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ABSTRACT

Detecting feature’s predictive power is a key problem in Machine Learning. Pre-
vious methods have been focusing on providing a single value, usually named fea-
ture importance, as a point estimate of the power. However, it is difficult to inter-
pret the predictive power using feature importance. Moreover, in reality feature’s
predictive power may vary dramatically across feature values. Feature importance,
as a point estimate, cannot capture such variance. To address the two problems,
we first propose a new definition of feature importance to directly measure fea-
ture’s predictive power. We then propose a feature importance model to capture a
high-resolution distribution of feature importance across feature values. Last we
propose a binarized logistic regression model and its learning algorithm to train the
feature importance models jointly. We theoretically proved that our approach has
the same time complexity as Logistic Regression. Empirical results on three real-
world biomedical datasets show that, our approach can detect meaningful feature
importance distributions, which could have profound sociological implications.
Code, data and full results are publicly available in paper github repository. All
the results are reproducible by simply using one command.

1 INTRODUCTION

Detecting feature’s predictive power is a key problem in Machine Learning. A wide range of meth-
ods have been proposed to do so and used for feature selection (Kira & Rendell, 1992; John et al.,
1994; Dash & Liu, 1997; Blum & Langley, 1997; Kohavi & John, 1997; Dash & Liu, 2003; Yu &
Liu, 2004; Dı́az-Uriarte & De Andres, 2006; Liu & Motoda, 2007; Lundberg & Lee, 2017; Kong &
Yu, 2018). Particularly, they focus on providing a point estimate, often named feature importance,
to summarize the power. However, feature importance has two limitations. First, interpreting the
predictive power using feature importance can be difficult. A scalar, say 0.2, for insulin’s importance
over blood glucose does not say much about what the glucose level would be. Second, in reality the
power usually varies across feature values. Only by taking the right amount of insulin will keep
the glucose at the normal level. Neither underdose nor overdose will lead to the same outcome. As
a point estimate, insulin importance cannot capture such variance across insulin dosages. The two
problems limit our ability to accurately explain (e.g., insulin’s predictive power), predict (glucose
level), and intervene (insulin dosage).

To better illustrate the idea, we use the (UCI) Iris dataset as a running example throughout the paper.
Iris has four features and three classes, including Setosa, Versicolor, and Virginca. The three classes
can be predicted by features Petal length and Petal width (He et al., 2006). This is also shown in
the scatter plot (column 1) in fig. 1. However, a closer look at the scatter plot shows that, the two
features’ predictive power vary significantly across their values. For example, Petal length (x-axis)
can almost perfectly predict class Setosa (red “+” on the bottom left of the scatter plot) when the
feature takes low values (around 1). However, the predictive power changes quickly when feature
value becomes higher. When taking medium values (around 3), Petal length can almost perfectly
predict the second class, Versicolor (green “x” in the middle of the scatter plot). Similarly, the
predictive power changes quickly again when feature value becomes even higher. When taking high
values (around 6), Petal length can almost perfectly predict the third class, Virginca (blue “.” on the
top right). Such significant variance of predictive power cannot be captured by feature importance
(as a point estimate).
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Figure 1: Scatter plot and importance distributions detected by FIBLR (our approach) over classes Setosa (red
“+” in the scatter plot), Versicolor (green “x”) and Virginca (blue “.”) in Iris dataset.

The goal of this paper is to address the above two limitations of feature importance (incapable
of interpreting feature’s predictive power or representing significant variance of the power). The
paper’s main contributions are as follows.

1. We first proposed a new definition of feature importance to measure feature’s predictive power.

2. We then proposed a feature importance model to find the distribution of feature importance across
feature values. As far as we know, the proposed importance model is the first of its kind.

3. We next proposed a binarized logistic regression model and its learning algorithm to train the
importance model of all the features jointly.

4. Since our method includes a Feature Importance model and a Binarized Logistic Regression
model, we call it FIBLR hereafter. We theoretically proved that FIBLR has the same time complexity
as logistic regression (see proof in Appendix).

5. Qualitative and quantitative empirical results on three real-world biomedical datasets show that,
FIBLR is much more accurate than other probabilistic models (e.g., logistic regression) in detecting
feature importance distributions.

Before discussing the technical details of FIBLR, we would like to give the readers a taste of what
the feature importance distributions detected by FIBLR look like. Columns 2 to 4 in fig. 1 are
the discovered importance distribution of feature Petal length over classes Setosa, Versicolor, and
Virginca. The location and shape of the distributions show that, the dramatic variances discussed
previously (strong power over Setosa, Versicolor and Virginca under low, medium and high values
of Petal length) are well captured.

2 METHOD

2.1 THE NEW DEFINITION OF FEATURE IMPORTANCE

The goal of redefining feature importance is to tackle its two limitations. That is, the new definition
should 1) directly measure feature’s predictive power, and 2) capture the variance of predictive power
across feature values. Thus we define the importance of feature xj (under value xij , i.e., the value of
xj in sample i) over yi (the class in sample i), as the likelihood of yi being 1 given xij :

p(yi = 1|xij). (1)

Since feature importance is redefined as a probability, it takes value from [0, 1]. Here value 1 means
“feature xj under value xij can guarantee class yi being 1”, whereas 0 means “xj under xij can
guarantee yi being 0”. While we use 2-class as an example, the new definition of feature importance
can also handle multi-class (by using methods such as one-versus-rest). We can see this in fig. 1,
where columns 2 to 4 are feature importance distributions over three classes.

2.2 THE FEATURE IMPORTANCE MODEL

Modeling feature importance in essence is representing a relationship between the probability in
eq. 1, which falls in [0, 1], and a feature value, which could belong to (−∞,∞). In this paper, we
use the sigmoid function, which is a mapping from (−∞,∞) to [0, 1], to model feature importance:

p(yi = 1|xij) =
1

1 + e−z
i
j

, zij = bj + wjx
i
j . (2)
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Unlike most models (e.g., logistic regression) where parameters (bj andwj) of a feature are the same
for different feature values, the proposed feature importance model allows parameters to change with
feature values. The idea is that, if parameters were the same across all feature values, the importance
in eq. 2 would be similar for adjacent feature values. However, as shown in the scatter plot (column
1) in fig. 1, the importance may vary dramatically between adjacent feature values. Using the same
parameter for different feature values cannot capture such significant change, resulting in underfit-
ting. By allowing different parameters for different feature values, such dramatic variance can be
identified, as shown in the importance distributions (columns 2 to 4 in fig. 1) detected by FIBLR.

While allowing different parameters for different feature values addresses the underfitting problem,
associating a parameter with each feature value may lead to overfitting. It is because when a feature
has many different values (e.g., when the feature is continuous), some values could be much rarer
than the others. If we assigned a parameter to each value, the parameters for these rare values would
purely rely on only a few samples (the data where the feature takes these rare values). In turn,
feature importance under the rare values would purely rely on such samples, resulting in overfitting.
However, if we group adjacent values into bins and assign a parameter to each bin, we can estimate
each parameter from a larger number of samples, addressing the overfitting problem. Based on this
idea, the proposed feature importance model of feature xj over class yi takes the following form

p(yi = 1|xij) =
1

1 + e−z
i
j

, zij = bj(θ
k
j ) + wj(θ

k
j )xij . (3)

Here θkj is the bin where value xij belongs, bj(θkj ) and wj(θkj ) the parameters with respect to feature
xj and bin θkj . In general, bin number should be in [1, m2n ] (where m and n are the number of
samples and features). The lower bound, 1, allows eq. 3 to reduce to eq. 2, and the upper bound,
m
2n , guarantees that the number of parameters will be no larger than the number of samples (James
et al., 2013). To make a good trade-off between underfitting and overfitting, in our experiment we
selected bin number by hyperparameter tuning using 10-fold cross-validation.

2.3 TRAINING THE FEATURE IMPORTANCE MODELS JOINTLY

The feature importance in eq. 3, p(yi = 1|xij), is the likelihood of class yi (being 1) given the value
of one feature, xij . Similar to eq. 3, we also use the sigmoid function to model the likelihood of class
yi (being 1) given the value of all the n features, xi = xi1, x

i
2, . . . , x

i
n:

p(yi = 1|xi) =
1

1 + e−zi
, zi =

n∑
j=1

zij . (4)

It turns out that eq. 4 can be thought of as a binarized logistic regression model (where parameters
vary from bins). There are two reasons for using the binarized logistic regression model here, both
of which are closely related to the fact that, zi in the binarized model (eq. 4) is the sum of zij in
the importance model (eq. 3) across all the n features. First, the binarized model reduces to the
importance model of a feature, say xj , after removing all the zik (where k 6= j) from eq. 4 (i.e.,
isolating the impact of features other than xj). Second, the parameters of the binarized model
comprise the parameters of the importance model of all the features. Thus training the binarized
model in essence is training all the importance models jointly. In the rest of this section, we will first
propose the learning algorithm for the joint training, then compare it with the learning algorithm for
logistic regression, and last discuss the benefit of the joint training.

Since eq. 4 is the likelihood of class yi being 1 (given all the feature values), we can use Bernoulli
distribution to model the likelihood of yi being either 1 or 0:

p(yi|xi) = p(yi = 1|xi)y
i

·
(
1− p(yi = 1|xi)

)1−yi
. (5)

Since eq. 5 is the likelihood in one sample (the ith), the joint-likelihood in all the samples, p(y|X),
is then the product of eq. 5 across all the m samples (assuming i.i.d. data):

p(y|X) =

m∏
i=1

p(yi|xi). (6)

Similar to logistic regression, the objective function of the binarized logistic regression model
(eq. 4), J , is the negative log of the joint-likelihood in eq. 6:

J = − log
(
p(y|X)

)
. (7)
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We can then train the binarized model by minimizing eq. 7 using gradient descent. Specifically, the
parameters with respect to feature xj and bin θkj , bj(θkj ) and wj(θkj ) (the parameters in eq. 3), are
updated by the following rule

bj(θ
k
j ) = bj(θ

k
j )− η

∆bj(θ
k
j )∑

xij∈θ
k
j

1
, wj(θ

k
j ) = wj(θ

k
j )− η

∆wj(θ
k
j )∑

xij∈θ
k
j

1
. (8)

Here η is the learning rate (0 < η ≤ 1), whose value was selected by hyperparameter tuning using
10-fold cross validation (as what we did for another hyperparameter, bin number, mentioned below
eq. 3). The numerators, ∆bj(θ

k
j ) and ∆wj(θ

k
j ), are the partial derivative of the objective function

(eq. 7), J , with respect to parameters bj(θkj ) and wj(θkj ):

∆bj(θ
k
j ) =

∂J
∂bj(θkj )

=
∑
xij∈θ

k
j

(
yi − p(yi|xi)

)
, ∆wj(θ

k
j ) =

∂J
∂wj(θkj )

=
∑
xij∈θ

k
j

(
yi − p(yi|xi)

)
xij . (9)

The difference in both equations, yi − p(yi|xi), is the difference between the class in sample i, yi
(1 or 0), and the likelihood of yi given the value of all the features (xi), p(yi|xi) (eq. 5). Then the
update in eq. 9, ∆bj(θ

k
j ) and ∆wj(θ

k
j ), are the sum of yi − p(yi|xi) or

(
yi − p(yi|xi)

)
xij across

the samples where feature value xij belong to bin θkj . The total number of such samples is the
denominator in eq. 8,

∑
xi
j∈θkj

1.

It turns out that if we removed the bin, θkj , and denominator,
∑
xi
j∈θkj

1, from eq. 8, gradient descent
for the binarized model would reduce to that for logistic regression. However, the bin allows us to
capture significant variance between adjacent feature values (discussed between eqs. 2 and 3). The
denominator, on the other hand, enables us to distinguish different number of samples in different
bins. If we removed the denominator, parameters whose bin includes more samples would have
larger sum (based on eq. 9), and the resulting importance (given by eq. 3) would be overestimated.
The bin and denominator are the reason why gradient descent for logistic regression cannot be
directly applied to the binarized model.

Once the binarized logistic regression model (eq. 4) is trained, we can plug the updated parameters
bj(θ

k
j ) and wj(θkj ) into the feature importance model (eq. 3) to obtain the importance distribution

of each feature. We can also use the binarized model for classification. This is meaningful for two
reasons. First, this allows us to use classification accuracy as the metric for fine-tuning the hyperpa-
rameters (mentioned below eqs. 3 and 8). Second, it is difficult to evaluate the feature importance
distributions (since there is usually no ground truth). Classification accuracy, as an alternative, tells
us how much we should believe in the distributions (since more accurate classification suggests more
accurate distributions, more on this later).

3 RELATED WORK

Earlier we visually demonstrated that FIBLR can capture dramatic variance of feature importance
between similar feature values (columns 2 to 4 in fig. 1). We also theoretically explained why the
approach can do so (see discussions between eqs. 2 and 3). To this point, we hope the readers have
gained a rough idea about how and why FIBLR is more powerful than methods that only provide a
point estimate of feature’s predictive power. Here we will focus on the comparison between FIBLR
and methods that also (implicitly or explicitly) provide a distribution of feature’s predictive power.

The method that is the most closely related is Logistic Regression (LR hereafter). While LR uses
the sigmoid function to model the likelihood of a class given the value of all the features, we can
(somehow) remove all the features (but one) from the equation by setting their values as zero. The
resulting model is (not the same but) similar to the proposed importance model (eq. 3). However,
unlike our model, LR cannot capture significant variance of feature’s predictive power. This is
because we allow different parameters for different feature values (shown in eq. 3), whereas LR
uses the same parameter across different feature values (discussed below eq. 2). Thus LR can only
provide a smooth probability distribution across feature values, since adjacent feature values will
lead to similar probabilities. While the concept of binarized logistic regression was previously
mentioned (e.g., in (Zaidi et al., 2013)), its learning algorithm has not been discussed explicitly.
As discussed earlier, gradient descent for LR must be adapted to train the binarized model.
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Table 1: Statistics of the datasets. The first two are from UCI data repository and the last from (Basu
et al., 2018).

Dataset Samples Variables Classes
Parkinson’s 195 24 2
Drug consumption 1885 32 7
Drosophila enhancers 7809 85 2

Besides methods based on LR, FIBLR is also related to methods based on Bayesian networks (Pearl,
2000; Spirtes et al., 2000) (BNs). BNs can also infer probabilities similar to those provided by the
proposed importance model (eq. 3), by learning the network (structure and parameters) from data.
However, BNs are often limited to small datasets, since learning the network is NP-hard (Cooper,
1990). FIBLR, on the other hand, has polynomial time complexity (discussed earlier) thus can
handle larger datasets (see table 1). The scalability problem of BNs is addressed by models such
as Naive Bayes (NB). However, unlike FIBLR, NB assumes independence between features, which
almost never holds in reality (Lewis, 1998).

Aside from the above probabilistic models, another line of work that are also relative are Generalized
Additive Models. Among them, the most closely related one is (Lou et al., 2012), which uses a Shape
Function to model feature’s impact across feature values. However, since (in theory) the function
can take value from (−∞,∞), its meaning is not as intuitive as that of the proposed importance
(which is a probability, see its meaning below eq. 1).

Similar to FIBLR, methods such as Weight of Evidence (that Information Value relies on) and Im-
purity (that Information Gain relies on) also aim to measure the predictive power of a feature within
a bin of feature values. Unlike FIBLR that trains the importance model of all the features jointly,
these methods usually identify the predictive power of each feature separately. Thus they do not
allow separating the power of strong predictors from that of weak ones (which FIBLR permits,
discussed above Time complexity), resulting in overestimating the power of weak predictors.

Last, besides the above methods that all fall into the Frequentist school, FIBLR is also related to
approaches in another school, namely Bayesian Analysis. However, the distributions detected by
FIBLR are quite different from those provided by these work, where the x-axis is parameter value
and y-axis probability mass or density. In distributions detected by FIBLR (e.g., fig. 1), on the
other hand, the x-axis is feature value and y-axis feature importance. Such distributions are more
informative in that, they allow us to see a feature’s predictive power under each feature value.

4 EMPIRICAL RESULTS

The main goal here is to experimentally demonstrate what we theoretically explained in Related
Work. That is, FIBLR is more accurate than other probabilistic models in detecting importance
distributions. Code, data and full results (reproducible by using one command) are publicly available
in paper github repository.

We used three real-world biomedical datasets in the experiment (see details in table 1). On each
dataset we compared FIBLR against two probabilistic models (implemented by sklearn), Logistic
Regression (LR) and Gaussian Naive Bayes (GNB), which can also provide a distribution of fea-
ture’s predictive power. For each method, we first fine-tuned its key hyperparameters (5 for LR, 1
for GNB and 2 for FIBLR) using sklearn GridSearchCV, then used the resulting best estimator to
produce the empirical results of the method. Specifically, GridSearchCV used accuracy for scoring
(to select best estimator) and sklearn StratifiedKFold (k = 10) for cross-validation. Due to space
limit, we refer the reader to the readme file in paper github repository to see the hyperparameters (of
each method) we fine-tuned and their parameter grids we used for the tuning.

It is not straightforward to evaluate the importance distributions, since there is usually no ground
truth for such distributions in real-world data. Here we used both qualitative and quantitative meth-
ods for evaluation. Concretely, on each dataset we first compared the importance distributions with
the scatter plot (as in fig. 1), and examined whether the distributions agree with the underlying pat-
tern in the data. We then compared the distributions with findings in the literature, and verified
whether the distributions echo earlier results. Last, we evaluated the classification accuracy of each
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Figure 2: Scatter plot and importance distributions detected by LR, GNB and FIBLR (over class Parkinson’s,
green “x” in the scatter plot) in Parkinson’s dataset.
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Figure 3: Importance distributions (over class Parkinson’s) detected by FIBLR in Parkinson’s dataset. Features
in columns 1 to 5 are measures of variation in fundamental frequency, and features in the other columns are
measures of variation in amplitude.

method to address the issue of lack of ground truth. The idea is that, more accurate classification
could suggest more accurate parameters (which determine the classification), which in turn could
indicate more accurate importance distributions (which are determined by the parameters).

4.1 QUALITATIVE RESULTS

Parkinson’s. The dataset has two classes, Healthy and Parkinson’s. Fig. 2 includes the scatter
plot (between features Shimmer:APQ5 and Shimmer:APQ3, two biomedical voice measurements)
and the detected importance distributions (over class Parkinson’s, green “x” in the scatter plot).
As shown in the scatter plot, the two classes are tightly interweaved when feature Shimmer:APQ5
takes small or medium values. The weak predictive power can be accurately captured by LR and
FIBLR, since the corresponding importance are close to 0.5. This means the feature cannot predict
either class when taking small or medium values. However, GNB finds the importance (over class
Parkinson’s) close to 0 when the feature takes some small values. This means the feature (under
small values) can almost guarantee the other class, Healthy. It is inconsistent with the finding in the
scatter plot discussed earlier. The scatter plot also shows that Shimmer:APQ5 can almost guarantee
Parkinson’s when taking high values. The strong predictive power is captured by GNB and FIBLR,
but not by LR.

The strong predictive power of Shimmer:APQ5 over Parkinson’s (when the feature takes high val-
ues) echos the findings in (Rusz et al., 2011). Specifically, their results show that the value of
Shimmer:APQ5 in Parkinson’s are significantly higher than those in Healthy (p-value < 0.001). Be-
sides Shimmer:APQ5, their results also show that the value of variation in fundamental frequency
and variation in amplitude (two groups of biomedical voice measurements) in Parkinson’s are both
higher than those in Healthy. This is well supported by fig. 3, showing that for all the features
(in the dataset) belonging to the two groups, they can almost guarantee Parkinson’s when taking
high values. This could mean that such high predictive power is a characteristic of the two groups.
That is, other features belonging to the two groups may have similar impact. This could give us a
good starting point to explore features whose predictive power over Parkinson’s have not been well
studied yet.

Drug consumption. Unlike the other two datasets which have only one target, this dataset has
19 targets (drugs). Each target has 7 classes, where one class is Never Used and the other 6 range
from Used over a Decade Ago to Used in Last Day. Fig. 5 includes the scatter plot (between features
Impulsivity and Sensation seeking) and the detected importance distributions (over class Never Used)
with respect to drug Heroin. In the scatter plot, we used green “x” for class Never Used and red “+”
for the other 6 classes (to make the figure legible). The scatter plot shows that, Impulsivity can
almost guarantee Never Used when taking the lowest value. While such strong predictive power is
accurately captured by FIBLR, it is not identified by either LR or GNB.
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Figure 4: Importance distributions (over class Never Used) for 7 drugs detected by FIBLR in Drug consump-
tion dataset. The title in each panel (e.g., Heroin) is the drug name.
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Figure 5: Scatter plot and importance distributions detected by LR, GNB and FIBLR (over class Never Used
of Heroin, green “x” in the scatter plot) in Drug consumption dataset.

The reason for the strong predictive power of Impulsivity over Never Used of Heroin (when the fea-
ture takes the lowest value) was discussed in (De Wit, 2009). That is, low impulsivity can decrease
affective attraction to drug use and increase its perceived risk. This echoes not only our findings for
Heroin, but also for some other drugs. Fig. 4 shows that for 7 drugs (including Heroin), Impulsivity
can almost guarantee Never Used when taking the lowest value.

The finding above could have profound sociological implications. First, this could mean that being
a strong predictor of (never using) drugs that are similar (in terms of chemical structure, mechanism
of action or related mode of action) to the ones in the group above (of the 7 drugs in fig. 4) is
a characteristic of Impulsivity. Such knowledge could be valuable particularly when the predictive
power of Impulsivity over a drug has not been well studied yet. More importantly, this could suggest
further investigation of (the nature of) the relationship between Impulsivity and (never using) the
group of drugs. If the relationship is causal, it could be crucial for intervention methods for drug
abuse, particularly in regions where drug addiction has reached epidemic proportions.

Drosophila enhancers. The dataset has two classes, Active and Inactive enhancer status of genomic
sequences in blastoderm (stage 5) Drosophila embryos. Fig. 6 includes the scatter plot between
features wt ZLD and gt2, which are genes Zelda and Giant. The scatter plot shows that the two
classes are tightly interweaved when wt ZLD takes small or medium values. This weak predic-
tive power is well captured by LR and FIBLR, since the corresponding importance are around 0.5,
meaning wt ZLD cannot predict either class. This also echoes the finding in (Basu et al., 2018),
which reports weak predictive power of wt ZLD when taking small or medium values. Unlike LR
and FIBLR, GNB finds importance (over class Active) close to 0 under some small or medium val-
ues of wt ZLD, meaning the feature can almost guarantee class Inactive under such values. This is
inconsistent with the findings in the scatter plot and literature.

While wt ZLD has weak predictive power when taking small or medium values, the feature actually
has strong power when taking high values. This is shown in the scatter plot, where class Active
(green “x”) is dominant under high values of wt ZLD. The strong predictive power is well captured
by all of the three methods, since the corresponding importance are close to 1. Similar result was
also reported in (Basu et al., 2018), which finds that (when taking high values) wt ZLD can almost
perfectly predict class Active.

A closer look at the importance distribution of LR (column 2 in fig. 6)) shows that, the predictive
power of wt ZLD is monotonically increasing. This may not be accurate partially because wt ZLD
can interact with many different genes when taking different values, which could increase or de-
crease the feature’s predictive power. For example, in this dataset alone wt ZLD was identified to
interact with 10 other genes (Basu et al., 2018), whose names can be seen in fig. 7. This finding
was also reported in (Harrison et al., 2011; Nien et al., 2011). Compared to LR, the importance
distribution of FIBLR (column 4 in fig. 6) could be more accurate in capturing the above variance
in the predictive power of wt ZLD. Last, fig. 7 shows that most of the 10 genes that interact with
wt ZLD exhibit importance distribution similar to that of the feature (low / high predictive power
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Figure 6: Scatter plot and importance distributions detected by LR, GNB and FIBLR (over class Active, green
“x” in the scatter plot) in Drosophila enhancers dataset.
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Figure 7: Importance distributions (over class Active) detected by FIBLR in Drosophila enhancers dataset.
Features in columns 1 to 7 are AP regulatory transcription factors, and features in the other columns are DV
regulatory transcription factors.

under low / high feature values). The variance in the predictive power of gt2 (column 1 in fig. 7), for
example, echoes similar finding in (Basu et al., 2018).

Table 2: The average classification accuracy on the three real-world datasets in table 1.
Dataset LR GNB FIBLR
Parkinsons 82% 78% 91%
Drug consumption 42% 37% 74%
Drosophila enhancers 78% 75% 92%

4.2 QUANTITATIVE RESULTS

In the previous section we reported the qualitative results, by comparing the importance distributions
with findings in the scatter plots and literature. The results show that, the distributions of FIBLR are
more accurate than those of LR and GNB. Here we also report the quantitative results, by comparing
the classification accuracy of the three methods. The idea is that, more accurate classification could
suggest more accurate parameters (which determine the classification), which in turn could indicate
more accurate importance distributions (which are determined by the parameters).

Table 2 includes the average classification accuracy (obtained by 10-fold cross validation) of the
three methods across the three datasets (in table 1). Detailed classification accuracy (produced by
cv results of sklearn GridSearchCV) are in paper github repository. As shown in table 2, FIBLR
is significantly more accurate than LR and GNB in all three datasets (p-value < 0.01). Particularly,
compared to LR and GNB, FIBLR is 9% and 13% more accurate in Parkinson’s, 32% and 37% in
Drug consumption (almost twice as accurate as LR and GNB), and 14% and 17% in Drosophila
enhancers. It is worth noting that we have no intention to argue that FIBLR is a state-of-the-art clas-
sifier. Instead, by showing that FIBLR is more accurate than LR and GNB in terms of classification,
we demonstrate again (on top of the earlier qualitative results) that FIBLR is more accurate than the
two in terms of detecting feature importance distributions (which, as far as we know, are the leading
probabilistic models that can do so).

5 CONCLUSION

We proposed FIBLR to detect feature importance distributions. The novelty includes 1) a new defi-
nition of feature importance (to directly measure feature’s predictive power), 2) a feature importance
model (to capture dramatic variance of predictive power between adjacent feature values), and 3)
a binarized logistic regression model and its learning algorithm (to train the importance models
jointly). We theoretically proved that FIBLR has the same time complexity as Logistic Regression.
We empirically showed that FIBLR is significantly more accurate than leading probabilistic models
in detecting importance distributions.
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A APPENDIX

A.1 TIME COMPLEXITY

Let c,m and n be the number of classes, samples and features. Then the time complexity of updating
the parameters (eqs. 8 and 9) in each iteration of gradient descent is O(cmn), since this is done
using triple nested for-loop (over each class, sample and feature). Thus the time complexity of the
proposed approach, FIBLR, is O(kcmn) (where k is the maximum number of iterations), the same
as logistic regression (when using gradient descent for training).
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