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Abstract

In this paper, we consider variational autoencoders (VAE) for general state space mod-
els. We consider a backward factorization of the variational distributions to analyze the
excess risk associated with VAE. Such backward factorizations were recently proposed to
perform online variational learning Campbell et al. (2021) and to obtain upper bounds on
the variational estimation error Chagneux et al. (2022). When independent trajectories of
sequences are observed and under strong mixing assumptions on the state space model and
on the variational distribution, we provide an oracle inequality explicit in the number of
samples and in the length of the observation sequences. We then derive consequences of
this theoretical result. In particular, when the data distribution is given by a state space
model, we provide an upper bound for the Kullback-Leibler divergence between the data
distribution and its estimator and between the variational posterior and the estimated state
space posterior distributions. Under classical assumptions, we prove that our results can be
applied to Gaussian backward kernels built with dense and recurrent neural networks.

1 Introduction

Deep generative models have been increasingly used and analyzed for the past few years. In this setting,
Variational autoencoders (VAEs) offer the possibility to simultaneously model and train (i) the conditional
distribution of the observation given latent variables referred to as the decoder, and (ii) a variational approx-
imation of the conditional distribution of the latent variable given the observation referred to as the encoder.
They have been successfully applied in many contexts such as image generation (Vahdat & Kautz, 2020),
text generation (Bowman et al., 2015), state estimation and image reconstruction (Cohen et al., 2022).

Variational inference has been widely and satisfactorily used for many practical applications but its theoret-
ical properties has been analyzed only very recently. Theoretical guarantees have been mostly proposed for
variational inference procedures in settings where datasets are based on independent data and for mean-field
approximations. In Huggins et al. (2020), the authors provided variational error bounds, in particular for
the estimation of the posterior mean and covariance. In Chérief-Abdellatif & Alquier (2018), the authors
established the concentration of variational approximations of posterior distributions for mixtures of general
laws using PAC-Bayesian theory. The PAC-Bayesian theory has also been used in Mbacke et al. (2023)
where the authors controlled in particular the L2 reconstruction loss under the true data distribution for
VAEs. In addition, Tang & Yang (2021) provided a theoretical analysis of the excess risk for Empirical
Bayes Variational Autoencoders for both parametric and nonparametric settings. They derived a set of
generic assumptions to obtain an oracle inequality explicit in the number of samples and proposed an upper
bound for the total variation distance between the true distribution of the observations and a variational
approximation combining the empirical distribution of the dataset and the proposed VAE architecture.

1

https://openreview.net/forum?id=36OX7uRM5t


Published in Transactions on Machine Learning Research (06/2024)

In this paper, we consider data sets consisting in n independent copies of sequences with length T +1 having
distribution PD. We aim at extending the theoretical results on variational inference procedures in two
directions. First, we set the focus on the use of VAEs for general state space models, i.e. settings where
the decoding distribution PYθ of the observations depends on an unobserved Markov chain. State space
models are a ubiquitous class of latent variable models for sequential data, see for instance Marino et al.
(2018); Lin et al. (2018); Krishnan et al. (2017). In addition, instead of using mean-field approximations, we
consider variational encoding distributions Qφ satisfying a backward factorization as proposed in Campbell
et al. (2021); Chagneux et al. (2022). In Chagneux et al. (2022), the authors derived the first theoretical
results providing upper bounds on the state decoding estimation error when using variational inference with
backward factorization and no such results were proposed for state space models using a mean-field approx-
imation. This factorization was used in Campbell et al. (2021) to define new online variational estimation
algorithms, where observations are processed on-the-fly. In state space models, the true posterior distribu-
tion of the latent states given the observations admits a backward Markovian decomposition. Therefore this
factorization allows to introduce a variational family which fits the data structure which is not the case of
mean-field approximations.

Our results give the first (up to our knowledge) theoretical guarantees on the trained variational approxi-
mation in this setting.

• We provide assumptions on the decoding and variational encoding kernels under which we prove an
oracle inequality for the risk explicit in particular in the number of samples and in the length of the
observation sequences, see Theorem 3.1. This result is established using an alternative formulation
of (Tang & Yang, 2021, Theorem 3) in our state space setting and with an explicit dependency on
some constants to track all terms depending on the number of observations. The variance term has
the usual rate 1/n up to logn terms in the sample size n, and grows as T 3 in the length T of the
sample sequences. This allows to understand when the procedure leads to a decoding distribution
that approximates well the data distribution together with a coding distribution which approximates
well the decoding state distribution.

• In particular, when data are generated from a general state space model, and when PD belongs to
the decoding family of distributions, we give an upper bound also explicit in the way the backward
coding kernels approximate the backward decoding kernels, see Corollary 1.

• We analyse settings in which our results hold, in particular settings with Gaussian backward kernels
based on Multi-Layer Perceptrons (MLPs) and on Recurrent Neural Networks (RNNs).

Our theoretical results provide the first excess risk bounds in a context of VAE for state space models. The
proposed upper bound has the same behaviour in n as the ones obtained in the classical statistical literature
for parametric models, in which 1/n is the parametric rate and logn factors come from the concentration
of empirical measures. This behaviour was recovered in (Tang & Yang, 2021, Theorem 3) in the variational
learning context. Regarding theoretical results for VAEs in the state space models context, we are only
aware of Chagneux et al. (2022) where the authors control the variational posterior error for the estimation
of expectations of additive functionals with an upper bound having linear growth in T . In this context, we
target a more challenging objective and it is not surprising that the upper bound on the excess risk may
have a larger than linear growth in T .

The paper is organised as follows. The general setting and notations for state space models and variational
learning are given in Section 2. Assumptions and theoretical results are proposed in Section 3 along with
discussions on specific deep architectures used in practice. A discussion with insights for future works is
given in Section 4. Detailed technical setting ot the assumptions and detailed proofs of theoretical results
are given in Appendices. Additional proofs to highlight that when the state and observation spaces are
compact our main results hold are given in Appendix G.
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2 State space model and variational estimation

The observations are n sequences Y i0:T , 1 ≤ i ≤ n, taking values in a measurable space (Y,Y). We use au:v
as a short-hand notation for (au, . . . , av) for 0 ⩽ u ⩽ v and any sequence (aℓ)ℓ⩾0. In the following, we need
to consider quantities depending on observation sequences y0:T , which is highlighted with super-indices in
all what follows.

2.1 Coding distribution with state space modeling

Throughout the paper, all quantities related to the coding distribution depend on a parameter θ ∈ Θ,
Θ ⊂ Rdθ . To be used as coding distribution for the observations, we consider a state-space model, i.e. a
bivariate discrete-time process {(Xt, Yt)}t≥0 where {Xt}t≥0 is a hidden Markov chain in a measurable space
(X,X ). The initial distribution χ of X0 has density ζ with respect to a reference measure µ and for all t ⩾ 0,
the conditional distribution of Xt+1 given X0:t depends only on Xt, it is written Mθ(Xt, ·) and has density
mθ(Xt, ·). In such a model, the observations {Yt}0⩽t⩽T are assumed to be independent conditionally on
X0:T and, for all 0 ⩽ t ⩽ T , the distribution of Yt given X0:T depends on Xt only, is written Gθ(Xt, ·), and
has density y 7→ gyθ (Xt) with respect to a reference measure ν.
Example 1. Consider a nonlinear state space model defined by X0 ∼ ζ in Rd and for all 0 ≤ t ≤ T − 1,

Xt+1 = fθ(Xt) + εt ,

where fθ : Rd → Rd is a parametric function and (εt)1≤t≤T are i.i.d. with distribution N (0,Σ) and inde-
pendent of X0. In this setting, mθ(Xt, ·) is the Gaussian density with mean fθ(Xt) and variance Σ. The
observations are defined, for all 0 ≤ t ≤ T , as

Yt = hθ(Xt) + ηt ,

where hθ : Rd → Rq is a parametric function and (ηt)0≤t≤T are i.i.d. with distribution N (0,Λ) and inde-
pendent of (X0:T , ε0:T ). In this setting, y 7→ gyθ (Xt) is the Gaussian density with mean hθ(Xt) and variance
Λ.

In this context, the joint probability distribution Pθ of (X0:T , Y0:T ) has density with respect to µ⊗(T+1) ⊗
ν⊗(T+1) given, for all θ ∈ Θ, x0:T ∈ XT+1 and all y0:T ∈ YT+1, by

pθ,0:T (x0:T , y0:T ) = ζ(x0)gy0
θ (x0)

T∏
t=1

mθ(xt−1, xt)gyt

θ (xt) ,

and the coding distribution of a sequence Y0:T is denoted by PYθ . The joint smoothing distribution, i.e. the
conditional distribution of X0:T given Y0:T = y0:T , is given for every measurable function h by

Φy0:T
θ,0:T |T (h) =

∫
χ(dx0)gy0

θ (x0)
∏T
t=1 Mθ(xt−1,dxt)gyt

θ (xt)h(x0:T )∫
χ(dx0)gy0

θ (x0)
∏T
t=1 Mθ(xt−1,dxt)gyt

θ (xt)
.

The probability density of Φy0:T
θ,0:T |T is denoted by ϕy0:T

θ,0:T |T . In the following, we use the notation Φy0:t
θ,t to

denote the the filtering distribution at time t, i.e. the conditional distribution of Xt given Y0:t = y0:T , with
a similar convention for the probability densities. The joint smoothing distribution can also be written

Φy0:T
θ,0:T |T (dx0:T ) = Φy0:T

θ,T (dxT )
T−1∏
t=0

B
y0:T −t−1
θ,T−t−1|T−t(xT−t,dxT−t−1) , (1)

where B
y0:T −t−1
θ,T−t−1|T−t(xT−t,dxT−t−1) is the backward kernel at time T − t defined by

B
y0:T −t−1
θ,T−t−1|t(xT−t,dxT−t−1) ∝ Φy0:T −t−1

θ,T−t−1(dxT−t−1)mθ(xT−t−1, xT−t) with a probability density with re-
spect to µ denoted by by0:T −t−1

θ,T−t−1|T−t(xT−t, ·). For all T , θ, y0:T ∈ YT+1, the loglikelihood of the observations
is:

ℓy0:T
T (θ) = logLy0:T

T (θ) ,
where

Ly0:T
T (θ) =

∫
pθ,0:T (x0:T , y0:T )µ(dx0:T ) .
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2.2 Variational learning with backward factorization

The joint smoothing distribution is usually intractable and we focus in this paper on variational learning
to perform approximate maximum likelihood. All quantities related to the encoding distribution depend
on a parameter φ ∈ Φ, Φ ⊂ Rdφ . Following Campbell et al. (2021); Chagneux et al. (2022), we propose a
backward variational formulation mimicking (1:

Qy0:T
φ,0:T (dx0:T ) = Qy0:T

φ,T (dxT )
T−1∏
t=0

Qy0:T
φ,T−t−1|T−t(xT−t,dxT−t−1) ,

where Qy0:T
φ,T−t−1|T−t(xT−t, ·) (resp. Qy0:T

φ,T ) has probability density qy0:T
φ,T−t−1|T−t(xT−t, ·) (resp. qy0:T

φ,T ) with
respect to the reference measure µ.

In this setting, the ELBO writes, for all θ ∈ Θ, φ ∈ Φ, and for a sequence of observations Y0:T ,

ELBOY0:T
T (θ, φ) = ℓY0:T

T (θ) − KL
(
QY0:T
φ,0:T

∥∥∥ΦY0:T
θ,0:T |T

)
.

Here, KL (Q∥P ) denotes the Kullback-Leibler divergence between probability distributions Q and P , that is
KL (Q∥P ) = EQ[log(dQ/dP )]. Maximizing the empirical ELBO given by

∑n
i=1 ELBOY i

0:T
T (θ, φ) is equivalent

to minimizing the following loss function

Ln,T (θ, φ) = 1
n

n∑
i=1

ϖ(θ, φ, Y i0:T ) ,

where
ϖ(θ, φ, Y i0:T ) = log pD(Y i0:T )

L
Y i

0:T
T (θ)

+ KL
(
Q
Y i

0:T
φ,0:T

∥∥∥ΦY
i

0:T
θ,0:T |T

)
.

Define
(θ̂n,T , φ̂n,T ) ∈ argminθ∈Θ,φ∈Φ Ln,T (θ, φ) . (2)

Although this is not the focus of this paper, note that in practice the estimators given by (2) cannot be
computed explicitly, in particular when the decoder or the encoder are parameterized by neural networks. In
this case, a common approach is to obtain approximate estimators using stochastic gradient descent-based
approaches like ADAM Kingma & Ba (2015), see for instance Chagneux et al. (2022) and the references
therein. In these settings, the gradient descent is performed using mini batches of trajectories for each
parameter update and the unknown expectations are approximated using Monte Carlo methods.

Such a procedure is a so-called M -estimation method in the statistical literature. The intuition is that with
large data sets, that is when n is large, the ELBO is close to the expected (under the unknown distribution
of the data) value of ϖ, and the estimated decoding and coding parameters are close to minimizing this
expected value. An important body of work in the statistical community has been devoted to develop
very general settings in which non asymptotic bounds on the risk of M -estimators, referred to as oracle
inequalities, can be given, see van de Geer (2000) as early reference, or Wainwright (2019) and the references
therein for more recent results. Moreover, oracle inequalities are obviously the only property one can hope
for such estimators, the other properties being consequences of the oracle inequality. In the following section,
we thus first provide assumptions under which we obtain an oracle inequality for the coding and decoding
distributions with parameters defined in (2) and then discuss consequences. Note that though (2) defines the
parameters when the algorithm has reached the optimal value, we could relax the definition by minimizing
up to some error term that would be added to the upper bound of the oracle inequality.

2.3 Examples

We can consider for instance generative models where the transition kernels and emission distributions are
Gaussian and parameterized by neural networks.
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Gaussian backward kernels with dense networks.

• For all x ∈ X, x′ 7→ mθ(x, x′) is the Gaussian probability density function with mean µθ(x), and
variance Σθ(x) where (µθ(x),Σθ(x)) = MLPθ(x) with MLPθ a dense Multi-layer network with input
x and weights given by θ.

• For all 1 ≤ t ≤ T , x ∈ X, x′ 7→ qy0:T
φ,t−1|t(x, x′) is the Gaussian probability density function with mean

µy0:T
φ,t−1|t(x), and variance Σy0:T

φ,t−1|t(x) where (µy0:T
φ,t−1|t(x),Σy0:T

φ,t−1|t(x)) = MLPy0:T ,φ
t−1|t (x) with MLPy0:T ,φ

t−1|t
a dense Multi-layer network with input x and weights depending on φ.

Another example where the forward Markov kernels and the backward variational kernels are Gaussian is
given by the Chaotic Recurrent Neural Network (CRNN) described in Campbell et al. (2021); Zhao et al.
(2022); Chagneux et al. (2022).

Gaussian backward kernels with recurrent networks. A natural parameterization is also to use
a recurrent neural network which updates an internal state (st)t≥0 from which the backward variational
kernels and filtering density are built. For all t ≥ 0, define st = RNNφ(st−1, yt) where RNNφ is a recurrent
neural network, and let x′ 7→ qy0:T

φ,t−1|t(x, x′) be the Gaussian probability density function with mean µy0:T
t−1|t,

and variance Σy0:T
t−1|t where (µt,Σt) = MLPφ(st).

3 Main results

3.1 Assumptions

In this section, we propose a set of assumptions on the kernel densities mθ and qy0:T
φ,t|t+1, 0 ≤ t ≤ T − 1, and

on the conditional densities gyθ , under which we are able to prove an oracle inequality. The precise setting of
those assumptions is detailed in Appendix B. We discuss in Section 3.3 how they can be applied to specific
architectures used in practice. Additional discussions on the assumptions are provided in Appendix G where
we prove that usual compact state space models are covered by our theory.

As can be seen in the definition of the ELBO, we shall need to control smoothing expectations both in the
coding distribution and in the decoding distribution. In the state space model literature, Assumption H1 is
usual for this purpose.

H1 There exist probability measures η− and η+ on (X,X ) and constants 0 < σ− < σ+ < ∞ such that
σ−η− (resp. σ+η+) is a uniform lower bound (resp. uniform upper bound) for χ and Mθ. Similarly,
there exist probability measures λ− and λ+ on (X,X ) such that for all y0:T ∈ YT+1, there exist
ϑy0:T

− > 0 and ϑy0:T
+ > 0 such that ϑy0:T

− λ− (resp. ϑy0:T
+ λ+) is a uniform lower bound (resp. uniform

upper bound) for Qy0:T
φ,T and Qy0:T

φ,t|t+1.

In the state space model literature, H2 is usual for the study of asymptotic properties of maximum likelihood
estimators.

H2 For all y ∈ Y, infθ∈Θ
∫
gyθ (x)η−(dx) = c−(y) > 0 and supθ∈Θ

∫
gyθ (x)η+(dx) = c+(y) < ∞.

More assumptions are needed to manage the complexity of the models and to get a nonasymptotic control
of the risk of the estimators. These controls are obtained with Assumptions H3-6.

We constrain the kernels and the conditional densities to be Lipschitz in the parameters with a Lipschitz
coefficient depending on the variables.

H3 There exists M,Gy,Ky0:T
t−1|t,K

y0:T
T , such that mθ(x, x′) is Lipschitz in θ with Lipschitz coefficient

M(x, x′), gyθ (x) is Lipschitz in θ with Lipschitz coefficient Gy(x), qy0:T
φ,t−1|t(x, x′) is Lipschitz in φ

with Lipschitz coefficient Ky0:T
t−1|t(x′, x), qy0:T

φ,T (x) is Lipschitz in φ with Lipschitz coefficient Ky0:T
T (x).
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We shall also need Lipschitz properties of the functions comparing logarithms of the backward kernels of the
coding and decoding distributions. The precise technical setting of the assumption is given in Appendix B.

H4 The difference between logarithms of the backward kernels of the coding and of the decoding dis-
tributions satisfy Lipschitz properties with respect to the parameters. Moreover, the integral with
respect to λ+ of this difference is uniformly upper bounded.

We shall need to prove that ϖ is a Lipschitz function of the parameters, and we need an upper bound on
the L2-norm of the Lipschitz coefficient. For this purpose, we consider moment assumptions. The precise
technical setting of the assumption is given in Appendix B

H5 There exists A which is an upper bound of several moments involving quantities defined in the
previous assumptions.

The last assumption is used to get concentration properties, as usual in the statistical literature to get
theoretical guarantees with finite samples. It involves Orlicz norms, the precise definition of which is given
in Appendix A.

H6 There exists α∗ and B > 0 such that the Orlicz norm of order α∗ of several functions is upper
bounded with B.

3.2 Oracle inequalities and consequences

Our main result is an oracle inequality for the risk. The so-called variance term has the usual rate 1/n up to
logn terms in the sample size n. It is proved to grow as much as T 3 in the length T of the sample sequences.
We assume that Θ and Φ are compact spaces, and that the sum of their diameters is bounded by d0.
Theorem 3.1. Assume that H1-H6 hold. Then, there exist constants c0, c1, c2, D̃ which depend on σ+,
σ−, α∗, A, B and d0 only, such that with probability at least 1 − c0exp(−c1{d∗ logn}1∧α∗),∫

ϖ(θ̂n,T , φ̂n,T , y0:T )pD(y0:T )dµ(y0:T ) ≤ infγ>0

{
(1 + γ)ET + c2(1 + γ−1)D̃d∗T

3

n
log(d∗n)(logn)1/α∗

}
,

where ET = minθ∈Θ,φ∈Φ
∫
ϖ(θ, φ, y0:T )pD(y0:T )dµ(y0:T ) and d∗ = dθ + dφ.

In Chagneux et al. (2022), under similar assumptions as the strong mixing assumptions of our paper, the
authors obtain a linear growth in T as an upper bound on the variational posterior error when the objective
is to compute expectations of additive functionals. In our setting we target a more challenging objective i.e.
obtaining excess risk bounds and a full control on the divergence between the true data distribution and the
estimated one (Corollary 3.2). Indeed, as an intermediate step, the proof of Theorem 3.1 requires similar
bounds as the one in Chagneux et al. (2022). The sketch of proof we follow (see below) leads to a growth
of order T 3. We do not claim that our upper bounds is optimal but it is not surprising that it has a larger
growth than the one of Chagneux et al. (2022). Finding another method to prove a bound of better order if
possible is an open problem.

In our assumptions, many constants depend on the state dimension and on the dimension of the parameter
space. In this paper, we decided to set the focus on the dependency on the number of samples and on T . A
reason is that tracking the dependency on the dimension is challenging in state space models. Tracking the
dependency on d for mixing constants is a contribution on its own for general state spaces without assuming
too restrictive conditions on the model. This is the focus of future works.

Proof. To prove Theorem 3.1, we use Theorem C.1, which is an improved formulation of (Tang & Yang,
2021, Theorem 3), proved in Appendix C, in which we track the dependency in n and T . Theorem C.1
provides an oracle inequality in which the upper bound is a sum of bias term and a variance term. The bias
term is ET . The variance term is the product of a rate in the sample size n and a complexity term. The rate
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in n is the usual one, and the complexity term is itself a product of the constants a1 and D involved in the
assumptions of Theorem C.1 together with the dimensional constant d∗. The main purpose of the remaining
of the proof is to understand how a1 and D depend on T , the length of the sequences. This requires to
provide assumptions that can be verified in specific models such as the models described in Sections 2.3 and
3.3, and to control precisely behaviours of terms involving smoothing (coding and decoding) distributions
which is known to be challenging. The detailed proof is given in the Appendix D. We show that a1 may be
upper bounded with CT 2 for some constant C > 0, and that D may be upper bounded with D̃T , resulting
in a product of order T 3.

Note that∫
ϖ(θ̂n,T , φ̂n,T , y0:T )pD(y0:T )dµ(y0:T ) = KL

(
PD

∥∥∥PY
θ̂n,T

)
+ EPD KL

(
Q
Y 1

0:T

φ̂n,T ,0:T

∥∥∥∥ΦY
1

0:T

θ̂n,T ,0:T |T

)
.

If the upper bound in Theorem 3.1 is small, then the distribution PD of the observations is well approximated
by the decoding observational distribution PY

θ̂n,T

, and the decoding distribution of the latent state distribution

given data ΦY
1

0:T

θ̂n,T ,0:T |T
is also in average well approximated by the coding distribution Q

Y 1
0:T

φ̂n,T ,0:T
.

In the same way,
ET = minθ∈Θ,φ∈Φ

{
KL
(
PD
∥∥PYθ )+ EPD KL

(
Q
Y 1

0:T
φ,0:T

∥∥∥ΦY
1

0:T
θ,0:T |T

)}
.

In case the data follows a state space distribution given by some decoding distribution, that is if there exists
θ∗ ∈ Θ such that PD = PYθ∗ , the oracle inequality in Theorem 3.1 becomes, by taking θ = θ∗ to upper bound
ET ,

KL
(
PYθ∗

∥∥∥PY
θ̂n,T

)
+ EPY

θ∗
KL
(
Q
Y 1

0:T

φ̂n,T ,0:T

∥∥∥∥ΦY
1

0:T

θ̂n,T ,0:T |T

)
≤ (1 + γ)minφ∈ΦEPY

θ∗
KL
(
Q
Y 1

0:T
φ,0:T

∥∥∥ΦY
1

0:T
θ∗,0:T |T

)
+ c2(1 + γ−1)Dd∗T

3

n
log(d∗n)(logn)1/α∗ (3)

for any γ > 0. In the following corollary, we assume that the coding backward kernels are chosen such that
they are good approximations of the backward decoding kernels in Kullback-Leibler divergence.

H7 There exists ϵ > 0, such that for all θ ∈ Θ there exists φ ∈ Φ such that for all y0:T ∈ YT+1,

KL
(
Qy0:T
φ,T

∥∥∥Φy0:T
θ∗,T

)
≤ ϵ

and for all 1 ≤ t ≤ T ,
KL
(
Qy0:T
φ,t−1|t

∥∥∥By0:t−1
θ,t−1|t

)
≤ ϵ .

Corollary 1. Assume there exists θ∗ ∈ Θ such that PD = PYθ∗ . Assume moreover H7. Then under the same
assumptions as in Theorem 3.1, for the constants c0, c1, c2, D in Theorem 3.1, with probability at least
1 − c0exp(−c1{d∗ logn}1∧α∗), for any γ > 0,

KL
(
PYθ∗

∥∥∥PY
θ̂n,T

)
+EPY

θ∗
KL
(
Q
Y 1

0:T

φ̂n,T ,0:T

∥∥∥∥ΦY
1

0:T

θ̂n,T ,0:T |T

)
≤ (1+γ)(T+1)ϵ+c2(1+γ−1)Dd∗T

3

n
log(d∗n)(logn)1/α∗ .

When the data distribution is given by a state space model, Corollary 1 provides an upper bound for the
Kullback-Leibler divergence between the data distribution and its estimator and between the variational
posterior and the estimated state space posterior distributions. This result sheds additional light on the
quality of variational reconstruction in state space models with respect to (Chagneux et al., 2022, Proposition
3). In (Chagneux et al., 2022, Proposition 3), the authors provided upper bounds on the error between
conditional expectations of state functionals under the true posterior distribution and under its variational
approximation. In both settings, designing coding backward kernels that are good approximations of the
true backward decoding kernels is enough to obtain quantitative controls on the reconstruction error.
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Proof. The result follows from equation 3, H7 and the fact that for any θ ∈ Θ and φ ∈ Φ, for any y0:T ,

KL
(
Qy0:T
φ,0:T

∥∥∥Φy0:T
θ∗,0:T |T

)
=

T∑
t=1

KL
(
Qy0:T
φ,t−1|t

∥∥∥By0:t−1
θ,t−1|t

)
+ KL

(
Qy0:T
φ,T

∥∥∥Φy0:T
θ∗,T

)
.

3.3 Applications

In this section, we consider generative models where the transition kernels and emission distributions are
Gaussian in various classical settings. We show that under weak assumptions on these models, some as-
sumptions of our main results hold. Establishing that all assumptions are satisfied in general settings, i.e.
without very specific assumptions on the architectures, is a more challenging problem.

We prove in Appendix G that H1 holds in particular for compact state spaces. We also prove that the
functions hy0:T

t,θ,φ are upper-bounded explicitly, and that ϕy0:t
θ,t and b

y0:t−1
θ,t−1|t are lower and upper-bounded ex-

plicitly. This allows to obtain explicit constants in H4. Providing additional comments on the assumptions
requires assumptions on the observation space or on the dependency of the variational distributions on the
observations. When the observation space is compact we can also obtain a uniform control with respect to
the observations of these upper bounds which is crucial to check H5 and H6.

Gaussian backward kernels with dense networks. We consider a generative model where the
transition kernels and emission distributions are Gaussian and parameterized by dense networks following
Section 2.3.

• For all x ∈ X, x′ 7→ mθ(x, x′) is the Gaussian probability density function with mean µθ(x), and
variance Σθ(x) where (µθ(x),Σθ(x)) = MLPθ(x) with MLPθ a dense Multi-layer network with input
x and weights given by θ. In this case, if the output layer of MLPθ is such that µθ is bounded and
Σ ≤ Σ−1

θ (x) ≤ Σ (i.e. Σ−1
θ (x) − Σ and Σ − Σ−1

θ (x) are positive semi-definite matrices) for all x ∈ X,
then there exist constants c, c such that for all x, x′ ∈ X,

c exp
(
−λx⊤x

)
≤ mθ(x′, x) ≤ c exp (−λα(x)) ,

where λ is the smallest eigenvalue of Σ and λ is the largest eigenvalue of Σ and where

α(x) = 1
2
(
(∥x∥ −M)21∥x∥≥M + (∥x∥ −m)21∥x∥≤m + (M −m)21m≤∥x∥≤M

)
,

with m = infx∈X,θ∈Θ ∥µθ(x)∥ and M = supx∈X,θ∈Θ ∥µθ(x)∥. This implies that H1 holds. In order
to check H3, if we assume also that for all x ∈ X, θ 7→ µθ(x) and θ 7→ Σ−1

θ (x) are continuously
differentiable and that Θ is compact then there exists M such that for all θ, θ′ ∈ Θ and x, x′ ∈ X,

|mθ(x, x′) −mθ′(x, x′)| ≤ M(x, x′)∥θ − θ′∥2 .

We can check H4 for log by0:t−1
θ,t−1|t, as other items can be verified following the same steps. Assuming

that by0:t−1
θ,t−1|t(x, ·) is a Gaussian probability density with mean µ

y0:t−1
θ,t−1|t(x) and variance Σy0:t−1

θ,t−1|t(x).
Under similar regularity assumptions on the networks providing µy0:t−1

θ,t−1|t(x) and Σy0:t−1
θ,t−1|t(x), when Θ

is compact, H4 holds.

• For all 1 ≤ t ≤ T , x ∈ X, x′ 7→ qy0:T
φ,t−1|t(x, x′) is the Gaussian probability density function with

mean µy0:T
φ,t−1|t(x), and variance Σy0:T

φ,t−1|t(x) where (µy0:T
φ,t−1|t(x),Σy0:T

φ,t−1|t(x)) = MLPy0:T ,φ
t−1|t (x) with

MLPy0:T ,φ
t−1|t a dense Multi-layer network with input x and weights depending on φ. In this case, is

the output layer of MLPy0:T ,φ
t−1|t is such that µy0:T

φ,t−1|t is bounded and Σy0:T
t−1|t ≤ (Σy0:T

φ,t−1|t(x))−1 ≤ Σy0:T
t−1|t

8
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(i.e. (Σy0:T
φ,t−1|t(x))−1 − Σy0:T

t−1|t and Σy0:T
t−1|t − (Σy0:T

φ,t−1|t(x))−1 are positive semi-definite matrices) for all
x ∈ X, then there exist constants cy0:T

t−1|t, c
y0:T
t−1|t such that for all x, x′ ∈ X,

cy0:T
t−1|t exp

(
−λy0:T

t−1|tx
⊤x
)

≤ qy0:T
φ,t−1|t(x

′, x) ≤ cy0:T
t−1|t exp

(
−λy0:T

t−1|tβ(x)
)
,

where λy0:T
t−1|t is the smallest eigenvalue of Σy0:T

t−1|t and λ
y0:T
t−1|t is the largest eigenvalue of Σy0:T

t−1|t and
where

β(x) = 1
2

(
(∥x∥ −My0:T

t−1|t)
21∥x∥≥My0:T

t−1|t
+ (∥x∥ −my0:T

t−1|t)
21∥x∥≤my0:T

t−1|t

+(My0:T
t−1|t −my0:T

t−1|t)
21my0:T

t−1|t
≤∥x∥≤My0:T

t−1|t

)
,

with my0:T
t−1|t = infx∈X ∥µy0:T

t−1|t(x)∥ and My0:T
t−1|t = supx∈X ∥µy0:T

t−1|t(x)∥. Similar assumptions can be used
for qy0:T

φ,T using dense neural networks with bounded output. Under similar regularity assumptions on
µy0:T
φ,t−1|t, and Σy0:T

φ,t−1|t than for µθ, and variance Σθ, we may prove that H3 holds when Φ is compact.

Gaussian backward kernels with recurrent networks. A natural parameterization is also to use
a recurrent neural network which updates an internal state (st)t≥0 from which the backward variational
kernels and filtering density are built. For all t ≥ 0, define st = RNNφ(st−1, yt) where RNNφ is a recurrent
neural network, and let x′ 7→ qy0:T

φ,t−1|t(x, x′) be the Gaussian probability density function with mean µy0:T
t−1|t,

and variance Σy0:T
t−1|t where (µt,Σt) = MLPφ(st). If the network MLPφ is bounded similarly as in the dense

neural network case, then the backward variational kernels satisfy H1.

Functional autoregressive models. The discussion on neural networks also indicates that the as-
sumptions can be verified for some classical statistical models. Assume for instance that X = R and
that for all θ ∈ Θ, x ∈ X, x′ 7→ mθ(x, x′) is the Gaussian probability density function with mean fθ(x),
and variance σ2

θ(x). Then, H1 holds for mθ when −∞ < infx∈X,θ∈Θ fθ(x) ≤ supx∈X,θ∈Θ fθ(x) < ∞ and
−∞ < infx∈X,θ∈Θ σθ(x) ≤ supx∈X,θ∈Θ σθ(x) < ∞.

Gaussian emission densities. Assume that at each time t ≥ 0, Yt = hθ(Xt) + εt, where {εt}t≥0 are
independent Gaussian random variables. Assume also that hθ(Xt) = MLPθ(Xt) where MLPθ is a dense neural
network with bounded output layer, then H2 holds. Assume that for all x ∈ X, θ 7→ hθ(x) is continuously
differentiable and that Θ is compact, for all y ∈ Y, there exists Gy such that for all θ, θ′ ∈ Θ and x ∈ X,

|gyθ (x) − gyθ′(x)| ≤ Gy(x)∥θ − θ′∥2 ,

which means that H3 holds for the emission distributions.

4 Discussion

In this paper, we used a backward decomposition of variational posterior distributions to propose the first
theoretical results for variational autoencoders (VAE) applied to general state space models. Under strong
mixing assumptions on the state space model and on the variational distribution, we provide in particular
an oracle inequality and an upper bound for the Kullback-Leibler divergence between the data distribution
and its estimator.

Although these results are the first theoretical guarantees for VAE in the context of state space models, we
believe that this is the first step to solve challenging open problems. First, in order to cover a wider variety of
applications, weakening the strong mixing assumptions, for instance using local Doeblin assumptions, would
be very interesting although it is a challenge when analyzing the stability of smoothing distributions. Another
research direction is to understand how our results can be extended in settings where the observations are
processed online, i.e. in cases where the parameters are updated when new observations are received but
never stored. To the best of our knowledge, online variational estimation has recently been explored with
new methodologies but without any theoretical guarantees.
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A Notations.

In the following, for all measures λ and η on (X,X ) and all transition kernels K we consider the follow-
ing notations. For all measurable sets A ⊂ X × X, λ ⊗ η(A) =

∫
1A(x, x′)λ(dx)η(dx′) and λ ⊗ K(A) =∫

1A(x, x′)λ(dx)K(x, dx′), for all measurable sets B ⊂ X, λK(B) =
∫
λ(dx)1B(x′)K(x, dx′), and for all

real-valued measurable functions h on (X,X ), λ(h) =
∫
λ(dx)h(x). For all measurable functions h1, h2, we

write h1 ⊗ h2 : (x, x′) 7→ h1(x)h2(x′).

For all α > 0, define on R+ the function ψα : x 7→ exp(xα) − 1.

For all real-valued random variables X, define the Orlicz norm of order α by

∥X∥ψα
= infλ>0 {E [ψα(|X|/λ)] ≤ 1} .

For all probability measures P and Q defined on the same probability space, ∥P −Q∥tv will denote the total
variation norm between P and Q.

B Assumptions

In this section, we give the precise setting of the assumptions.

H1 There exist probability measures η− and η+ on (X,X ) and constants 0 < σ− < σ+ < ∞ such that
for all θ ∈ Θ, x ∈ X, all measurable set A,

σ−η−(A) ≤ χ(A) ≤ σ+η+(A)

and
σ−η−(A) ≤ Mθ(x,A) ≤ σ+η+(A) .

There exist probability measures λ− and λ+ on (X,X ) such that for all y0:T ∈ YT+1, there exist
ϑy0:T

− > 0 and ϑy0:T
+ > 0 such that for all φ ∈ Φ, t ≥ 0, x ∈ X, all measurable set A,

ϑy0:T
− λ−(A) ≤ Qy0:T

φ,t|t+1(x,A) ≤ ϑy0:T
+ λ+(A) .

In addition, for all φ ∈ Φ, all y0:T ∈ YT+1, and all measurable set A,

ϑy0:T
− λ−(A) ≤ Qy0:T

φ,T (A) ≤ ϑy0:T
+ λ+(A).

H2 For all y ∈ Y, infθ∈Θ
∫
gyθ (x)η−(dx) = c−(y) > 0 and supθ∈Θ

∫
gyθ (x)η+(dx) = c+(y) < ∞.

We consider also the following notation supθ∈Θg
yt

θ = ḡyt and infθ∈Θg
yt

θ = gyt .
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H3 There exists M such that for all θ, θ′ ∈ Θ and x, x′ ∈ X,

|mθ(x, x′) −mθ′(x, x′)| ≤ M(x, x′)∥θ − θ′∥2 .

For all 1 ≤ t ≤ T , y0:T , there exists Ky0:T
t−1|t such that for all φ,φ′ ∈ Φ and x, x′ ∈ X,∣∣∣qy0:T

φ,t−1|t(x, x
′) − qy0:T

φ′,t−1|t(x, x
′)
∣∣∣ ≤ Ky0:T

t−1|t(x
′, x)∥φ− φ′∥2 .

In addition, there exists Ky0:T
T such that for all φ,φ′ ∈ Φ and x ∈ X,∣∣∣qy0:T

φ,T (x) − qy0:T
φ′,T (x)

∣∣∣ ≤ Ky0:T
T (x)∥φ− φ′∥2 .

For all y ∈ Y, there exists Gy such that for all θ, θ′ ∈ Θ and x ∈ X,

|gyθ (x) − gyθ′(x)| ≤ Gy(x)∥θ − θ′∥2 .

Define, for 1 ≤ t ≤ T − 1,

hy0:T
t,θ,φ(xt−1, xt) = log qy0:T

φ,t−1|t(xt, xt−1) − log by0:t−1
θ,t−1|t(xt, xt−1) (4)

and, by convention, hy0:T
T,θ,φ(xT−1, xT ) = log qy0:T

φ,T−1|T (xT , xT−1) − log by0:T −1
θ,T−1|T (xT , xT−1) + log qy0:T

φ,T (xT ) −
log ϕy0:T

θ,T (xT ).

H4 For all y0:T ∈ YT+1 and all 0 ≤ t ≤ T ,

sup
θ∈Θ,φ∈Φ

∥∥∥∥∫ λ+(dx)
∣∣∣hy0:T
t,θ,φ(x, ·)

∣∣∣∥∥∥∥
∞

= υy0:T
t < ∞ ,

and for all θ, θ′ ∈ Θ, φ,φ′ ∈ Φ, 1 ≤ t ≤ T ,∫
λ+ ⊗ λ+(dxdx′)

∣∣∣log qy0:T
φ,t−1|t(x, x

′) − log qy0:T
φ′,t−1|t(x, x

′)
∣∣∣ ≤ cy0:T

1,t ∥φ− φ′∥2 ,∫
λ+ ⊗ λ+(dxdx′)

∣∣∣log by0:t−1
θ,t−1|t(x, x

′) − log by0:t−1
θ′,t−1|t(x, x

′)
∣∣∣ ≤ c

y0:t−1
2,t ∥θ − θ′∥2 ,∫

λ+(dx)
∣∣∣log qy0:T

φ,T (x) − log qy0:T
φ′,T (x)

∣∣∣ ≤ cy0:T
3,T ∥φ− φ′∥2 ,∫

λ+(dx)
∣∣∣log ϕy0:T

θ,T (x) − log ϕy0:T
θ′,T (x)

∣∣∣ ≤ cy0:T
4,T ∥θ − θ′∥2 ,

where λ+ is defined in H1.

H5 There exists A such that the following inequalities are satisfied.

E
[(
ϑY0:T

+ cY0:T
3,T

)2
]

≤ A , E
[(
ϑY0:T

+ cY0:T
4,T

)2
]

≤ A ,

for all 0 ≤ t ≤ T ,

E
[
µ(GYt)2

c−(Yt)2

]
≤ A , E

[(
(ϑY0:T

+ )2cY0:T
1,t

)2
]

≤ A ,

for all 1 ≤ t ≤ T ,

E
[(

(ϑY0:T
+ )2c

Y0:t−1
2,t

)2
]

≤ A , E
[
η+ ⊗ µ(M ⊗ ḡYt−1 ḡYt)2

c−(Yt−1)2c−(Yt)2

]
≤ A ,
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E

(ϑY0:T
+

T∑
s=t−1

λ+ ⊗ λ+(Ky0:T
s|s+1)ρ(Y0:T )s−t

)2 ≤ A ,

where for all y0:T , ρ(y0:T ) = 1 − ϑy0:T
− , for all 0 ≤ s, t ≤ T ,

E
[
c+(Yt)2µ(GYs)2

c−(Yt)2c−(Ys)2

]
≤ A ,

and for all 0 ≤ t ≤ T , all 1 ≤ s ≤ T ,

E

[(
c+(Yt)η+ ⊗ µ(M ⊗ ḡYs−1 ḡYs)

c−(Ys−1)c−(Ys)c−(Yt)

)2]
≤ A .

H6 There exists α∗ and B > 0 such that for all T ≥ 1,

∥log pD(Y0:T )∥ψα∗
≤ BT and

∥∥∥∥∥(ϑY0:T
+ )2 · supθ,φ,χ

T∑
t=1

λ+ ⊗ λ+

(∣∣∣hy0:T
t,θ,φ

∣∣∣)∥∥∥∥∥
ψα∗

≤ BT ,

and for all 0 ≤ t ≤ T ,
∥| log c+(Yt)| ∨ | log c−(Yt)|∥ψα∗

≤ B .

C An oracle inequality adapted from Tang & Yang (2021)

We propose an alternative formulation of Theorem 3 in Tang & Yang (2021) in which we provide the precise
behavior of the constant in the variance term. To avoid introducing too many new notations, we formulate
the results of Tang & Yang (2021) choosing the observation to be Y0:T , the latent variables to be X0:T in
our setting.

Condition A. There exist a1 > 0 and a function b such that for all θ ∈ Θ, θ′ ∈ Θ, φ ∈ Φ, φ′ ∈ Φ,
y0:T ∈ YT+1,

|ϖ(θ, φ, y0:T ) −ϖ(θ′, φ′, y0:T )| ≤ b(y0:T )∥(θ, φ) − (θ′, φ′)∥2 ,

with E[b2(Y0:T )] ≤ a1.

Assumption A. There exist α∗ > 0 and D > 0 such that∥∥∥∥∥supθ,φ

{∣∣∣∣∣log LY0:T
T (θ)

pD(Y0:T )

∣∣∣∣∣+ KL
(
QY0:T
φ,0:T

∥∥∥ϕY0:T
θ,T

)}∥∥∥∥∥
ψα∗

≤ D . (5)

Theorem C.1. Assume that Θ and Φ are compact spaces and that the sum of their diameter is upper
bounded by d0. Assume moreover that Condition A and Assumption A hold. Then, there exist constants
c0, c1, which depend on d0, a1 and α∗, and a universal constant c2, such that with probability at least
1 − c0exp(−c1{d∗ logn}1∧α∗),∫

ϖ(θ̂n,T , φ̂n,T , y0:T )pD(y0:T )dµ(y0:T ) ≤ infγ>0

{
(1 + γ)ET + c2(1 + γ−1)a1Dd∗

n
log(d∗n)(logn)1/α∗

}
,

where ET = minθ∈Θ,φ∈Φ
∫
ϖ(θ, φ, y0:T )pD(y0:T )dµ(y0:T ) and d∗ = dθ + dφ.

Proof. We follow the proof of (Tang & Yang, 2021, Theorem 3), in which we track the dependencies of the
constants with respect to a1. In (Tang & Yang, 2021, Lemma 14), a multiplicative term √

a1 is required on
the r.h.s. of the inequality. Then on page 24 third line the inequality needs again √

a1 on the r.h.s., and
the end of the proof follows by multiplying δn by √

a1. We obtain that in (Tang & Yang, 2021, Theorem 3),
their constant c2 is proportional to a1.
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D Proof of Theorem 3.1

First, Assumption A of Theorem 3.1 holds with D = D̃T for some positive constant D̃ depending on B.
This is a consequence of the first point in H6, Proposition E.4 and Proposition E.5.

We now prove that Condition A of Theorem 3.1 holds i.e. that for all θ, θ′, φ, φ′, y0:T ,

∆(θ, θ′, φ, φ′, y0:T ) = |ϖ(θ, φ, y0:T ) −ϖ(θ′, φ′, y0:T )| ≤ b(y0:T )∥(θ, φ) − (θ′, φ′)∥2 ,

with a1 ≤ CT 2 for some C > 0. Write, for all θ, φ1, φ2, y0:T ,

Ey0:T (θ, φ1, φ2) = Eqy0:T
φ1,0:T

[
log

qy0:T
φ2,0:T (X0:T )

ϕy0:T
θ,0:T |T (X0:T )

]
.

Note that
∆(θ, θ′, φ, φ′, y0:T ) ≤ |ℓy0:T

T (θ) − ℓy0:T
T (θ′)| + |Ey0:T (θ, φ, φ) − Ey0:T (θ′, φ′, φ′)| .

Write
|Ey0:T (θ, φ) − Ey0:T (θ′, φ′)| ≤ ∆1(θ, φ, φ′, y0:T ) + ∆2(θ, θ′, φ, φ′, y0:T ) ,

where

∆1(θ, φ, φ′, y0:T ) = |Ey0:T (θ, φ, φ) − Ey0:T (θ, φ′, φ)| ,
∆2(θ, θ′, φ, φ′, y0:T ) = |Ey0:T (θ, φ′, φ) − Ey0:T (θ′, φ′, φ′)| .

Therefore,

∆(θ, θ′, φ, φ′, y0:T ) ≤ |ℓy0:T
T (θ) − ℓy0:T

T (θ′)| + ∆1(θ, φ, φ′, y0:T ) + ∆2(θ, θ′, φ, φ′, y0:T ) .

By Proposition E.1, Proposition E.2 and Proposition E.3, we get that for all θ, θ′, φ, φ′, and all y0:T ,

∆(θ, θ′, φ, φ′, y0:T ) ≤ (κ1(y0:T ) + κ4(y0:T )) ∥θ − θ′∥2 + (κ2(y0:T ) + κ3(y0:T )) ∥φ− φ′∥2,

where

κ1(y0:T ) = σ+η+(Gy0)
σ−c−(y0) +

T∑
t=1

σ+

σ−c−(yt)

{
c+(yt)Lt−1(y0:t−1) + η+ ⊗ µ(M · ḡyt−1⊗̄gyt)

σ−c−(yt−1) + η+(Gyt)
}
, (6)

with M · ḡyt−1 ⊗ ḡyt(x, x′) = M(x, x′)ḡyt−1(x)ḡyt(x′), and for all t,

Lt(y0:t) =
4σ2

+
σ2

−

t∑
s=0

εt−s
1

c−(ys)

{
1

σ−c−(ys−1)η+ ⊗ µ (M · ḡys−1 ⊗ ḡys) + µ(Gys)
}
, (7)

with ε = 1 − σ−/σ+,

κ2(y0:T ) = (ϑy0:T
+ )3

T∑
t=1

υy0:T
t

T∑
s=t−1

λ+ ⊗ λ+(Ky0:T
s|s+1)ρ(y0:T )s−t , (8)

κ3(y0:T ) = ϑy0:T
+

(
ϑy0:T

+

T∑
t=1

cy0:T
1,t + cy0:T

3,T

)
, (9)

and

κ4(y0:T ) = ϑy0:T
+

(
ϑy0:T

+

T∑
t=1

c
y0:t−1
2,t + cy0:T

4,t

)
, (10)

in which υy0:T
t , cy0:T

1,t , cy0:t−1
2,t , cy0:T

3,T and cy0:T
4,t are defined in H4. Using H5, it is easy to prove that E[κ1(y0:T )2],

E[κ2(y0:T )2], E[κ3(y0:T )2], and E[κ4(y0:T )2] are upper bounded by cT 2 for a constant c that depends only
on σ+, σ− and A, and Theorem 3.1 follows.
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E Additional proofs

Proposition E.1. Assume that H1-3 hold. For all θ, θ′ ∈ Θ, and all y0:T ∈ YT+1,

|ℓy0:T
T (θ) − ℓy0:T

T (θ′)| ≤ κ1(y0:T )∥θ − θ′∥2 ,

where

κ1(y0:T ) = σ+η+(Gy0)
σ−c−(y0) +

T∑
t=1

σ+

σ−c−(yt)

{
c+(yt)Lt−1(y0:t−1) + η+ ⊗ µ(M · ḡyt−1⊗̄gyt)

σ−c−(yt−1) + η+(Gyt)
}
,

with M · ḡyt−1 ⊗ ḡyt(x, x′) = M(x, x′)ḡyt−1(x)ḡyt(x′), where Lt−1 is defined in Lemma F.2.

Proof. For all θ, θ′ ∈ Θ, and all y0:T ∈ YT+1, with the convention pθ(y0|y−1) = pθ(y0),

ℓy0:T
T (θ) − ℓy0:T

T (θ′) =
T∑
t=0

(log pθ(yt|y0:t−1) − log pθ′(yt|y0:t−1)) .

For all t > 0,
pθ(yt|y0:t−1) =

∫
Φy0:t−1
θ,t−1 (dxt−1)Mθ(xt−1,dxt)gyt

θ (xt) .

Note first that
pθ(yt|y0:t−1) ≥ σ−c−(yt) ,

so that

|ℓy0:T
T (θ) − ℓy0:T

T (θ′)| ≤ |pθ(y0) − pθ′(y0)|
σ−c−(y0) +

T∑
t=0

|pθ(yt|y0:t−1) − pθ′(yt|y0:t−1)|
σ−c−(yt)

.

For t = 0, using that pθ(y0) =
∫
χ(dx0)gy0

θ (x0), Assumptions H1 and H3 yield

|pθ(y0) − pθ′(y0)| ≤ σ+η+(Gy0)∥θ − θ′∥2 .

In addition,

pθ(yt|y0:t−1) − pθ′(yt|y0:t−1) =
∫ (

Φy0:t−1
θ,t−1 (dxt−1) − Φy0:t−1

θ′,t−1(dxt−1)
)
Mθ(xt−1,dxt)gyt

θ (xt)

+
∫

Φy0:t−1
θ′,t−1(dxt−1) (Mθ(xt−1,dxt) −Mθ′(xt−1,dxt)) gyt

θ (xt)+
∫

Φy0:t−1
θ′,t−1(dxt−1)Mθ′(xt−1,dxt) (gyt

θ (xt) − gyt

θ′ (xt)) .

Using Lemma F.1, Assumptions H1 and H3, we get

|pθ(yt|y0:t−1) − pθ′(yt|y0:t−1)| ≤
{
σ+c+(yt)

∥∥∥Φy0:t−1
θ,t−1 − Φy0:t−1

θ′,t−1

∥∥∥
tv

+

σ+

σ−c−(yt−1)

∫
η+ ⊗ µ(dxdx′)(M(x, x′)ḡyt−1(x)ḡyt(x′)) + σ+η+(Gyt)

}
∥θ − θ′∥2 .

The proof is completed by using Lemma F.2.

Proposition E.2. Assume that H1-4 hold. Then,

∆1(θ, φ, φ′, y0:T ) ≤ κ2(y0:T )∥φ− φ′∥2 ,

where

∆1(θ, φ, φ′, y0:T ) =
∣∣∣∣∣Eqy0:T

φ,0:T

[
log

qy0:T
φ,0:T (X0:T )

ϕy0:T
θ,0:T |T (X0:T )

]
− Eqy0:T

φ′,0:T

[
log

qy0:T
φ,0:T (X0:T )

ϕy0:T
θ,0:T |T (X0:T )

]∣∣∣∣∣ ,
with ρ(y0:T ) = 1 − ϑy0:T

− and

κ2(y0:T ) = (ϑy0:T
+ )3

T∑
t=1

υy0:T
t

T∑
s=t−1

λ+ ⊗ λ+(Ky0:T
s|s+1)ρ(y0:T )s−t .
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Proof. For all φ,φ′ ∈ Φ, 0 ≤ t ≤ T − 1, define

q̃y0:T
φ,φ′,t|T (x0:T ) = qy0:T

φ,T (xT )
t+1∏
u=T

qy0:T
φ,u−1|u(xu, xu−1)

1∏
u=t

qy0:T
φ′,u−1|u(xu, xu−1)

− qy0:T
φ,T (xT )

t+2∏
u=T

qy0:T
φ,u−1|u(xu, xu−1)

1∏
u=t+1

qy0:T
φ′,u−1|u(xu, xu−1)

with the convention
∏T+1
u=T q

y0:T
φ,u−1|u(xu, xu−1) = 1 and

∏1
u=0 q

y0:T
φ′,u−1|u(xu, xu−1) = 1, and for t = T ,

q̃y0:T
φ,φ′,T |T (x0:T ) = qy0:T

φ,T (xT )
1∏

u=T
qy0:T
φ′,u−1|u(xu, xu−1) − qy0:T

φ′,T (xT )
1∏

u=T
qy0:T
φ′,u−1|u(xu, xu−1) .

Therefore,

∆1(θ, φ, φ′, y0:T ) =
∣∣∣∣∣
T∑
t=1

Eqy0:T
φ,0:T

[
hy0:T
t,θ,φ(Xt−1, Xt)

]
− Eqy0:T

φ′,0:T

[
hy0:T
t,θ,φ(Xt−1, Xt)

]∣∣∣∣∣ ,
=
∣∣∣∣∣
T∑
t=1

T∑
s=0

Eq̃y0:T
φ,φ′,s|T

[
hy0:T
t,θ,φ(Xt−1, Xt)

]∣∣∣∣∣ ,
where hy0:T

t,θ,φ, 1 ≤ t ≤ T , are defined in equation 4. Note first that if t > s + 1, then
Eq̃y0:T

φ,φ′,s|T

[
hy0:T
t,θ,φ(Xt−1, Xt)

]
= 0 so that

∆1(θ, φ, φ′, y0:T ) =
∣∣∣∣∣
T∑
t=1

T∑
s=t−1

Eq̃y0:T
φ,φ′,s|T

[
hy0:T
t,θ,φ(Xt−1, Xt)

]∣∣∣∣∣ .
For all t ≤ s+ 1, write for all measurable set A,

µy0:T
φ,s (A) =

∫
1A(xs)qy0:T

φ,T (xT )µ(dxT )
s+1∏
u=T

qy0:T
φ,u−1|u(xu, xu−1)µ(dxu−1) ,

µ̃y0:T
φ,φ′,s(A) =

∫
1A(xs)qy0:T

φ,T (xT )µ(dxT )
s+2∏
u=T

qy0:T
φ,u−1|u(xu, xu−1)µ(dxu−1)qy0:T

φ′,s|s+1(xs+1, xs)µ(dxs) .

Therefore,

Eq̃y0:T
φ,φ′,s|T

[
hy0:T
t,θ,φ(Xt−1, Xt)

]
=
(
µy0:T
φ,s − µ̃y0:T

φ,φ′,s

){t+1∏
u=s

Qy0:T
φ′,u−1|u

}
Qy0:T
φ′,t−1|th

y0:T
t,θ,φ .

Using H1, the backward variational kernels satisfy a Doeblin condition, see (Douc et al., 2014, Section 6.1.3),
so that

Eq̃y0:T
φ,φ′,s|T

[
hy0:T
t,θ,φ(Xt−1, Xt)

]
≤ 1

2∥µy0:T
φ,s − µ̃y0:T

φ,φ′,s∥tvρ(y0:T )s−tosc
(
Qy0:T
φ′,t−1|th

y0:T
t,θ,φ

)
,

where for all measurable functions f , osc(f) = supx,x′∈X |f(x) − f(x′)|. By H1 and H4,

osc
(
Qy0:T
φ′,t−1|th

y0:T
t,θ,φ

)
≤ 2

∥∥∥∥∫ qy0:T
φ′,t−1|t(·, xt−1)hy0:T

t,θ,φ(xt−1, ·)µ(dxt−1)
∥∥∥∥

∞
,

≤ 2ϑy0:T
+

∥∥∥∥∫ ∣∣∣hy0:T
t,θ,φ(xt−1, ·)

∣∣∣λ+(dxt−1)
∥∥∥∥

∞
,

≤ 2ϑy0:T
+ υy0:T

t .
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Noting that by H3,

∥µy0:T
φ,s − µ̃y0:T

φ,φ′,s∥tv ≤ Qy0:T
φ,T

t+1∏
s=T

Qy0:T
φ,s−1|sK

y0:T
s|s+1∥φ− φ′∥2 ≤ (ϑy0:T

+ )2λ+ ⊗ λ+(Ky0:T
s|s+1)∥φ− φ′∥2 ,

concludes the proof.

Proposition E.3. Assume that H1-4 hold. Then,

∆2(θ, θ′, φ, φ′, y0:T ) ≤ κ3(y0:T ) ∥φ− φ′∥2 + κ4(y0:T ) ∥θ − θ′∥2 ,

where

∆2(θ, θ′, φ, φ′, y0:T ) =
∣∣∣∣∣Eqy0:T

φ′,0:T

[
log

qy0:T
φ,0:T (X0:T )

ϕy0:T
θ,0:T |T (X0:T )

]
− Eqy0:T

φ′,0:T

[
log

qy0:T
φ′,0:T (X0:T )

ϕy0:T
θ′,0:T |T (X0:T )

]∣∣∣∣∣ ,
with

κ3(y0:T ) = ϑy0:T
+

(
ϑy0:T

+

T∑
t=1

cy0:T
1,t + cy0:T

3,T

)
and κ4(y0:T ) = ϑy0:T

+

(
ϑy0:T

+

T∑
t=1

c
y0:t−1
2,t + cy0:T

4,t

)
,

and where cy0:T
1,t , cy0:t−1

2,t , cy0:T
3,T and cy0:T

4,t are defined in H4.

Proof. By definition,

∆2(θ, θ′, φ, φ′, y0:T ) =
∣∣∣∣∣Eqy0:T

φ′,0:T

[
log

qy0:T
φ,0:T (X0:T )

ϕy0:T
θ,0:T |T (X0:T )

]
− Eqy0:T

φ′,0:T

[
log

qy0:T
φ′,0:T (X0:T )

ϕy0:T
θ′,0:T |T (X0:T )

]∣∣∣∣∣ ,
≤ Eqy0:T

φ′,0:T

[∣∣∣∣∣log
qy0:T
φ,0:T (X0:T )

ϕy0:T
θ,0:T |T (X0:T ) − log

qy0:T
φ′,0:T (X0:T )

ϕy0:T
θ′,0:T |T (X0:T )

∣∣∣∣∣
]
,

≤
T∑
t=1

Eqy0:T
φ′,0:T

[∣∣∣hy0:T
t,θ,φ(Xt−1, Xt) − hy0:T

t,θ′,φ′(Xt−1, Xt)
∣∣∣] ,

where hy0:T
t,θ,φ, 1 ≤ t ≤ T , are defined in equation 4. For t < T and all xt−1, xt ∈ X,∣∣∣hy0:T

t,θ,φ(xt−1, xt) − hy0:T
t,θ′,φ′(xt−1, xt)

∣∣∣ ≤
∣∣∣log qy0:T

φ,t−1|t(xt, xt−1) − log qy0:T
φ′,t−1|t(xt, xt−1)

∣∣∣
+
∣∣∣log by0:t−1

θ,t−1|t(xt, xt−1) − log by0:t−1
θ′,t−1|t(xt, xt−1)

∣∣∣ .
Using H1 and H4,

Eqy0:T
φ′,0:T

[∣∣∣log qy0:T
φ,t−1|t(xt, xt−1) − log qy0:T

φ′,t−1|t(xt, xt−1)
∣∣∣]

≤ (ϑy0:T
+ )2

∫
λ+ ⊗ λ+(dxdx′)

∣∣∣log qy0:T
φ,t−1|t(x, x

′) − log qy0:T
φ′,t−1|t(x, x

′)
∣∣∣ ,

≤ (ϑy0:T
+ )2cy0:T

1,t ∥φ− φ′∥2 .

Similarly,

Eqy0:T
φ′,0:T

[∣∣∣log by0:t−1
θ,t−1|t(xt, xt−1) − log by0:t−1

θ′,t−1|t(xt, xt−1)
∣∣∣]

≤ (ϑy0:T
+ )2

∫
λ+ ⊗ λ+(dxdx′)

∣∣∣log by0:t−1
θ,t−1|t(x, x

′) − log by0:t−1
θ′,t−1|t(x, x

′)
∣∣∣ ,

≤ (ϑy0:T
+ )2c

y0:t−1
2,t ∥θ − θ′∥2 .

For t = T , it remains to bound Eqy0:T
φ′,0:T

[| log qy0:T
φ,T (XT ) − log qy0:T

φ′,T (XT )| + | log ϕy0:T
θ,T (XT ) − log ϕy0:T

θ′,T (XT )|],
which is straightforward by using H1 and H4.
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Proposition E.4. Assume that H1-2 and H6 hold. Then, there exists c > 0 such that ,∥∥∥∥sup
θ∈Θ

∣∣∣logLY0:T
T (θ)

∣∣∣∥∥∥∥
ψα∗

≤ cT .

Proof. For all θ ∈ Θ, and all y0:T ∈ YT+1, with the convention pθ(y0|y−1) = pθ(y0),

logLy0:T
T (θ) = ℓy0:T

T (θ) =
T∑
t=0

log pθ(yt|y0:t−1) .

As pθ(y0) =
∫
χ(dx0)gy0

θ (x0), by H1-2, σ−c−(y0) ≤ pθ(y0) ≤ σ+c+(y0). For all t > 0,

pθ(yt|y0:t−1) =
∫

Φy0:t−1
θ,t−1 (dxt−1)Mθ(xt−1,dxt)gyt

θ (xt) ,

so that by H1-2 σ−c−(yt) ≤ pθ(yt|y0:t−1) ≤ σ+c+(yt). Using the second point in H6 and the triangular
inequality concludes the proof.

Proposition E.5. Assume that H1 and H6 hold. Then, there exists B > 0 such that∥∥∥supθ∈Θ,φ∈Φ,χ

∣∣∣KL
(
QY0:T
φ,0:T

∥∥∥ϕY0:T
θ,T

)∣∣∣∥∥∥
ψα∗

≤ BT ,

Proof. For all θ ∈ Θ, φ ∈ Φ, y0:T ∈ YT+1,

KL
(
Qy0:T
φ,0:T

∥∥∥ϕy0:T
θ,T

)
= Eqy0:T

φ,0:T

[
log

qy0:T
φ,0:T (X0:T )

ϕy0:T
θ,0:T |T (X0:T )

]
=

T∑
t=1

Eqy0:T
φ,0:T

[
hy0:T
t,θ,φ(Xt−1, Xt)

]
,

where hy0:T
t,θ,φ, 1 ≤ t ≤ T , are defined in equation 4. By H1, for all 1 ≤ t ≤ T ,∣∣∣Eqy0:T

φ,0:T

[
hy0:T
t,θ,φ(Xt−1, Xt)

]∣∣∣ ≤ (ϑy0:T
+ )2λ+ ⊗ λ+

(∣∣∣hy0:T
t,θ,φ

∣∣∣) ,

which concludes the proof by H6.

F Technical results

Lemma F.1. Assume that H1 and H2 hold. For all θ ∈ Θ, all t ≥ 0, all y0:t ∈ YT+1, positive measurable
function h,

σ−η−(gyt

θ h)
σ+c+(yt)

≤ Φy0:t
θ,t (h) ≤

σ+η+(gyt

θ h)
σ−c−(yt)

.

Proof. At time 0, we have Φy0
θ,0(dx0) ∝ χ(dx0)gy0

θ (x0) so that by H1-2,

σ−η−(gy0
θ h)

σ+c+(y0) ≤ Φy0
θ,0(h) ≤

σ+η+(gy0
θ h)

σ−c−(y0) .

Similarly,
Φy0:t
θ,t (dxt) ∝ gyt

θ (xt)
∫

Φy0:t−1
θ,t−1 (dxt−1)Mθ(xt−1,dxt) ,

so that by H1 and H2,
σ−η−(gyt

θ h)
σ+c+(yt)

≤ Φy0:t
θ,t (h) ≤

σ+η+(gyt

θ h)
σ−c−(yt)

.
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Lemma F.2. Assume that H1, H2 and H3 hold. Then, for all θ, θ′ ∈ Θ, t ≥ 1,∥∥∥Φy0:t
θ,t − Φy0:t

θ′,t

∥∥∥
tv

≤ Lt(y0:t)∥θ − θ′∥2 ,

where

Lt(y0:t) =
4σ2

+
σ2

−

t∑
s=0

εt−s
1

c−(ys)

{
1

σ−c−(ys−1)η+ ⊗ µ (ḡys−1 ⊗ ḡys ·M) + η+(Gys)
}
,

with ε = 1 − σ−/σ+.

Proof. The proof follows the same lines as the proof of (De Castro et al., 2017, Proposition 2.1),
which was in the setting of a discrete state space. For t > 0, note that Φy0:t

θ,t (dxt) =
gyt

θ (xt)
∫

Φy0:t−1
θ,t−1 (dxt−1)Mθ(xt−1,dxt)/cθ,t(y0:t) where cθ,t(y0:t) =

∫
gyt

θ (xt)Φy0:t−1
θ,t−1 (dxt−1)Mθ(xt−1,dxt).

Consider the forward kernel at time t defined, for all θ ∈ Θ, all yt ∈ Y, x ∈ Rd, and probability mea-
sure γ by

F yt

θ,tγ(x) =
∫
mθ(x′, x)gyt

θ (x)γ(dx′)∫
mθ(x′, x′′)gyt

θ (x′′)γ(dx′)µ(dx′′) .

Therefore, Φy0:t
θ,t = F yt

θ,tΦ
y0:t−1
θ,t−1 and for all θ, θ′ ∈ Θ,

Φy0:t
θ,t − Φy0:t

θ′,t = F yt

θ,tΦ
y0:t−1
θ,t−1 − F yt

θ′,tΦ
y0:t−1
θ′,t−1 ,

=
t−1∑
s=0

∆t,s(ys:t) + F yt

θ,tΦ
y0:t−1
θ′,t−1 − F yt

θ′,tΦ
y0:t−1
θ′,t−1 ,

where
∆t,s(ys:t) = F yt

θ,t · · ·F ys+1
θ,s+1F

ys

θ,sΦ
y0:s−1
θ′,s−1 − F yt

θ,t · · ·F ys+1
θ,s+1Φy0:s

θ′,s

with the convention F y0
θ,0Φy−1

θ′,−1 = Φy0
θ,0. Consider also the backward function βys+1:t

s|t and the forward smooth-
ing kernel F ys:t

s|t,θ defined by

β
ys+1:t
θ,s|t (xs) =

∫
Mθ(xs,dxs+1)gys+1

θ (xs+1) · · ·Mθ(xt−1,dxt)gyt

θ (xt) ,

F ys:t
θ,s|t(xs−1, xs) =

β
ys+1:t
s|t (xs)mθ(xs−1, xs)gys

θ (xs)∫
β
ys+1:t
s|t (x)Mθ(xs−1,dx)gys

θ (x)
.

Following for instance (Cappé et al., 2005, Chapter 4), we can write for all probability measure γ,

F yt

θ,t · · ·F ys+1
θ,s+1γ = γθ,s|tF

ys+1:t
θ,s+1|t · · ·F yt

θ,t|t ,

where γθ,s|t ∝ β
ys+1:t
θ,s|t γ. Therefore,

Φy0:t
θ,t − Φy0:t

θ′,t =
t−1∑
s=0

(
γθ,θ′,s|tF

yt

θ,s+1|t · · ·F ys+1
θ,t|t − γ̃θ,θ′,s|tF

yt

θ,s+1|t · · ·F ys+1
θ,t|t

)
+ F yt

θ,tΦ
y0:t−1
θ′,t−1 − F yt

θ′,tΦ
y0:t−1
θ′,t−1 ,

where γθ,θ′,s|t ∝ β
ys+1:t
θ,s|t F ys

θ,sΦ
y0:s−1
θ′,s−1 and γ̃θ,θ′,s|t ∝ β

ys+1:t
θ,s|t Φy0:s

θ′,s . Note that by H1, for all measurable sets A,

F ys:t
θ,s|t(xs−1, A) ≥ σ−

σ+

∫
η−(dxs)1A(x)βys+1:t

s|t (x)gys

θ (x)∫
η+(dx)βys+1:t

s|t (x)gys

θ (x)
,

so that ∥∥∥γθ,θ′,s|tF
yt

θ,s+1|t · · ·F ys+1
θ,t|t − γ̃θ,θ′,s|tF

yt

θ,s+1|t · · ·F ys+1
θ,t|t

∥∥∥
tv

≤ ϵt−s
∥∥γθ,θ′,s|t − γ̃θ,θ′,s|t

∥∥
tv ,
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with ϵ = 1 − σ−/σ+. This yields∥∥∥Φy0:t
θ,t − Φy0:t

θ′,t

∥∥∥
tv

≤
t−1∑
s=0

ϵt−s
∥∥γθ,θ′,s|t − γ̃θ,θ′,s|t

∥∥
tv +

∥∥∥F yt

θ,tΦ
y0:t−1
θ′,t−1 − F yt

θ′,tΦ
y0:t−1
θ′,t−1

∥∥∥
tv
.

For all bounded measurable functions h,∣∣γθ,θ′,s|t(h) − γ̃θ,θ′,s|t(h)
∣∣ =

∣∣∣∣∣
∫
β
ys+1:t
θ,s|t (xs)F ys

θ,sΦ
y0:s−1
θ′,s−1(xs)h(xs)µ(dxs)∫

β
ys+1:t
θ,s|t (xs)F ys

θ,sΦ
y0:s−1
θ′,s−1(xs)µ(dxs)

−

∫
β
ys+1:t
θ,s|t (xs)Φy0:s

θ′,s(xs)h(xs)µ(dxs)∫
β
ys+1:t
θ,s|t (xs)Φy0:s

θ′,s(xs)µ(dxs)

∣∣∣∣∣ ,
≤ δy0:t

θ,θ′,1(h) + δy0:t
θ,θ′,2(h) ,

where

δy0:t
θ,θ′,1(h) =

∫
β
ys+1:t
θ,s|t (xs)

∣∣∣F ys

θ,sΦ
y0:s−1
θ′,s−1(xs) − F ys

θ′,sΦ
y0:s−1
θ′,s−1(xs)

∣∣∣h(xs)µ(dxs)∫
β
ys+1:t
θ,s|t (xs)F ys

θ,sΦ
y0:s−1
θ′,s−1(xs)µ(dxs)

,

δy0:t
θ,θ′,2(h) =

∫
β
ys+1:t
θ,s|t (xs)Φy0:s

θ′,s(xs)h(xs)µ(dxs)∫
β
ys+1:t
θ,s|t (xs)Φy0:s

θ′,s(xs)µ(dxs)

∫
β
ys+1:t
θ,s|t (xs)

∣∣∣F ys

θ,sΦ
y0:s−1
θ′,s−1(xs) − F ys

θ′,sϕ
y0:s−1
θ′,s−1(xs)

∣∣∣µ(dxs)∫
β
ys+1:t
θ,s|t (xs)F ys

θ,sΦ
y0:s−1
θ′,s−1(xs)µ(dxs)

.

Note that for all xs ∈ X, by H1,

σ−

∫
η−(dxs+1)gys+1

θ (xs+1) · · ·mθ(xt−1, xt)gyt

θ (xt)µ(dxs+2:t) ≤ β
ys+1:t
θ,s|t (xs)

≤ σ+

∫
η+(dxs+1)gys+1

θ (xs+1) · · ·mθ(xt−1, xt)gyt

θ (xt)µ(dxs+2:t) ,

so that

δy0:t
θ,θ′,1(h) + δy0:t

θ,θ′,2(h) ≤ 2∥h∥∞∥F ys

θ,sΦ
y0:s−1
θ′,s−1 − F ys

θ′,sΦ
y0:s−1
θ′,s−1∥tv

∥βys+1:t
θ,s|t ∥∞

infx∈X β
ys+1:t
θ,s|t (xs)

≤ 2σ+

σ−
∥h∥∞∥F ys

θ,sΦ
y0:s−1
θ′,s−1 − F ys

θ′,sΦ
y0:s−1
θ′,s−1∥tv .

For all bounded measurable function h,∣∣∣F ys

θ,sΦ
y0:s−1
θ′,s−1h− F ys

θ′,sΦ
y0:s−1
θ′,s−1h

∣∣∣ ≤ R1 +R2 ,

where

R1 =
∣∣∣∣∣
∫

(mθ(x′, x)gys

θ (x) −mθ′(x′, x)gys

θ′ (x)) Φy0:s−1
θ′,s−1(dx′)h(x)µ(dx)∫

mθ(x′, x′′)gys

θ (x′′)Φy0:s−1
θ′,s−1(dx′)µ(dx′′)

∣∣∣∣∣ ,
R2 =

∣∣∣∣∣
∫
mθ′(x′, x′′)gys

θ′ (x′′)Φy0:s−1
θ′,s−1(dx′)h(x′′)µ(dx′′)∫

mθ′(x′, x′′)gys

θ′ (x′′)Φy0:s−1
θ′,s−1(dx′)µ(dx′′)

∣∣∣∣∣ ·

∣∣∣∣∣
∫

(mθ(x′, x′′)gys

θ (x′′) −mθ′(x′, x′′)gys

θ′ (x′′)) Φy0:s−1
θ′,s−1(dx′)µ(dx′′)∫

mθ(x′, x′′)gys

θ (x′′)Φy0:s−1
θ′,s−1(dx′)µ(dx′′)

∣∣∣∣∣ .
By H1-3 and Lemma F.1,

R1 ≤ σ+

σ−c−(ys)

{
1

σ−c−(ys−1)η+ ⊗ µ (ḡys−1 ⊗ ḡys ·M) + η+(Gys)
}

∥θ − θ′∥2∥h∥∞

The same upper bound can be obtained for R2 as∣∣∣∣∣
∫
mθ′(x′, x′′)gys

θ′ (x′′)Φy0:s−1
θ′,s−1(dx′)h(x′′)µ(dx′′)∫

mθ′(x′, x′′)gys

θ′ (x′′)Φy0:s−1
θ′,s−1(dx′)µ(dx′′)

∣∣∣∣∣ ≤ ∥h∥∞ .

This yields

∥F ys

θ,sΦ
y0:s−1
θ′,s−1 − F ys

θ′,sΦ
y0:s−1
θ′,s−1∥tv ≤ 2σ+

σ−c−(ys)

{
1

σ−c−(ys−1)η+ ⊗ µ (ḡys−1 ⊗ ḡys ·M) + η+(Gys)
}

∥θ − θ′∥2 ,

which concludes the proof.
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G Checking assumptions

In this section, we provide additional assumptions on the state space model and on the variational family to
support that our assumptions can be verified.

A1 There exist constants 0 < σ− < σ+ < ∞ such that for all x ∈ X,

σ− ≤ ζ(x) ≤ σ+

and for all θ ∈ Θ, x, x′ ∈ X,
σ− ≤ mθ(x, x′) ≤ σ+ .

For all y0:T ∈ YT+1, there exist ϑy0:T
− > 0 and ϑy0:T

+ > 0 such that for all φ ∈ Φ, t ≥ 0, all x, x′ ∈ X,

ϑy0:T
− ≤ qy0:T

φ,t|t+1(x, x′) ≤ ϑy0:T
+ .

In addition, for all φ ∈ Φ, all y0:T ∈ YT+1, and all x ∈ X,

ϑy0:T
− ≤ qy0:T

φ,T (x) ≤ ϑy0:T
+ .

Assumption A1 is known as a strong-mixing assumption and allows to verify H1. It is classical to obtain
quantitative bounds on approximation of joint smoothing distributions, see for instance Olsson et al. (2008);
Gloaguen et al. (2022). It typically requires the state space X to be compact. In settings where the bacwkard
variartional kernels are Gaussian and obtained with neural networks which are uniformly bounded with
respect to the time index and the observations, ϑy0:T

+ and ϑy0:T
− do not depend on the observations.

A2 For all y ∈ Y, infθ∈Θ
∫
gyθ (x)µ(dx) = c−(y) > 0 and supθ∈Θ

∫
gyθ (x)µ(dx) = c+(y) < ∞.

Lemma G.1, Lemma G.2 and Proposition G.3 allow to obtain explicit constants in H4. We prove that
the functions hy0:T

t,θ,φ are upper-bounded explicitly, and that ϕy0:t
θ,t and b

y0:t−1
θ,t−1|t are lower and upper-bounded

explicitly, in particular with respect to the observation sequence.

When the observation space is compact we can also obtain a uniform control with respect to the observations
of these quantities which is crucial to check H5 and H6.
Lemma G.1. Assume that A1 and A2 hold. For all θ ∈ Θ, all t ≥ 0, all y0:t, xt,

σ−g
yt

θ (xt)
σ+c+(yt)

≤ ϕy0:t
θ,t (xt) ≤

σ+g
yt

θ (xt)
σ−c−(yt)

.

Proof. At time 0, we have ϕy0
θ,0(x0) ∝ ζ(x0)gy0

θ (x0) so that by A1-2,

σ−g
y0
θ (x0)

σ+c+(y0) ≤ ϕy0
θ,0(x0) ≤

σ+g
y0
θ (x0)

σ−c−(y0) .

Similarly,

ϕy0:t
θ,t (xt) ∝ gyt

θ (xt)
∫

Φy0:t−1
θ,t−1 (dxt−1)mθ(xt−1, xt)µ(dxt) ,

so that by A1 and A2,
σ−g

yt

θ (xt)
σ+c+(yt)

≤ ϕy0:t
θ,t (xt) ≤

σ+ηg
yt

θ (xt)
σ−c−(yt)

.
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Lemma G.2. Assume that A1 and A2 hold. For all θ, all 1 ≤ t ≤ T , all y0:T , xt−1, xt,

σ2
−g

yt−1
θ (xt−1)

σ2
+c+(yt−1) ≤ b

y0:t−1
θ,t−1|t(xt, xt−1) ≤

σ2
+g

yt−1
θ (xt−1)

σ2
−c−(yt−1)

and for 1 ≤ t ≤ T − 1,

∥hy0:T
t,θ,φ∥∞ ≤ | log ϑ−(y0:T )| ∨ | log ϑ+(y0:T )|

+ sup
xt−1∈X

∣∣∣∣∣log
σ2

−c−(yt−1)gyt−1(xt−1)
σ2

+c+(yt−1)

∣∣∣∣∣ ∨
∣∣∣∣log

σ2
+c+(yt−1)ḡyt−1(xt−1)

σ2
−c−(yt−1)

∣∣∣∣
and

∥hy0:T
T,θ,φ∥∞ ≤ | log 2ϑy0:T

− | ∨ | log 2ϑy0:T
+ | + sup

xT ∈X

∣∣∣∣log
σ−g

yT (xT )
σ+c+(yT )

∣∣∣∣ ∨
∣∣∣∣log σ+ḡ

yT (xT )
σ−c−(yT )

∣∣∣∣
+ sup
xT −1∈X

∣∣∣∣∣log
σ2

−c−(yT−1)gyT −1(xT−1)
σ2

+c+(yT−1)

∣∣∣∣∣ ∨
∣∣∣∣log

σ2
+c+(yT−1)ḡyT −1(xT−1)

σ2
−c−(yT−1)

∣∣∣∣ ,
where ht,θ,φ, 1 ≤ t ≤ T , are defined in equation 4.

Proof. By Lemma F.1,

σ2
−g

yt−1
θ (xt−1)

σ+c+(yt−1) ≤ ϕ
y0:t−1
θ,t−1 (xt−1)mθ(xt−1, xt) ≤

σ2
+g

yt−1
θ (xt−1)

σ−c−(yt−1) .

Since

b
y0:t−1
θ,t−1|t(xt, xt−1) =

ϕ
y0:t−1
θ,t−1 (xt−1)mθ(xt−1, xt)∫

ϕ
y0:t−1
θ,t−1 (xt−1)mθ(xt−1, xt)µ(dxt−1)

we get
σ2

−c−(yt−1)gyt−1
θ (xt−1)

σ2
+c+(yt−1) ≤ b

y0:t−1
θ,t−1|t(xt, xt−1) ≤

σ2
+c+(yt−1)gyt−1

θ (xt−1)
σ2

−c−(yt−1) .

Now by equation 4, for 1 ≤ t ≤ T − 1, hy0:T
t,θ,φ(xt−1, xt) = log qy0:T

φ,t−1|t(xt, xt−1) − log by0:t−1
θ,t−1|t(xt, xt−1) so that

∣∣∣hy0:T
t,θ,φ(xt−1, xt)

∣∣∣ ≤ | log ϑ−(y0:T )| ∨ | log ϑ+(y0:T )|

+
∣∣∣∣log

σ2
−c−(yt−1)gyt−1

θ (xt−1)
σ2

+c+(yt−1)

∣∣∣∣ ∨
∣∣∣∣log

σ2
+c+(yt−1)gyt−1

θ (xt−1)
σ2

−c−(yt−1)

∣∣∣∣ ,
which concludes the proof. In addition, using that

hy0:T
T,θ,φ(xT−1, xT ) = log qy0:T

φ,T−1|T (xT , xT−1) − log by0:T −1
θ,T−1|T (xT , xT−1) + log qy0:T

φ,T (xT ) − log ϕy0:T
θ,T (xT )

yields

∣∣∣hy0:T
T,θ,φ(xT−1, xt)

∣∣∣ ≤ | log 2ϑ−(y0:T )| ∨ | log 2ϑ+(y0:T )| +
∣∣∣∣log σ−g

yT

θ (xT )
σ+c+(yT )

∣∣∣∣ ∨
∣∣∣∣log σ+g

yT

θ (xT )
σ−c−(yT )

∣∣∣∣
+
∣∣∣∣log

σ2
−c−(yT−1)gyT −1

θ (xT−1)
σ2

+c+(yT−1)

∣∣∣∣ ∨
∣∣∣∣log

σ2
+c+(yT−1)gyT −1

θ (xT−1)
σ2

−c−(yT−1)

∣∣∣∣ .
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Proposition G.3. Assume that A1, A2 and H3 hold. Then H4 holds. More precisely, for all y0:T ∈ YT+1

and all 0 ≤ t ≤ T ,

sup
θ∈Θ,φ∈Φ

∥∥∥∥∫ λ(dx)
∣∣∣hy0:T
t,θ,φ(x, ·)

∣∣∣∥∥∥∥
∞

= υy0:T
t < ∞ ,

where υy0:T
t = supθ∈Θ,φ∈Φ ∥hy0:T

t,θ,φ∥∞ is given in Lemma G.2. For all θ, θ′ ∈ Θ, φ,φ′ ∈ Φ, 1 ≤ t ≤ T ,∫
λ⊗ λ(dxdx′)

∣∣∣log qy0:T
φ,t−1|t(x, x

′) − log qy0:T
φ′,t−1|t(x, x

′)
∣∣∣ ≤ cy0:T

1,t ∥φ− φ′∥2 ,∫
λ⊗ λ(dxdx′)

∣∣∣log by0:t−1
θ,t−1|t(x, x

′) − log by0:t−1
θ′,t−1|t(x, x

′)
∣∣∣ ≤ c

y0:t−1
2,t ∥θ − θ′∥2 ,∫

λ(dx)
∣∣∣log qy0:T

φ,T (x) − log qy0:T
φ′,T (x)

∣∣∣ ≤ cy0:T
3,T ∥φ− φ′∥2 ,∫

λ(dx)
∣∣∣log ϕy0:T

θ,T (x) − log ϕy0:T
θ′,T (x)

∣∣∣ ≤ cy0:T
4,T ∥θ − θ′∥2 ,

where cy0:T
1,t = (ϑy0:T

− )−1λ ⊗ λ(Ky0:T
t−1|t), c

y0:t−1
2,t = 2σ+Lt−1(y0:t−1)/(σ− infx∈X g

yt−1(x)), cy0:T
3,t =

(ϑy0:T
− )−1λ(Ky0:T

T ), and cy0:T
4,T = 2σ+c+(yT )LT (y0:T )/(σ− infx∈X g

yT (x)).

Proof. For all φ,φ′ ∈ Φ, 1 ≤ t ≤ T ,

∣∣∣log qy0:T
φ,t−1|t(x, x

′) − log qy0:T
φ′,t−1|t(x, x

′)
∣∣∣ ≤

∣∣∣qy0:T
φ,t−1|t(x, x′) − qy0:T

φ′,t−1|t(x, x′)
∣∣∣∣∣∣qy0:T

φ,t−1|t(x, x′) ∧ qy0:T
φ′,t−1|t(x, x′)

∣∣∣ ,
so that by A1 and H3,∣∣∣log qy0:T

φ,t−1|t(x, x
′) − log qy0:T

φ′,t−1|t(x, x
′)
∣∣∣ ≤ (ϑy0:T

− )−1Ky0:T
t−1|t(x

′, x)∥φ− φ′∥ ,

an we can choose cy0:T
1,t = (ϑy0:T

− )−1λ⊗ λ(Ky0:T
t−1|t). Similarly, for all φ,φ′ ∈ Φ,

∣∣∣log qy0:T
φ,T (x) − log qy0:T

φ′,T (x)
∣∣∣ ≤

∣∣∣qy0:T
φ,T (x) − qy0:T

φ′,T (x)
∣∣∣∣∣∣qy0:T

φ,T (x) ∧ qy0:T
φ′,T (x)

∣∣∣ ,
so that by A1 and H3, ∣∣∣log qy0:T

φ,T (x) − log qy0:T
φ′,T (x)

∣∣∣ ≤ (ϑy0:T
− )−1Ky0:T

T (x)∥φ− φ′∥ ,

and we can choose cy0:T
3,t = (ϑy0:T

− )−1λ(Ky0:T
T ). For all θ, θ′ ∈ Θ, 1 ≤ t ≤ T ,

∣∣∣log by0:t−1
θ,t−1|t(x, x

′) − log by0:t−1
θ′,t−1|t(x, x

′)
∣∣∣ ≤

∣∣∣by0:t−1
θ,t−1|t(x, x′) − b

y0:t−1
θ′,t−1|t(x, x′)

∣∣∣∣∣∣by0:t−1
θ,t−1|t(x, x′) ∧ b

y0:t−1
θ′,t−1|t(x, x′)

∣∣∣ .
By Lemma G.2,∣∣∣log by0:t−1

θ,t−1|t(x, x
′) − log by0:t−1

θ′,t−1|t(x, x
′)
∣∣∣ ≤

σ2
+c+(yt−1)

σ2
−g

yt−1(xt−1)

∣∣∣by0:t−1
θ,t−1|t(x, x

′) − b
y0:t−1
θ′,t−1|t(x, x

′)
∣∣∣ .

Then, noting that by0:t−1
θ,t−1|t(x, x′) = ϕ

y0:t−1
θ,t−1 (x′)mθ(x′, x)/cθ(x) where cθ(x) =

∫
ϕ
y0:t−1
θ,t−1 (x′)mθ(x′, x)µ(dx′),

write∣∣∣by0:t−1
θ,t−1|t(x, x

′) − b
y0:t−1
θ′,t−1|t(x, x

′)
∣∣∣ ≤

∣∣∣∣∣ (ϕ
y0:t−1
θ,t−1 (x′) − ϕ

y0:t−1
θ′,t−1(x′))mθ(x′, x)
cθ(x)

∣∣∣∣∣
+
∣∣∣∣∣ϕ
y0:t−1
θ′,t−1(x′)(mθ(x′, x) −mθ′(x′, x))

cθ(x)

∣∣∣∣∣+
∣∣∣∣∣ϕ
y0:t−1
θ′,t−1(x′)mθ′(x′, x)

cθ′(x)

∣∣∣∣∣
∣∣∣∣cθ′(x) − cθ(x)

cθ(x)

∣∣∣∣
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By A1,∫
λ⊗ λ(dxdx′)

∣∣∣∣∣ (ϕ
y0:t−1
θ,t−1 (x′) − ϕ

y0:t−1
θ′,t−1(x′))mθ(x′, x)

gyt−1(x′)cθ(x)

∣∣∣∣∣ ≤ 2 σ+

σ− infx∈X gyt−1(x)

∥∥∥Φy0:t−1
θ,t−1 − Φy0:t−1

θ′,t−1

∥∥∥
tv
,

and by Lemma G.2, we can choose cy0:t−1
2,t = 2σ+Lt−1(y0:t−1)/(σ− infx∈X g

yt−1(x)). For all θ, θ′ ∈ Θ,

∣∣∣log ϕy0:T
θ,T (x) − log ϕy0:T

θ′,T (x)
∣∣∣ ≤

∣∣∣ϕy0:T
θ,T (x) − ϕy0:T

θ′,T (x)
∣∣∣∣∣∣ϕy0:T

θ,T (x) ∧ ϕy0:T
θ′,T (x)

∣∣∣ ,
By Lemma G.1, ∣∣∣log ϕy0:T

θ,T (x) − log ϕy0:T
θ′,T (x)

∣∣∣ ≤ σ+c+(yT )
σ−gyT (x)

∣∣∣ϕy0:T
θ,T (x) − ϕy0:T

θ′,T (x)
∣∣∣ .

Therefore, ∫
λ(dx)

∣∣∣log ϕy0:T
θ,T (x) − log ϕy0:T

θ′,T (x)
∣∣∣ ≤ 2 σ+c+(yT )

σ− infx∈X gyT (x)

∥∥∥Φy0:T
θ,T − Φy0:T

θ′,T

∥∥∥
tv
,

and by Lemma G.2, we can choose cy0:T
4,T = 2σ+c+(yT )LT (y0:T )/(σ− infx∈X g

yT (x)).

If the observation space is compact, under standard regularity assumptions, all upper bounds can be obtained
uniformly with respect to the observations. Therefore, H5 holds as soon as the integrals under µ, η+ ⊗ µ
and λ+ ⊗ λ+ are finite.
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