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Abstract
With the advances in multilingual large lan-001
guage models (LLMs), recent research has em-002
barked on investigating diverse approaches to-003
wards multilingual AI-generated text (AI text)004
detection, including the fine-tuning of mono-005
lingual detectors. In this paper, we pinpoint006
the limitations in the evaluation procedures007
of current multilingual AI text detection. Our008
extensive analysis uncovers significant inad-009
equacies in all of the available multilingual010
datasets, including (i) a primary focus on a011
limited set of languages, (ii) imbalanced data012
distribution between human and AI-generated013
samples, and (iii) a lack of diverse yet rich data014
collection sources. Amidst these challenges,015
we propose new methods to (a) improve cross-016
lingual transfer, (b) exploit novel fine-tuning017
strategies, (c) analyze the complexities of using018
neural machine translation (NMT) with mono-019
lingual detectors, and (d) a detailed analysis020
on adversarial robustness. Our results facili-021
tate the engineering of a more resilient model022
for multilingual text detection, demonstrating023
superior performance and adaptability across024
a spectrum of languages.025

1 Introduction026

Recent advances in natural language processing027

have led to the creation of powerful large language028

models (LLMs) like GPT-4 (Achiam et al., 2023),029

LLaMA-2 (Touvron et al., 2023), etc., enabling the030

development of technologies such as chatbots and031

writing assistants. However, the ability of LLMs032

to imitate human language patterns also presents033

a risk of misuse, including the generation of de-034

ceptive AI-generated text that can undermine trust035

in information sources and disrupt online discus-036

sions (Macko et al., 2023).037

Models like T5 (Raffel et al., 2020) and Detect-038

GPT (Mitchell et al., 2023) identify fake news and039

AI-generated text in English. Yet, the dominance040

of English in LLMs has evolved with Neural Ma-041

chine Translation (NMT), now supporting over 200042

Figure 1: Chronology of AI-text generators and detectors.

languages. However, detecting AI-generated text 043

in multilingual contexts poses a significant chal- 044

lenge due to linguistic complexities and a lack of 045

resources in the multilingual domain. Although 046

the success of NMT encourages us to examine 047

whether integrating NMT with English detectors 048

could be deemed effective in handling multilingual 049

text detection, the outcomes were unrewarding (re- 050

fer to Figure 3). In contrast, researchers aim to 051

fine-tune detectors for only a few languages (Span- 052

ish, Russian, & English in MULTITuDE (Macko 053

et al., 2023); Chinese, Urdu, Bulgarian, English, & 054

Indonesian in SemEval (Wang et al., 2024)), hence 055

relying on zero-shot transfer for other languages. 056

However, due to the lack of comprehensive multi- 057

lingual datasets, initial efforts focused on available 058

datasets and questioned their limitations and inade- 059

quacies. Moreover, we observe 4 major flaws that 060

are attributed to the state-of-the-art text detectors: 061

(1) Sensitive to translations: When AI- 062

generated texts in other languages are translated 063

into English using various translators (Tiedemann 064

and Thottingal, 2020; Fan et al., 2021; Zhang et al., 065

2020), they can evade detection as most of the 066

recent works as translators are trained Neural Net- 067

works (NNs) which can eventually be treated as an 068

AI-generated text. 069

(2) Unavailability of cross-linguality: Currently 070

available English AI text detectors lack support for 071

detecting languages other than English, resulting 072

in erratic results when applied to non-English texts 073
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Figure 2: Highlighting the necessity for uniform detectors, reflecting the expanding multilingual capabilities of humans, AI
generators, and AI detectors. Advances in society and AI are erasing language barriers, as globalization and urbanization draw
people closer.

such as German, Hindi, Russian, etc (Hu et al.,074

2023; Macko et al., 2023).075

(3) Sensitive to various writing forms: Texts076

containing poetic elements, personal views, sum-077

maries, drama scripts, conversations, and first-078

person opinions can successfully evade detec-079

tion (Dugan et al., 2024).080

(4) Sensitive to dialects: Texts written in various081

English dialects significantly decrease the detec-082

tor’s performance.083

Notably, training a detector in an adversarial084

manner (such as RADAR (Hu et al., 2023)) can085

enhance models’ ability to differentiate between au-086

thentic and AI-generated multilingual text, improv-087

ing detection accuracy, particularly in the realm088

of paraphrasing, and consequently challenging the089

generator’s capabilities. However, training a model090

in such a setting (from scratch) requires huge091

chunks of data (Hu et al., 2023). Researchers092

have shown that models can be transferred from093

pre-trained monolingual to multilingual domains094

through fine-tuning with a much smaller amount095

of data (Macko et al., 2023). In (Minixhofer et al.,096

2024), the authors explored the zero-shot transfer097

capabilities of tokenizers to enable them to process098

multilingual text. In light of the above facts, we099

aim to fine-tune RADAR using multi-lingual texts100

inspired by (Macko et al., 2023) work. The ad-101

vancement of mRADAR (multi-lingual RADAR)102

is attributed to several improvements against vari-103

ous adversarial robustness analyses (Macko et al.,104

2024) such as (i) translation & back-translation, 105

(ii) paraphrasing, and (iii) back-translation after 106

paraphrasing. Our key contributions are as fol- 107

lows: 108

❶ Cross-Lingual Transfer Learning: We have 109

successfully paved a path to transfer RADAR (Hu 110

et al., 2023) into multilingual settings (i.e. 111

mRADAR), showcasing its effectiveness and ver- 112

satility in detecting AI-text across diverse linguistic 113

landscapes. We first conducted extensive analysis 114

on two state-of-the-art multi-lingual datasets. 115

❷ Detailed Analysis on Adversarial Robustness: 116

Following the (Macko et al., 2024) work, we intro- 117

duce two more robustness analyses: (i) translation 118

and (ii) back-translation after paraphrasing. We are 119

the first one to showcase the superiority of models 120

fine-tuned with an adversarial approach across four 121

different robustness aspects compared to state-of- 122

the-art text detectors in multilingual scenarios. 123

❸ Complexities in using NMT with Monolin- 124

gual Detectors: We highlight the limitations of 125

current detection methods and the need to consider 126

translators as a distinct class to reduce detection 127

ambiguities. 128

2 Related Work 129

AI-Generated Text Detectors: Prior works 130

in machine-generated text (MGT) detections 131

can be broadly categorized into two sec- 132

tions: (i) statistical models and (ii) fine-tuned 133

models (Macko et al., 2024). Statistical MGT de- 134
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tection models typically leverage pre-trained LLMs135

like GPT-2 (Radford et al., 2019) or mGPT (Shli-136

azhko et al., 2024) without further fine-tuning137

to differentiate AI-generated text by employing138

metrics such as entropy (Lavergne et al., 2008),139

rank (Gehrmann et al., 2019), and perplexity.140

Prominent examples include GLTR (Gehrmann141

et al., 2019) and DetectGPT (Mitchell et al., 2023).142

In contrast, several pre-trained models are avail-143

able for MGT detection, including RoBERTa-base-144

OpenAI (Solaiman et al., 2019), RADAR (Hu et al.,145

2023) which can be used directly in a zero-shot146

manner, though they are mostly monolingual. Mul-147

tilingual models like XLM-RoBERTa (Conneau148

et al., 2019), BERT-base-Multilingual-Cased (De-149

vlin et al., 2019), and mDeBERTa (He et al., 2022)150

can be fine-tuned on custom datasets for multi-151

lingual detection. In recent, authors of (Macko152

et al., 2023) have beautifully presented a com-153

prehensive multilingual benchmark of a range154

of detection methods along with a novel multi-155

lingual bench-marking dataset, MULTITuDE. Fur-156

thermore, SemEval-2024 (Wang et al., 2024) de-157

tection competition has made significant strides in158

multilingual text detection, effectively addressing159

critical challenges by mitigating class imbalances160

and dataset biases. Here, our proposed mRADAR161

facilitates comprehensive evaluation and bench-162

marking in this field in context of different robust-163

ness analysis. These achievements emphasize the164

importance of continually innovating to keep up165

with the evolving AI-generated text in different166

languages and fields.167

Robustness Analysis & Authorship Obfuscation168

To evaluate the adversarial robustness of AI-text169

detectors, (Macko et al., 2024) work have catego-170

rized several existing Authorship Obfuscation (AO)171

methods into: (i) Back-translation: It involves172

translating a text from one language to another and173

then translating it back to the original (e.g., English174

→ Hindi → English) (Almishari et al., 2014; Al-175

takrori et al., 2022). Here, the resulting backtrans-176

lated version will differ subtly from the original,177

hence making accurate detection more challenging;178

(ii) Paraphrasing: It involves rewriting the text179

in the same language, unlike back-translation that180

involves translation into another language and back181

(Lu et al., 2023; Krishna et al., 2024; Sadasivan182

et al., 2023); and (iii) Attacks such as an syntactic183

attack – ALISON (Xing et al., 2024), lexical-based184

attacks (Pu et al., 2023), and for more information185

refer to (Macko et al., 2023). In this work, we have 186

instructed two other AOs - (i) translation and (ii) 187

back-translations after paraphrasing. Moreover, we 188

conducted these analyses on two state-of-the-art 189

multi-lingual datasets (i.e. SemEval 2024 (Wang 190

et al., 2024) and Multitude (Macko et al., 2023)) in 191

both the scenarios in-order and out-order distribu- 192

tion. Here, beyond analyzing all of these aspects, 193

we have identified that detectors trained in an ad- 194

versarial manner (with generators) i.e. mRADAR 195

demonstrate remarkable capabilities in handling 196

these obfuscations. Please refer to Table 3, Sec- 197

tion 4.3, Section 4.4, and Figure 3. 198

3 Methodology 199

In this section, we discuss the objectives and 200

methods behind our analysis. To begin our anal- 201

ysis, we initially gathered a variety of bench- 202

marking models from MULTITuDE (Macko et al., 203

2023), RADAR (Hu et al., 2023), and RoBERTa- 204

large (Liu et al., 2019). We have performed assess- 205

ments on DetectGPT (Mitchell et al., 2023) and 206

other statistical approaches (like rank, as well, but 207

since our paper primarily emphasizes the transfer 208

of monolingual and multilingual LLMs in the field 209

of MGT, we have not included the results in Table 210

1 for clarity. However, the analysis of the models 211

can be located in the appendix. 212

3.1 Fine-tuning of detectors 213

We primarily utilized MULTITuDE’s methods and 214

scripts for fine-tuning, but we modified hyperpa- 215

rameters and selected the 3 optimal hyperparam- 216

eters for RADAR resulting in model versions 1, 217

2, and 3. Other models were fine-tuned using 218

the same hyperparameters as well. More informa- 219

tion can be found in the appendix, where all code 220

for fine-tuning detectors has been provided. Table 221

one presents a comparison between the fine-tuned 222

RADAR versions and the original benchmarks up 223

to our research time. 224

3.2 Objective of experimentation 225

We have significant concerns about the ideas that 226

could lead us toward our objective of creating a 227

universal detector, a state-of-the-art model capable 228

of excelling in multilingual settings. 229

(a) Will the models, pre-trained for specific detec- 230

tion tasks be able to retain their native properties 231

if we were to finetune them? This was a noteworthy 232

topic of discussion as it questions even the reason- 233
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Model Finetuned? MULTITuDE SemEval
AUROC (↑) FPR (↑) TPR (↑) TNR (↑) FNR (↑) AUROC (↑) FPR (↑) TPR (↑) TNR (↑) FNR (↑)

mDeBERTa* ✔ 0.96 0.26 0.98 0.74 0.02 - - - - -
BERT-base* ✔ 0.91 0.47 0.96 0.53 0.04 - - - - -
OpenAI-RoBERTa* ✔ 0.86 0.43 0.94 0.57 0.06 - - - - -
XLM-RoBERTa* ✔ 0.96 0.41 0.99 0.59 0.01 - - - - -
mDeBERTa ✔ 0.83 0.98 0.81 0.014 0.19 0.00 0.50 0.00 0.50 0.00
BERT-base ✔ 0.82 0. 97 0.82 0.03 0.11 0.24 0.50 0.40 0.50 0.60
OpenAI-RoBERTa ✔ 0.86 0.97 0.84 0.03 0.16 0.91 0.71 0.36 0.29 0.64
XLM-RoBERTa ✔ 0.81 0.98 0.82 0.02 0.18 0.56 0.29 0.51 0.71 0.49
RADAR 0.64 0.05 0.17 0.95 0.83 0.39 0.50 0.32 0.50 0.68
RoBERTa-large** 0.74 93.81 99.75 6.18 0.2 0.75 0.65 0.47 0.35 0.53
mRADAR ✔ 0.95 0.98 0.86 0.02 0.14 0.91 0.61 0.30 0.39 0.70

Table 1: Performance of detection methods on two benchmark datasets. Here, models are finetuned and tested on same dataset.
* Model’s performance are taken from MULTITuDE (Macko et al., 2023) paper as it is and fine-tuned on the same script.
**RoBERTa (Liu et al., 2019) is ambiguous as the model returns [0,1] for both human and AI e.g. (text is human with 0.99
probability with a threshold accuracy of 50%).

Model Finetuned? MULTITuDE → SemEval SemEval → MULTITuDE
AUROC FPR TPR TNR FNR AUROC FPR TPR TNR FNR

mDeBERTa ✔ 0.94 0.70 0.20 0.30 0.80 0.00 0.89 0.00 0.11 1.00
BERT-base ✔ 0.80 0.57 0.32 0.43 0.68 0.60 0.89 0.89 0.11 0.11
OpenAI-RoBERTa ✔ 0.97 0.65 0.39 0.35 0.61 0.63 0.90 0.88 0.10 0.12
XLM-RoBERTa ✔ 0.83 0.68 0.11 0.32 0.89 0.72 0.92 0.89 0.08 0.11
mRADAR ✔ 0.88 0.71 0.37 0.29 0.63 0.56 0.89 0.88 0.11 0.12

Table 2: Performance of detection methods on two benchmark datasets. Here models are finetuned on one trained and tested on
another dataset, for e.g. MULTITuDE → SemEval signifies that models are finetuned on MULTITuDE but tested on SemEval.

ing for fine-tuning. However, as seen in Table 3 and234

Table 5, we observe how well the models preserve235

the native properties.236

(b) Would there be a requirement for making the237

models multilingual, when we are already witness-238

ing the rise of better translators and a variety of239

language translation bilingual support? or whether240

adding a few layers might help us in handling mul-241

tilingual texts? To tackle this we used NMT models242

provided by Helsinki-NLP’s Opus-MT (Tiedemann243

and Thottingal, 2020) and performed the transla-244

tions twice to check the impacts can be found in245

Figure 3.246

(c) Do these detectors work well in English (their247

main language) and in multilingual settings? To ad-248

dress the absence of a multilingual paraphraser, we249

incorporated translator layers in both the input and250

output of the paraphraser. In our experiment in Fig-251

ure 3 and table 4, we utilized Pegasus (Zhang et al.,252

2020) for paraphrasing. Given our understanding253

of how translation layers can distort samples, we254

stress the importance of further research on mul-255

tilingual paraphrasers, to accurately assess model256

performance.257

3.3 Evaluation metrics258

Evaluating the models is a considerable challenge259

due to the potential for accuracy and AUROC to260

be deceptive. To address this, we rely heavily on261

the confusion matrix which provides TPR (AI 262

samples are identified as AI samples) and TNR 263

(Human samples are identified as Human samples) 264

of the models. In situations where detecting AI and 265

avoiding false accusations of plagiarism by humans 266

(as the scenario with most of the legal aspects) is 267

crucial, we consider the absolute variance between 268

TPR and TNR alongside accuracy, and AUROC 269

to select a well-rounded model instead of one that 270

may be biased towards a skewed dataset. moreover, 271

we use Score - predefined Scikit-learn accuracy 272

score metric. 273

3.4 Multilingual Benchmark Dataset 274

To advance research in multilingual AI-generated 275

text detection, effective multilingual detectors re- 276

quire benchmark datasets for training. 277

Multilingual datasets play a crucial role in training 278

and evaluating models for detecting AI-generated 279

text across different languages. However, upon 280

closer examination of renowned datasets, we iden- 281

tified several flaws that hinder model generalization 282

and effectiveness: 283

(a) Limited Language Coverage: Many datasets 284

lack coverage of widely spoken languages, hin- 285

dering model generalization. For example, the 286

MULTITuDE dataset primarily focuses on English, 287

Russian, and Spanish, limiting its applicability 288

across diverse linguistic contexts. Similar issues 289
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are observed in datasets like SemEval-2024, where290

English comprises more than 65% of the dataset,291

thereby questioning its multilingualism.292

(b) Imbalanced Data Distribution: Some datasets293

exhibit imbalances between human and AI-294

generated text samples, impacting model measure-295

ment and analysis. For instance, the MULTITuDE296

dataset has significantly more AI samples than hu-297

man samples, leading to challenges in accurate298

model evaluation. In contrast, the SemEval dataset299

maintains a more balanced distribution.300

(c) Single Source Bias: Reliance on a single data301

collection method, such as web scraping of news ar-302

ticles, introduces biases and limits dataset diversity.303

For example, the MULTITuDE dataset may suffer304

from biases inherent to the source platform, affect-305

ing model generalization. In contrast, SemEval-306

2024 Task 8 collects data from various sources like307

ArXiv and Wikipedia, enhancing dataset diversity.308

this is also explored by (Dugan et al., 2024)309

(d) Quality of Data: While sample balance is310

crucial, the quality of text samples also impacts311

model performance. The MULTITuDE dataset ben-312

efits from higher-quality data sourced from news313

articles, ensuring a more consistent text corpus.314

However, SemEval’s dataset includes noise from315

sources like Wikipedia, diminishing data quality316

and suitability for model fine-tuning.317

Addressing these challenges is essential to improve318

the quality and effectiveness of multilingual text319

detection models. The issues may be linked to the320

datasets and are likely to continue until we establish321

a benchmark dataset.322

4 Experiments323

In our attempts to extend the monolingual model324

to the multilingual domain, we looked into numer-325

ous methodologies, which include fine-tuning as326

recommended by MULTITuDE, using adversarial327

training as indicated by RADAR, and using su-328

pervised learning akin to prior detectors. Due to329

the high expense of training multilingual detectors330

from scratch, our approach has centered on fine-331

tuning monolingual detectors to be able to cope332

with multilingual tasks efficiently.333

RADAR, which is known for its robustness even334

after multiple exposures to paraphrasing (n-shots335

paraphrasing), serves as our foundational model.336

Hyperparameter tuning has been conducted to iden-337

tify optimal parameters for RADAR over suggested338

methods, presented by MULTITuDE .339

We have fine-tuned models fine-tuned presented in 340

MULTITuDE, OpenAI’s RoBERTa, and RADAR 341

itself, yielding conclusive evidence on the conver- 342

sion of monolingual detectors into the multilingual 343

domain. Currently, our focus has been on datasets 344

like MULTITuDE and SemEval, given the limited 345

availability of resources in this domain. 346

4.1 Performance of Benchmark Models 347

We have gathered models presented in MULTI- 348

TuDE, where authors successfully fine-tuned mod- 349

els for the multilingual domain. Additionally, 350

we included the RADAR Checkpoint and the 351

RoBERTa Checkpoint to investigate their perfor- 352

mance. After fine-tuning, we observed a drop in 353

the AUROC score for RoBERTa, suggesting a po- 354

tential fault in the fine-tuning method. However, 355

when comparing the True Positive Rate (TPR), the 356

RoBERTa model shows an improvement in identi- 357

fying AI-generated samples, indicating that despite 358

the AUROC drop, the model is becoming more ef- 359

fective in detecting AI content. The findings from 360

our evaluation are as follows: (a) �The performance 361

of models fine-tuned from the MULTITuDE dataset 362

exhibits a notable decline in accuracy across var- 363

ious datasets. (see Table 14 in Appendix). For 364

instance, MDeBERTa (He et al., 2022) initially 365

demonstrates a high accuracy score of 0.92 when 366

evaluated within the confines of the MULTITuDE 367

dataset. However, when tested on the SemEval 368

dataset, its accuracy significantly drops to 0.52. 369

This substantial decrease of 40 points indicates 370

that MDeBERTa, despite its strong performance 371

on the testing data, loses its performance on other 372

datasets. 373

(b) Similar trends are observed with other models 374

such as BERT-base (Devlin et al., 2019), which also 375

show a marked decrease in performance when tran- 376

sitioning from MULTITuDE to SemEval. BERT- 377

base’s accuracy drops from 0.89 to 0.42, reflecting 378

a reduction of 47 points. 379

(c) RADAR, in its current version, demonstrates 380

significant difficulties in handling multilingual 381

texts effectively. The AUROC scores for RADAR 382

are notably low, further emphasizing its strug- 383

gle to distinguish between human-written and 384

AI-generated texts across different languages. 385

RADAR’s predictions, referred to as RADAR 386

preds, exhibit discernible limitations. 387

(d) Three different versions of RADAR, based 388

on the hyperparameters, fine-tuned on the MUL- 389
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Figure 3: The effects of translation over state-of-the-art detectors on MULTITuDE and SemEval datasets. † Means translated *
denotes model trained only on spanish.

TITuDE dataset were analyzed: RADAR-v1,390

RADAR-v2, and RADAR-v3. These versions con-391

sistently show a decrease in accuracy by 10-20392

points when tested on external datasets like Se-393

mEval.394

(e) The significant drops in performance across dif-395

ferent models and versions highlight a crucial issue:396

models trained on the MULTITuDE dataset face397

substantial challenges in generalizing well to other398

datasets.399

4.2 Model analysis with & w/o translations400

Now if we focus on Figure 3, it presents the fine-401

tuned versions of various models across differ-402

ent datasets, both with and without translations.403

All models were fine-tuned under the same condi-404

tions as The variations in RADAR (v1, v2, v3).405

However, we have introduced RADAR-v4 and406

RADAR-Multi both of which are trained on the407

whole dataset, for more details see our appendix408

A1. Although, for readability we have reported409

only the best versions as RADAR- fine tuned. Our410

observations have the following conclusions:411

(a) Models when evaluated on translated datasets412

exhibit higher accuracies but also demonstrate el-413

evated False Positive Rates (FPR), erroneously la-414

beling human-generated content as AI. This phe-415

nomenon may stem from the fact that current trans-416

lation methods, such as Neural Machine Transla-417

tion (NMT), also produce AI-generated text which418

increases the presence of LLM-generated data in419

a text sample. Consequently, the notion of incor-420

porating a translator as the first layer in a detector,421

followed by a monolingual detector, is challenged.422

Although the concept of a bilingual translation ap-423

proach utilizing over 200 languages seems promis-424

ing for developing a universal detector, this conclu-425

sion underscores the complexities and limitations426

inherent in current detection methodologies. This427

is also proven by our table no. 14 in Appendix 428

section A3, which shows 0 TNR and and high FPR 429

and TPR, This result was performed on a non fine 430

tuned monolingual benchmark model released by 431

(Hu et al., 2023) 432

(b) Despite models showcasing impressive AU- 433

ROC surpassing 95 within their training and testing 434

environments, their performance significantly de- 435

clines when evaluated on external datasets, with 436

many models achieving accuracy scores below 437

40%. Even within the MULTITuDE dataset, the 438

performance of these models remains unsatisfac- 439

tory. This fragility raises concerns regarding the 440

robustness and generalizability of these models. 441

It’s noteworthy to highlight discrepancies between 442

metrics like AUROC and accuracy. While accuracy 443

serves as a standard metric for comparison, AU- 444

ROC presents a skewed perspective on model per- 445

formance. These discrepancies may be attributed to 446

dataset nuances. Additionally, providing accuracy 447

scores alongside other metrics facilitates a more 448

comprehensive evaluation of model performance, 449

offering valuable insights for further analysis and 450

comparison. 451

4.3 Performance after paraphrasing 452

As the models we have used should be investigated 453

on paraphrasing to comment on their robustness, 454

we generated paraphrased AI Samples but as 455

multilingual paraphrasers are not available for 456

this experiment we translated all the samples 457

to English. Additionally, paraphrasing results 458

for the base RADAR and RoBERTa can be 459

found in the RADAR paper. The findings from 460

our evaluation (presented in Table 3) are as follows: 461

462

(a) Many detectors experience a loss exceeding 463

60%, indicating their unsuitability for paraphras- 464

ing tasks. This substantial decrease underscores 465
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Dataset Model Score Acc. Drop over AI

M
ULT

IT
uD

E

BERT-base 0.79 0.21
mDeBERTa 0.84 0.16
RADAR-Multi 0.01 0.99
OpenAI-RoBERTa 0.88 0.12
RADAR-finetuned 1.00 0.00
RADAR-es 0.96 0.04
RADAR-Sem 0.95 0.05
XLM-RoBERTa 0.83 0.17

Sem
Eva

l

BERT-base 0.66 0.34
mDeBERTa 0.82 0.18
RADAR-Multi 0.00 1.00
OpenAI-RoBERTa 0.84 0.16
RADAR-finetuned 1.00 0.00
RADAR-es 0.87 0.13
RADAR-Sem 0.01 0.99
XLM-RoBERTa 0.75 0.25

Table 3: Paraphrased Performance of Benchmark Models
(Multi-lingual AI text → translate → English → Paraphrase
by Pegasus.)

their inadequacy in accurately identifying and dis-466

tinguishing between original and paraphrased texts.467

Such a significant drop in performance highlights468

the necessity for more robust detectors capable of469

preserving semantic meaning while detecting para-470

phrased content effectively. (Refer to Table 3.)471

(b) Despite the absence of adversarial fine-tuning,472

RADAR demonstrates remarkable robustness com-473

pared to other models in the study. This resilience474

suggests that adversarial fine-tuning might not be475

indispensable for maintaining robustness in detec-476

tors. Moreover, it prompts us to ponder whether477

the properties exhibited by RADAR can be success-478

fully transferred to the multilingual domain. This479

inquiry not only explores the potential for cross-480

domain applicability but also raises the overarching481

question: Can a universal detector, capable of ac-482

curately discerning between human-generated and483

AI-generated texts across various languages and484

contexts, truly exist?485

4.4 Performance of back-translations486

Table 4 contains results obtained after back-487

translation, which involves translating any488

presented language to English and then back489

again to the original language. This process was490

conducted to measure the effect of translation on491

texts. The observations from this evaluation are:492

493

(a) While versions of RADAR exhibit higher AU-494

ROC values in the reported Table, it’s prudent to495

overlook AUROC as it may create an illusion of496

robust performance in terms of TNR. Instead, a497

more comprehensive assessment involves compar- 498

ing scores and both TNR and TPR pairs. Despite 499

our models outperforming others in accuracy, all 500

models here struggle with low TNR, likely influ- 501

enced by the characteristics of the testing data it- 502

self.(refer to Table 4). Also if we have to choose the 503

most optimal model to work upon, we believe we 504

should not go with either accuracies or AUCROC 505

instead a model which have a balanced TPR and 506

TNR should be chosen (in this case RADAR v1, 6 507

point difference). 508

(b) This table reveals significantly lower TNR val- 509

ues, primarily attributable to the introduction of 510

two layers of Neural Machine Translation (NMT). 511

This intensified integration of AI translators likely 512

contributes to the diminished TNR observed, espe- 513

cially evident in back-translated texts. This raises 514

a pertinent question: Should we categorize transla- 515

tors as a distinct class? Given the prevalent use of 516

NMT for translation purposes, distinguishing trans- 517

lators as a separate entity could alleviate ambiguity 518

in detection methodologies. 519

Consider this scenario: a student, proficient only 520

in Chinese, who relies on Neural Machine Trans- 521

lation (NMT) to translate their work into English. 522

If traditional detection methods were used, in aca- 523

demic settings to identify AI-generated content, 524

the student would likely be flagged erroneously. In 525

our society, we acknowledge and credit individuals 526

who translate texts across languages. Therefore, 527

it’s essential to consider this situation and ensure 528

that due credit is given to NMT models for their 529

role in enabling communication across linguistic 530

barriers. 531

4.5 Performance on Back-translation after 532

paraphrasing 533

As there were no multilingual paraphrasers avail- 534

able at the time of our research, we translated texts 535

from the original language to English, used a para- 536

phraser, and then translated them back to the orig- 537

inal language. This method aims to mimic a mul- 538

tilingual paraphraser. However, as previously en- 539

countered, this process increases the presence of 540

AI-generated elements, thereby reducing the effec- 541

tiveness of the paraphrasing. We strongly empha- 542

size the need to develop multilingual paraphrasers 543

to test other benchmark models more accurately. 544

RADAR also opens the way for such advance- 545

ments. 546

(a) Despite experiencing a notable drop in accuracy 547
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Model (a) MULTITuDE (b) SemEval
Acc. (↑) AUROC (↑) TPR (↑) TNR (↑) Acc. (↑) AUROC (↑) TPR (↑) TNR (↑)

BERT-base 0.53 0.83 0.96 0.84 0.44 0.99 0.56 0.44
mDeBERTa 0.58 0.87 0.98 0.85 0.40 0.83 0.68 0.43
RADAR-Multi 0.11 0.30 0.89 0.92 0.50 0.00 0.50 0.00
OpenAI-RoBERTa 0.63 0.92 0.96 0.86 0.46 0.92 0.56 0.47
RADAR-finetuned 0.73 0.97 0.96 0.88 0.47 0.89 0.53 0.45
RADAR-es 0.49 0.67 0.92 0.86 0.43 0.99 0.57 0.44
RADAR-Sem 0.27 0.56 0.89 0.89 0.50 0.00 0.50 0.00
XLM-RoBERTa 0.61 0.87 0.98 0.85 0.42 0.90 0.64 0.44

Table 4: Analysis on Back-translations (Multi-lingual Human & AI samples → English → back-translate to original language).

Dataset Model Score Para_Drop

M
ULT

IT
uD

E

BERT-base 0.64 0.36
mDeBERTa 0.86 0.14
RADAR-Multi 0.00 1.00
OpenAI-RoBERTa 0.63 0.37
RADAR-finetuned 0.93 0.07
RADAR-es 0.22 0.78
RADAR-Sem 0.36 0.64
XLM-RoBERTa 0.89 0.11

Sem
Eva

l

BERT-base 0.54 0.46
mDeBERTa 0.84 0.16
RADAR-Multi 0.00 1.00
OpenAI-RoBERTa 0.61 0.39
RADAR-finetuned 0.84 0.16
RADAR-es 0.25 0.75
RADAR-Sem 0.00 1.00
XLM-RoBERTa 0.87 0.13

Table 5: Robustness analysis of multi-lingual detectors on
back-translation after paraphrasing.

when tested on back-translated paraphrased texts,548

the RADAR model manages to maintain its ranking.549

While there is a decrease in accuracy, a modest 7%550

decline can still be considered a success. (refer to551

Table 5)552

(b) We have successfully transferred the robust553

properties of the RADAR model without the need554

for adversarial fine-tuning. This achievement ad-555

dresses our initial inquiry.556

Additionally, we surpass the loss observed in mod-557

els subjected to adversarial fine-tuning. This leads558

to a conclusive point regarding the approach to de-559

veloping a universal detector. We propose train-560

ing models without adversarial fine-tuning and561

then transferring them into the multilingual do-562

main. This approach proves to be cost-effective,563

as it leverages existing models, such as RADAR.564

However, we encourage further exploration by re-565

searchers to investigate models trained multilin-566

gually from scratch with adversarial training. Nev-567

ertheless, such endeavors are beyond the scope of 568

this paper. Moreover, it’s important to note that 569

the current datasets available in this domain may 570

not meet benchmark standards, as previously men- 571

tioned. However, the improvement or suggestion of 572

new datasets falls outside the scope of our study. 573

5 Conclusions 574

We have presented the following conclusions (a) 575

Detectors can be finetuned in multilingual domains 576

and yet can retain their properties as monolingual 577

detectors (b) We have demonstrated that existing 578

benchmarks lack robustness in the multilingual do- 579

main; however, monolingual models can achieve 580

effectiveness through cross-lingual transfer (c) Our 581

research has revealed the flaws in the current bench- 582

mark datasets for AI text detection, 583

6 Limitations 584

The primary focus of our work is more focused 585

on understanding and experimenting with current 586

benchmarks in the field, we have encountered flaws 587

and reported them, and we have used different ways 588

to evade the impacts of these flaws, however, ad- 589

dressing these issues falls outside the scope of this 590

paper which includes absence of paraphrasers flu- 591

ent in multiple languages, inadequate multilingual 592

datasets. 593
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A Appendix750

A.1 Dataset Details751

For information regarding the Dataset we have752

used we are referencing the tables mentioned753

above from their respective authors.754

755

A.2 Training Details756

The majority of our experiments were conducted757

using GeForce RTX 4090 GPU, totaling approx-758

imately 140 GPU hours of computation. The759

mRADAR (multi-lingual RADAR) are using three760

sets of hyperparameters, detailed below: Parameter761

1: - Gradient size: 6 - Batch size: 32762

Parameter 2: - Gradient size: 3 - Batch size: 64763

Parameter 3: - Gradient size: 6 - Batch size: 64764

The number of epochs for training can be ad- 765

justed based on the available GPU capacity, and 766

we have implemented early stopping callbacks in 767

the Macko et al script. Regarding the generator, we 768

experimented with various models including Llama 769

and text-davinci-003. However, our paper only in- 770

cludes details of models fine-tuned on GPT4 text 771

samples. Finetuning on different models has mini- 772

mal impact on accuracy, typically within the range 773

of ±5 points. For paraphrasing, we used the Pega- 774

sus paraphraser, and similar results can be achieved 775

using Dipper. However, we recommend fine-tuning 776

mT5 for paraphrasing purposes to establish bench- 777

marks across multilingual paraphrases. In terms of 778

translation, we primarily utilized the Helsinki Opus 779

MT translators. For languages not supported by 780

Helsinki Opus MT, we employed Facebook m2m 781

100 base models. 782

A.3 Model Results 783

We have conducted several experiments to demon- 784

strate the impact of translators on monolingual base 785

models and statistical models. The table includes 786

experiments on the base version of RADAR and 787

shows a noticeable trend of increasing AUROC 788

and FPR. We did not include statistical detectors 789

in our main paper, and we compared the statistics 790

of RADAR, RoBERTa large open AI detector, and 791

statistical detectors on Wikipedia data. The results 792

above also indicate the diminishing performance 793

of the statistical models. 794

We have conducted several experiments to 795

demonstrate the impact of translators on mono- 796

lingual base models and statistical models. The 797

table includes experiments on the base version of 798

RADAR and shows a noticeable trend of increasing 799

AUROC and FPR. We did not include statistical 800

detectors in our main paper, and we compared the 801

statistics of RADAR, Roberta large open AI detec- 802

tor, and statistical detectors on Wikipedia data. The 803

results above also indicate the diminishing perfor- 804

mance of the statistical models. 805
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RADAR over MULTITuDE without Translation
RADAR

Language AUROC TPR FNR TNR FPR
German (de) 0.67511 0.207271 0.792729 0.917808 0.082192
English (en) 0.885298 0.432701 0.567299 0.949458 0.050542
Spanish (es) 0.714209 0.240803 0.759197 0.894366 0.105634
Dutch (nl) 0.656536 0.166528 0.833472 0.93311 0.06689

Portuguese (pt) 0.691891 0.191534 0.808466 0.898955 0.101045
Russian (ru) 0.527453 0.077183 0.922817 0.983333 0.016667
Chinese (zh) 0.49706 0.158204 0.841796 0.98 0.02
Arabian (ar) 0.500888 0.077085 0.922915 0.973244 0.026756

Ukranian (uk) 0.541595 0.064979 0.935021 0.979866 0.020134
Czech (cs) 0.700578 0.114274 0.885726 0.983333 0.016667

Catalan (ca) 0.644315 0.188624 0.811376 0.956667 0.043333
Average 0.6395 0.17 0.8255 0.95 0.049

Table 6

RADAR over MULTITuDE with Translation
RADAR

Language AUROC TPR FNR TNR FPR
German (de) 77.53 0.7684914333 0.2315085667 0.6780821918 0.3219178082
English (en) 88.52 0.432701 0.567299 0.949458 0.050542
Spanish (es) 80.39 0.7566889632 0.2433110368 0.7676056338 0.2323943662
Dutch (nl) 78.46 0.8101001669 0.1898998331 0.6588628763 0.3411371237
Portuguese (pt) 77.05 0.8675607712 0.1324392288 0.5888501742 0.4111498258
Russian (ru) 67.19 0.9578237031 0.04217629692 0.1533333333 0.8466666667
Chinese (zh) 84.85 0.9974821653 0.002517834662 0.07333333333 0.9266666667
Arabian (ar) 76.16 0.9915754002 0.008424599832 0.03344481605 0.9665551839
Ukranian (uk) 55.64 0.9772151899 0.02278481013 0.04026845638 0.9597315436
Czech (cs) 76.71 0.8304730013 0.1695269987 0.5133333333 0.4866666667
Catalan (ca) 61.14 0.9845253032 0.01547469678 0.03 0.97
Average 74.88 85.22 0.15 0.41 0.59

Table 7
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Method : LOGRANK Entropy LogP
Language AUROC AUROC AUROC

German (de) 18.76 27 19.34
English (en) 17.07 50.49 18.68
Spanish (es) 16.2 26.84 16.92
Dutch (nl) 12.95 23.34 13.91

Portuguese (pt) 20.94 30.17 21.84
Russian (ru) 34.47 40.5 34.58
Chinese (zh) 34.28 51.66 35.83
Arabian (ar) 29.7 35.43 28.86

Ukranian (uk) 32.66 36.47 31.95
Czech (cs) 18.62 27.27 19.19

Catalan (ca) 16.93 23.87 18.04
Average 23 34 23.55

Table 8: table contains statistical method performance over MULTITuDE

�
Pipeline 1

RADAR RoBERTa Logrank * Logp Entropy

German

TPR 53.7 98.7 62.7 58.6 49.3
FPR 9.53 99.4 21.8 26.3 37.3
FNR 46.3 1.3 31.9 41.4 50.7
TNR 90.47 0.6 65.4 73.7 62.7
AUROC 84.3 42.74 34.54 65.95 56.8

French

TPR 62.7 98.7 64.2 62.7 47.2
FPR 14 99.7 24.3 28.1 27.5
FNR 37.3 1.3 30.7 37.3 52.8
TNR 86 0.3 57.8 71.9 72.5
AUROC 80.14 40.87 36.01 67.39 61

Italian

TPR 56.34 98.3 36.16 34.14 22.47
FPR 20.42 99.8 1.8 1.8 2.9
FNR 43.65 1.6 57.94 65.83 77.52
TNR 79.58 0.2 96.9 98.2 97.1
AUROC 79.21 38.98 36.86 65.88 59.28

Table 9: Here Pipeline 1 refers to text detection without any translator
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Pipeline 2
RADAR RoBERTa Logrank * Logp Entropy

German

TPR 94.6 43.8 88.6 86.2 69.6
FPR 33.68 76.3 56.3 56.9 33.2
FNR 5.4 56.2 9.8 13.8 30.4
TNR 66.315 23.7 35.1 43.1 66.8
AUROC 91.69 25.01 23.43 64.85 51.4

French

TPR 95.9 46.6 91.2 88.9 75.6
FPR 58.3 76.7 58.7 59.25 30.73
FNR 4.1 53.4 7.3 11.1 24.4
TNR 41.7 23.3 29.8 40.74 69.26
AUROC 86.23 25.89 20.52 65.57 53.25

Italian

TPR 95.9 50.94 85.11 81.31 65.53
FPR 56.41 81.5 48 47.9 54.9
FNR 4.09 49.05 12.28 18.68 34.46
TNR 43.58 18.5 43 52.1 45.1
AUROC 83.58 23.55 22.75 67.1 55.16

Table 10: Results over Pipeline 2. (pipeline 2 refers to text detection with translators).

The above table shows the imbalance of the testing set in MULTITuDE samples.
Model MDEBERTA XLM-Roberta BERT Roberta

Metrics
Accuracy 92.88 93.11 82.36 89.42

Total Human 3,236 3,236 3,236 3,236
Total AI 26,059 26,059 26,059 26,059

Predicted Humans 1,717 1,427 194 200
Predicted AI 25,493 25,851 23,935 25,997

AUROC 92.32 91.025 47.55 73.67
TPR 97.82 99.2 91.84 99.76
FPR 46.94 55.9 94 93.81
TNR 53.05 44.09 5.99 6.18
FNR 2.17 0.79 8.1 0.2

Table 11: Multitude model analysis Multitude on Mutitude-test set

The table above shows the data imbalance in training dataset.
Model MDEBERTA XLM-Roberta BERT Roberta

Metrics
Accuracy 93.68 95.01 83.55 89.93

Total Human 7,992 7,992 7,992 7,992
Total AI 66,089 66,089 66,089 66,089

Predicted Humans 5,072 4,807 383 634
Predicted AI 64,330 65,579 61,515 65,992

AUROC 92.98 94.46 45.82 78.68
TPR 97.33 99.22 93.07 99.85
FPR 36.53 39.85 95.2 92.06
TNR 63.46 60.14 4.79 7.9
FNR 2.66 0.77 6.9 0.14

Table 12: Multitude model analysis Multitude on Mutitude-train set

13



Language Model score AUROC FPR TPR TNR FNR
Arabic radar 0.61 0.89 0.97 0.85 0.03 0.15
Catalan radar 0.82 0.82 1.00 0.88 0.00 0.12
Czech radar 0.81 0.85 1.00 0.88 0.00 0.12

German radar 0.68 0.94 0.99 0.86 0.01 0.14
Spanish radar 0.42 0.80 1.00 0.80 0.00 0.20
Dutch radar 0.68 0.95 1.00 0.86 0.00 0.14

Russian radar 0.51 0.83 0.97 0.83 0.03 0.17
Ukranian radar 0.67 0.93 0.98 0.86 0.02 0.14
Chinese radar 0.87 0.60 0.98 0.89 0.02 0.11

Table 13: Detailed analysis language wise of Radar without translation
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Model Train Dataset Test - Dataset score AUROC FPR TPR TNR FNR
XLM-Roberta MULTITuDE MULTITuDE 0.47 0.81 0.98 0.82 0.02 0.18

Openai-Roberta MULTITuDE MULTITuDE 0.54 0.86 0.97 0.84 0.03 0.16
RADAR-Multi MULTITuDE MULTITuDE 0.11 0.28 0.89 1.00 0.11 NA

RADAR-v2 MULTITuDE MULTITuDE 0.68 0.95 0.98 0.86 0.02 0.14
RADAR-v1 MULTITuDE MULTITuDE 0.36 0.52 0.87 0.92 0.13 0.08
RADAR-v3 MULTITuDE MULTITuDE 0.42 0.73 0.95 0.83 0.05 0.17
RADAR-v4 MULTITuDE MULTITuDE 0.11 0.00 0.89 NA 0.11 NA
RADAR-v4 SemEval MULTITuDE 0.28 0.59 0.89 0.87 0.11 0.13
RADAR-es MULTITuDE(es) MULTITuDE 0.40 0.62 0.93 0.83 0.07 0.17
Bert-base MULTITuDE MULTITuDE-tr 0.65 0.92 0.98 0.86 0.02 0.14
Mdeberta MULTITuDE MULTITuDE-tr 0.57 0.86 0.98 0.84 0.02 0.16

XLM-Roberta MULTITuDE MULTITuDE-tr 0.55 0.85 0.97 0.84 0.03 0.16
Openai-Roberta MULTITuDE MULTITuDE-tr 0.72 0.97 0.98 0.87 0.02 0.13
RADAR-Multi MULTITuDE MULTITuDE-tr 0.12 0.43 0.89 0.99 0.11 0.01

RADAR-v2 MULTITuDE MULTITuDE-tr 0.69 0.95 0.98 0.86 0.02 0.14
RADAR-v1 MULTITuDE MULTITuDE-tr 0.89 0.42 0.34 0.89 0.66 0.11
RADAR-v3 MULTITuDE MULTITuDE-tr 0.71 0.96 0.96 0.87 0.04 0.13
RADAR-v4 MULTITuDE MULTITuDE-tr 0.13 0.43 0.89 0.98 0.11 0.02
RADAR-v4 SemEval MULTITuDE-tr 0.66 0.88 0.86 0.90 0.14 0.10
RADAR-es MULTITuDE(es) MULTITuDE-tr 0.70 0.94 0.90 0.89 0.10 0.11
Bert-base MULTITuDE SemEval 0.40 0.80 0.57 0.32 0.43 0.68
Mdeberta MULTITuDE SemEval 0.26 0.94 0.70 0.20 0.30 0.80

XLM-Roberta MULTITuDE SemEval 0.25 0.83 0.68 0.11 0.32 0.89
Openai-Roberta MULTITuDE SemEval 0.37 0.97 0.65 0.39 0.35 0.61
RADAR-Multi MULTITuDE SemEval 0.50 NA 0.50 NA 0.50 NA

RADAR-v2 MULTITuDE SemEval 0.34 0.94 0.71 0.37 0.29 0.63
RADAR-v1 MULTITuDE SemEval 0.52 0.93 0.49 0.53 0.51 0.47
RADAR-v3 MULTITuDE SemEval 0.42 0.67 0.55 0.29 0.45 0.71
RADAR-v4 MULTITuDE SemEval 0.50 NA 0.50 NA 0.50 NA
RADAR-v4 SemEval SemEval 0.50 NA 0.50 NA 0.50 NA
RADAR-es MULTITuDE(es) SemEval 0.41 1.00 0.59 0.41 0.41 0.59
Bert-base MULTITuDE SemEval-tr 0.42 0.89 0.62 0.44 0.38 0.56
Mdeberta MULTITuDE SemEval-tr 0.38 0.87 0.70 0.41 0.30 0.59

XLM-Roberta MULTITuDE SemEval-tr 0.44 0.99 0.57 0.44 0.43 0.56
Openai-Roberta MULTITuDE SemEval-tr 0.46 0.67 0.67 0.48 0.33 0.52
RADAR-Multi MULTITuDE SemEval-tr 0.50 0.60 0.50 NA 0.50 1.00

RADAR-v2 MULTITuDE SemEval-tr 0.39 0.76 0.77 0.43 0.23 0.57
RADAR-v1 MULTITuDE SemEval-tr 0.56 0.63 0.13 0.54 0.87 0.46
RADAR-v3 MULTITuDE SemEval-tr 0.41 0.80 0.68 0.44 0.32 0.56
RADAR-v4 MULTITuDE SemEval-tr 0.50 0.58 0.50 NA 0.50 1.00
RADAR-v4 SemEval SemEval-tr 0.50 0.58 0.50 NA 0.50 1.00
RADAR-es MULTITuDE(es) SemEval-tr 0.52 0.98 0.49 0.52 0.51 0.48
BERT-Base SemEval MULTITuDE 0.25 0.60 0.89 0.89 0.11 0.11
Mdeberta SemEval MULTITuDE 0.11 0.00 0.89 0.00 0.11 0.00
RADAR SemEval MULTITuDE 0.18 0.56 0.89 0.88 0.11 0.12

Openai-Roberta SemEval MULTITuDE 0.29 0.63 0.90 0.88 0.10 0.12
XLM-Roberta SemEval MULTITuDE 0.85 0.72 0.92 0.89 0.08 0.11

BERT-Base SemEval SemEval 0.50 0.24 0.50 0.40 0.50 0.60
Mdeberta SemEval SemEval 0.50 0.00 0.50 0.00 0.50 0.00
RADAR SemEval SemEval 0.36 0.91 0.61 0.30 0.39 0.70

Openai-Roberta SemEval SemEval 0.33 0.91 0.71 0.36 0.29 0.64
XLM-Roberta SemEval SemEval 0.51 0.56 0.29 0.51 0.71 0.49

Table 14: Detailed data of charts is given below
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Language Model score AUROC FPR TPR TNR FNR
Arabic radar+tr 0.73 0.96 0.96 0.87 0.04 0.13
Catalan radar+tr 0.81 0.87 1.00 0.88 0.00 0.12
Czech radar+tr 0.72 0.97 1.00 0.87 0.00 0.13

German radar+tr 0.64 0.92 1.00 0.85 0.00 0.15
Spanish radar+tr 0.51 0.84 0.99 0.83 0.01 0.17
Dutch radar+tr 0.57 0.88 0.98 0.84 0.02 0.16

Russian radar+tr 0.70 0.95 0.97 0.87 0.03 0.13
Ukranian radar+tr 0.84 0.72 0.99 0.88 0.01 0.12
Chinese radar+tr 0.66 0.93 0.99 0.86 0.01 0.14

Table 15: Detailed analysis language wise of Radar with translation

Language Model score AUROC FPR TPR TNR FNR
Arabic Radar+backtranslation 0.54 0.85 0.93 1.00 0.07 0.00
Catalan Radar+backtranslation 0.88 0.55 1.00 1.00 0.00 0.00
Czech Radar+backtranslation 0.88 0.55 1.00 1.00 0.00 0.00

German Radar+backtranslation 0.80 0.93 0.99 1.00 0.01 0.00
Spanish Radar+backtranslation 0.49 0.83 0.99 1.00 0.01 0.00
Dutch Radar+backtranslation 0.84 0.73 0.99 1.00 0.01 0.00

Russian Radar+backtranslation 0.59 0.88 0.95 1.00 0.05 0.00
Ukranian Radar+backtranslation 0.82 0.82 0.93 1.00 0.07 0.00

Table 16: Detailed analysis language wise of Radar with back-translation
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