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ABSTRACT

Despite the impressive capabilities of Multimodal Large Language Models
(MLLMs) in integrating text and image modalities, challenges remain in accu-
rately interpreting detailed visual elements. Fortunately, vision detection models
have shown superior performance in recognizing fine-grained image details, lead-
ing to their increased deployment by researchers to enhance the ability of MLLMs.
Among the feasible strategies, infusing detection information in text format is easy
to use and effective. However, most studies apply this method in a training-free
manner. There is limited research on the effects of adaptive training, which has
great potential for helping LLMs better comprehend the special input and dis-
card irrelevant information. In this paper, we address the key research question:
How does training influence MLLMs’ understanding of infused textual detection
information? We systematically conduct experiments with numerous represen-
tative models to explore the performance implications of training-free, retrain-
ing, and fine-tuning strategies when infusing textual detection information into
MLLMs. Additionally, we investigate the impact of training on the original abili-
ties of MLLMs, as well as the interchangeability of detection models. We find that
fine-tuning the pre-trained MLLM to adapt to textual detection information yields
better results compared to the training-free strategy and the retraining strategy,
with the fine-tuned MLLM outperforms the training-free MLLM by 6.71% across
10 widely recognized benchmarks. Besides, we find that fine-tuning allows the
MLLM to maintain performance improvements even after replacing the deployed
detection models, which means that it enables the MLLM to better understand the
specially formatted textual information. We release our codes to facilitate further
exploration into the fusion strategies of vision detection models and improving the
fine-grained multimodal capabilities of MLLMs.

1 INTRODUCTION

The advent of large language models (LLMs) has marked a transformative era in natural language
processing (Brown et al., 2020; Touvron et al., 2023), paving the way for the development of Mul-
timodal Large Language Models (MLLMs) that blend linguistic and visual understanding. Pioneers
such as GPT-4V have demonstrated remarkable proficiency across numerous tasks (Yang et al.,
2023). However, a notable gap remains in these models’ ability to accurately discern and recognize
fine details within images (Fu et al., 2023). This limitation is particularly evident when MLLMs
generate coherent yet misaligned responses with the image content, a phenomenon often referred to
as “hallucination” (Li et al., 2023b; Huang et al., 2023).

Current advancements in object detection and optical character recognition (OCR) models have
established their effectiveness in identifying objects and text within images (Zou et al., 2023; Liu
et al., 2024b). Consequently, researchers have increasingly deployed vision detection models to
assist MLLMs in recognizing fine-grained visual elements. A popular approach involves converting
the outputs of vision detection models into textual descriptions, which are then supplied to the
backbone LLM, thereby enhancing the MLLM’s performance in visual tasks. This fusion strategy
is both straightforward and effective.
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Q: What is the time in this picture?

LLaVA-1.5-13B: The time in this picture is 12:00.

Q: What is the car number for the blue car?

LLaVA-1.5-13B: The car number for the blue 

car is 547.

Q: Count the number of sheep in this picture.

LLaVA-1.5-13B: There are five sheep in this 

picture.

Q: Find the person in the picture.

LLaVA-1.5-13B: There is no person visible in 

the image. The scene shows a street with cars 

parked along the sidewalk, and a traffic light is 

present.

FTBI-13B: The time in this picture is 11:10. FTBI-13B: The car number for the blue car is 

87925.

FTBI-13B: There are six sheep in this picture.

FTBI-13B: There is a person standing on 

the sidewalk near the parked cars in the 

image.

Detection: 1 clock:{[0.77, 0.27]} Detection: "87925"[0.73, 0.62] 

Detection: 6 sheep:{[0.38, 0.57], [0.24, 0.55], 

[0.84, 0.27], [0.57, 0.65], [0.56, 0.4], [0.47, 0.43]}.

Detection: 1 person:{[0.7, 0.5]}

Figure 1: Examples where LLaVA-1.5-13B fails, while the model infused with textual detection
information (FTBI-13B) succeeds. “Detection” refers to processed detection information from
OD/OCR models. Additional examples are provided in Figure 5 of Appendix A.1.

Nonetheless, the majority of existing research has primarily focused on training-free methods to
directly apply the textual detection information 1. Little exploration has been conducted into adap-
tive training methods, which have great potential to enhance LLMs’ comprehension of specially
formatted textual content, enabling them to intentionally discard irrelevant information and generate
more pertinent responses (Zhang et al., 2024b; Cabessa et al., 2024). This highlights the need for
a systematic investigation, particularly concerning the core research question: Can adaptive train-
ing further enhance MLLMs’ performance beyond what is achievable through training-free
integration of textual detection information?

To provide insights into how training impacts the infusion of textual detection information into
MLLMs, we investigate training-free, retraining, and fine-tuning strategies for this fusion method.
Additionally, we examine how training influences the original image understanding capabilities of
MLLMs and the interchangeability of deployed detection models. Based on the experimental anal-
ysis encompassing representative advanced models, including LLaVA-1.5 (Liu et al., 2023a), DINO
(Zhang et al., 2022), PaddleOCRv2 (Du et al., 2021), and Grounding DINO (Liu et al., 2023c),
alongside Qwen-VL (Bai et al., 2023) and YOLOv8 (Jocher et al., 2023) in the appendix, we sys-
tematically uncover the following key insights:

(1) The fine-tuning strategy yields better results than both the training-free and retraining
strategies. Building on prior studies (Wu et al., 2024; Wang et al., 2024a; Chen et al., 2024; Zhou
et al., 2023), we convert the output of vision detection models into textual information and input it
into the LLM. We explore three distinct training strategies: the training-free strategy, where detec-
tion information is directly fed into the MLLM without additional training; the retraining strategy,
which involves retraining the MLLM from scratch and continuously infusing textual detection in-
formation; and the fine-tuning strategy, where additional fine-tuning is applied to a pre-trained
MLLM to help it comprehend the specially formatted information. Evaluating performance across
ten widely recognized benchmarks, we find that all three strategies enhance LLaVA-1.5’s perfor-
mance in fine-grained image recognition. Notably, the fine-tuning strategy achieves the most signif-
icant improvements, elevating performance by up to 6.71% compared to the training-free approach.

(2) Retraining with textual detection information impairs MLLMs’ original image compre-
hension abilities. Most advanced MLLMs employ an image encoder to generate image features,
and their ability to understand these features is crucial for effective multimodal understanding. Our
experiments reveal that retraining the MLLM with textual detection information detrimentally af-
fects its ability to interpret the features from its image encoder. In contrast, the fine-tuning strategy
does not run into this problem.

1To maintain brevity, we refer to “textual detection information” as the information output by vision detec-
tion models in textual format.
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(3) Fine-tuning allows the MLLM to retain performance improvements upon replacing the
deployed detection model. The characteristics and performance of the deployed detection models
significantly influence the enhanced MLLM’s effectiveness. Based on the fine-tuning strategy, we
examine replacing a closed-set detector with an open-set detector. The results demonstrate further
enhancement in MLLM performance, enabling dynamic object detection following the context of
user queries during inference. Additionally, we find that the fine-tuned MLLM maintains its training
benefits and can still effectively discard irrelevant information even after the model replacement.

To summarize, our work contributes comprehensive empirical evidence and practical insights into
the effects of various training strategies for infusing textual detection information into MLLMs. It
identifies a significant gap between the use of adaptive training and training-free methods, high-
lighting the potential of adaptive strategies and demonstrating their feasibility through systematic
investigation. Our code is publicly available at anonymous link to facilitate further research and
pave the way for systems that engage in more nuanced and accurate multimodal dialogue.

2 BACKGROUND AND MOTIVATION

2.1 MULTIMODAL LARGE LANGUAGE MODELS (MLLMS)

Linking Text and Vision Information. Large Language Models (LLMs) are primarily designed for
text-based tasks (Zhao et al., 2023). To incorporate image processing capabilities, modality bridging
modules have been developed to reconcile the representation differences between text and images
(Yin et al., 2023). Generally, these methods can be categorized into three types:

(1) Learnable queries are used to distill information from image features. For instance, Flamingo
(Alayrac et al., 2022) employs a perceiver resampler, and IDEFICS (Hugo et al., 2023; Laurençon
et al., 2024) uses similar modules to extract features from Vision Transformers (ViT) (Dosovitskiy
et al., 2020). BLIP-2 (Li et al., 2023c) utilizes learnable queries alongside a Q-Former module, while
Qwen-VL (Bai et al., 2023) compresses visual features into sequences of fixed length using cross-
attention layers. (2) Projection-based interfaces bridge modalities with straightforward techniques.
Notable examples include LLaVA (Liu et al., 2023b;a; 2024a) and MGM (Li et al., 2023d), which
utilize simple linear layers to map image features into the text semantic space. (3) Parameter-
efficient tuning modules are utilized to fine-tune MLLMs for image feature comprehension. For
example, LLaMA-Adapter (Zhang et al., 2023; Gao et al., 2023) introduces self-attention layers
with zero gating for fine-tuning, and LaVIN (Luo et al., 2023) employs modality-specific adapters.

Why Incorporating Detection Models into MLLMs? Existing MLLMs often struggle to accu-
rately detect fine-grained targets. For example, in Figure 1, LLaVA-1.5 miscounts a herd of sheep,
indicating a limitation in its object-counting capability. Additionally, it fails to detect a pedestrian
who is partially obscured by a utility pole, highlighting a weakness in its object localization ability.
In another scenario, LLaVA-1.5 incorrectly recognizes the license plate number “87025” as “547”,
revealing a shortcoming in its text recognition ability. By contrast, SOTA object detection and OCR
models demonstrate superior performance on detection and recognition tasks, which has led many
researchers to explore the application of detection models within the realm of MLLM research.

2.2 ENHANCING DETECTION CAPABILITIES FOR MLLMS

Existing Methods for Detection Capabilities Enhancement. Various strategies have been ex-
plored to enable MLLMs aware of image details, generally classified into four types:

(1) Expanding datasets with existing object detection or OCR data: InstructBLIP (Dai et al., 2023)
utilizes data from 26 datasets across 11 tasks, including OCR data. ASM (Wang et al., 2023a) intro-
duces 1 billion region-text pairs. LLaVA and SPHINX (Lin et al., 2023) compile hybrid instruction
fine-tuning datasets, incorporating object detection datasets like VG (Krishna et al., 2017) and the
OCR dataset OCRVQA (Mishra et al., 2019). PINK (Xuan et al., 2023) employs a bootstrapping
method to cover diverse referential comprehension datasets. MiniGPT4-v2 (Chen et al., 2023b),
VisionLLM (Wang et al., 2024b), and Shikra (Chen et al., 2023c) integrate object detection datasets,
such as RefCOCO (Kazemzadeh et al., 2014), PointQA (Mani et al., 2020), and Flickr30K (Plum-
mer et al., 2015), while introducing special detection tokens like “det” to guide downstream tasks
(further details in Appendix D.7).
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(2) Restructuring the image encoder to extract fine-grained features: LION (Chen et al., 2023a)
introduces a Vision Aggregator module for feature aggregation, while Honeybee (Cha et al., 2023)
employs a deformable attention-based abstractor for capturing fine details. UReader (Ye et al., 2023)
utilizes a shape-adaptive cropping module to process local image features, and Vary (Wei et al.,
2023b) develops a dedicated image encoder for text recognition. Eagle (Shi et al., 2024) aligns
features from various visual experts, concatenating them as input for the MLLM. Mova (Zong et al.,
2024) introduces the MoV-Adapter, which extracts and fuses task-specific knowledge.

(3) Integrating pre-trained detection models into MLLMs’ output end to train MLLMs or perform
detection tasks: UNIFIED-IO (Lu et al., 2022; 2023) unifies image, text, and detection features into
discrete tokens and trains an end-to-end MLLM capable of detecting. ContextDET (Zang et al.,
2023) trains a visual decoder for bounding box prediction using contextual LLM tokens. Lenna
(Wei et al., 2023a), Lisa (Lai et al., 2023), and Next-chat (Zhang et al., 2024a) introduce additional
tokens to prompt detectors for target identification.

(4) Converting detection model outputs into text and using it as supplementary input for LLMs:
GLEE (Wu et al., 2024) builds on LISA (Lai et al., 2023) to generate SEG tokens for targeted
segmentation, enhancing performance by feeding textual object queries into the backbone LLM.
P2G (Chen et al., 2024), Moai (Lee et al., 2024), and IVE (He et al., 2024) employ detection agents
to generate textual grounding clues for improved reasoning. Power-LLaVA (Wang et al., 2024a)
utilizes an object detector to produce textual class and location information to assist the MLLM
in generating high-quality outputs. VLPrompt (Zhou et al., 2023) leverages an object detector to
generate target names and infer relationships, thereby aiding MLLMs in reasoning tasks.

Why Adaptive Training with Textual Detection Information? Although methods in the second
and third categories can improve the detection capabilities of MLLMs, they typically require sub-
stantial datasets to train the restructured image encoders or achieve feature alignment. In contrast,
text-based methods are simpler, necessitate less extensive training data for the newly built detection
modules, and still deliver commendable results. Thus, the fourth type of method is likely to be more
frequently employed in practical applications.

While most research in this category has concentrated on training-free strategies for infusing tex-
tual detection information, we note relevant developments in pure-text LLMs. Zhang et al. (2024b)
propose leveraging Retrieval-Augmented Generation (RAG, Gao et al. (2024)) during fine-tuning to
help LLMs discard redundant information from augmented text. Additionally, Cabessa et al. (2024)
suggest that infusing well-crafted textual features during fine-tuning can enhance LLMs’ compre-
hension of specially formatted inputs. They primarily use a small amount of data to adaptively train
LLMs for comprehending specially formatted text, yielding excellent results.

This leads us to an important question: Since the infusion of textual detection information already
performs well without training, could this fusion method achieve even better outcomes with appro-
priate training? Our work aims to address this question by utilizing the original training data of the
studied MLLMs, which is limited in quantity but high in quality, to conduct adaptive training for the
infusion of textual detection information into MLLMs.

3 INVESTIGATION METHODOLOGY FOR THE INFUSION OF TEXTUAL
DETECTION INFORMATION

3.1 TEXT-BASED DETECTION INFORMATION CONSTRUCTION

Similar to many studies (Wang et al., 2024a; Chen et al., 2024; Zhou et al., 2023), we first need to
convert the output of object detection models and OCR models into specially formatted text.

Object Detection Information. With object detection models, we can extract information
about class labels and bounding box coordinates of identified objects. We present results using a
popular and advanced model, DINO (Zhang et al., 2022), on the main page as a representative.
Specifically, we first convert the output of DINO into text. To shorten the sentence, we select the
first two values from the bounding box coordinates as positional information, which represent the
central coordinates of the objects. Then, we consolidate objects within the same category, further
reducing the length while serving as a counter. Finally, we add an instruction sentence before
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LoRA

LoRA

(a) Training-free Infusion (TFI) (b) Retraining Based Infusion (RBI) (c) Fine-tuning Based Infusion (FTBI)

Trainable Frozen

Figure 2: The studied MLLM architectures with different training strategies for infusing textual
detection information. “(LLaVA-1.5)” denotes module initialization with weights from LLaVA-1.5.

the category and coordinates information to create the final sentence, which is looks like: “Here
are the central coordinates of certain objects in this image: 2
people:{[0.25, 0.12], [0.11, 0.43]}, 1 cake:{[0.42, 0.32]}.”

OCR Information. With OCR models, we can extract textual content within images along with
their positional information. In the main page, we adopt PaddleOCRv2 (Du et al., 2021) as a
representative, a lightweight SOTA OCR system. Similar to what we’ve done for object de-
tection information, we extract the textual content and corresponding central coordinates from
OCR results, process them into text form, and then prepend an instruction sentence to obtain the
final sentence, e.g., “Here are the central coordinates of certain texts in
this image: ‘Birthday’[0.41, 0.85], ‘YEARS’[0.11, 0.34].”

Examples. Specific examples with images are provided in Appendix A.2. In Appendix B.1, we
conduct statistical analyses on the length of processed texts, showing that this simple-to-implement
constructing method effectively expresses useful information as well as compress the length.

3.2 STUDIED MODEL ARCHITECTURE

Specifically, Figure 2 illustrates the overall architecture of the studied MLLM in different training
strategies, taking LLaVA-1.5 as an example. 2 Firstly, the CLIP-ViT-L-336px (Radford et al., 2021)
is used to extract image-level features and a two-layer MLP is employed to align these features with
text. Subsequently, we separately use DINO and PaddleOCRv2 for object detection and OCR. The
results are then converted into sentences using the aforementioned methods and transformed into
text features using the embedding layers of the backbone LLM. Next, we concatenate the image-
level features and the detection features and input them into the backbone LLM. As a result, the
MLLM can simultaneously obtain both the overall image information and the fine-grained image
details during training and inference.

3.3 STUDIED INFUSION STRATEGIES

We systematically design three training strategies for the infusion of textual detection information,
using LLaVA-1.5 as a representative. We provide more implementation details in Appendix B.

Training-free Infusion (TFI). For the first strategy, we directly feed the textual detection infor-
mation into the MLLM without any additional training. As shown in Figure 2(a), we use the same
model structure and parameter as the studied MLLM, with the only distinction being the supplemen-
tary input of the textual detection information.

Retraining Based Infusion (RBI). For the second strategy, we train the model from scratch using
the studied MLLM’s training pipeline. As shown in Figure 2(b), we first initialize the MLP module

2On the main page, we mainly focus on LLaVA-1.5 due to its architectural alignment with many leading
MLLMs, making it a representative choice. For more detailed discussions and empirical evidence, please refer
to Appendix D.1, where we also present findings from experiments on another MLLM, Qwen-VL, which yield
similar trends to corroborate our conclusions.
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and pre-train it with the studied MLLM’s original pre-training dataset. Subsequently, we introduce
LoRA (Hu et al., 2021) modules into the backbone LLM, Vicuna-1.5 (Chiang et al., 2023). After
that, we train the LoRA modules and the MLP module during the instruction tuning process with the
studied MLLM’s original instruction-following dataset, whose details are provided in Appendix B.2.
Throughout the entire training process, we continuously infuse the textual detection information.

Fine-tuning Based Infusion (FTBI). For the third strategy, we conduct fine-tuning on a well-
trained MLLM. As shown in Figure 2(c), we freeze the weights of both the MLP module and
the backbone LLM of the pre-trained MLLM. Following this, we introduce LoRA modules to the
LLM and train the LoRA modules for a single epoch with the studied MLLM’s original instruction-
following dataset, concurrently infusing the textual detection information.

3.4 QUANTITATIVE EVALUATION SETTINGS

We employ 10 widely recognized benchmarks to evaluate different MLLM capabilities: VQAv2
(Goyal et al., 2017), GQA (Hudson & Manning, 2019), and MME (Fu et al., 2023) measure com-
prehensive VQA capabilities; MMBench (Liu et al., 2023d) and SEED-Bench (Li et al., 2023a)
evaluate perceptual and reasoning abilities; TextVQA (Singh et al., 2019) assesses text recog-
nition abilities; MM-Vet (Yu et al., 2023) evaluates abilities for managing complex task with
fine-grained image details; and POPE (Li et al., 2023e) measures fine-grained object localization
abilities. It’s noteworthy that we evaluate the models using a subset of GQA benchmark, denoted
as GQA∗, which retains unambiguous questions. Detailed information of the GQA∗ is provided
in Appendix E.1. For a more comprehensive and convenient comparison, we compute the average
percentage improvement of the models, trained with different strategies, over the original models
across the 10 benchmarks, denoted as ∆.

Benchmark names are abbreviated due to space limits: VQAv2 as VQA-v2, VQAT as TextVQA,
MMB as MMBench, MMBCN as MMBench-Chinese, SEED as SEED-Bench, MMEP as MME-
Perception, and MMEC as MME-Cognition.

4 MAIN RESULTS AND ANALYSIS

4.1 OVERVIEW AND ORGANIZATION

In this section, we systematically evaluate the performance improvements of the enhanced MLLMs
over the original models under various training strategies. We find that the FTBI training strategy
yields the best results. As shown in Table 1, on 10 well-recognized MLLM benchmarks, FTBI-7B
and FTBI-13B exhibits a 3.99% and 3.30% improvement compared to LLaVA-1.5-7B and LLaVA-
1.5-13B respectively. Besides, FTBI-13B outperforms TFI-13B by 6.71%.

We will delve into the progressive exploration of the studied training strategies (TFI in Section
4.2, RBI in Section 4.3, and FTBI in Section 4.4). Additionally, in Section 4.5, we will test the
substitution of the deployed object detection model and explore whether the fine-tuned MLLM can
retain its training effects after the replacement. Moreover, in Appendix D, we will provide further
experimental analysis with a new MLLM, Qwen-VL, and a new detector, YOLOv8.

4.2 LESSON 1: THE ORIGINAL MLLM STRUGGLE WITH COMPREHENDING TEXTUAL
DETECTION INFORMATION

Initially, we input the textual detection information directly into the original LLaVA-1.5, aiming to
observe whether it can comprehend and utilize this specially formatted information. We call this
training strategy “Training-free Infusion” (TFI) as introduced in Section 3.3.

Performance Improvement on OD/OCR Tasks. The results are presented in Table 1. We can see
that TFI-7B exhibits partial enhancement in some benchmarks, while TFI-13B shows a discernible
decline. Both models show significant improvement on the POPE benchmark, which evaluates
object hallucination, indicating that the infused object detection information works well. Besides, as
shown in Appendix E.2, they exhibit robust performance on the MME-Cognition benchmark, which

6
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Table 1: Comparison between “Training-free Infusion”(TFI) models, “Retraining Based Infusion”
(RBI) models, “Fine-tuning Based Infusion” (FTBI) models, and the original LLaVA-1.5 on 10
benchmarks. ∆ represents the average percentage improvement relative to the original models. Bold
and underlined results indicate the best and second-best performance respectively. MME represents
the summation of MMEP and MMEC , with detailed information in Appendix E.2.

MLLM VQAv2 GQA∗ VQAT POPE MME MMB MMBCN MM-Vet SEED ∆

LLaVA-1.5-7B 78.5 79.6 58.2 85.9 1866.4 64.3 58.3 30.5 58.6 -
TFI-7B 78.5 = 79.2 ↓ 59.2 ↑ 89.9 ↑ 1898.0 ↑ 65.0 ↑ 57.2 ↓ 33.7 ↑ 60.6 ↑ +2.30%
RBI-7B 78.5 = 76.6 ↓ 60.0 ↑ 89.3 ↑ 1866.5 ↑ 66.2 ↑ 60.6 ↑ 31.5 ↑ 60.8 ↑ +1.91%

FTBI-7B 79.0 ↑ 80.1 ↑ 60.1 ↑ 88.9 ↑ 1880.5 ↑ 67.3 ↑ 60.2 ↑ 35.2 ↑ 60.8 ↑ +3.99%

LLaVA-1.5-13B 80.0 81.0 61.3 85.9 1826.7 67.7 63.6 35.4 61.6 -
TFI-13B 76.6 ↓ 79.0 ↓ 59.6 ↓ 88.3 ↑ 1854.6 ↑ 65.0 ↓ 57.5 ↓ 31.7 ↓ 60.7 ↓ -3.41%
RBI-13B 79.2 ↓ 78.0 ↓ 61.7 ↑ 89.2 ↑ 1900.9 ↑ 69.5 ↑ 63.2 ↓ 35.1 ↓ 62.5 ↑ +0.72%

FTBI-13B 80.3 ↑ 81.8 ↑ 61.8 ↑ 88.8 ↑ 1920.5 ↑ 71.4 ↑ 65.2 ↑ 38.9 ↑ 62.3 ↑ +3.30%

contains numerous questions related to text within images, suggesting that the OCR information is
also demonstrating efficacy.

Performance Degradation on Other Tasks. However, other benchmark scores exhibit fluctua-
tions, implying a deficiency in training-free models’ utilization of textual detection information.
Upon closer analysis, we believe that the infusion of textual detection information introduces extra-
neous content, which may become noise, thereby adversely affecting the accuracy. In other words,
if the models are not trained adaptively with the specially formatted detection information, it may
not be able to effectively extract useful information from it and can be misguided by noise.

4.3 LESSON 2: RETRAINING HAS ADVERSE EFFECTS ON COMPREHENDING VIT FEATURES

In Section 4.2, we experimentally demonstrate that the studied MLLM with a training-free strat-
egy fails to fully comprehend and use the textual detection information we input. Nevertheless,
as demonstrated by numerous studies (Zhang et al., 2024b; Cabessa et al., 2024), adapting LLMs
through training with specially formatted text helps them more effectively extract useful informa-
tion from it, while identifying and filtering out noise within the text. Hence, we will then explore
whether the retraining strategy can improve the model’s understanding of this textual detection in-
formation. For the “Retraining Based Infusion” (RBI) strategy, we retrain LLaVA-1.5 based on its
original training pipeline, concurrently infusing the textual detection information.

Performance Improvement Relative to the Original Model. As shown in Table 1, RBI mod-
els excel beyond LLaVA-1.5 across several benchmarks, particularly the 7B variant. Notably, they
outshine on comprehensive benchmarks such as MMBench and Seed-Bench, and show a 4% im-
provement on the POPE benchmark, which assesses object hallucination. Notable gains are also
seen on MME-Cognition and TextVQA, which are related to text recognition.

Adverse Impact of Retraining on ViT Feature Comprehension. Nevertheless, RBI models do
not show improvement across all benchmarks. While the 13B version of RBI shows a clear advan-
tage over the training-free model, its improvement over the original model is still limited. Besides,
the 7B version of RBI even performs similarly to the training-free model. These unexpected results
may be due to the redundant information in the textual detection information, which negatively af-
fects MLLM’s ability to learn how to utilize features from ViT (the image encoder) during training.

Table 2: Performance of RBI models without detection information during inference(w/o DI).

MLLM VQAv2 GQA∗ VQAT POPE MMEP MMEC MMB MMBCN MM-Vet SEED

LLaVA-1.5-7B 78.5 79.6 58.2 85.9 1510.7 355.7 64.3 58.3 30.5 58.6
RBI-7B w/o DI 76.4 ↓ 74.8 ↓ 56.6 ↓ 85.5 ↓ 1387.7 ↓ 312.5 ↓ 65.5 ↑ 58.3 29.0 ↓ 59.6 ↑
LLaVA-1.5-13B 80.0 81.0 61.3 85.9 1531.3 295.4 67.7 63.6 35.4 61.6
RBI-13B w/o DI 77.3 ↓ 76.0 ↓ 58.2 ↓ 83.4 ↓ 1442.6 ↓ 310.7 ↑ 68.5 ↑ 61.7 ↓ 30.6 ↓ 61.6

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We then evaluate the performance of RBI models with no detection information applied during in-
ference. Upon this, their benchmark scores are only related to ViT features. As shown in Table 2,
the models show a noticeable performance lag compared to LLaVA-1.5, indicating that the retrain-
ing strategy does harm the model in learning how to use image features extracted from the image
encoder. However, it is essential to note that the real world applications encompass a substantial
amount of tasks that do not require fine-grained information but rather demand image-level infor-
mation. Upon these tasks, the MLLM places greater reliance on ViT features. Therefore, while
facilitating the model’s learning of how to utilize detection information, it is crucial to simultane-
ously ensure the model preserves its capability to leverage ViT features.

4.4 LESSON 3: SUITABLE FINE-TUNING ACHIEVES GOOD TRADE-OFFS BETWEEN VIT
FEATURES AND TEXTUAL DETECTION INFORMATION

As indicated in Section 4.3, retraining could inevitably pose challenges for MLLMs in precisely
evaluating the significance of ViT features and detection information, leading to a decline in under-
standing ViT features and a decrease in performance on tasks unrelated to detection. For the third
training strategy, we leverage the well-trained parameters of LLaVA-1.5. Specifically, we fine-tune
the pre-trained LLaVA-1.5 for an additional epoch with the textual detection information infused,
aiming to observe whether the fine-tuning strategy can enhance MLLMs’ ability to effectively bal-
ance between ViT features and detection information, and boost their performance on fine-grained
image recognition. We call this training strategy “Fine-tuning Based Infusion”, abbreviated as FTBI.

Performance Improvement Relative to the Original Model, the Training-free Model, and the
Retrained Model. As shown in Table 1, both the 7B and 13B versions of FTBI exhibit superior
performance compared to LLaVA-1.5, TFI, and RBI, with the FTBI models outperform the original
models by up to 3.99%, and surpass the training-free models by up to 6.71%. Simultaneously, as
indicated in Table 3, when the detection information is not infused, FTBI models show significant
improvement over the RBI models and achieve performance comparable to that of LLaVA-1.5, in-
dicating that the fine-tuning strategy retains LLaVA-1.5’s original understanding of ViT features and
effectively makes good trade-offs between ViT features and the detection information.

Performance Improvement on All Tasks. Upon detailed analysis on Table 1, we can find that
FTBI models exhibit a visible improvement on comprehensive VQA benchmarks such as VQAv2,
GQA∗, and MME. On the benchmarks that evaluate perceptual and reasoning abilities, such as MM-
Bench and SEED-Bench, the models’ performance undergoes a noticeable improvement. Moreover,
the infusion of object detection information significantly improves performance on both the POPE
benchmark, which evaluates object hallucinations, and the MM-Vet benchmark, which contains
questions about fine-grained image recognition. Due to the infusion of OCR information, the mod-
els also exhibit commendable performance on text-related benchmarks such as TextVQA and MME-
cognition. Finally, on the overall performance measure ∆, FTBI models outperform LLaVA-1.5 by
3.99% and 3.30% for the 7B and 13B versions respectively. Besides, FTBI models outperform the
TFI models by 1.69% and 6.71%, indicating that fine-tuning on textual detection information is
effective and allows MLLMs to better comprehend and utilize the detection information.

Table 3: If we do not infuse detection information to FTBI-7B and FTBI-13B during inference, their
performance will be on par with LLaVA-1.5-7B and LLaVA-1.5-13B. “w/o DI” is an abbreviation
for “without detection information.”

MLLM VQAv2 GQA∗ VQAT POPE MMEP MMEC MMB MMBCN MM-Vet SEED

LLaVA-1.5-7B 78.5 79.6 58.2 85.9 1510.7 355.7 64.3 58.3 30.5 58.6
RBI-7B w/o DI 76.4 74.8 56.6 85.5 1387.7 312.5 65.5 58.3 29.0 59.6

FTBI-7B w/o DI 78.0 78.4 57.1 86.0 1441.8 303.6 66.9 59.7 30.1 60.6

LLaVA-1.5-13B 80.0 81.0 61.3 85.9 1531.3 295.4 67.7 63.6 35.4 61.6
RBI-13B w/o DI 77.3 76.0 58.2 83.4 1442.6 310.7 68.5 61.7 30.6 61.6

FTBI-13B w/o DI 79.4 80.0 60.0 85.3 1525.7 320.0 70.8 64.8 36.0 61.7

Fine-tuned Models Can Still Perform Well Without Infusing Detection Information. We as-
sess the benchmark scores of FTBI models without infusing detection information during inference,
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Q: Where is the monkey doll?

Prompt: monkey doll .

Grounding DINO

Coordinates: [0.68, 0.59]

Noun Extraction

Figure 3: An example of detecting open-set tar-
gets with Grounding DINO.

Table 4: Comparison between TFI-7B and
FTBI-7B employed Grounding DINO.

w/ Grounding DINO (box threshold 0.35)

VQAv2 GQA∗ POPE MM-Vet SEED

TFI-7B 74.1 72.3 73.5 30.9 57.4
FTBI-7B 76.3 77.4 84.6 31.2 59.9

Q: Count the number of 

blue guitars on the wall.

LLaVA-1.5-13B: There are 

12 blue guitars on the 

wall.

FTBI-13B: There are 

three blue guitars on the 

wall.

Q: What direction is the

blue taxi traveling? 

Northeast, southeast, 

northwest, or southwest?

LLaVA-1.5-13B: The blue 

taxi is traveling in the 

northeast direction.

FTBI-13B: The blue taxi 

is traveling southwest on 

the city street.

Q: Is there a brown horse in 

this picture? In which part 

of the room is it located?

LLaVA-1.5-13B: Yes, there is 

a brown horse in the 

picture. It is located in the 

middle of the room, 

standing on a table.

FTBI-13B: Yes, there is a 

brown horse in the picture. 

It is located in the right 

part of the room, near the 

top.

Q: Where is the monkey 

doll?

LLaVA-1.5-13B: The 

monkey doll is sitting on 

a table in the living room.

FTBI-13B: The monkey 

doll is on a shelf in the 

living room.

Q: Count the number of 

SUVs.

LLaVA-1.5-13B: There are 

three SUVs in the image.

FTBI-13B: There are 

five SUVs in the image.

Q: Where are the

speakers located? 

LLaVA-1.5-13B: The 

speakers are located on 

the bookshelf.

FTBI-13B: The 

speakers are located on 

the desk, next to the 

laptop.

Figure 4: Examples on which LLaVA-1.5 fails while the fine-tune model (FTBI-13B) with open-set
object detection information succeeds.

aiming to evaluate their capacities in leveraging ViT features. The findings delineated in Table 3
demonstrate that the efficacy of FTBI models without detection information aligns closely with that
of LLaVA-1.5, and they outperform RBI models without detection information across all bench-
marks. It means that the fine-tuning strategy effectively empowers the model to assimilate and make
use of image features extracted by ViT, suggesting that it achieves a good balance between image
features and detection information. Therefore, the fine-tuning strategy is superior to the training-free
strategy and the retraining strategy.

4.5 LESSON 4: SUITABLE FINE-TUNING HELPS MLLMS BETTER UNDERSTAND SPECIALLY
FORMATTED DETECTION INFORMATION

In the previous experiments, we employ DINO to extract object detection information and success-
fully facilitate performance improvement for the MLLM. However, it is essential to note that DINO
is a closed-set object detection model, capable of detecting only 80 common object categories. Nev-
ertheless, images may contain uncommon objects or specific entities such as certain celebrities or
objects with attributive modifiers. In such scenarios, the closed-set models exhibit limitations.

Fortunately, the studied MLLM architecture is modular, and the deployed detection models are
independent of the MLLM. Hence, this architecture allows for flexible replacement of the deployed
detection models. In this experiment, we will substitute the closed-set detector DINO with an open-
set detector to observe whether, after the replacement, the finetuned MLLMs (FTBI) can still operate
effectively and acquire broader capability for detection.

Constructing Detection Information with Grounding DINO. In this experiment, we substitute
the embedded closed-set detector DINO with an open-set object detector called Grounding DINO
(Liu et al., 2023c). Grounding DINO is designed to detect objects related to user-input. With
this model, the studied MLLM can locate targets by referring to the object names mentioned in
questions. To achieve this, we first extract target names from the input questions and combine them
to create prompts. Grounding DINO then follows the prompts to generate location information
for the targets. Finally, the outputs are converted into specially formatted detection information
following the method in Section 3.1. Figure 3 shows an example of this process.
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Training Effect Inherited Following Replacement of Detection Model. In Table 4, we compare
the performance of TFI-7B and FTBI-7B after replacing the detection model DINO with Grounding
DINO. We use VQAv2, GQA∗, POPE, MM-Vet, and SEED-Bench for evaluation as they contain
questions from which effective object names can be extracted. Due to the low detection accuracy
of Grounding DINO, some noise is introduced, which results in lower evaluation scores for both
models compared to LLaVA-1.5-7B. However, as FTBI-7B has been fine-tuned with DINO and it
can filter out some noise, the performance of FTBI-7B is superior to that of TFI-7B. These results
validate that the training effect remains after we replace the detection model.

5 OVERVIEW OF MORE EXPERIMENTS

We list additional experimental details and parameter settings in the appendix and conduct further
experiments to validate the universality of our experimental results.

Model Architecture Rationale. In Appendix D.1, we discuss how does LLaVA-1.5 represents the
majority of advanced MLLMs, supported by their architecture alignment. Besides, we show more
empirical results on other MLLMs, Qwen-VL and LLaVA-NeXT. In Appendix D.2, we explain
why DINO and PaddleOCRv2 can represent other detection models, thanks to the proposed special
format. In Appendix D.3, we conduct experiments based on YOLOv5N and YOLOv11L, and inves-
tigate the impact of detector accuracy. In Appendix D.4, we remove the detection data and repeat
the FTBI experiment. In Appendix D.5, we unfreeze the visual encoder and repeat the experiments.
In Appendix D.6, we explore the impact of a broader object detection scope.

Further Experiments and Analysis on the FTBI Models. In Appendix C.1, we fine-tune
LLaVA-1.5 without the infusion of detection information and discover that the exceptional per-
formance of FTBI models is primarily ascribed to the infused detection information, rather than the
additional fine-tuning. In Appendix C.2, we show the model’s performance on solely leveraging
object detection information or OCR information.

Model Performance and Additional Evaluation Benchmarks. In Appendix E.1, we elaborate
on the motivations and modifications behind the GQA∗. In Appendix E.2, we present detailed
MME benchmark scores. In Appendix E.4, we evaluate our models’ ability to ground specific
linguistic phenomena with the VALSE benchmark. In Appendix E.3, we evaluate the models on two
DocumentVQA benchmarks, DocVQA and InfographicVQA.

6 CONCLUSION

In this paper, we systematically conduct experiments to compare the effects of different training
strategies on the infusion of textual detection information into MLLMs. After thorough investiga-
tion, we determine that fine-tuning the original MLLM for an additional epoch, along with the simul-
taneous infusion of textual detection information, proves to be the most effective approach compared
to the training-free strategy and the retraining strategy. Moreover, we replace the detection model
deployed in the studied MLLM from a close-set detector to an open-set detector and observe that the
updated fine-tuned model retains the training effect and achieve better performance than the updated
training-free one. This indicates that the fine-tuned model, compared to the training-free model,
can better stay abreast of evolving object detection technologies and achieve sustained performance
enhancements.

In a nutshell, we provide a series of progressive insights about the effective infusion of textual de-
tection information into MLLMs. We aim to inform researchers that when attempting to convert
the outputs of vision detection models into textual information for assisting MLLMs, it can be ben-
eficial to use a small amount of general VQA data for additional fine-tuning (potentially using the
instruction-tuning data from the MLLM itself). This approach can yield models that perform better
than those not subjected to training, allowing the models to have a more comprehensive under-
standing and utilization of the detection information. With this work, we hope it can benefit future
MLLM research and development that approaches better understanding, interpreting and engaging
with fine-grained multimodal content.
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APPENDIX

We provide more details and experiments of this work in the appendix and organize them as follows:

Appendix A, More Demonstrative Examples:

• Appendix A.1: we show examples on which LLaVA-1.5-13B fails while the model infused
with textual detection information (FTBI-13B) succeeds.

• Appendix A.2: we show examples of images and their corresponding textual detection
information, illustrating how the textual detection information is constructed.

Appendix B, Implementation Details:

• Appendix B.1: we conduct a statistical analysis on the length of textual detection informa-
tion, showcasing the efficacy of our compression strategy.

• Appendix B.2: we introduce the instruction-following dataset of LLaVA-1.5.

• Appendix B.3: we show the different input resolutions of three branches: CLIP-ViT, DINO,
and PaddleOCRv2.

• Appendix B.4: we show the thresholds we set for filtering the outputs of detection models.

• Appendix B.5: we list the training hyperparameters.

• Appendix B.6: we show the time consumption required for training models.

Appendix C, Further Experiments and Analysis on the FTBI Model:

• Appendix C.1: we fine-tune LLaVA-1.5 without the infusion of detection information and
test the newly got models. The results indicate that the exceptional performance of FTBI
models is primarily ascribed to the infused detection information, rather than the additional
fine-tuning.

• Appendix C.2: we show the performance of FTBI models exclusively infusing OCR in-
formation or object detection information, affirming that they can respectively enhance the
performance of MLLMs on relevant tasks.

• Appendix C.3: we assess the inference efficiency of the MLLM infused with textual detec-
tion information.

Appendix D, Model Architecture Rationale:

• Appendix D.1: we discuss how LLaVA-1.5 represents the majority of advanced MLLMs,
and the results of LLaVA-1.5 can be extended to other MLLMs with similar structures.
Additionally, we perform experiments on other MLLMs, Qwen-VL and LLaVA-NeXT,
validating the versatility of our paper’s experimental findings.

• Appendix D.2: we show how do DINO and PaddleOCRv2 represent other detection models
in our experiments. Additionally, we perform experiments on another object detection
model, YOLO-v8N, validating that the specific format we devise for processing textual
detection information reduces the importance of model selection.

• Appendix D.3: we conduct experiments based on YOLOv5N and YOLOv11L, and inves-
tigate the impact of detector accuracy on MLLM performance.

• Appendix D.4: we remove the detection data from the instruction tuning dataset and re-
peat the FTBI experiment, aiming to investigate whether the model can still maintain good
language comprehension capability.

• Appendix D.5: we introduce LoRA modules to the visual encoder and repeat the retraining
and fine-tuning experiments, obtaining results consistent with the conclusions presented on
the main page.

• Appendix D.6: we conduct experiments based on Co-DETR-LVIS, which is capable of
detecting 1.2K object categories, to explore the impact of a broader object detection scope
on MLLM performance.
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• Appendix D.7: we discuss the main focus of our research, which is “deploying detection
models to assist MLLMs’’, and highlight its distinction from related works that introduce
special tokens to guide MLLMs. Furthermore, we elaborate on the motivation behind fo-
cusing our research on this paradigm.

Appendix E, Model Performance and Additional Evaluation Benchmarks:

• Appendix E.1: we provide further details about why we modify the GQA benchmark.
• Appendix E.2: we present benchmark scores on MME-Perception and MME-Cognition.
• Appendix E.3: we evaluate our models on two well-known DocumentVQA benchmarks,

DocVQA and InfographicVQA.
• Appendix E.4: we evaluate the models’ ability to ground specific linguistic phenomena

with the VALSE benchmark, further confirming that the fine-tuning strategy is better than
the training-free strategy.
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A MORE DEMONSTRATIVE EXAMPLES

A.1 EXAMPLES ON WHICH LLAVA-1.5-13B FAILS WHILE THE MODEL INFUSED WITH
TEXTUAL DETECTION INFORMATION SUCCEEDS.

Table 5 presents examples where LLaVA-1.5 provides incorrect responses, while the FTBI-13B
delivers accurate answers. The showcased examples encompass scenarios related to object counting,
object detection, and text recognition.

Q: How many breads are 

there in the picture?

LLaVA-1.5-13B: There are 

three breads in the picture.

FTBI--13B: There are four

breads in the picture.

Q: What is the time in this 

picture?

LLaVA-1.5-13B: The time 

in this picture is 12:00.

FTBI-13B: The time in 

this picture is 11:10.

Q: What is the car number 

for the blue car?

LLaVA-1.5-13B: The car 

number for the blue car is 

547.

FTBI-13B: The car 

number for the blue car is 

87925.

Q: How many people are 

there in the image?

LLaVA-1.5-13B: There are six

people in the image.

FTBI-13B: There are eight

people in the image.

Q: Are there potted plants? 

Where are them?

LLaVA-1.5-13B: Yes, there 

are potted plants in the 

image. They are located on 

the floor, near the girl and 

the open closet.

FTBI-13B: Yes, there are 

potted plants in the image. 

They are located on the left 

side of the room, near the 

bed.

Q: What is written on the 

jersey of the player with 

number zero?

LLaVA-1.5-13B: The 

jersey of the player with 

number zero reads 

"Stanford".

FTBI-13B: The jersey of 

the player with number 

zero has "TITANS" 

written on it.

Q: Count the number of 

sheep in this picture.

LLaVA-1.5-13B: There are 

five sheep in this picture.

FTBI-13B: There are six

sheep in this picture.

Q: Find the person in the 

picture.

LLaVA-1.5-13B: There is no 

person visible in the image. 

The scene shows a street with 

cars parked along the sidewalk, 

and a traffic light is present.

FTBI-13B: There is a person 

standing on the sidewalk near 

the parked cars in the image.

Q: How many breads are 

there in the picture?

LLaVA-1.5-13B: There are 

three breads in the picture.

FTBI--13B: There are four

breads in the picture.

Q: What is the time in this 

picture?

LLaVA-1.5-13B: The time 

in this picture is 12:00.

FTBI-13B: The time in 

this picture is 11:10.

Q: What is the car number 

for the blue car?

LLaVA-1.5-13B: The car 

number for the blue car is 

547.

FTBI-13B: The car 

number for the blue car is 

87925.

Q: How many people are 

there in the image?

LLaVA-1.5-13B: There are six

people in the image.

FTBI-13B: There are eight

people in the image.

Q: Are there potted plants? 

Where are them?

LLaVA-1.5-13B: Yes, there 

are potted plants in the 

image. They are located on 

the floor, near the girl and 

the open closet.

FTBI-13B: Yes, there are 

potted plants in the image. 

They are located on the left 

side of the room, near the 

bed.

Q: What is written on the 

jersey of the player with 

number zero?

LLaVA-1.5-13B: The 

jersey of the player with 

number zero reads 

"Stanford".

FTBI-13B: The jersey of 

the player with number 

zero has "TITANS" 

written on it.

Q: Count the number of 

sheep in this picture.

LLaVA-1.5-13B: There are 

five sheep in this picture.

FTBI-13B: There are six

sheep in this picture.

Q: Find the person in the 

picture.

LLaVA-1.5-13B: There is no 

person visible in the image. 

The scene shows a street with 

cars parked along the sidewalk, 

and a traffic light is present.

FTBI-13B: There is a person 

standing on the sidewalk near 

the parked cars in the image.

Figure 5: Examples on which LLaVA-1.5-13B fails while the model infused with textual detection
information (FTBI-13B) succeeds.
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A.2 EXAMPLES OF TEXTUAL DETECTION INFORMATION

Detection Models

𝐨𝐛𝐣𝟏(𝐜𝐥𝐬𝟏) ...𝐨𝐛𝐣𝟐(𝐜𝐥𝐬𝟏) 𝐨𝐛𝐣𝟑(𝐜𝐥𝐬𝟐) ...𝐭𝐞𝐱𝐭𝟏

“INS: 𝐧𝟏 𝐜𝐥𝐬𝟏:{[𝐩𝐨𝐬𝟏], [𝐩𝐨𝐬𝟐], ...}, 𝐧𝟐 𝐜𝐥𝐬𝟐:{...}, ... ” “INS: 𝐭𝐞𝐱𝐭𝟏 [𝐩𝐨𝐬], ...”

Figure 6: The composition of textual detection information. “INS”, “obj/cls” and “pos” indicate
instruction, detected object/class name, and position text respectively.

Object Detection: Here are the 

central coordinates of certain objects 

in this image: 1 person:{[0.61, 0.49]}, 1 

bicycle:{[0.22, 0.24]}, 4 hot dog:{[0.33, 

0.5], [0.19, 0.5], [0.45, 0.47], [0.42, 

0.72]}.

Object Detection: Here are the central 

coordinates of certain objects in this image: 4 

person:{[0.31, 0.39], [0.64, 0.45], [0.59, 0.46], [0.92, 

0.48]}, 1 bicycle:{[0.31, 0.58]}, 2 traffic light:{[0.52, 

0.31], [0.13, 0.28]}, 1 clock:{[0.77, 0.27]}, 1 bus:{[0.97, 

0.43]}, 1 train:{[0.07, 0.38]}, 1 umbrella:{[0.46, 0.42]}, 

1 backpack:{[0.28, 0.19]}.

OCR: Here are the central coordinates of certain 

texts in this image: "Crayola"[0.76, 0.8], 

“LARGE"[0.77, 0.88].

Object Detection: Here are the central 

coordinates of certain objects in this image: 6 

person:{[0.43, 0.52], [0.56, 0.33], [0.16, 0.28], [0.14, 

0.51], [0.88, 0.43], [0.93, 0.4]}, 1 chair:{[0.11, 0.89]}, 

1 cup:{[0.7, 0.49]}, 1 bottle:{[0.74, 0.45]}.

Object Detection: Here are the central coordinates 

of certain objects in this image: 11 car:{[0.59, 0.53], 

[0.5, 0.62], [0.25, 0.74], [0.63, 0.49], [0.97, 0.52], [0.63, 

0.48], [0.57, 0.47], [0.02, 0.52], [0.6, 0.45], [0.74, 0.5], 

[0.56, 0.47]}, 7 traffic light:{[0.49, 0.31], [0.18, 0.32], 

[0.2, 0.42], [0.33, 0.27], [0.03, 0.39], [0.22, 0.42], [0.22, 

0.41]}, 1 person:{[0.7, 0.5]}, 1 fire hydrant:{[0.65, 0.51]}.

OCR: Here are the central coordinates of certain 

texts in this image: "85"[0.57, 0.31], "1820"[0.54, 

0.31], "1885"[0.61, 0.31], "BA"[0.69, 0.35], "K"[0.76, 

0.35], "ATM"[0.77, 0.41], "432·XDU"[0.13, 0.83].

OCR: Here are the central coordinates of certain 

texts in this image: "geltyimages"[0.7, 0.64], 

"Credit:BostonGlobe"[0.72, 0.7], "463090962"[0.06, 

0.96].

Object Detection: Here are the 

central coordinates of certain objects 

in this image: 8 chair:{[0.31, 0.6], [0.41, 

0.67], [0.25, 0.58], [0.17, 0.57], [0.05, 

0.92], [0.69, 0.6], [0.55, 0.57], [0.51, 

0.53]}, 1 couch:{[0.48, 0.62]}, 2 

book:{[0.51, 0.64], [0.51, 0.65]}.

Object Detection: Here are the 

central coordinates of certain objects 

in this image: 6 sheep:{[0.38, 0.57], 

[0.24, 0.55], [0.84, 0.27], [0.57, 0.65], 

[0.56, 0.4], [0.47, 0.43]}.

Object Detection: Here are the 

central coordinates of certain objects in 

this image: 5 cup:{[0.27, 0.31], [0.68, 

0.43], [0.53, 0.35], [0.3, 0.15], [0.44, 0.16]}, 

1 spoon:{[0.93, 0.48]}, 1 person:{[0.31, 

0.1]}, 6 bowl:{[0.79, 0.66], [0.44, 0.16], 

[0.66, 0.18], [0.67, 0.22], [0.86, 0.43], 

[0.69, 0.22]}, 2 sandwich:{[0.47, 0.63], 

[0.09, 0.41]}, 2 dining table:{[0.5, 0.55], 

[0.5, 0.5]}.

OCR: Here are the central coordinates of certain 

texts in this image: "87925"[0.73, 0.62], “524"[0.19, 

0.7].

Object Detection: Here are the central 

coordinates of certain objects in this image: 5 

person:{[0.38, 0.53], [0.71, 0.45], [0.67, 0.43], [0.7, 

0.45], [0.33, 0.46]}, 13 car:{[0.05, 0.52], [0.7, 0.64], 

[0.09, 0.46], [0.46, 0.49], [0.41, 0.45], [0.13, 0.5], [0.03, 

0.46], [0.74, 0.43], [0.43, 0.46], [0.19, 0.58], [0.16, 0.44], 

[0.04, 0.49], [0.86, 0.56]}, 2 chair:{[0.46, 0.53], [0.41, 

0.53]}, 3 truck:{[0.86, 0.56], [0.09, 0.46], [0.74, 0.43]}.

OCR: Here are the central coordinates of certain 

texts in this image: "Parts"[0.36, 0.05], "the"[0.53, 

0.05], "of"[0.46, 0.05], "Fish"[0.64, 0.05], "and"[0.44, 

0.14], "the"[0.54, 0.14], "Function"[0.49, 0.23], "First 

dorsal fin"[0.46, 0.3], "Second dorsal fin"[0.68, 

0.31], "Spines"[0.39, 0.36], "Rays"[0.7, 0.38], 

"Lateral line"[0.26, 0.41], "Caudal peduncle"[0.8, 

0.46], "Nostrils"[0.14, 0.53], "Barbels"[0.13, 0.77], 

"Anal fin"[0.61, 0.84], "Caudalfin"[0.77, 0.84], 

"Preopercle"[0.17, 0.87], "Pelvic fin"[0.36, 0.88], 

"Pectoralfin"[0.54, 0.88], "Gillcover"[0.23, 0.94].

Object Detection: Here are the 

central coordinates of certain objects 

in this image: 1 dog:{[0.52, 0.32]}, 1 

frisbee:{[0.61, 0.21]}.

Figure 7: Examples of textual detection information generated with DINO and PaddleOCRv2.
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B IMPLEMENTATION DETAILS

B.1 LENGTH OF TEXTUAL DETECTION INFORMATION

Since the textual descriptions of bounding box coordinates typically involve a lot of digits, their
token sequences are often long. As introduced in Section 3, we devise strategies to succinctly
represent the spatial information of detected objects and texts, mitigating the verbosity of bounding
box descriptions. By focusing on central coordinates and consolidating objects within the same
category, we maintain brevity and clarity in our model’s inputs.

Table 5: The average sequence length of detection information.

Average length Average length (excluding 0)

Object Detection 118.5 125.1

OCR 29.4 97.5

We conduct a statistical analysis on the length of detection information using samples from the
instruction-following dataset of LLaVA-1.5. According to the table, the average length of object
detection information is 118.5, and the average length of OCR information is 29.4. After excluding
the empty sequences, the average length of object detection information rises to 125.1, while the
mean length of OCR information becomes 97.5. Consequently, these numbers fall in an acceptable
range and will not excessively impact the efficiency of training and inference processes.

Additionally, it is observed that approximately 0.6% of object detection information exceeds a length
of 512, whereas about 0.2% of OCR information surpasses the 512 threshold. In other words, our
compression strategy has effectively mitigated the occurrence of lengthy sequences.

Finally, to ensure the length of the input sequence does not exceed the maximum context window
length of LLM, we exclude object detection or OCR information that exceeds a length of 1,024.

B.2 LLAVA-1.5’S INSTRUCTION-FOLLOWING DATASET

The instruction-following dataset of LLaVA-1.5 (Liu et al., 2023a) is a combination of several
datasets that relate to various tasks. Among them, the LLaVA dataset (Liu et al., 2023b) and
ShareGPT dataset (Chiang et al., 2023) comprise high-quality GPT-4 conversation data. VQAv2
(Goyal et al., 2017) and GQA (Hudson & Manning, 2019) present samples that require one word or
a short phrase to answer visual questions. OKVQA (Marino et al., 2019) and A-OKVQA (Schwenk
et al., 2022) are VQA datasets designed to expand the knowledge base of multimodal models through
the incorporation of external prior knowledge. OCRVQA (Mishra et al., 2019) is expressly tailored
to enhance the text recognition capabilities of multimodal models. TextCaps (Sidorov et al., 2020)
is an image captioning dataset, which presents samples in the form of concise one-sentence descrip-
tions corresponding to images. RefCOCO (Kazemzadeh et al., 2014) and VG (Krishna et al., 2017)
are object detection datasets designed to improve the object localization capabilities of multimodal
models.

This dataset enables our models to better harness the additional detection information through the
newly trained MLP and LoRA modules, especially with its object detection and OCR data.

Nevertheless, this dataset comprises only approximately 467K image samples, with only 116K des-
ignated for object detection and approximately 80K for text recognition, which is notably con-
strained. Consequently, should one seek to augment the model’s proficiency in assimilating de-
tection information effectively, the exploration of dataset expansion emerges as a viable and recom-
mended strategy.

Regarding the pretraining dataset of LLaVA-1.5, it is pertinent to note that this dataset predomi-
nantly consists of samples tailored for image captioning, thus inherently emphasizing image-level
information. However, our detection information focuses more on fine-grained details, so we opt
not to incorporate this dataset in our FTBI training strategy.
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B.3 IMAGE RESOLUTION

The user-input images can be of any resolution and they are inputted into CLIP-ViT and detection
modules respectively.

• For CLIP-ViT’s preprocessing, input images are processed to a size of 336x336 (requiring
scaling and padding to form square images).

• For DINO and Grounding DINO’s preprocessing, input images can have arbitrary aspect
ratios. However, we need to limit the length of the shortest side to at least 224 and the
length of the longest side to be within 2048. The setting for the shortest side length is
to prevent insufficient multi-scale features extracted by DINO’s image encoder, ensuring
an adequate number of anchor boxes. The setting for the longest side length is to reduce
additional memory usage, and this value can be set arbitrarily.

• For PaddleOCRv2, we can input images of any resolution and let the model process them
autonomously.

B.4 THRESHOLD SETTING FOR DETECTION MODELS

We set certain thresholds for the detection models to reduce the acquisition of error information.
Specifically, we set the threshold for DINO to 0.3 and only targets with confidence scores higher
than this threshold are considered valid targets. For PaddleOCR, we set the bounding box threshold
to 0.6 and only bounding boxes with confidence scores higher than this threshold are considered to
contain text. For Grounding DINO, we set the bounding box threshold to 0.35 and the text threshold
to 0.25, and only targets meeting the requirements of both thresholds are considered valid targets.

B.5 TRAINING HYPERPARAMETERS

In Table 6, we show the training hyperparameters employed in our experiments. These hyperpa-
rameters are derived from Vicuna (Chiang et al., 2023) and LLaVA-1.5 (Liu et al., 2023a) and have
proven to be effective. In the table, the term “Pretrain-RBI” denotes the hyperparameters used during
the pre-training phase for vision-language alignment in RBI training strategy. “Finetune-RBI” refers
to the hyperparameters employed for the subsequent fine-tuning phase focusing on visual instruction
tuning in RBI training strategy. Additionally, “Finetune-FTBI” designates the hyperparameters used
during the fine-tuning process for FTBI training strategy.

Table 6: Training hyperparameters of RBI and FTBI strategies.

Hyperparameter Pretrain-RBI Finetune-RBI Finetune-FTBI

batch size 256 128 128
MLP lr 1e-3 2e-5 -

lr schedule cosine decay
lr warmup ratio 0.03
weight decay 0

optimizer AdamW
precision bf16
lora rank - 128 128
lora alpha - 256 256

lora lr - 2e-4 2e-4

B.6 TIME CONSUMPTION AND MEMORY REQUIREMENTS

As for the training cost, on four NVIDIA A100 GPUs (80GB VRAM), the time consumption in
terms of the original cost and with the detection information infusion is as follows:

• For pretraining LLaVA-1.5-7B, the time increases from 6 hours to 11 hours.

• For pretraining LLaVA-1.5-13B, the time increases from 11 hours to 17 hours.
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• For fine-tuning LLaVA-1.5-7B, the time increases from 16 hours to 22 hours.

• For fine-tuning LLaVA-1.5-13B, the time increases from 26 hours to 33 hours.

Regarding the memory requirements, deploying detection models results in an additional GPU mem-
ory usage of up to 4GB in each GPU compared to not deploying detection models.

C FURTHER EXPERIMENTS AND ANALYSIS ON THE FTBI MODELS

C.1 FINE-TUNING ON LLAVA-1.5 WITHOUT DETECTION INFORMATION

For the FTBI training strategy, the models undergo an additional epoch of fine-tuning based on
LLaVA-1.5. In the current experiment, we will train a different version of FTBI models without the
infusion of detection information during training. In this way, we can investigate whether the perfor-
mance improvement of the FTBI models is attributable to the supplementary detection information
or to the fine-tuning of an additional epoch.

Table 7: If we finetune LLaVA-1.5 without infusing textual detection information, the performance
will be inferior to the version with detection information. “-T w/o DI” stands for “training without
detection information.”

MLLM VQAv2 GQA∗ VQAT POPE MMEP MMEC MMB MMBCN MM-Vet SEED

FTBI-7B 79.0 80.1 60.1 88.9 1482.7 397.9 67.3 60.2 35.2 60.8
FTBI-7B-T w/o DI 78.2 ↓ 79.0 ↓ 58.2 ↓ 86.8 ↓ 1493.0 ↑ 345.0 ↓ 67.3 60.6 ↑ 29.8 ↓ 60.3 ↓

FTBI-13B 80.3 81.8 61.8 88.8 1555.1 365.4 71.4 65.2 38.9 62.3
FTBI-13B-T w/o DI 79.4 ↓ 80.7 ↓ 60.8 ↓ 87.1 ↓ 1509.0 ↓ 315.4 ↓ 71.0 ↓ 63.9 ↓ 36.1 ↓ 62.8 ↑

As indicated in Table 7, the performance of the models fine-tuned without infusing detection infor-
mation is on par with that of LLaVA-1.5. Compared to FTBI models, these models exhibit inferior
performance across almost all benchmarks. Consequently, the outstanding performance of the FTBI
models is more attributed to the textual detection information we supplement, rather than that we
fine-tune for an extra epoch on LLaVA-1.5.

C.2 PERFORMANCE OF FTBI MODELS EXCLUSIVELY WITH OCR OR OBJECT DETECTION
INFORMATION

Table 8: Performance of FTBI models only infused with OCR information.

MLLM VQAv2 GQA∗ VQAT POPE MMEP MMEC MMB MMBCN MM-Vet SEED

FTBI-7B w/o DI 78.0 78.4 57.1 86.0 1441.8 303.6 66.9 59.7 30.1 60.6
FTBI-7B-OCR 78.3 ↑ 78.2 60.3 ↑ 86.1 1454.4 ↑ 399.3 ↑ 66.7 59.5 35.1 ↑ 60.5

FTBI-13B w/o DI 79.4 80.0 60.0 85.3 1525.7 320.0 70.9 64.8 36.0 61.7
FTBI-13B-OCR 79.7 ↑ 80.0 61.8 ↑ 85.4 1556.9 ↑ 367.5 ↑ 71.1 65.0 38.0 ↑ 61.9

Table 9: Performance of FTBI models only infused with object detection information.

MLLM VQAv2 GQA∗ VQAT POPE MMEP MMEC MMB MMBCN MM-Vet SEED

FTBI-7B w/o DI 78.0 78.4 57.1 86.0 1441.8 303.6 66.9 59.7 30.1 60.6
FTBI-7B-DINO 79.0 ↑ 80.1↑ 57.1 89.0 ↑ 1469.2 ↑ 302.1 67.2 ↑ 60.2 ↑ 31.5 ↑ 61.0 ↑

FTBI-13B w/o DI 79.4 80.0 60.0 85.3 1525.7 320.0 70.9 64.8 36.0 61.7
FTBI-13B-DINO 80.0 ↑ 81.8↑ 60.1 89.0 ↑ 1529.7 ↑ 317.9 71.1 ↑ 65.0 ↑ 37.0 ↑ 62.3 ↑

As evident from Table 8 and Table 9, the infusion of object detection information boosts the scores
of relevant benchmarks for object localization and object hallucination. Similarly, the infusion of
OCR information improves the scores of benchmarks related to text recognition.
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C.3 INFERENCE EFFICIENCY

We assess the time consumption of the FTBI-7B model by calculating its end-to-end inference time
with the GQA dataset and the TextVQA dataset. When the model relies solely on object detection
information during inference, DINO accounts for 38% of the total inference time. Additionally,
when OCR information is exclusively infused, PaddleOCRv2 accounts for 25% of the total inference
time.

Thanks to the modularity of the studied MLLM architecture and the detection model replaceabil-
ity enabled by the fine-tuning strategy, a lighter and more efficient detection model could further
improve the efficiency (Wang et al., 2023b). Additionally, since the embedded detection models
are mutually independent, we can let them run independently on different devices, enabling parallel
inference and further accelerating inference speed.

Regarding the proposed text compression strategy (Section 3), we compare its performance with
that of using the entire output from detection models (without selecting the first two values of coor-
dinates). We find that the model with text compression achieves a 9% reduction in inference time
when combined with object detection information, and a significant 58% reduction in inference time
when combined with OCR information, verifying the effectiveness of the proposed text compression
strategy.

D MODEL ARCHITECTURE RATIONALE

D.1 HOW LLAVA-1.5 REPRESENTS OTHER MLLMS?

On the main page of our paper, we exclusively select LLaVA-1.5 for experimentation, considering
it representative of most advanced models. In this subsection, we will explain this choice from the
following two aspects:

(1) The representativeness of LLaVA-1.5. We choose LLaVA-1.5 as we are in a highly dynamic
field and LLaVA-1.5 is representative enough of most SOTA MLLMs. The advanced MLLMs typ-
ically consist of three main modules: an image encoder, an input projector, and a LLM backbone.
LLaVA-1.5 adheres to this structure.

The process begins by encoding images into image features with an image encoder and aligning
them with text features using an input projector. Most advanced MLLMs include a dedicated branch
like this for processing images into analogous image token sequences. These image tokens are then
combined with text tokens representing input sentences and inputted into the LLM.

Following this structure, the tokens derived from textual detection information can be directly com-
bined with image tokens and used during MLLM’s training and inference. In other words, as long
as the MLLM conforms to this structure, the additional textual detection information can be pro-
cessed similarly before being inputted into the LLM and serves a similar function during training
and inference. Therefore, the results of experiments conducted on LLaVA-1.5 can be applied to
other MLLMs with similar structures.

Furthermore, LLaVA-1.5 has proven to be highly successful, spawning numerous outstanding
works. We conduct our study based on LLaVA-1.5, enabling the application of our experimental
findings to the subsequent works of LLaVA-1.5.

(2) The empirical support on Qwen-VL. To better illustrate the versatility of our work, we also
conduct experiments on another MLLM, Qwen-VL. Qwen-VL uses a cross-attention layer to com-
press visual features into a fixed-length sequence of 256, which differs from LLaVA-1.5’s MLP. And
the datasets for training are also different.

Specifically, since the instruction-following dataset of Qwen-VL-Chat is not open-sourced, we con-
duct visual instruction tuning on Qwen-VL (which has not undergone visual instruction tuning) with
the instruction-following dataset of LLaVA-1.5. We compare three models: Qwen-VL-IT, Qwen-
VL-IT-TFI, and Qwen-VL-IT-FTBI:
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• Qwen-VL-IT refers to Qwen-VL undergoing regular visual instruction tuning. During the
training and inference process, Qwen-VL-IT doesn’t infuse textual detection information.

• Qwen-VL-IT-TFI follows the same training process as Qwen-VL-IT, but it infuses textual
detection information during inference, corresponding to the TFI training strategy on the
main page.

• Qwen-VL-IT-FTBI refers to fine-tuning Qwen-VL-IT while simultaneously infusing de-
tection information during training and inference, corresponding to the FTBI training strat-
egy on the main page.

We evaluate these models on 10 benchmarks, and the results are shown in Table 10.

Table 10: Comparison between “Qwen-VL-IT”, “Qwen-VL-IT-TFI”, and “Qwen-VL-IT-FTBI” on
10 well-recognized MLLM benchmark.

VQAv2 GQA∗ VQAT MMEP MMEC POPE MMB MMBCN MM-Vet SEED

Qwen-VL-IT 80.8 82.1 61.7 1474.8 388.9 86.5 71.5 67.5 44.7 62.9
Qwen-VL-IT-TFI 80.1 ↓ 82.5 ↑ 61.4 ↓ 1455.47 ↓ 438.9 ↑ 89.5 ↑ 69.4 ↓ 66.6 ↓ 40.3 ↓ 63.1 ↑

Qwen-VL-IT-FTBI 81.0 ↑ 82.7 ↑ 61.9 ↑ 1514.3 ↑ 417.1 ↑ 89.5 ↑ 72.9 ↑ 68.6 ↑ 46.7 ↑ 63.1 ↑

Based on Table 10, it is evident that the visual grounding capability of Qwen-VL-IT-TFI has im-
proved compared to Qwen-VL-IT, resulting in significant score increases on the POPE benchmark
and the MME-Cognition benchmark. However, Qwen-VL-IT-TFI exhibits varying degrees of de-
cline on other tasks, similar to the results of the TFI strategy on the main page.

On the other hand, Qwen-VL-IT-FTBI exhibits comprehensive improvements across all 10 bench-
marks compared to Qwen-VL-IT and Qwen-VL-IT-TFI, with notable score increases in both object
detection benchmarks and text recognition benchmarks. This mirrors the results of the FTBI training
strategy on the main page, indicating that by infusing textual detection information during training,
the model can better comprehend the detection information and consequently use it more effectively
to address issues.

Table 11: If we do not infuse detection information to Qwen-VL-IT-FTBI during inference, its
performance will be on par with Qwen-VL-IT. “w/o DI” is an abbreviation for “without detection
information.”

VQAv2 GQA∗ VQAT MMEP MMEC POPE MMB MMBCN MM-Vet SEED

Qwen-VL-IT 80.8 82.1 61.7 1474.8 388.9 86.5 71.5 67.5 44.7 62.9
Qwen-VL-IT-FTBI w/o DI 80.6 81.8 60.9 1470.9 376.4 86.6 72.0 68.3 43.9 62.5

Additionally, as shown in Table 11, we evaluate the performance of Qwen-VL-IT-FTBI without
infusing detection information during inference and find that its results are comparable to those of
Qwen-VL-IT. This further supports the experimental conclusion presented in the main page: fine-
tuning the original MLLM allows it to retain its ability to comprehend image features derived from
the image encoder, leading to strong performance on both image-level tasks and fine-grained image
recognition tasks.

(3) The empirical support on LLaVA-NeXT. we conduct the FTBI experiment again using
LLaVA-NeXT, aiming to investigate whether a more advanced MLLM can enhance the performance
of the FTBI model. The selected base model is llama3-llava-next-8b, and the training dataset is
LLaVA-NeXT’s visual instruction tuning dataset. The results are presented as follows.

From Table 12, incorporating detection information improves LLaVA-NeXT’s performance on
benchmarks related to object detection and text recognition. Moreover, the LLaVA-NeXT version of
the FTBI model demonstrates superior overall performance compared to both the original LLaVA-
NeXT and the TFI model. These results align with the experimental conclusions presented on the
main page.
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Table 12: Comparison between “LLaVA-NeXT-8B”, “LLaVA-NeXT-8B-TFI”, and “LLaVA-NeXT-
8B-FTBI” on 10 well-recognized MLLM benchmark.

Model VQAv2 GQA* VQAT MMEP MMEC POPE MMB MMBCN MM-Vet SEED

LLaVA-NeXT-8B 82.7 82.8 65.1 1588.2 379.3 86.9 72.9 69.6 42.2 66.2
LLaVA-NeXT-8B-TFI 82.0 82.7 65.3 1525.9 468.9 90.3 72.0 70.8 43.8 65.5

LLaVA-NeXT-8B-FTBI 82.5 83.0 65.7 1563.9 445.0 89.4 74.0 70.3 44.1 67.0

In summary, we elucidate the reasons behind LLaVA-1.5’s capability to serve as a representative
model for many advance MLLMs. We assert that the insights drawn from experiments on LLaVA-
1.5 are broadly applicable to other MLLMs with similar structure. Furthermore, we conduct ad-
ditional experiments on other MLLMs, Qwen-VL and LLaVA-NeXT, thereby demonstrating the
extensive validity of our research findings.

D.2 HOW DINO AND PADDLEOCRV2 REPRESENT OTHER DETECION MODELS?

Due to the specific textual format we designed, we can process the outputs of any object detection
models and OCR models into textual detection information, as long as they can output the names
of targets, the content of texts, and the corresponding coordinates of targets. (“Here are the central
coordinates of certain objects in this image: 2 people:[0.25, 0.12], [0.11, 0.43], 1 cake:[0.42,
0.32].” or “Here are the central coordinates of certain texts in this image: ‘Birthday’[0.41, 0.85],
‘YEARS’[0.11, 0.34].” ) In other words, the selection of object detection models and OCR models
is not crucial. We can choose any detection models for the experiments.

Table 13: Comparison between “LLaVA-1.5-7B”, “FTBI-7B-DINO ”, and “FTBI-7B-YOLOv8”.

VQAv2 GQA∗ VQAT MMEP MMEC POPE MMB MMBCN MM-Vet SEED

LLaVA-1.5-7B 78.5 79.6 58.2 1510.7 355.7 85.9 64.3 58.3 30.5 58.6
FTBI-7B-DINO 79.0 80.1 59.8 1482.7 397.9 88.9 67.3 60.2 35.2 60.8

FTBI-7B-YOLOv8 78.6 80.4 59.9 1492.1 400.4 87.2 68.4 62.5 34.6 60.2

To better elucidate this point, we replace DINO with another object detection model, YOLOv8, and
repeat the FTBI experiments, yielding the outcomes in Table 13. According to the table, both models
bring similar performance improvements to the studied MLLM, suggesting that when the function-
alities and performances of detection models are similar, their impact on the MLLM’s enhancement
is also similar.

D.3 EXPERIMENTS ON DETECTORS WITH VARYING PERFORMANCE

The outputs of low-performance detection models often include noise, which can adversely affect
the following MLLM. To investigate the impact of detection model accuracy on the MLLM per-
formance, we employ a low-performance detection model YOLOv5N (Jocher et al., 2023) (mAP
34.3) and a high-performance detection model YOLOv11L (mAP 53.4) (replacing only the object
detection model DINO while keeping the PaddleOCR unchanged), conduct both the training-free
and fine-tuning experiments again and compare the performance gains brought by them. The results
are presented in Table 14.

Table 14: Experiments based on YOLOv5N and YOLOv11L.

Model VQAv2 GQA* VQAT MMEP MMEC POPE MMB MMBCN MM-Vet SEED

LLaVA-1.5-7B 78.5 79.6 58.2 1510.7 355.7 85.9 64.3 58.3 30.5 58.6
LLaVA-1.5-7B-YOLOv5N-TFI 78.3 79.3 59.0 1459.9 382.9 86.3 64.2 56.3 32.2 59.9

LLaVA-1.5-7B-YOLOv5N-FTBI 78.6 79.9 60.0 1492.7 402.1 87.1 68.9 62.5 33.5 60.4
LLaVA-1.5-7B-YOLOv11L-TFI 78.5 79.5 59.0 1490.6 364.6 87.9 64.7 56.5 33.8 60.3

LLaVA-1.5-7B-YOLOv11L-FTBI 79.0 80.0 60.2 1497.5 405.4 88.9 70.3 62.9 34.6 60.6

The results are presented in the table, from which the following conclusions can be drawn:
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• Under the training-free strategy, YOLOv5N introduces noise to LLaVA-1.5-7B, resulting
in performance degradation. In contrast, YOLOv11L, due to its superior performance,
introduces minimal noise, thereby causing negligible negative impact.

• For object detection-related tasks (POPE & MM-Vet), both YOLOv5N and YOLOv11L
contribute to performance improvements under the training-free strategy. However, the
improvement achieved by YOLOv5N is evidently smaller than that of YOLOv11L, which
can be attributed to the disparity in their detection capabilities. This highlights the training-
free strategy’s limited adaptability to low-performance detection models.

• Furthermore, after fine-tuning, both two versions of the MLLM achieve comprehensive
performance improvements, surpassing the original LLaVA-1.5-7B. The results align with
the conclusions on the main page, demonstrating that the fine-tuning strategy enables the
MLLM to better differentiate between noise and useful information and more effectively
interpret specially designed detection information, leading to performance enhancement.

These results indicate that the fine-tuning strategy is more robust and better able to handle the erro-
neous information introduced by low-performance detection models compared to the training-free
strategy.

D.4 MODEL FINE-TUNING WITHOUT THE USE OF DETECTION DATA

On the main page, the fine-tuning dataset we used includes object detection data. In this subsection,
we will explore fine-tuning the MLLM using data unrelated to detection tasks and examine whether
the FTBI model can still retain its good language understanding capabilities.

Regarding the new fine-tuning dataset, we remove samples related to “coordinate” questions (object
detection samples) and eliminate all text recognition samples from the original LLaVA fine-tuning
dataset. Consequently, the number of samples decreases from 665K to 450K. The experimental
results are presented in the table below, and the corresponding model name is ”LLaVA-1.5-7B-
FTBI-FNDI”.

Table 15: Results of fine-Tuning the model without using detection data.

Model VQAv2 GQA* VQAT MMEP MMEC POPE MMB MMBCN MM-Vet SEED

LLaVA-1.5-7B 78.5 79.6 58.2 1510.7 355.7 85.9 64.3 58.3 30.5 58.6
LLaVA-1.5-7B-TFI 78.5 79.2 59.2 1497.0 401.0 89.9 65.0 57.2 33.7 60.6

LLaVA-1.5-7B-FTBI-FNDI 79.1 79.8 59.5 1518.0 410.4 88.8 68.4 60.3 33.9 61.1
LLaVA-1.5-7B-FTBI 79.0 80.1 60.1 1482.7 397.9 88.9 67.3 60.2 35.2 60.8

From Table 15, it is evident that even without fine-tuning on detection-related data, the FTBI model
still demonstrates strong performance, significantly surpassing the original model and the training-
free model. Moreover, its results are only slightly below the version fine-tuned with detection data.
These results indicate that, even without fine-tuning on tasks related to detection, the fine-tuned
model is still capable of maintaining a broad range of language understanding abilities.

D.5 MODEL FINE-TUNING WITH AN UNFROZEN VISUAL ENCODER

On the main page, we do not train the visual encoder because the baseline we use, LLaVA-1.5-7B,
also keeps the visual encoder frozen during training. In this subsection, we unfreeze the visual
encoder and repeat both the retraining and fine-tuning processes for exploration. The results are
presented as follows, where “TVE” denotes training with the visual encoder unfrozen.

As shown in Table 16, even with the visual encoder being trained, the performance of the training-
free, retraining, and fine-tuning strategies aligns with the patterns summarized on the main page.
Specifically, the RBI model outperforms the training-free model, while the FTBI model further
surpasses the RBI model. Moreover, the fine-tuned model achieves the best performance in 9 out of
10 benchmarks while training with the visual encoder unfrozen.
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Table 16: Results of training with the visual encoder unfrozen.

Model VQAv2 GQA* VQAT MMEP MMEC POPE MMB MMBCN MM-Vet SEED

LLaVA-1.5-7B 78.5 79.6 58.2 1510.7 355.7 85.9 64.3 58.3 30.5 58.6
LLaVA-1.5-7B-TFI 78.5 79.2 59.2 1497.0 401.0 89.9 65.0 57.2 33.7 60.6

LLaVA-1.5-7B-RBI-TVE 78.2 76.1 59.3 1466.5 396.4 89.1 67.2 60.4 34.0 60.5
LLaVA-1.5-7B-FTBI-TVE 79 79.7 60.4 1556.9 412.1 89.3 68.9 61.2 34.6 60.8

Table 17: Results of training with the visual encoder unfrozen (without detection information being
input during inference).

Model VQAv2 GQA* VQAT MMEP MMEC POPE MMB MMBCN MM-Vet SEED

LLaVA-1.5-7B 78.5 79.6 58.2 1510.7 355.7 85.9 64.3 58.3 30.5 58.6
LLaVA-1.5-7B-RBI-TVE w/o DI 76.4 75.4 56.1 1480.7 289.3 83.1 66.3 59.5 30.1 59.6

LLaVA-1.5-7B-FTBI-TVE w/o DI 78.1 78.9 57.7 1499.6 318.6 85.5 66.8 60.1 30.8 60.5

Furthermore, Table 17 presents the performance of RBI and FTBI models when the detection infor-
mation is not dynamically input during inference. It demonstrates that, under the condition where
the visual encoder is unfrozen, the fine-tuned model still maintains comparable performance to the
original LLaVA-1.5-7B, while the RBI model performs worse than the original model. This indi-
cates that the fine-tuning strategy better balances the contributions of the visual encoder’s outputs
and the detection information, thereby facilitating a more effective understanding of detection cues.
These findings are consistent with the conclusions presented in our paper.

D.6 EXPERIMENTS ON A DETECTOR WITH BROADER DETECTION RANGES

On the main page, the object detection model we use, DINO, is limited to detecting 80 object
categories, as it is trained on the MS-COCO (Lin et al., 2014) dataset. In this subsection, we explore
whether using an object detection model with a broader detection range could further improve the
performance of the FTBI model. To this end, we select Co-DETR-LVIS (Zong et al., 2023), which is
trained on the LVIS (Gupta et al., 2019) dataset and can detect 1,203 object categories. We conduct
both training-free and fine-tuning experiments using Co-DETR-LVIS, and the results are as follows:

Table 18: Experimental results based on Co-DETR-LVIS.

Model VQAv2 GQA* VQAT MMEP MMEC POPE MMB MMBCN MM-Vet SEED

LLaVA-1.5-7B 78.5 79.6 58.2 1510.7 355.7 85.9 64.3 58.3 30.5 58.6
LLaVA-1.5-7B-DINO-TFI 78.5 79.2 59.2 1497.0 401.0 89.9 65.0 57.2 33.7 60.6

LLaVA-1.5-7B-DINO-FTBI 79.0 80.1 60.1 1482.7 397.9 88.9 67.3 60.2 35.2 60.8
LLaVA-1.5-7B-CoDETR-LVIS-TFI 77.7 76.9 58.5 1465.4 386.8 87.4 65.7 57.3 33.9 60.1

LLaVA-1.5-7B-CoDETR-LVIS-FTBI 78.7 79.5 59.7 1469.1 387.1 88.4 66.6 60.1 35.6 60.7

We can derive the following points from the table:

• Under the training-free condition, the TFI model based on Co-DETR-LVIS performs worse
than the DINO-based TFI model across almost all benchmarks. After analysis, we believe
that this is because Co-DETR-LVIS introduces more noise compared to DINO, as it detects
a significant number of redundant objects.

• After fine-tuning, the MLLM gains the ability to mitigate the noise introduced by Co-
DETR-LVIS. Consequently, the FTBI model based on Co-DETR-LVIS achieves compre-
hensive performance improvements over its TFI counterpart. This observation is consistent
with the conclusions presented in our paper.

• Furthermore, when comparing the FTBI model based on Co-DETR-LVIS with the FTBI
model based on DINO, it is evident that the Co-DETR-LVIS-based model performs worse,
exhibiting inferior results across all ten benchmarks.
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In summary, detection models with a wider range of object categories do not necessarily improve
the performance of the FTBI models. We think this is because many of the objects they detect are
redundant and may instead introduce noise, leading to a decrease in performance scores.

D.7 FURTHER DISCUSSION ON RELATED WORKS

(1) Why we conduct comparative experiments around adaptive training based on “deploying
detection models to assist MLLMs”? Deploying independent detection models (or models for
other downstream tasks) to generate auxiliary text for MLLMs is both straightforward and effective.
By simply incorporating external text descriptions into the MLLMs, it significantly improves their
performance. Moreover, the deployed models are interchangeable, allowing for convenient updates
and the replacement with higher-performing models, thereby enhancing the overall performance of
the framework. Given its numerous advantages, an increasing number of researchers are investigat-
ing this paradigm and working based on it.

Nevertheless, many researchers tend to adopt training-free strategies. The impact of adaptive train-
ing, however, remains an important area of investigation. Therefore, we conduct systematic exper-
iments based on the training-free and adaptive training strategies in this paradigm, as there has not
been a comprehensive comparison between them.

(2) Distinctions from approaches involving the introduction of special tokens. In the academic
community, there is a paradigm also focusing on detection information, which involves introducing
special tokens to explicitly infuse detection information in both input and output, guiding MLLMs to
leverage this information. Typical methods include MiniGPT4-v2 (Chen et al., 2023b), VisionLLM
(Wang et al., 2024b), and Shikra (Chen et al., 2023c).

Nevertheless, this paradigm differs significantly from the paradigm we focus on.

• First, the method of deploying detection models allows MLLMs to receive real-time de-
tection information during both training and inference. This type of detection information
encompasses the locations of all detectable objects in the image, containing rich details
about the image. In contrast, the special token method, which does not deploy detection
models, requires manual input of detection information at the input stage. Such detection
information is typically limited to a single object or a small number of objects, serving
primarily as task guidance. Thus, the role of detection information differs between these
approaches: in the former, it assists MLLMs for downstream tasks by providing useful de-
tection details, while in the latter, it usually serves only as a signal, indicating that the task
involves detecting specific targets.

• Furthermore, the detection information introduced by MiniGPT4-v2 and VisionLLM is
completely accurate, as it is derived from datasets. In contrast, deployed detection models
may occasionally produce errors, introducing noise that affects the training-free model.
This noise, however, also trains the MLLMs’ ability to denoise.

Therefore, the focus of our paper is fundamentally different from them. The training strategies for
deploying detection models to assist MLLMs have not been as extensively explored as methods
involving the special tokens. Our systematic study on this topic represents a new departure.

(3) Our study is a pioneering work, offering inspiration for further research. Our research
investigates whether adaptive training can help MLLMs better identify noise in real-time detection
information and more effectively leverage the outputs of additional detection models to enhance
VQA performance. To the best of our knowledge, no previous work has systematically explored the
impact of adaptive training on deploying detection models to assist MLLMs. To draw inspiration
from it, we conduct a series of systematic experiments in this direction.
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Our findings demonstrate that the adaptive training strategy indeed outperforms the training-free
strategy. Additionally, we confirm that fine-tuning with only a small amount of high-quality VQA
data can also lead to improved performance, and the performance gain is still preserved even after
replacing the detection models. As a pioneering study in this area, we have uncovered many valuable
insights, and we hope our findings can provide insights for researchers in the relevant field.

E MODEL PERFORMANCE AND ADDITIONAL EVALUATION BENCHMARKS

E.1 MODIFICATION ON THE GQA BENCHMARK

In the original GQA benchmark, a response is considered correct only when it precisely matches
the reference answer. However, due to the presence of numerous synonyms in the noun vocabulary,
as well as variations in noun plurality, such evaluation criteria result in the omission of many correct
responses. For example, if our model provides the response “ramp” instead of the expected answer
“pavement”, or answers the question “what is the airplane flying above?” with “beach” instead of
the expected answer “ocean”, it could lead to “inaccuracies”. Nonetheless, the model does not make
mistakes.

Thus, we make modifications to the GQA benchmark. We select only a subset of the evaluation
dataset, including samples that only require yes or no answers, as well as those involving choices
(questions containing “or”). For these samples, the answer can be chosen from a limited set of op-
tions, eliminating the possibility of models providing correct but non-matching answers, which leads
to more accurate evaluation outcomes. After filtering, the remaining number of samples is 5,677,
approximately half of the original evaluation dataset. We name the modified evaluation benchmark
as GQA∗.

E.2 MME BENCHMARK IN TABLE 1

Table 19: Performance of TFI models, RBI models, and FTBI models on the MME benchmark.

MLLM MME-Perception MME-Cognition

LLaVA-1.5-7B 1510.7 355.7
TFI-7B 1497.0 401.0
RBI-7B 1454.5 412.0

FTBI-7B 1482.7 397.9

LLaVA-1.5-13B 1531.3 295.4
TFI-7B 1453.6 401.0

RBI-13B 1491.2 409.6
FTBI-13B 1555.1 365.4

In Table 19, we present benchmark scores for TFI models, RBI models, and FTBI models on MME-
Perception and MME-Cognition. According to the table, it reveals a significant enhancement in
scores for both models on MME-Cognition. This notable enhancement can be ascribed to the
infusion of supplementary OCR information, addressing a multitude of questions within MME-
Cognition that pertain to textual content embedded within images.

Furthermore, concerning the MME-Perception benchmark, our models exhibit some fluctuations in
scores. Nonetheless, it is noteworthy that the scores for FTBI models surpass those for TFI models
and RBI models, which underscores that the fine-tuning approach better preserves the original image
understanding capabilities of MLLMs.

E.3 PERFORMANCE ON DOCUMENTVQA BENCHMARKS

In this subsection, we evaluate our models on two well-known DocumentVQA benchmarks,
DocVQA (Mathew et al., 2021) and InfographicVQA(Mathew et al., 2022). These benchmarks are
specifically designed for visual question answering tasks where questions are answered using text
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within the document images. Their datasets provide OCR transcriptions and ground truth answers,
enabling the evaluation of models in interpreting and extracting information from documents.

The results are presented in the two tables below. The first table compares the performance of
the TFI, RBI, and FTBI models on the DocVQA and InfographicVQA benchmarks. The second
table compares the performance of the RBI and FTBI models on the same benchmarks without
incorporating detection information during inference.

Table 20: Performance of the TFI, RBI, and FTBI models on DocVQA and InfographicVQA.

Model DocVQA InfographicVQA

LLaVA-1.5-7B 19.4 18.8
LLaVA-1.5-7B-TFI 35.3 21.0
LLaVA-1.5-7B-RBI 35.7 20.9

LLaVA-1.5-7B-FTBI 35.9 21.3

LLaVA-1.5-13B 20.6 20.7
LLaVA-1.5-13B-TFI 35.5 22.1
LLaVA-1.5-13B-RBI 37.9 23.3

LLaVA-1.5-13B-FTBI 38.5 24.2

Table 21: Performance of the TFI, RBI, and FTBI models on DocVQA and InfographicVQA (with-
out detection information being input during inference).

Model DocVQA InfographicVQA

LLaVA-1.5-7B 19.4 18.8
LLaVA-1.5-7B-RBI w/o DI 17.3 17.8

LLaVA-1.5-7B-FTBI w/o DI 19.4 18.7

LLaVA-1.5-13B 20.6 20.7
LLaVA-1.5-13B-RBI w/o DI 18.6 20.1

LLaVA-1.5-13B-FTBI w/o DI 20.6 20.9

As shown in Table 20, the deployment of detection models, particularly the OCR model, leads to a
significant score improvement on DocVQA. Furthermore, models with adaptive training noticeably
outperform training-free models . Specifically, the FTBI models surpass the RBI models, which in
turn outperforms the TFI models. This suggests that the adaptive training enables MLLMs to better
leverage the input detection information, resulting in improved performance.

Table 21 presents a comparison between the RBI models and the FTBI models in the absence of
infused detection information. As shown, the performance of the RBI models is significantly infe-
rior to that of the FTBI models. While the FTBI models, without detection information, perform
similarly to the original LLaVA-1.5. This demonstrates that the fine-tuning strategy allows MLLMs
to effectively balance the weights between the image encoder output and textual detection informa-
tion, thereby preserving the comprehensive VQA capabilities. These results are consistent with the
findings on the main page.

E.4 PERFORMANCE ON THE VALSE BENCHMARK

VALSE (Parcalabescu et al., 2022) (Vision And Language Structured Evaluation) is a zero-shot
benchmark designed to test the visual-linguistic grounding capabilities of general-purpose vision-
language models on specific linguistic phenomena. It assesses many capabilities of MLLMs, in-
cluding six aspects: existence, plurality, counting, spatial relations, actions, and entity co-reference.
In this subsection, we will evaluate the performance of LLaVA-1.5, TFI-7B, and FTBI-7B on the
VALSE benchmark and compare their results. This analysis will further validate our conclusion
on the main page: the fine-tuning strategy enables MLLMs to better understand the input texual
detection information compared to the training-free approach.
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Table 22: Comparison between LLaVA-1.5-7B, TFI-7B, and FTBI-7B on the VALSE benchmark.

Existence Plurality Counting hard Counting small

accr
LLaVA-1.5-7B 69.9 13.4 35.9 35.6

TFI-7B 74.1 9.3 38.0 40.9
FTBI-7B 70.5 17.6 46.1 51.6

acc
LLaVA-1.5-7B 84.0 56.2 64.6 66.9

TFI-7B 85.9 54.6 66.1 68.7
FTBI-7B 84.1 58.1 71.1 74.4

min(pc, pf )
LLaVA-1.5-7B 73.7 16.0 52.1 45.7

TFI-7B 77.6 11.5 57.3 51.3
FTBI-7B 71.5 22.1 69.5 65.3

Counting adversarial Relations Action Replacement Actant Swap

accr
LLaVA-1.5-7B 25.2 4.7 34.3 10.3

TFI-7B 24.0 2.4 29.9 11.2
FTBI-7B 36.3 8.2 37.4 19.2

acc
LLaVA-1.5-7B 55.6 52.0 66.4 53.1

TFI-7B 55.1 50.9 64.4 55.0
FTBI-7B 64.8 53.4 67.6 57.3

min(pc, pf )
LLaVA-1.5-7B 39.8 7.5 43.8 16.7

TFI-7B 41.2 4.7 35.7 16.5
FTBI-7B 59.5 14.6 52.9 30.2

Coreference Coreference hard Foil it

accr
LLaVA-1.5-7B 5.2 4.8 50.5

TFI-7B 3.1 3.9 56.8
FTBI-7B 20.2 18.3 63.0

acc
LLaVA-1.5-7B 52.3 52.4 75.1

TFI-7B 51.3 51.4 78.4
FTBI-7B 58.6 55.8 81.4

min(pc, pf )
LLaVA-1.5-7B 6.4 4.8 53.5

TFI-7B 3.8 3.9 58.3
FTBI-7B 24.0 20.2 66.6

In VALSE, a valid instance consists of an image, a caption, and a modified caption called a ‘foil’ that
exemplifies a specific linguistic phenomenon. The tested model is required to distinguish between
real captions and foils. VALSE employs four metrics to evaluate the model’s performance: overall
accuracy (acc) on all classes (foil and correct); precision (pc) measuring how well models identify
the correct examples; foil precision(pf ) measuring how well foiled cases are identified; and pairwise
ranking accuracy (accr), which measures whether the image-sentence alignment score is greater for
a correct image-text pair than for its foiled pair. accr is more permissive than acc as it consider the
model prediction correct if the score for a foil is lower than the score for a caption.

Due to the inability of LLaVA-1.5 and our models to directly output “cross relationship score” as
the image-sentence alignment score like models such as LXMERT, we modify the computation of
accr, acc, pc and pf following the approach outlined in
“lxmert valse eval.py” (https://github.com/Heidelberg-NLP/VALSE/
blob/main/lxmert valse eval.py) as follows:

(1) Let the model answer the following two questions and tally the number of ’yes’ and ’no’ re-
sponses for each question.:

• Q1: “Does this image match the sentence ‘caption’? Use only ‘yes’ or ‘no’ to answer.”
• Q2: “Does this image match the sentence ‘foil’? Use only ‘yes’ or ‘no’ to answer.”

(2) When the answer to Question 1 is “yes”, increment the counters for foil accuracy and capt fits.
When the answer to Question 2 is “no”, increment the counters for foil detected and foil accuracy.
If the answer to Question 1 is “yes” and the answer to Question 2 is “no”, increment the counter for
pairwise acc.

(3) The final calculation formula is:
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acc =
foil accuracy

count
∗ 50,

pc =
capt fits

count
∗ 100,

pf =
foil detected

count
∗ 100,

accr =
pairwise acc

count
∗ 100

The results are presented in Table 22. It can be observed that TFI-7B performs better than LLaVA-
1.5-7B in some areas, while FTBI-7B outperforms LLaVA-1.5-7B in all aspects, which indicates
that the models infused with textual detection information are more sensitive to foiled instances
and have better capabilities in visual grounding. Moreover, FTBI-7B outperforms TFI-7B on all
metrics except for the “Existence” metric, further demonstrating that fine-tuning strategies are more
effective than training-free approaches in helping MLLMs understand and utilize textual detection
information.
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