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ABSTRACT

The increase in Arctic marine activity due to rapid warming and significant sea ice
loss necessitates highly reliable, short-term sea ice forecasts to ensure maritime
safety and operational efficiency. In this work, we present a novel data-driven ap-
proach for sea ice condition forecasting in the Gulf of Ob, leveraging sequences
of radar images from Sentinel-1, weather observations, and GLORYS forecasts.
Our approach integrates advanced video prediction models, originally developed
for vision tasks, with domain-specific data preprocessing and augmentation tech-
niques tailored to the unique challenges of Arctic sea ice dynamics. Central to
our methodology is the use of uncertainty quantification to assess the reliabil-
ity of predictions, ensuring robust decision-making in safety-critical applications.
Furthermore, we propose a uncertainty-aware model switching mechanism that
enhances forecast accuracy and model robustness, crucial for safe operations in
volatile Arctic environments. Our results demonstrate substantial improvements
over baseline approaches, underscoring the importance of uncertainty quantifica-
tion and specialized data handling for effective and reliable sea ice forecasting.
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INTRODUCTION

The Arctic region is experiencing an unprecedented rate of warming, leading to a significant reduc-
tion in sea ice area by more than 30% over the last four decades, and a simultaneous decrease in
sea ice thickness (Kwok, 2018). Alongside this, the last century has seen active development of ice-
breaker construction technologies, including nuclear-powered ones. These changes have opened up
new sea routes, such as the Northern Sea Route, which provide faster and more economical trans-
port. However, increased navigation is accompanied by increased risks due to ice jams, posing a
serious threat to maritime safety.

Traditional sea ice models, based on elastic-visco-plastic rheological properties, often fail to accu-
rately reflect all the nuances of ice deformation, rendering them unreliable for forecasting in some
cases (Nummelin et al., 2016; Eastwood et al., 2020; Li et al., 2021; Overland & Pease, 1988). Addi-
tionally, these models require significant computational resources to adequately simulate the interac-
tions between the ocean and ice. Consequently, there is a need to explore alternative methodologies
that leverage statistical methods such as machine learning techniques, known for their flexibility and
lower computational demands.

Our research is aimed at improving the forecasting of ice conditions in the Gulf of Ob, a region
significantly influenced by the interaction of the saline waters of the Kara Sea and the fresh water
of the big northern rivers, leading to complex ice formation dynamics (Weatherly & Walsh, 1996;
Osadchiev et al., 2021).

We utilize radar images obtained in the Sentinel-1 mission (Sentinel-1), weather observation data
(Weather & Climate), and operational forecasts and reanalysis from the GLORYS project (GLO) to
predict future sea ice conditions. From a machine learning perspective, the series of satellite radar
images can be treated as a continuous video sequence, therefore the problem can be formulated as a
conditioned video prediction task — the widely investigated problem in common-life domain (Ming
et al., 2024). Our research employs following video prediction models:

• Implicit Stacked Autoregressive Model for Video Prediction (IAM4VP) (Seo et al., 2023)
uses a fully convolutional neural network with an implicit multi-input-single-output work-
flow, achieving state-of-the-art accuracy of weather predictions in datasets such as SEVIR;

• Dynamic Multi-Scale Voxel Flow Network (DMVFN) (Hu et al., 2023) utilizes voxel flow
for video prediction, addressing efficiency and adaptability in handling diverse motion
scales;

• MotionRNN (Wu et al., 2021) models spacetime-varying motions using the Motion Gat-
ing Recurrent Unit and Motion Highway mechanisms, enhancing prediction accuracy in
dynamic scenarios;

• Neural Ordinary Differential Equations (Neural ODE) and Vid-ODE (Park et al., 2021)
treat consecutive frames as solutions to systems of ordinary differential equations, offering
control over visual attributes and smooth transitions between frames.

As the primary loss for training models and metric for evaluating their performance, we use Mean
Squared Error (MSE) between predicted and target Synthetic-Aperture Radar (SAR) images. In ad-
dition to this, we utilize the Structural Similarity Index (SSIM) (Wang et al., 2004) and its extension,
the Multi-Scale Structural Similarity Index (MS-SSIM) (Wang et al., 2003), to assess the perceived
quality of digital images and videos. Finally, the Integrated Ice Edge Error at level c (IIEE@c)
(Goessling et al., 2016) is utilized to measure the similarity between forecasted and observed ice
sheets. These indicators allow us to meticulously compare the accuracy of predicted ice conditions
against observed data, ensuring that our models reflect not only general trends but also detailed
spatial structures necessary for accurate ice mapping.

Our contributions can be summarized as follows:

• we explore the potential of modern deep learning video-prediction models in short-term
regional sea ice forecasting;

• we address the problem of data irregularity and missing values within the Arctic area by
exploring filtration, normalization, and augmentations techniques;
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• we show the ensemble of ML models provides sufficient uncertainty estimation, and we
propose novel uncertainty-aware model switching scheme that stabilizes the forecast and
enhances its quality;

• finally, we assess a gap filling performance for satellite radar imagery and demonstrate the
superiority of our method in comparison with a general approach for interpolating video
sequences.

RELATED WORKS

Several studies have demonstrated the effectiveness of machine learning in forecasting sea ice extent
and sea ice concentration. Chi and Kim (Chi & Kim, 2017) pioneered in the use of deep learning
for sea ice prediction. Their model employs multilayer perceptrons (MLPs) and long- and short-
term memory networks (LSTMs) to capture complex relationships in sea ice data. By training the
MLP- and LSTM-based models on historical data, they identify patterns for one-month predictions,
outperforming traditional statistical models. This work highlights the advantages of deep learning
in sea ice forecasting.

Recent research has extended the application of UNet-based models to sea ice forecasting, high-
lighting their versatility beyond original medical imaging applications. Fernandez et al. (Fernández
et al., 2022) investigated coastal sea elements forecasting using various UNet-based architectures,
including 3DDR-UNet and its enhanced versions. Their study demonstrated the effectiveness of
these models in forecasting coastal sea conditions when using satellite imagery. Grigoryev et al.
(Grigoryev et al., 2022) presented a recurrent UNet with a specialized training scheme that con-
siderably outperformed persistence and linear trend baseline forecasts of sea-ice conditions in the
regions of the Barents, Labrador, and Laptev seas for lead times up to 10 days. Kvanum et al.
(Kvanum et al., 2024) showed that the similar approach in the Barents sea can overcome traditional
numerical models at the forecasting of sea ice concentration at one kilometer resolution and 3-day
lead time. Keller et al. (Keller et al., 2023) explored various UNet-based architectures for prediction
sea ice extent at kilometer resolution for lead time up to 7 days. These studies revealed the poten-
tial of machine learning methods over traditional approaches for high-resolution sea ice conditions
forecasting.

Several studies showcase the prospects of uncertainty-aware data-driven sea ice forecasting. Horvath
et al. (Horvath et al., 2020) suggested using Bayesian logistic regression to forecast September
minimum ice cover from 1-month up to 7-month lead times. In this paper Bayesian uncertainty
quantification helps to assess the reliabillity of the forecasts. Andersson et al. (Andersson et al.,
2021) introduced a probabilistic deep learning sea ice forecasting system called IceNet with 6-month
lead time. Their system predicts monthly averaged sea ice concentration maps at 25-km resolution,
outperforming traditional models by effectively bounding the ice edge. Wu et al. (Wu et al., 2022)
suggested VAE-Based Non-Autoregressive Transformer as an uncertainty-aware model for long-
term sea ice concentration forecast along Northern Sea Route. Also uncertainty quantification is
the key motive of the conjugate problems like sea ice data assimilation (Nazanin, 2019) or sea ice
concentration retrieval (Chen et al., 2023b).

One challenge in sea ice forecasting and analysis based on satellite imagery data is the presence of
noise and gaps, which can occur due to limitations of satellite trajectories, instrumental errors, data
losses, and environmental factors. To address this, researchers have proposed various gap-filling
methods (Desai & Ganatra, 2012). They incorporate chained data fusion, multivariate interpola-
tion, and empirical orthogonal functions to effectively fill missing data. Weiss et al. (Weiss et al.,
2014) proposed an effective approach for continental-scale gaps inpainting based on nearest neigh-
bors method and taking in account seasonality of the data. Their approach, additionally, quantified
uncertainty of the filled values. Appel (Appel, 2024) introduced a deep learning approach based
on partial convolutions for filling gaps in consecutive data, highlighting the promise of deep learn-
ing for satellite imagery-related tasks. These methods enhance the quality and reliability of remote
observations, having potentially a wider range of applications than just sea ice analysis.
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(a) (b) (c)

Figure 1: (a) Gulf of Ob region we are focused on. (b) Examples of colorized SAR images. (c)
Examples of images before filtration (the first line) and after (the second line). Images are colorized
according to sentinelhib guidelines.

DATA

Our neural network model utilizes a number of input channels (fields) that come from three sources:
Sentinel-1 (Sentinel-1) SAR imagery in HV and HH polarizations in extra-wide mode, Global Ocean
Physics Reanalysis (GLORYS) (GLO), and historical data from meteostations (Weather & Climate).
See detailed information in the appendix A. For the purpose of this study we set the target resolution
to one kilometer, which nevertheless is sufficient enough for navigation applications (Kvanum et al.,
2024; Keller et al., 2023).

The region we investigated encompasses the Gulf of Ob and the Taz Estuary in Northern Russia.
The region of interest, at this one kilometer resolution, produces images with a size of 880 × 400
pixels. SAR images are interpolated conservatively to a covering equal-area grid in North-Polar
projection (see Figure 1). GLORYS is interpolated bilinearly. Meteodata is interpolated using radial
basis function interpolation. To focus on forecasting sea-ice dynamics, the land surface in target
images is masked with zero values.

In this study, we selected SAR imagery as the target, due to several key advantages it offers. Firstly,
Sentinel-1 allows for continuous monitoring of polar regions regardless of cloud cover or illumina-
tion. Secondly, the high spatial resolution of Sentinel-1 enables detailed analysis of sea ice, includ-
ing the detection of small-scale ice features important for navigation and environmental monitoring.
Thirdly, the large amount of historical data provided by Sentinel-1 is essential for training deep
learning models in comparison with others sources. Finally, the almost real-time data delivery of
Sentinel-1 is crucial for operational applications.

We acknowledge several disadvantages of the SAR imagery. Firstly, the revisiting period of the
satellite is several days, hence many empty frames to appear when attempting to create a regular time

Figure 2: (a) Frequency of missing values in SAR imagery smoothed with a month-wide rolling
window. (b-c) Distribution of distances between consecutive missing values across all subsets, cal-
culated frame-wise between frames with any valid data, and pixel-wise at fixed locations.
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series sequence. The distribution of missing values over subsets is depicted in Figures 2. Secondly,
the entire area is not always captured in the images, resulting in some images being incomplete.
Thirdly, thermal noise and imagery artifacts at HV polarization are significant, leading to varying
brightness in repetitive patterns known as scalloping.

METHODS

DATA PREPROCESSING AND FILTRATION

The origin of the noise in SAR imagery is thermal interference within radar systems, influenced by
the technology utilized for surface scanning, resulting in presence of speckles and scalloping patterns
(Singh et al., 2021). Thermal artifacts have significant magnitude relative to useful information,
which leads to huge biases and corrupts optimization convergence of neural networks. Therefore,
we preprocess data to filter out imagery artifacts. The results of the final filtering are presented in
Figure 1c.

Our custom filtering algorithm treats images as vectors from RH×W space with standard scalar
product, where H and W stand for sizes of the input frames. The core assumption is the orthogo-
nality of artifacts A to the subspace of clear images C ⊥ A. Therefore, the filtering process is an
orthogonal projection: P : RH×W → C, P 2 = P = PT .

However, the construction of such operator requires the retrieval of aforementioned subspaces. The
key thought is that all the ice-free frames IF must have the same projection: ∃c0 ∀c ∈ IF : P (c) =
c0. To achieve this, the frame c0 with neither ice nor noise should be chosen by hand. We obtained
several candidates for such a frame through visual assessment and peaked the pixel-wise minimum
of all of them. Then artifact subspace A is constructed from IF to match orthogonality condition
to c0 at least, and the filtering operator P is constructed after choosing a basis in the subspace
containing all the artifacts A:

A = {v − (v, c0)

(c0, c0)
c0|v ∈ IF}, P (v) = v −

n∑
i=1

(v, ei)

(ei, ei)
ei (1)

where {ei}ni=1 is a basis in the linear span of A.

VIDEO PREDICTION MODELS

To determine the relative quality of our models performance, we compare them against two base-
lines: persistence forecast and linear one. To obtain the parameters of the linear transformation we
utilize the same techniques as for deep learning models.

IAM4VP (Seo et al., 2023) is fully convolutional neural network that leverages the trade-off between
temporal-consistency of autoregressive methods and error-independence of non-autoregressive ones
via implicit Multi-Input-Single-Output workflow. Like non-autoregressive methods, stacked autore-
gressive approach uses the same observed sequence to estimate future frames. However, the model
uses its own predictions as input, similar to autoregressive methods. As the number of time steps
increases, predictions are sequentially stacked in the queue. After the iterative process is finished,
all generated frames are refined by the last few layers to raise the temporal correlations.

DMVFN (Hu et al., 2023) is a video prediction model leveraging voxel flow estimation to focus on
movement and to handle the occlusion effect. DMVFN also incorporates a dynamic routing module
that adaptively selects sub-networks based on the input frames, allowing it to handle diverse motion
scales efficiently. The model’s architecture includes Multi-scale Voxel Flow Blocks (MVFBs) that
capture large motions and iteratively refine voxel flow estimates. DMVFN demonstrates improved
efficiency and adaptability, particularly for videos with complex motion patterns and is considered
a state-of-the-art deep learning solution for video prediction.

MotionRNN (Wu et al., 2021) is a model designed for video prediction, specifically addressing the
challenge of predicting continuous spatio-temporal dynamics. MotionRNN is a successor of the
LSTM-based architectures that also incorporates warp transformation and introduces the concept
of breaking down physical motions into transient variation and motion trend. Transient variation
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(a)

(b) (c)

Figure 3: (a) The overall pipilene: data gathering, interpolation, normalization, filtration, neural
networks evaluation, uncertainty quantification and the model selection. The final prediction is
chosen from outputs of rUNet and DMVFN, based on the uncertainty, estimated by ensemble spread.
(b) Non-autoregressive models treat time data as image channels and predicts output at fixed number
of lead times. (c) Autoregressive models make forecast day by day, the intermediate forecast is used
for missing values imputation, while the missing values at the first timestamp are imputed with
persistent baseline.

represents immediate changes, while the motion trend captures the overall direction or tendency of
movements over time.

Neural ODE (Chen et al., 2018) offers a powerful framework for modeling dynamic systems by
means of machine learning. The core idea is to model the transformation of data through a contin-
uous dynamic equation in a Cauchy formulation instead of discrete layers used in traditional neural
networks. The forward pass is a numerical solution of a parametrized ODE. To train Neural ODEs
through backpropagation the gradients can be computed either directly through the dynamic equa-
tion using automatic differentiation or more memory-efficiently through the adjoint method. The
adjoint method treats gradients as solutions of a reverse-time differential equations, integrating it
backwards in time.

Vid-ODE (Park et al., 2021) represents Neural ODE in a latent space on motion-vector dynamics
with a warp-correction mechanism. The main idea of Vid-ODE lies in the parameterizing visual
attributes such as pixels position by utilizing differential equations. The encoded input frames are
assimilated into an evolving state by the GRU cell. Neural ODE models latent dynamics. The
predicted state is decoded into pixels relative shifts and correction features that are used to correct
warping impurities and model color and brightness variation. This iterative process ensures smooth
transitions between generated frames.

UNet (Ronneberger et al., 2015), is an convolutional neural network which includes an encoder
for capturing context and a decoder for precise localization for the output. The decoder path in-
volves upsampling of the feature maps and concatenates them with the corresponding feature maps
from the encoder path. Originally designed for the biomedical image segmentation, UNet has been
adapted for different geophysical fields forecasts such as: coastal sea elements (Fernández et al.,
2022), precipitation (Kaparakis & Mehrkanoon, 2023; Trebing et al., 2021), and sea ice concen-
tration (Grigoryev et al., 2022; Kvanum et al., 2024). We use it within both autoregressive and
non-autoregressive approaches. The former one we will mention as rUNet, where ’r’ stands for
recurrent.

DATA SPLIT

The data is divided into three sets. Training set: September 1, 2015, to September 23, 2021. Valida-
tion set: September 24, 2021, to September 30, 2022; Test set: October 1, 2022, to September 30,
2023.

IMPLEMENTATION AND TRAINING

All models are implemented in PyTorch and trained from scratch with AdamW optimizer (Paszke
et al., 2019). The loss function is a combination of MSE and SSIM losses:

L = MSE − 0.2 · SSIM (2)
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Table 1: Model configurations. Regime abbreviations are constructed as follows: SI stands for
Single-Input, MI — Multi-Input, SO — Single-Output, and MO — Multi-Output, based on sequence
lengths: Single-Input models acquire input iteratively, Multi-Input — at once; Single-Output models
are autoregressive predictors; Multi-Output — non-autoregressive. Computational costs for each
model (in GFLOPS) are provided per one input sequence. ODE-based models use adaptive solvers;
the adaptive time step leads to varying GFLOPS; its standard deviation is provided.

Model Regime Input size GFLOPS Params

Persistence - - - 0
Linear SISO 7 33 1.06 K
DMVFN MISO 7 198 3.56 M
IAM4VP Implicit MISO 10 76 27.8 M
Neural ODE SISO 7 200± 100 18.53 K
MotionRNN SISO 7 10610 6.84 M
Vid-ODE SISO 7 480± 150 469 K
UNet MIMO 7 559 31.10 M
rUNet SISO 7 4780 31.04 M

The initial learning rate is set to 10−3 and exponentially decreasing with factor γ = 0.99. The batch
size is set to 32. Models are trained until either convergence of validation metrics or the overfitting
begins (early-stopping). Models with the best validation score are evaluated after on the test-subset.

To mitigate bias on missed parts of the SAR input, normalization layers were removed from encoders
of IAM4VP and UNet. For other models missing values are imputed with previous forecast from
autoregressive prediction (see the schematic representation on Figure 3).

While training Neural ODE and Vid-ODE models, naive implementations of the adjoint method
might suffer from inaccuracy in reverse-time trajectory computation, therefore in our work we have
used specific implementation called MALI (Zhuang et al., 2021) that guarantees accuracy in gradient
estimation.

To determine the relative quality of our models performance, we compare them against two base-
lines: persistence forecast and linear one. To obtain the parameters of the linear transformation
we utilize the same techniques as for deep learning models. The overall models configurations are
provided in Table 1.

AUGMENTATIONS

To prevent overfitting and improve generalization ability we utilize geometrical augmentations: ran-
dom horizontal flips with a probability of 0.5 and uniformly sampled random rotations with angles
in range [−10◦, 10◦] with the corresponding rotation of wind and sea-currents field. To leverage the
imbalance of missing values depicted at Figure 2 we utilized frameout augmentation. Up to three
random frames in the input sequence are cut out until the concentration of missing values reaches
the level of the test subset (70%).

UNCERTAINTY-AWARENESS

Estimating uncertainty in data-driven weather forecasting models is crucial for better model inter-
pretation and decision-making. If the uncertainty estimation is well-calibrated, the reliable predic-
tions are characterized by high confidence. On the other hand, low confidence means the prediction
can not be trusted. In such cases one could replace it with a simple baseline or a more robust
model. Following this principle, automatized pipelines of uncertainty-aware model mixture can be
designed (Lakshminarayanan et al., 2017; Chen et al., 2023a; Zeng et al., 2023; Jiang et al., 2023).
The mechanism is as follows: the expert model makes a prediction, its uncertainty is estimated; if
the uncertainty exceeds the preset threshold, the prediction is replaced by more stable baseline. In
our work the threshold is selected on the validation subset. This helps to exclude unreliable forecasts
and enhances the overall performance of the forecasting system.

Traditional weather and climate models estimate uncertainty as the spread of an ensemble, con-
structed by the model inputs perturbations (Grimit & Mass, 2007). The ensemble spread is defined
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as a standard deviation of predictions. Previous research (Scher & Messori, 2021) showed that,
when using neural networks, ensembles of models with similar architectures (homogeneous) pro-
vide similar results. Models weights in the ensemble have to be perturbed with retraining, dropout,
etc. Moreover, there are premises that an ensemble of diverse architectures (heterogeneous) might
provide better uncertainty estimation (Zaidi et al., 2022).

In our research we construct both homogeneous and heterogeneous ensembles and compare their
spread as a predictor for the uncertainty estimation for the model selection mechanism. The sug-
gested pipeline does not impose additional costs as all the models do not need to be modified or
retrained.

RESULTS

FORECASTING

While designing the experiments, we focused on evaluating the performance and stability of various
forecasting models. Our results reveal a trade-off between achieving high computer vision metrics
and maintaining forecast stability — while some models excel in certain metrics, their forecasts
can be less consistent. However, we found that an ensemble of four high-performing models with
diverse architectures — namely MotionRNN, Vid-ODE, UNet, and rUNet — offers robust uncer-
tainty estimation. The most significant improvement over the baseline across nearly all metrics was
achieved using a uncertainty-aware model switching scheme which utilized an rUNet backbone, an
autoregressive UNet, and DMVFN as a robust alternative (see Figure 3a for schematic representa-
tion).

A summary of the metrics evaluated on the test subset for all trained models with uncertainty-aware
model switching is presented in Table 2. Figure 4 shows detailed improvements over the baseline,
broken down by month and lead time. Figure 13 illustrates the detailed RMSE by date for individual
models, along with the corresponding ensemble spreads for several configurations. Examples of
predictions are provided in Figure 11. Using the mean of ensembles instead of model selection
yields only a marginal improvement in the final metrics, as shown in Table 3.

Table 2: Summary of the test metrics (lower is better) for models with confidence-based mixture
with DMVFN as a robust model; the uncertainty is estimated by the ensemble spread of predictions
from MotionRNN, Vid-ODE, UNet, and rUNet models. The standard deviation for the best model
(rUNet) is estimated by training with three random initializations.

Model MSE 1 - SSIM 1 - MS-SSIM IIEE@15 IIEE@30 IIEE@50 IIEE@75
(×10−3) (×10−2)

Persistence 11.2 9.8 5.6 11.5 10.4 11.0 7.3
Linear 9.8 9.1 5.2 14.0 9.6 11.1 7.7
DMVFN 10.0 8.8 5.1 11.7 10.2 10.8 6.9
IAM4VP 8.7 10.5 5.5 14.7 10.6 11.0 7.1
Neural ODE 8.3 9.3 4.9 12.1 10.1 10.7 6.2
MotionRNN 7.3 9.0 4.7 11.4 9.3 9.9 5.9
Vid-ODE 7.5 8.7 4.7 12.1 9.2 9.7 5.7
UNet 7.7 8.2 4.6 12.1 9.3 9.6 6.0
rUNet 6.8±0.2 8.3±0.2 4.5±0.1 10.0±1.1 9.0±0.3 9.2±0.2 5.3±0.2

Table 3: Summary of the test metrics for ensembles. uncertainty-aware model switching to DMVFN
is utilized. “rUNet x3” stands for mean forecast of three retrained versions of rUNet. “Best 4” stands
for mean prediction from MotionRNN, Vid-ODE, UNet, and rUNet models.

Ensemble MSE 1 - SSIM 1 - MS-SSIM IIEE@15 IIEE@30 IIEE@50 IIEE@75
(×10−3) (×10−2)

rUNet x3 6.7 8.3 4.5 10.0 8.9 9.1 5.3
Best 4 6.6 8.2 4.4 11.2 8.7 9.3 5.2

Following the Grigoryev’s work (Grigoryev et al., 2022), models trained to produce 3-day forecasts
were also tested with 10-day outputs without any additional fine-tuning. The results are presented
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Figure 4: The RMSE percentage improvement over persistence baseline for each month (a), and for
each lead time in days (b), over the test subset. The colormap is shared.

in Figure 9. Linear and ODE-based models accumulate errors exponentially, degrading over persis-
tence after the 5-th day. Other models errors increase linearly over time, providing stable improve-
ment over persistence, except IAM4VP which manages to overcome all other models after the 7-th
day of the forecast.

Due to the irregular intervals at which satellites capture the target region, a strong correlation be-
tween model performance and the length of gaps between valid images is expected. This relationship
is illustrated in Figure 10, where RMSE generally increases linearly until the gap length surpasses
the models’ input size. Once this threshold (7 days) is exceeded, the RMSE approaches that of the
persistence baseline.

GAP FILLING

The developed pipeline is particularly useful for filling gaps in SAR images, a common issue in
satellite data. Building on the approach proposed by Appel (Appel, 2024), this gap-filling process
can be effectively performed as a 1-day forecast. To improve accuracy, we combine forward and
backward forecasts, denoted as yF and yB , respectively. By incorporating the uncertainty estimates
of these forecasts, σF and σB , we can weight them appropriately and calculate an overall uncertainty
using a harmonic mean:

y =
σB

σF + σB
yF +

σF

σF + σB
yB , σ =

2σFσB

σF + σB
(3)

A key advantage of this approach is that it does not require retraining the models. We evaluated the
performance of this gap-filling method using a leave-one-out cross-validation technique (Kohavi,
1995). For comparison, we also tested the pretrained AdaCoF model (Lee et al., 2020), which is one
of the state-of-the-art models for video interpolation. As shown in Table 4, our pipeline achieved
a strong R2 value of 87.7%. This is consistent with similar R2 values reported in the literature
(Weiss et al., 2014; Appel, 2024) for gap-filling in satellite imagery under similar conditions, such
as missing swaths up to 500 km wide and 1 kilometer resolution.

Table 4: Summary of gap filling metrics obtained during a leave-one-out validation. Uncertainty-
aware mixture of rUNet and DMVFN is utilized for forward and backward forecasts, where the
“Forward+Backward” is a uncertainty-weighted mean. The input channels related to wind and cur-
rents are reversed for the backward run. The best metric values in each column are highlighted in
bold.

Model MSE 1 - SSIM 1 - MS-SSIM IIEE@15 IIEE@30 IIEE@50 IIEE@75
(×10−3) (×10−2)

AdaCoF 7.3 8.3 4.5 8.0 7.9 9.2 6.0
Forward 6.5 8.1 4.4 8.6 8.5 9.2 5.3
Forward+Backward 6.0 7.6 4.1 9.1 7.7 8.7 5.7
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DISCUSSION

This research addresses the critical challenge of short-term regional sea ice forecasting, explor-
ing a variety of approaches to improve prediction accuracy and reliability. Among the methods
investigated, modern deep learning models for video prediction were tested for their potential in
forecasting sea ice dynamics. However, the performance of these models is constrained by several
factors, including the scarcity of high-resolution data, the complex physical processes governing sea
ice behavior, the stochastic nature of daily ice dynamics, and the discontinuities present in ice sheet
structures. We argue that these domain specialties mostly affect motion-related elements of video
prediction models like flow estimation and prediction, see appendix C for further details.

UNet-based models deliver the best individual results, whereas state-of-the-art video prediction
models struggle to surpass baseline performance, though they do offer varying levels of stability.
It could be argued that the DMVFN model fails to accurately reproduce sea ice thermodynamics
due to its architectural limitations, which, paradoxically, contribute to more stable forecasts. On the
other hand, IAM4VP, while efficient at modeling different dynamics with minimal computational
cost, produces the most unstable predictions, likely due to the lack of sufficient training data.

Advanced use of uncertainty-aware model switching scheme can further enhance the metrics. The
ensemble spread of heterogeneous architectures provides accurate uncertainty estimation for the
forecasted fields. Although the model-selection mechanism reduces the final spread-error correla-
tion, the total variance in model error can still be explained up to 87% by accounting for the sea ice
concentration and its rate of change (see Figure 14).

CONCLUSIONS

In this research article, we address the challenge of predicting ice conditions in the Gulf of Ob,
a region characterized by complex ice formation dynamics influenced by the interaction of saline
water and freshwater. We explore the potential of machine learning methods as an alternative to
traditional numerical sea ice models, aiming to improve forecasting accuracy and efficiency.

Our key findings reveal that even modern state-of-the-art machine learning models can not achieve
sufficient forecasting performance solely. Furthermore, domain-aware data preprocessing and aug-
mentations are essential to train deep learning models for this task. All models struggle due to lack
of training data, long gaps in it and complex sea ice dynamics, leading to tricky fidelity-stability
trade-off. Although usage of ensembles cannot significantly improve average models performance,
it helps to eliminate high errors due to outliers in data, especially in spring season, thus increasing
overall system reliability. We consider also an interesting finding that the different ML models cap-
ture different aspects of the ice dynamics in such a way that their ensemble gives a reliable forecast
uncertainty quantification, as the spread-error correlation coefficient reaches 87%. To overcome
the aforementioned trade-off we construct the uncertainty-aware model switching scheme, that pro-
vides both stable and explainable forecasts while improving general performance. The mixture of
the rUNet and DMVFN architectures provides the best computer vision and geophysical metrics and
beats baselines by a wide margin.

Future research directions include developing models that can effectively capture the dynamics of
ice formation and melting is crucial. Additionally, addressing the limitations of current approaches
through more advanced architectures and techniques can also be beneficial. Further advancements
in sea ice forecasting will not only improve maritime navigation safety but also deepen our under-
standing of complex sea ice dynamics.

REPRODUCIBILITY

The developed source code was attached to the manuscript as a supplementary material. The pre-
processed dataset is available upon written request. The processing procedure and the training of the
models is described in the Methods section of the paper. Both code and dataset will be published
and available after the end of double-blind review.
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Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion. In Josef Bigun
and Tomas Gustavsson (eds.), Image Analysis, pp. 363–370, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg. ISBN 978-3-540-45103-7.
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APPENDIX

A DATA DESCRIPTION

TARGET REGION

The Gulf of Ob, located at the mouth of the Ob River in the Arctic Ocean, is the world’s longest
estuary, stretching approximately 1,000 km between the Gyda and Yamal peninsulas (Lapin et al.,
2011). It is relatively shallow, with depths averaging 10 to 12 meters, limiting heavy sea transport.

The Taz Estuary, formed by the Taz River, spans about 330 km from Tazovsky to the Gulf of Ob,
with an average width of 25 km. It flows north to south and then bends westward before merging
with the Gulf of Ob, contributing to one of the largest estuarine systems in the world.

This region is important for sea ice forecasting and research due to its highly variable ice conditions
influenced by seasonal changes and river discharge (Osadchiev et al., 2021). It’s a sensitive indica-
tor of climate change and has significant economic and strategic value due to its location near major
shipping routes and natural resources (Tretiakov & Shiklomanov, 2022). The unique interaction be-
tween river outflows and the sea creates distinctive ice patterns, making it a key area for studying sea
ice dynamics and improving predictive models(Tikhonov et al., 2022). Additionally, sea ice in this
region affects local ecosystems and communities, highlighting the broader impacts of environmental
changes on ecology and society.

INPUT FIELDS

Our neural network model utilizes a number of input channels (fields) that come from three sources:
Sentinel-1(Sentinel-1), Global Ocean Physics Reanalysis (GLORYS)(GLO), and historical data
from meteostations(Weather & Climate) (see Figure 5 for detailed information). Sentinel-1 SAR
images are interpolated conservatively to match the input resolution (1 km), GLORYS fields are
interpolated bilinearly, data from meteostations is interpolated between discrete points (where the
meteostations are located) using RBF interpolation method with thin plate splines (Wahba, 1990).
The details on resulting channels and preprocessing for input data are described in Table 5.

Table 5: Description of input channels. GLORYS channels are interpolated bilinearly. Meteodata is
interpolated using radial basis function interpolation.

Source Scale Channel Normalization

Sentinel-1 1 km SAR HV U(0, 1)
SAR HH U(0, 1)

GLORYS 5 km

Bottom Temperature U(−1, 1)
Mixed Layer Thickness U(−1, 1)
Surface Salinity U(−1, 1)
Surface Temperature U(−1, 1)
Sea Ice Velocity (u) N(0, 1)
Sea Ice Velocity (v) N(0, 1)
Sea Height N(0, 1)

Meteostations –

Relative Humidity U(0, 1)
Air Pressure N(0, 1)
Air Temperature N(0, 1)
Wind Velocity (u) N(0, 1)
Wind Velocity (v) N(0, 1)
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(a)

Name Lat Lon

New Port 67.68 72.88
Seyakha 70.17 72.52
Tambay 71.48 71.82
Popov Island 73.33 70.05
Nyda 66.63 72.93
Yar-Sale 66.80 70.83
Beloyarsk 66.87 68.13
Laborovaya 67.64 67.56
Poluy 66.03 68.68
Nadym 65.47 72.67
Tazovsky 67.47 78.73
Antipayuta 69.08 76.85
New Urengoy 66.10 76.78
Urengoy 65.95 78.40
Vilkitsky Island 73.50 76.00
Dixon Island 73.52 80.40
Marresal 69.71 66.80
Ust-Kara 69.25 64.93
Karaul 70.08 83.17
Sopochnaya Karga 71.87 82.70
Izvestia Islands CEC 75.95 82.95
Cape Zhelaniya 76.95 68.55
Gyda 70.88 78.47

(b)

Figure 5: The map (a) and coordinates (b) of meteorological stations used, along with the target
region outlined in red. Available sea surface area is 120,559 km2. The area of interest is 51,262
km2.

SAR ESTIMATES SEA-ICE CONDITIONS

In comparison to other potential target variables, such as GLORYS reanalysis, which lacks quality
in the Gulf and which is mostly uncorrelated with other sources (see Figure 7), GLORYS operative
analysis and forecasts, which lack historical records essential for data-driven approaches, and AMSR
(Ludwig et al., 2020), which is partly dependent on cloud conditions and seasons, Sentinel-1 SAR
imagery emerges as a superior choice for high-resolution sea ice forecasting models.

While the direct comparison between SAR and calculated sea ice concentrations is not strictly fair,
the techniques of retrieval and mapping sea ice conditions from SAR imagery are well-known.
Sentinel-1 C band consists of four polarizations, for the purpose of forecasting ice conditions we uti-
lize colorized HV polarization (Sentinel Hub). Figure 6 shows the comparison of monthly-averaged
sea ice concentrations from several sources.

B METRICS

In our research we utilize two type of metrics. First, we use the common computer vision ones:
the mean squared error (MSE) also known as L2-distance; the structural similarity index measure
(SSIM), a metric used to assess the human-perceived quality of digital images and videos (Wang
et al., 2004), predominantly used in computer vision; and the multi-scale structural similarity index
measure (MS-SSIM), which extends the concept of the SSIM by evaluating image quality at various

Figure 6: Mean cell-wise sea ice concentration correlation between several data sources: Sentinel-1
SAR (Sentinel-1), GLORYS operative and reanalysis (GLO), and AMSR (Ludwig et al., 2020)
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(a) SAR-estimated SIC (b) GLORYS Reanalysis SIC (c) GLORYS Operative SIC

Figure 7: Box and whisker plots of SIC data distribution in the region in GLORYS and Estimated
from SAR-images for different months from all available range of time, aggregated over target
region. The box extends from the 25th percentile to the 75th percentile; whiskers extend the box
by 1.5x of its length. The orange line is the median (50th percentile); SAR-estimated SIC is a
normalized mean absolute value of SAR signal with dropped frames with more than 50% missing
values.

scales (Wang et al., 2003). The MS-SSIM approach uses the fact that the human eye perceives
picture quality differently across varying resolutions, making it a more comprehensive metric for
assessing the perceived quality of digital images and videos. Second, we use a geophysical metric
specific for sea ice condition analysis and forecast: the integrated ice edge error at level c (IIEE
at c), a metric of similarity between ice sheets, where ice edges are chosen at the certain level of
concentration c measured in percents (Goessling et al., 2016):

IIEE@c =
1

n

n∑
i=1

1

S

∑
h,w

[(yi > c) ̸= (ŷi > c)] dShw, S =
∑
h,w

dShw (4)

where yi and ŷi are linearly normalized into range [0, 100]. Usually parameter c is set to 15%,
however we can not assume a linear relationship between ice concentration and SAR images, thus
we will exploit several values for c.

C OPTICAL FLOW ESTIMATION FOR SEA ICE

We argue that a fundamental challenge with modern machine learning models is their inability to
replicate the complex mechanics of sea ice in coastal regions. The poor performance in capturing
fine-scale ice mechanics is not unique to any one method but is a common issue across various
approaches at the target resolution. For instance, neither modern sea ice motion vectors (GLO;
Noriaki et al., 2013) nor optical flow estimation methods (Farnebäck, 2003; Weinzaepfel et al.,
2023; Sun et al., 2018) are well-suited for high-resolution ice velocity estimation. This degradation
in quality when transitioning to higher resolutions is illustrated in Figure 8. Moreover, deep learning
methods for optical flow estimation may be overfitted on common images and lack the generalization
needed for sea ice SAR imagery. Consequently, motion information is scarcely useful for predictions
in the region of interest.

Low quality of optical flows might be caused by high homogenity of ice-sheet surface and stochastic
local dynamics on 1-day scale. For similar reasons one can expect state-of-the-art models on video-
prediction task to fail on ice-dynamics forecasting, as their architectures sometimes are based on
optical flow estimation and prediction, and they assume the simple mechanical and deterministic
dynamics.
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Resolution: 1 km 2 km 4 km 8 km 16 km 32 km
Persistence 7.0 7.2 7.2 7.4 7.1 7.5
Glorys Operative 8.6 8.8 8.2 8.4 6.9 5.6
AMSR JAXA SIM R 7.1 6.9 6.6 6.4 6.3 5.8
Farneback 6.7 6.6 6.4 6.4 6.5 5.9
CrocoFlow 6.8 6.7 6.5 6.4 6.5 5.9
PWC-Net 6.9 6.8 6.5 6.4 7.0 8.2

Figure 8: Mean Squared Error (MSE) (×10−3) between next-day images and previous-day images,
warped using estimated flow from following sources: GLORYS Operative model (25 km resolution),
AMSR JAXA SIM-R (50 km resolution), and several Optical Flow models, such as the algorithmic
Farneback method and state-of-the-art neural networks. The best MSE values for each resolution
are highlighted in bold.

D ABLATION STUDY

This section contains ablation studies for crucial parts of training and prediction pipelines: filtration
of SAR-imagery artifacts (Table 6), proper augmentations to leverage unbalance and lack of data
(Table 7), and the usage of confidence-based model selection and ensembles (Tables 8, 9).

Ensembles usually provide minor improvements except for IIEE@15 metric. However, confidence
based model selection suppresses the advantages of ensembles. The usage of model selection (de-
picted at Table 2) increases MSE and IIEE@75 by 12%.

Table 6: Summary of the metrics obtained by testing individual models without data preprocessing.
Raw data have high noise-to-signal ratio due to thermal artifacts. These artifacts simultaneously pro-
vide huge bias in metrics and corrupt loss function making the models learn filtration and smoothing
rather than forecasting sea ice dynamics.

Model MSE 1 - SSIM 1 - MS-SSIM IIEE@15 IIEE@30 IIEE@50 IIEE@75
(×10−3) (×10−2)

Persistence 18.5 9.6 6.8 17.3 12.5 10.2 8.5
Linear 15.7 8.9 6.2 17.6 12.9 10.0 8.4
DMVFN 16.7 8.5 6.2 17.2 12.4 9.9 8.1
IAM4VP 16.8 9.7 6.6 18.5 15.5 11.5 10.4
Neural ODE 13.7 8.5 5.8 17.0 12.4 9.9 7.8
MotionRNN 12.7 8.1 5.4 16.2 11.9 9.2 7.6
Vid-ODE 12.2 7.8 5.4 16.5 11.4 8.7 7.1
UNet 13.0 7.6 5.4 15.7 11.4 9.1 7.4
rUNet 13.6 7.8 5.5 15.7 12.0 9.3 7.6

Table 7: Ablation studies for the augmentations for the best performing model (rUNet). Geometric
augmentations are shifts and rotations (treating input as an image). The physical augmentations
are modifications of geometrical ones with corresponding transform (rotations and flips) of physical
fields (currents and winds). “Proposed” states for superposition of Physical and Frameout augmen-
tations.
Augmen- MSE 1 - SSIM 1 - MS-SSIM IIEE@15 IIEE@30 IIEE@50 IIEE@75
tation (×10−3) (×10−2)

None 8.9 9.2 4.9 11.9 9.4 10.8 7.0
Geometric 8.7 9.0 4.8 12.9 10.4 10.9 6.6
Physical 7.8 8.4 4.6 10.1 9.1 10.0 6.1
Proposed 7.6 8.3 4.6 10.0 9.0 9.8 6.0
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Table 8: Summary of test metrics for individual models with proposed preprocessing and augmen-
tations.

Model MSE 1 - SSIM 1 - MS-SSIM IIEE@15 IIEE@30 IIEE@50 IIEE@75
(×10−3) (×10−2)

Persistence 11.2 9.8 5.6 11.5 10.4 11.0 7.3
Linear 9.9 9.1 5.2 14.2 9.6 11.0 8.0
DMVFN 10.0 8.8 5.1 11.7 10.2 10.8 6.9
IAM4VP 9.5 10.6 5.6 14.7 10.6 11.4 8.1
Neural ODE 8.6 9.3 4.9 12.1 10.1 10.7 6.8
MotionRNN 8.0 9.0 4.7 11.4 9.3 10.3 6.5
Vid-ODE 7.7 8.6 4.7 12.2 9.2 9.6 6.0
UNet 8.3 8.2 4.6 12.1 9.5 9.9 6.5
rUNet 7.6 8.3 4.6 10.0 9.0 9.8 6.0

Table 9: Summary of test metrics for ensembles. “rUNet x3” stands for mean forecast of 3 retrained
versions of rUNet. “Best 4” stands for mean of MotionRNN, Vid-ODE, UNet, and rUNet predic-
tions.

Ensemble MSE 1 - SSIM 1 - MS-SSIM IIEE@15 IIEE@30 IIEE@50 IIEE@75
(×10−3) (×10−2)

rUNet x3 7.1 8.3 4.5 11.2 8.8 9.2 6.1
Best 4 7.1 8.2 4.4 11.2 8.7 9.4 6.1

E SUPPLEMENTARY FIGURES

Figure 9: (a) RMSE and (b) its percentage improvement over persistence baseline for each extended
lead time in days over the test subset.

Figure 10: (a) RMSE and (b) its percentage improvement over persistence baseline in dependence
of preceding SAR gap length.
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Figure 11: The example of forecasts. Timestamps represent shifts from the 25-05-2023. The target
region is outlined with a red line. The missed data in an input and a target sequences is represented
by green color.

Figure 12: Distance to the nearest valid data frame-wise (blue) and mean value pixel-wise (orange);
concentration of missing values smoothed with half-month-wide rolling window; operative glorys
sea-ice concentration; and mean SAR-value as an estimation of sea-ice concentration. All curves
are evaluated over test subset.
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Figure 13: RMSE timelines for all the models over test (a) and validation (c) subsets, ensemble
spreads over test (b) and validation (d) subsets, where ‘best 4’ stands for MotionRNN, Vid-ODE,
UNet, and rUNet, ‘rUNets’ stands for 3 different initializations of rUNet model. Threshold is tuned
on validation subset for consequent use in confidence-based model selection during testing.

Figure 14: Correlation (in percents) between models RMSE (with confidence-based model selec-
tion) and several features: sea ice concentration, ensemble spread, and their learned linear combina-
tion.
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