and s = 2E · e2E .
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Proposition 2. Let C ∈ Rn0×n1 be a cost matrix and M ∈ Rn0×n1 a prior transition matrix with
positive entries. Consider the entropy-regularized OT formulation:

Π∗ = argminΠ≥0

∑
k,l

ΠklCkl + ϵ
∑
k,l

Πkl log(Πkl) .

Let Π̃∗ be the EOT-coupling in the case when cost is scaled by a normalization constant c or
C̃ij =

Cij

c . Let the regularization parameter ϵ > 0 be the same in both cases. Consider the scaling
factors α, β such that: ũi = αiu

1/c
i , ṽj = βjv

1/c
j where u, v are the Sinkhorn algorithm converged

vectors for the original setting and ũ, ṽ are for the cost-scaled version. Then, we have

max{∥ϕ∥∞ , ∥ψ∥∞} ≤ ∥M
−1∥∞ ·

∥∥∥∥(∆a

∆b

)∥∥∥∥
∞
,

where ϕ = log(α) and ψ = log(β). We also have that,

max
i
|αi − 1|,max

i
|βi − 1| ≤ ∥M−1∥∞ max(∥∆a∥∞, ∥∆b∥∞),

where M,∆a,∆b depend on Π∗, marginalization constants a, b and normalization constant c.

Proof. Let Xij = Π
∗1/c
ij and X = Π∗1/c. Consider the exponentiated versions of α and β:

ϕ = log(α) ∈ Rn, ψ = log(β) ∈ Rm.

From the marginal constraints, we have:∑
j

Xije
ϕi+ψj = ai,

∑
i

Xije
ϕi+ψj = bj .

Applying a first-order Taylor expansion gives:∑
j

Xij(1 + ϕi + ψj) = ai =⇒
∑
j

Xij(ϕi + ψj) = ai −
∑
j

Xij ,

∑
i

Xij(1 + ϕi + ψj) = bj =⇒
∑
i

Xij(ϕi + ψj) = bj −
∑
i

Xij .

Define:
∆ai = ai −

∑
j

Xij , ∆bj = bj −
∑
i

Xij .

Thus, we have: ∑
j

Xij(ϕi + ψj) = ∆ai,
∑
i

Xij(ϕi + ψj) = ∆bj .

This implies:

ϕi

∑
j

Xij

+
∑
j

Xijψj = ∆ai,

∑
i

Xijϕi + ψj

(∑
i

Xij

)
= ∆bj .

Let:
Dr = diag(X1) ∈ Rn×n, Dc = diag(XT1) ∈ Rm×m.

Then we can express the system as:(
Dr X
XT Dc

)(
ϕ
ψ

)
=

(
∆a
∆b

)
.
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Let:

M =

(
Dr X
XT Dc

)
.

Thus: (
ϕ
ψ

)
=M−1

(
∆a

∆b

)
.

This implies: ∥∥∥∥(ϕψ
)∥∥∥∥ ≤ ∥M−1∥ ·

∥∥∥∥(∆a

∆b

)∥∥∥∥ .
Since α = exp(ϕ) and β = exp(ψ), by assumption:

|αi − 1| ≈ | exp(ϕi)− 1| ≈ ϕi,

|βj − 1| ≈ | exp(ψj)− 1| ≈ ψj .

Therefore:
max
i
|αi − 1|,max

j
|βj − 1| ≤ ∥M−1∥∞ ·max(∥∆a∥∞, ∥∆b∥∞).

Theorem 1. Let C ∈ Rn0×n1 be a general cost matrix and M ∈ Rn0×n1 be a prior transition
probability matrix. Suppose Π∗

CTF−H is the solution to the following prior-aware optimal transport
problem:

Π∗
CTF−H = argmin

Π∈Rn0×n1

∑
k,l

ΠklCkl + ϵ
∑
k,l

Πkl log(Πkl/Mkl),

where ϵ > 0 is the regularization parameter. Then, we can show that Π∗
CTF−H can be computed by

the Sinkhorn algorithm and takes the form diag(u) ·M⊙ exp(−C/ϵ) · diag(v), where ⊙ stands for
the elementwise multiplication, and u ∈ Rn0 ,v ∈ Rn1 are vectors satisfying the marginalization
constraints.

Proof. We have that:

Π∗
CTF−H = argmin

Π∈Rn0×n1

∑
k,l

ΠklCkl + ϵ
∑
k,l

Πkl log(Πkl/Mkl),

Subject to:
Π1 = a, Π⊤1 = b.

This formulation is a standard convex optimization setting with constraints. The Lagrangian of this
setting is:

L(Π, f, g) =
∑
k,l

CklΠkl+ϵ
∑
k,l

Πkl

(
log

(
Πkl
Mkl

)
− 1

)
−
∑
k

fk

(∑
l

Πkl − ak

)
−
∑
l

gl

(∑
k

Πkl − bl

)

Differentiating with respect to Πkl, fk, gl, we get:

∂L
∂Πkl

= Ckl + ϵ log

(
Πkl
Mkl

)
− fk − gl

Setting the derivative to zero:

ϵ log

(
Π∗
kl

Mkl

)
= fk − Ckl − gl

=⇒ Π∗
kl

Mkl
= e

fk
ϵ e−

Ckl
ϵ e

gl
ϵ

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

=⇒ Π∗
kl = e

fk
ϵ Mkle

−Ckl
ϵ e

gl
ϵ

Let u ∈ Rn and v ∈ Rm such that:

uk = e
fk
ϵ , vl = e

gl
ϵ

Let Kkl be the kernel Mkle
−Ckl/ϵ.

Then, we have:
Π∗
kl = ukKklvl

Π∗ = diag(u) ·K · diag(v) (13)

Differentiating the Lagrangian with respect to fk and gl, we get:

∂L
∂fk

= 1 ·

(∑
l

Π∗
kl − ak

)
= 0

=⇒ Π∗1 = a (14)

∂L
∂gl

= 1 ·

(∑
i

Π∗
kl − bl

)
= 0

=⇒ Π∗⊤1 = b (15)

From equations 16 B, 17 B, and 18 B above, we get:
diag(u) ·K · diag(v) · 1 = a

(diag(u) ·K · diag(v))⊤1 = b

Which can be rewritten as:
u⊙ (Kv) = a

K⊤u⊙ v = b

This is the usual matrix scaling formulation for which the Iterative Proportional Fitting (IPF) updates
are:

ut+1
k =

ak
(Kvt)k

, vt+1
l =

bl
(K⊤ut+1)l

Sinkhorn Algorithm uses these updates, iteratively, and these updates are shown to converge in
Franklin & Lorenz (1989). Thus, Sinkhorn Algorithm can be used for the ContextFlow’s Prior Aware
Entropy Regularized (PAER) (CTF-H) formulation.

From equation (9) B, we get:
Π∗
kl = efk/ϵMkle

−Ckl/ϵegl/ϵ

When ϵ→∞, we have Ckl/ϵ→ 0.

e−Ckl/ϵ → 1

=⇒ Π∗
kl → ukMklvl

=⇒ Π∗
CTF-H → diag(u) ·M · diag(v)

Such that marginal constraints, Π∗
CTF-H1 = a and Π∗⊤

CTF-H1 = b are satisfied.

18
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C EFFECTS OF NORMALIZATION ON PRIOR AWARE COST MATRIX

From Peyré et al. (2019), we know that optimal MOTFM coupling takes the form Π∗
EOT = diag(u) ·

K · diag(v), where K is the kernel matrix such that [K]ij = exp(
−cij
ϵ ), with u, v satisfying

marginalization constraints u⊙Kv = a and KTu⊙ v = b. Sinkhorn updates are given by:

ul+1 =
a

Kvl
; vl+1 =

b

KTul+1
.

In cases where the OT cost function consists of information from different modalities the distances
are usually normalized to have distances of a similar scale. Normalizing the cost results c̃ij =

cij
ϵ

such that the new kernel matrix [Knorm]ij = exp(
−cij
Cmaxϵ

) can cause numerical issues if Cmax ≫ 1. The
cost normalization should be performed mindfully, when considering different pairwise distances, as
in PACM Section 3. Intuitively, scaling the cost has the same effect as that of increasing ϵ, making
solutions more diffused.
Proposition 1. Let C ∈ Rn0×n1 be a cost matrix and M ∈ Rn0×n1 a prior transition matrix with
positive entries. Consider the entropy-regularized OT formulation:

Π∗ = argminΠ≥0

∑
k,l

ΠklCkl + ϵ
∑
k,l

Πkl log(Πkl) .

Let Π̃∗ be the EOT-coupling where the cost is scaled by a normalization constant c or C̃ij =
Cij

c . Let
the regularization parameter ϵ > 0 be the same in both cases. Then, for any indices (i, j) and (k, l)
we have

Π̃∗
ij

Π̃∗
kl

≤ γ
(
Π∗
ij

Π∗
kl

) 1
c

,

where γ depends on Π∗
ij , c and OT marginal constraints a, b.

From Proposition 1, let
Π∗

ij

Π∗
kl

= m, such that m > 1 (Π∗
ij > Π∗

kl or entries are faraway) then, for

c > 1, we have
Π̃∗

ij

Π̃∗
kl

< m
1
c < m, for γ < 1, implying that faraway entries are squeezed together.

This results in bringing probabilities that are far apart closer to each other or, in essence, in creating
more diffused and less sharp couplings.
Corollary 1. Let C ∈ Rn0×n1 be a cost matrix and M ∈ Rn0×n1 a prior transition matrix with
positive entries. Consider the entropy-regularized OT formulation:

Π∗ = argminΠ≥0

∑
k,l

ΠklCkl + ϵ
∑
k,l

Πkl log(Πkl)

and Π̃∗ be EOT-coupling in the case when cost is scaled by a normalization constant c or C̃ij =
Cij

c .
Let the regularization parameter ϵ > 0 be the same in both cases. Then we have:

H(Π̃ij) ≥ mH(Πij)− s

where m and s are constants, that depend on Π∗, marginalization constants a, b and normalization
constant c.

Corollary 1 can also be interpreted as supporting the results of Proposition 1 and our intuition
that normalizing has the same effect on the kernel matrix as increasing ϵ, leading to more diffused
couplings or couplings with increased entropy.
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D CONTEXTFLOW ALGORITHM

Algorithm 1 ContextFlow (CTF): Flow Matching with Spatial-Context-Aware OT Couplings

1: Input: gene data {Xt1 , · · · ,Xtm+1
}, spatial data {St1 , . . . ,Stm+1

}, parameters λ, α, ϵ, σ, η
2: Output: neural velocity vector field uθ
3: Initialize θ
4: while training do
5: for i = 1, 2, . . . ,m do
6: Sample a batch B = {(xi,xi+1) : (xi,xi+1) ∼ (Xti ,Xti+1)}
7: Construct TPM: Mi,i+1(B) ▷Mi,i+1 is defined in Equation 10
8: if “prior-aware cost matrix” then
9: Ckl ← α · ∥xi(k)− xi+1(l)∥22 + (1− α) · [Mi,i+1]kl for any pair (k, l)

10: K← exp(−C/ϵ)
11: else if “prior-aware entropy regularization” then
12: Ckl ← ∥xi(k)− xi+1(l)∥22 for any pair (k, l)
13: K← M̂i,i+1 ⊙ exp(−C/ϵ) ▷ M̂i,i+1 is defined in Equation 12
14: end if
15: Initialize a← 1

ni
1ni

, b← 1
ni+1

1ni+1
, u← 1ni

, v ← 1ni+1

16: while not converged do
17: u← a⊘ (Kv), v ← b⊘ (K⊤u) ▷ Run Sinkhorn algorithm
18: end while
19: Obtain spatial-prior-aware OT couplings ΠCTF

i,i+1 ← diag(u)Kdiag(v)

20: Sample t ∼ U(ti, ti+1) and {(xi,xi+1) : (xi,xi+1) ∼ ΠCTF
i,i+1}

21: Sample xt ∼ N
(
ti+1−t
ti+1−tixi +

t−ti
ti+1−tixi+1, σ

2I
)

22: LCFM ← 1
|B|
∑
t,(xi,xi+1)

∥∥∥uθ(xt, t)− xi+1−xi

ti+1−ti

∥∥∥2
2

23: end for
24: θ ← θ − η · ∇θLCFM

25: end while

E KANTAROVICH-OT FORMULATION

Kantorovich’s formulation (Peyré et al., 2019) is a classical definition of the optimal transport (OT)
problem that seeks a joint coupling to move a probability measure to another that minimizes the
Euclidean distance cost, corresponding to the following minimization problem with respect to the
2-Wasserstein distance:

π∗
ot := argminπ∈Π(q0,q1)

∫
Rd×Rd

∥x0 − x1∥22 dπ(x0,x1), (16)

where Π(q0, q1) denotes the set of joint probability measures such that the left and right marginals
are q0 and q1. Equation 16 can be solved in a mini-batch fashion using standard solvers such as
POT (Flamary et al., 2021); however, the computational complexity is cubic in batch size.

F EVALUATION METRICS

F.1 2-WASSERSTEIN

The 2-Wasserstein distance (W2 between empirical distributions µ, ν is defined as:

W2(µ, ν) = inf
γ∈Π(µ,ν)

( ∑
(x,y)

γ(x,y) · ∥x− y∥22
)1/2

,

where Π(µ, ν) denotes the set of couplings between µ and ν.
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F.2 WEIGHTED 2-WASSERSTEIN

Implausible velocity fields can steer a cell’s transcriptional trajectory in unrealistic directions, poten-
tially leading to entirely different terminal cell types. We thus employ the weighted 2-Wasserstein
metric, which ensures the evaluation accounts for both transcriptional similarity and the distributional
balance of cell types. We define the weighted 2-Wasserstein distance (WeightedW2) between true
and predicted distributions as:

Weighted-W2(µ, ν) =

C∑
i=1

ntrue
i

N
· W2

(
1

ntrue
i

∑
j:yj=i

δxj
,

1

npred
i

∑
j:ŷj=i

δxj

)
,

where ntrue
i , npred

i are the number of true and predicted cells of type i, and N is the total number of
samples. To determine the cell type of generated trajectories, we employ a multi-class classifier Mϕ,
implemented as an XGBoost model (Chen & Guestrin, 2016) trained for each dataset.

F.3 ENERGY DISTANCE

Let µ and ν be probability distributions with samples X = {xi}mi=1 ∼ µ and Y = {yj}nj=1 ∼ ν.
The squared empirical energy distance (Energy) is defined as:

ED(µ, ν) =
2

mn

m∑
i=1

n∑
j=1

∥xi − yj∥ −
1

m2

m∑
i=1

m∑
i′=1

∥xi − xi′∥ −
1

n2

n∑
j=1

n∑
j′=1

∥yj − yj′∥,

where ∥ · ∥ is the Euclidean norm. The distance is non-negative and equals zero if and only if µ = ν.

F.4 MAXIMUM MEAN DISCREPANCY

For the same samples, the unbiased empirical estimate of the squared maximum mean discrepancy
(MMD) with kernel κ is defined as:

MMD(µ, ν;κ) =
1

m(m− 1)

∑
i ̸=i′

κ(xi,xi′) +
1

n(n− 1)

∑
j ̸=j′

κ(yj ,yj′)−
2

mn

m∑
i=1

n∑
j=1

κ(xi,yj).

In our evaluations, we use a multi-kernel variant with radial basis function (RBF) kernels κγ(x, y) =
exp(−γ∥x− y∥2), and average over γ ∈ [2, 1, 0.5, 0.1, 0.01, 0.005].

G BIOLOGICAL PRIORS AND DATASET VISUALIZATIONS

G.1 (IM-)PLAUSIBILITY OF OT-COUPLINGS

To demonstrate the need of integrating biological priors within a generative framework, we computed
the Entropic-OT plan (Section 2.3) for the MOTFM framework and the PAER-OT plan (Section 3.3)
for the ContextFlow framework. From these transport plans, we sampled couplings corresponding to
the first two stages of the Brain Regeneration dataset (Wei et al., 2022) together with their associated
cell types. Figures 3a and 3b illustrate the Excitatory–Inhibitory lineage switches present in these
sampled couplings. Since excitatory and inhibitory neurons have mutually exclusive neurotransmitter
functions and originate from distinct progenitor populations with different transcription factor profiles,
a transition from excitatory to inhibitory identity is considered biologically implausible.

In our transport plan couplings, we observed the following cell type lineage switches:

• Immature MSN→ Immature nptxEX
• Immature MSN→ Immature dpEX
• Immature MSN→ Immature CMPN
• Immature nptxEX→ Immature cckIN
• Immature nptxEX→ Immature MSN
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(a) MOTFM Implausible Transitions

(b) ContextFlow Implausible Transitions

Figure 3: Comparison of biologically implausible cell type couplings between Stage 0 and Stage 1
of the Brain Regeneration Dataset (Wei et al., 2022), under the Entropic-OT and ContextFlow
Regularized-OT formulations. Biological implausibility is defined here as transitions involving
excitatory–inhibitory lineage switches. Our formulation produces substantially fewer biologically
implausible couplings (24) compared to MOTFM (54).

Of these, 54 implausible transitions arose from the Entropic-OT plan compared to the 24 under
the PAER-OT plan, with the specific transitions detailed in the figure legends. We also observed
that the Entropic-OT formulation produced implausible transitions across brain hemispheres, for
example, coupling cells from the left hemisphere with those from the right. In contrast, the PAER-OT
formulation typically restricted transitions to within the same hemisphere, reflecting its integration of
spatially aware contextual information. These observations provide strong motivation for incorporat-
ing biological priors through ContextFlow as a principled approach to learning biologically consistent
developmental trajectories.

G.2 CELL TYPE DISTRIBUTIONS OVER TIME

Figures 4–6 present the spatial maps of the transcriptomics datasets across different time points,
illustrating how tissue organization and cell type distributions evolve during development and
regeneration. These maps highlight not only changes in cellular composition but also the preservation
of spatial neighborhoods and geometrical arrangements of specific cell types over time. Such
contextual information, specific to spatial transcriptomics, remains inaccessible to standard flow-
matching frameworks. By contrast, ContextFlow is designed to exploit these spatial features, enabling
the inference of trajectories that are both temporally smooth and spatially coherent.
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G.2.1 BRAIN REGENERATION

Figure 4: Temporal progression of spatial distribution of different cell types for Brain Regeneration.

G.2.2 MOUSE EMBRYO ORGANOGENESIS

Figure 5: Temporal progression of spatial distribution of different cell types for Mouse Organogenesis.

G.2.3 LIVER REGENERATION

Figure 6: Temporal progression of spatial distribution of fibrogenic states for Liver Regeneration.
Here, 0/1 refers to the absence or presence of fibrogenic spots.
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G.3 LIGAND RECEPTOR INTERACTIONS

Figure 7 shows the ligand-receptor score of the NPTX2-NPTXR pair in two consecutive slides from
the Brain regeneration dataset (Wei et al., 2022). Similar activities are visible bilaterally in the
cerebral cortex, suggesting that ligand–receptor interactions are preserved across time and spatially
aligned with underlying tissue structure. This observation provides strong evidence that including LR
interactions as contextual priors is biologically meaningful, as they capture functional communication
signals between cells that remain stable across short time intervals.

(a) NPTX2-NPTXR LR pair activation on Stage 3 (b) NPTX2-NPTXR LR pair activation on Stage 4

Figure 7: Spatial distributions of LR activation for NPTX2-NPTXR in two consecutive slides from
the Brain regeneration dataset. Similar activations are visible at structurally equal positions.

Based on the activation of NPTX2–NPTXR in Figure 7, we observe that the corresponding com-
munication pattern naturally biases the optimal couplings towards transitions such as Immature
dpEX → dpEX and Immature nptxEX → nptxEX (Figure 8). These transitions are biologically
plausible, as they preserve cell type identity within excitatory neuronal lineages while reflecting
maturation within the same functional context. This example highlights the richness of the contextual
information captured by our proposed biological prior, and demonstrates how incorporating such
ligand–receptor–driven cues into the coupling process leads to more interpretable and biologically
consistent trajectories.

Figure 8: Visual translation of the bias that NPTX2–NPTXR LR pattern provides in terms of cell
type coupling for the two consecutive slides.
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H ADDITIONAL EXPERIMENTS & ABLATIONS

H.1 NEXT STEP SAMPLING FOR AXOLOTL BRAIN REGENERATION

Table 5: Interpolation via Next Step Sampling at holdout time 3 for the Brain Regeneration dataset.

Sampling Method λ α Weighted W2 W2 MMD Energy

Next Step

CFM – – 2.618± 0.142 2.579± 0.197 0.043± 0.003 12.505± 1.271
MOTFM – – 2.567± 0.088 2.476± 0.161 0.040± 0.003 11.269± 1.388

CTF-C

1 0.2 2.503± 0.071 2.425± 0.239 0.037± 0.003 9.868± 1.293
1 0.5 2.467± 0.107 2.301± 0.163 0.037± 0.002 9.532± 1.093
1 0.8 2.423± 0.164 2.293± 0.103 0.037± 0.001 9.874± 0.659
0 0.2 2.396± 0.028 2.100± 0.102 0.033± 0.003 8.577± 0.976
0 0.5 2.447± 0.142 2.337± 0.216 0.036± 0.005 9.696± 1.882
0 0.8 2.413± 0.099 2.293± 0.161 0.036± 0.002 9.114± 1.092
0.5 0.2 2.460± 0.118 2.342± 0.144 0.036± 0.003 9.500± 1.067
0.5 0.5 2.504± 0.094 2.309± 0.139 0.036± 0.003 9.394± 1.431
0.5 0.8 2.442± 0.173 2.353± 0.241 0.035± 0.004 9.008± 2.094

CTF-H
0 – 2.528± 0.143 2.534± 0.180 0.040± 0.004 11.192± 1.304
1 – 2.316± 0.141 1.969± 0.221 0.030± 0.004 6.359± 1.336
0.5 – 2.519± 0.167 2.412± 0.158 0.039± 0.004 10.304± 1.808

Table 6: Extrapolation via Next Step Sampling at holdout time 5 for the Brain Regeneration dataset.

Sampling Method λ α Weighted W2 W2 MMD Energy

Next Step

CFM – – 7.124± 0.443 7.133± 0.533 0.276± 0.011 76.947± 5.661
MOTFM – – 7.487± 0.698 7.449± 0.931 0.266± 0.010 81.965± 9.812

CTF-C

1 0.2 7.257± 0.597 7.077± 0.473 0.257± 0.004 79.562± 7.787
1 0.5 6.968± 0.608 6.969± 0.628 0.265± 0.009 77.025± 6.056
1 0.8 7.695± 0.443 7.792± 0.463 0.266± 0.007 87.179± 6.690
0 0.2 8.170± 0.663 8.079± 0.723 0.269± 0.008 91.572± 8.802
0 0.5 7.244± 0.804 7.146± 0.775 0.265± 0.003 80.424± 10.376
0 0.8 7.382± 1.068 7.234± 0.852 0.267± 0.009 81.635± 14.135
0.5 0.2 7.194± 0.239 7.171± 0.422 0.266± 0.001 78.924± 3.715
0.5 0.5 7.188± 0.391 6.931± 0.260 0.267± 0.005 78.992± 6.195
0.5 0.8 7.242± 0.804 7.166± 0.980 0.267± 0.006 80.509± 10.304

CTF-H
0 – 6.914± 0.471 7.198± 0.726 0.266± 0.009 76.149± 8.436
1 – 7.505± 0.667 7.338± 0.601 0.263± 0.006 83.425± 8.793
0.5 – 7.243± 0.479 7.157± 0.641 0.270± 0.007 79.826± 8.067

H.2 IVP SAMPLING ON AXOLOTL BRAIN REGENERATION

Table 7: Interpolation via IVP Sampling at time point 3 for the Brain Regeneration dataset.

Sampling Method λ α Weighted W2 W2 MMD Energy

IVP

CFM – – 4.216± 0.463 4.266± 0.308 0.170± 0.029 32.413± 5.122
MOTFM – – 4.198± 0.319 4.452± 0.243 0.173± 0.017 33.149± 3.321

CTF-C

1 0.2 4.011± 0.276 4.048± 0.321 0.147± 0.021 30.337± 4.713
1 0.5 3.932± 0.377 4.356± 0.398 0.156± 0.025 31.524± 4.875
1 0.8 3.603± 0.300 3.816± 0.310 0.127± 0.018 24.271± 3.992
0 0.2 3.465± 0.232 3.641± 0.320 0.119± 0.025 23.055± 5.939
0 0.5 3.943± 0.413 4.241± 0.435 0.150± 0.039 29.221± 5.713
0 0.8 3.881± 0.368 4.094± 0.551 0.139± 0.026 27.941± 6.676
0.5 0.2 4.152± 0.341 4.322± 0.291 0.166± 0.014 33.299± 3.629
0.5 0.5 4.013± 0.187 4.138± 0.297 0.153± 0.020 30.941± 3.685
0.5 0.8 4.015± 0.351 3.974± 0.442 0.140± 0.038 27.592± 6.669

CTF-H
0 – 3.925± 0.267 4.375± 0.297 0.164± 0.013 32.034± 3.270
1 – 3.905± 0.395 4.188± 0.685 0.074± 0.014 18.728± 2.689
0.5 – 3.917± 0.343 4.159± 0.455 0.147± 0.022 29.613± 4.822
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Table 8: Extrapolation via IVP Sampling at holdout time 5 for the Brain Regeneration dataset.

Sampling Method λ α Weighted W2 W2 MMD Energy

IVP

CFM – – 6.633± 1.312 7.116± 1.084 0.143± 0.037 60.573± 21.756
MOTFM – – 6.503± 0.720 6.352± 0.592 0.162± 0.038 56.452± 15.932

CTF-C

1 0.2 6.403± 0.959 6.558± 1.297 0.160± 0.024 61.051± 16.594
1 0.5 6.260± 0.616 7.681± 4.003 0.157± 0.039 52.478± 12.010
1 0.8 6.875± 0.643 6.920± 0.796 0.159± 0.045 62.838± 16.897
0 0.2 6.722± 0.905 6.782± 1.003 0.154± 0.034 53.996± 15.617
0 0.5 6.614± 0.710 6.854± 0.740 0.201± 0.023 70.370± 9.099
0 0.8 6.504± 0.925 6.744± 1.336 0.174± 0.037 56.687± 18.118
0.5 0.2 6.514± 0.504 5.998± 0.803 0.155± 0.032 51.329± 15.080
0.5 0.5 6.696± 0.427 6.481± 0.387 0.195± 0.024 66.212± 3.542
0.5 0.8 6.550± 0.975 6.563± 1.029 0.188± 0.037 63.014± 14.173

CTF-H
0 – 6.243± 0.760 6.220± 0.751 0.195± 0.020 61.316± 10.288
1 – 5.277± 0.936 6.021± 1.192 0.099± 0.007 27.777± 8.621
0.5 – 6.254± 0.819 5.973± 0.757 0.156± 0.025 54.330± 12.089

H.3 NEXT STEP SAMPLING FOR MOUSE EMBRYO ORGANOGENESIS

Table 9: Interpolation via Next Step Sampling at holdout time 5 for the Mouse Organogenesis dataset.

Sampling Method λ α Weighted W2 W2 MMD Energy

Next Step

MOTFM – – 1.892± 0.028 1.873± 0.086 0.164± 0.002 11.615± 0.092

CTF-C

1 0.2 1.881± 0.020 1.922± 0.078 0.158± 0.003 11.529± 0.197
1 0.5 1.865± 0.030 1.852± 0.093 0.159± 0.001 11.482± 0.108
1 0.8 1.889± 0.024 1.888± 0.082 0.161± 0.002 11.552± 0.166
0 0.2 1.893± 0.035 1.912± 0.057 0.159± 0.001 11.462± 0.154
0 0.5 1.877± 0.039 1.933± 0.088 0.162± 0.002 11.528± 0.110
0 0.8 1.882± 0.022 1.869± 0.049 0.161± 0.001 11.399± 0.119
0.5 0.2 1.886± 0.022 1.927± 0.111 0.157± 0.002 11.430± 0.131
0.5 0.5 1.899± 0.027 1.899± 0.072 0.160± 0.002 11.517± 0.097
0.5 0.8 1.888± 0.033 1.839± 0.134 0.161± 0.002 11.475± 0.159

CTF-H
0 – 1.884± 0.027 1.862± 0.123 0.164± 0.001 11.499± 0.123
1 – 1.898± 0.029 1.866± 0.097 0.167± 0.002 11.795± 0.170
0.5 – 1.871± 0.030 1.919± 0.067 0.164± 0.002 11.639± 0.182

Table 10: Extrapolation via Next Step Sampling at holdout time 8 for Mouse Organogenesis.

Sampling Method λ α Weighted W2 W2 MMD Energy

Next Step

MOTFM – – 1.626± 0.066 1.682± 0.096 0.084± 0.007 7.418± 0.749

CTF-C

1 0.2 1.683± 0.058 1.803± 0.117 0.087± 0.006 7.830± 0.551
1 0.5 1.685± 0.096 1.714± 0.159 0.089± 0.006 8.056± 1.033
1 0.8 1.703± 0.063 1.830± 0.131 0.095± 0.005 8.928± 0.723
0 0.2 1.715± 0.123 1.860± 0.267 0.094± 0.009 9.021± 1.740
0 0.5 1.725± 0.082 1.856± 0.191 0.093± 0.006 8.806± 0.749
0 0.8 1.774± 0.053 1.897± 0.175 0.094± 0.007 9.466± 0.957
0.5 0.2 1.818± 0.096 2.089± 0.222 0.084± 0.008 8.875± 0.976
0.5 0.5 1.774± 0.104 1.899± 0.280 0.093± 0.007 9.139± 1.437
0.5 0.8 1.768± 0.058 1.858± 0.120 0.101± 0.006 9.303± 0.634

CTF-H
0 – 1.505± 0.057 1.397± 0.088 0.087± 0.005 5.954± 0.492
1 – 1.890± 0.046 1.877± 0.103 0.147± 0.006 10.752± 0.405
0.5 – 1.636± 0.060 1.684± 0.099 0.081± 0.005 7.088± 0.692

H.4 IVP SAMPLING FOR MOUSE EMBRYO ORGANOGENESIS

Extrapolating to the last holdout time point of the mouse organogenesis dataset (Chen et al., 2022),
particularly under IVP-Sampling, represents the most challenging setting among all our experiments.
This difficulty arises because the target time point lies entirely outside the training horizon, requiring
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integration from the initial samples through to the end. As a result, the velocity field has more
opportunity to drift in incorrect directions, often leading to generations that deviate substantially from
the true dynamics. In our experiments, this instability was evident: across 10 runs, several produced
highly unstable trajectories, reflecting the sensitivity of the system to initial conditions and numerical
solvers. This variability is also captured in the performance metrics reported in Table 12.

Table 11: Interpolation via IVP Sampling at holdout time 5 for the Mouse Organogenesis dataset.

Sampling Method λ α Weighted W2 W2 MMD Energy

IVP

MOTFM – – 3.251± 0.676 3.418± 0.727 0.090± 0.003 9.226± 0.648

CTF-C

1 0.2 3.261± 0.880 5.264± 3.060 0.089± 0.003 10.724± 1.288
1 0.5 3.137± 0.407 4.093± 1.187 0.086± 0.004 11.948± 1.393
1 0.8 3.392± 0.757 4.716± 2.079 0.089± 0.005 9.547± 0.752
0 0.2 2.953± 0.425 3.816± 0.973 0.083± 0.002 9.816± 0.715
0 0.5 2.938± 0.476 3.904± 1.120 0.088± 0.005 9.864± 0.764
0 0.8 3.101± 0.539 3.855± 0.946 0.087± 0.004 9.280± 0.551
0.5 0.2 3.771± 0.862 5.457± 1.704 0.079± 0.004 9.262± 1.134
0.5 0.5 3.090± 0.635 4.596± 2.357 0.084± 0.005 9.786± 1.067
0.5 0.8 3.200± 0.403 3.555± 0.637 0.084± 0.004 9.269± 0.541

CTF-H
0 – 3.244± 0.713 3.946± 1.671 0.089± 0.005 8.797± 0.612
1 – 2.814± 0.414 3.233± 0.567 0.093± 0.005 10.319± 0.817
0.5 – 5.200± 0.799 6.306± 1.037 0.123± 0.008 45.862± 13.765

Table 12: Extrapolation via IVP Sampling at holdout time 8 for the Mouse Organogenesis dataset.
Sampling Method λ α Weighted W2 W2 MMD Energy

IVP

MOTFM – – 110835± 211671 1021005± 2063905 0.086± 0.002 14178± 29475

CTF-C

1 0.2 785586± 1318212 7598321± 13497483 0.088± 0.002 98199± 150412
1 0.5 2691± 3931 28480± 36483 0.087± 0.002 1632± 2090
1 0.8 2473± 3349 19537± 26306 0.087± 0.003 517± 616
0 0.2 1493± 2497 14563± 24858 0.087± 0.001 800± 1158
0 0.5 218018± 471298 1820788± 3994886 0.086± 0.001 2170± 4697
0 0.8 12736± 34766 118089± 310135 0.084± 0.002 27013± 60065
0.5 0.2 8114720± 16270274 69458305± 140579849 0.088± 0.002 901074± 1775139
0.5 0.5 2414338± 6009993 23103811± 56863018 0.086± 0.001 261335± 663279
0.5 0.8 1158± 3023 11138± 30025 0.084± 0.002 445± 1085

CTF-H
0 – 353428± 952168 3011396± 8057131 0.095± 0.004 22990± 58936
1 – 15± 10 53± 53 0.098± 0.006 48± 32
0.5 – 107889± 275882 994606± 2772756 0.087± 0.002 8875± 24264

H.5 LIVER REGENERATION

Table 13: Wasserstein distances for different model configurations

Variant λ α W2

EOT – – 34.30348± 1.44797

CTF-C 1 0.2 34.44455± 1.19306
CTF-C 1 0.5 33.95671± 1.64415
CTF-C 1 0.8 34.62812± 0.98181
CTF-C 0 0.2 34.24147± 1.16930
CTF-C 0 0.5 32.74147± 1.86351
CTF-C 0 0.8 33.71729± 1.23057
CTF-C 0.5 0.2 33.56646± 1.04376
CTF-C 0.5 0.5 33.84199± 1.71408
CTF-C 0.5 0.8 33.04534± 1.64399

CTF-H 0 – 32.68215± 1.47185
CTF-H 1 – 33.48050± 1.00149
CTF-H 0.5 – 33.41444± 0.99501
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H.6 IVP CELL TYPE PROGRESSION OVER TIME

Figure 9: Temporal cell type predictions from ContextFlow for the major cell types in the Organo-
genesis dataset (Chen et al., 2022). Early progenitor populations (neural crest and mesenchyme)
progressively diminish as development advances, while terminal fates (muscle, cartilage primordium,
and liver) emerge at later stages. Major lineages such as brain, heart, and connective tissue remain
continuous throughout. Overall, ContextFlow captures biologically coherent and temporally consis-
tent developmental dynamics.
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