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ABSTRACT

Binary code similarity detection serves a critical role in cybersecurity. It alleviates
the huge manual effort required in the reverse engineering process for malware
analysis and vulnerability detection, where often the original source code is not
available for analysis. Most of the existing solutions focus on a manual feature
engineering process and customized code matching algorithms that are inefficient
and inaccurate. Recent deep learning based solutions embed the semantics of
binary code into a latent space through supervised contrastive learning. However,
one cannot cover all the possible forms in the training set to learn the variance of the
same semantics. In this paper, we propose an unsupervised model aiming to learn
the intrinsic representation of assembly code semantics. Specifically, we propose a
Transformer-based auto-encoder like language model for the low-level assembly
code grammar to capture the abstract semantic representation. By coupling a
Transformer encoder and a skip-gram style loss design, it can learn a compact
representation that is robust against different compilation options. We conduct
experiments on four different block-level code similarity tasks. It shows that our
method is more robust compared to the state-of-the-art.

1 INTRODUCTION

Reverse engineering is the process of analyzing a given binary program without its source code. It
routinely requires experienced analysts and demands a huge amount of manual effort. This process
is essential in many critical security problems, such as malware analysis, vulnerability discovery,
and Advanced Persistent Threat (APT) tracking. Binary similarity detection is an important solution
to reduce the amount of manual effort, by detecting known parts and pieces in the target under
investigation. Binary-level similarity detection is more difficult than source-level similarity detection,
because most of the semantic-rich literals and structures, such as constants, function names, and
variable names, are altered or no longer available in the form of assembly language. The data
structures are also lost, due to the compilation process, since the debugging information is typically
stripped in commercial-off-the-shelf programs.

Many existing approaches rely on manual feature engineering to model the semantics of assembly
code. For example, a fragment of assembly code can be modeled into a numeric vector based on (1)
the ratio of algorithmic operations, (2) the ratio of transferal operations, and (3) the ratio of function
calls [1, 2, 3, 4]. Alternatively, assembly code can be modeled as word-based n-grams [5]. These
approaches cannot capture the rich semantics carried in the assembly code. Some other approaches
rely on symbolic constraint solving to measure the logical relationship between each pair of code
fragments [6, 7]. However, these methods are computationally expensive and do not scale well.

In comparison, recent deep learning approaches have shown to be more effective and robust to detect
similar binary code. Typically, a neural network model is proposed and coupled with a contrastive
loss function [8, 9, 10, 11]. The network is trained with limited pairs of assembly code with 0-1 labels.
Asm2Vec [12] extends the idea of Word2Vec [13] and PVDM [14], and follows an unsupervised
paradigm to learn the function representation.

Although deep learning has been proven to be effective, there are still many practical barriers
that prevent the aforementioned approaches from a wide adoptation. First of all, most approaches
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static int sk_table_cmp(const ASN1_STRING_TABLE * const *a,
   const ASN1_STRING_TABLE * const *b){
 return (*a)->nid - (*b)->nid;
}

PUSH rbp
MOV rbp rsp
MOV [rbp+var_8] rdi
MOV [rbp+var_10] rsi
MOV rax [rbp+var_8]
MOV rax [rax]
MOV edx [rax]
MOV rax [rbp+var_10]
MOV rax [rax]
MOV eax [rax]
SUB edx eax
MOV eax edx
POP rbp
RETN 

Original source code fragment

GCC-Compiled

MOV rcx [rdi]
MOV rdx [rsi]
MOV eax 91832D84h
ADD eax [rcx]
SUB eax [rdx]
ADD eax 6E7CD27Ch
RETN 

Obfuscated

PUSH rbp
MOV rbp rsp
MOV [rbp+var_8] rdi
MOV [rbp+var_10] rsi
MOV rsi [rbp+var_8]
MOV rsi [rsi]
MOV eax [rsi]
MOV rsi [rbp+var_10]
MOV rsi [rsi]
SUB eax [rsi]
POP rbp
RETN 

Clang-Compiled

MOV rax [rdi]
MOV rdx [rsi]
MOV eax [rax]
SUB eax [rdx]
RETN 

O3-Optimized

Figure 1: Assembly code blocks compiled from the same source code sk_table_cmp from OpenSSL
with different options. The box on the top shows the source code. From left to right: GCC with O0
optimization level; GCC with O3 optimization level; Clang with O0 optimization; and Clang with O0
optimization and obfuscation.

except Asm2Vec uses a supervised paradigm and learns the model parameters by directly decreasing
the distance between similar assembly code pairs in the training set. While supervised models
potentially provide better performance in their trained tasks, they usually suffer when a new task
is introduced. For example, [10] learns the tasks for cross-optimization level detection and cross-
architecture detection on ARM and X86-64. However, it does not guarantee cross-compiler and
cross-OS binaries performance, thus it lacks robustness. On the other hand, Asm2Vec, which uses an
unsupervised approach, is mainly based on PVDM. This limits its stability during the inference, since
it needs multiple rounds to accumulate the gradient. Moreover, Word2Vec based models are less
context-dependent than the state-of-the-art models such as BERT [15]. They carry less semantics and
discriminative power for the downstream tasks. To illustrate this, Fig. 1 shows 4 pieces of compiled
binary code in assembly code, all generated from the same source code. The choice of compilers
and optimization levels mainly results in performance differences, while the obfuscated code can be
generated for various reasons, both benign and malicious. The semantics of the programs are similar
or the same, but the code itself can look drastically different from one another. A supervised model
may be able to learn to detect similar binaries cross-compiled, but changing the optimization level or
adding obfuscation can create unseen patterns, leading to detection failures.

To learn a compact representation of assembly code through an unsupervised language model, one
can use BERT and other Transformer-based models, since they have shown their effectiveness in
modeling natural language semantics. However, assembly code, despite the fact that it is missing many
semantic-rich literals present in the original source code, complies with a more static syntax. The
original Transformer architecture, with the flattened sequence of position-embedded subwords, cannot
address the position invariance of the assembly code instructions (see Figure 1). The same instructions
may be placed in a different place, but contribute to similar program semantics. Additionally, the
original masked language model in BERT distribute the memory of reconstructing the masked tokens
into hidden layers of different timestamps. This is against our goal, which is to have a single compact
vector representation for all code.

With the above observations, we propose GenTAL, a generative denoising skip-gram Transformer for
assembly language representation learning. It follows an unsupervised learning paradigm for binary
code similarity detection. We model assembly code instructions through the Transformer encoder in
a way that their syntax is preserved. Inspired by the denoising autoencoders, we propose to combine
the originally time-distributed memory of the masked language model into a single dense vector, and
leverage a skip-gram like structure for masked instructions recovery. This allows the model to embed
the semantics of the assembly code into a very compact representation for a more effective similarity
detection. Our contributions are as follows:
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• We propose a new Transformer-based unsupervised language model for assembly code instruc-
tions, the form of human-understandable binary code. The model follows the syntax of assembly
code and is able to address the instruction position invariance issue.
• We proposed to combine skip-gram style reconstruction loss with the masked language model to

condense the originally time-distributed memory into a single compact embedding vector. This
design simulates a denoising autoencoder and provides a unified representation of semantics.
• We conduct experiments on five different scenarios for code similarity detection and compare our

methods against traditional TFIDF based and state-of-the-art machine learning-based methods.
We show that GenTAL is more robust and able to outperform the baselines in all applications.

2 RELATED WORK

Binary Code Similarity. Assembly code can be regarded as a natural language in certain aspects.
For this reason, NLP techniques are often used as encoders. Other ML-based binary code similarity
detection works use different approaches for representation learning. Supervised learning approaches,
such as Gemini [8], Diff [9], [10], and BinDeep [16] all use siamese networks to reduce loss and use
cosine distance to compute similarity. Gemini manually extracts block features and feeds them into a
graph neural network. Diff feeds raw byte input into CNN for learning function embedding, which
lacks the modeling of block semantics. Yu, et al. [10] extend the BERT model for code semantics
learning by introducing the same graph prediction task (SGP) and graph classification task (GC).
They also train a graph neural network for assembly code representation learning and a CNN on the
adjacency matrix for additional order-aware embedding. BinDeep uses Instruction2Vec [17] with
LSTM for instruction and blocks embedding to enable sequence-aware modeling. Asm2Vec [12]
follows an unsupervised paradigm and uses PVDM for block embedding. Other traditional graph
matching methods include BinDiff [18] and Binslayer [19]. These use static graph patterns. As a
result, the performance can be severely hindered with any changes in graphs, which often happen
with different compiler settings and obfuscation.

Unsupervised Language Models. BERT [15] is the state-of-the-art language model for NLP pre-
training based on Transformer [20] architecture. Transformer can learn the contextual and sequential
information within a sentence, while also maintaining multiple levels of semantics. It trains in parallel
and is thus faster compared to RNN-based models. There are several variations of the original BERT
model. ELECTRA [21] builds on top of BERT and adds a discriminator that predicts which tokens are
originally masked. Albert [22] achieves similar performance to BERT, while using fewer parameters
through factorized embeddings parameterization and cross-layer weight sharing. RoBERTa [23]
further up-trains BERT with heavier parameters and discards the next sentence prediction (NSP) task
from BERT.

Word2Vec is also an unsupervised learning technique for language models, which uses Skip-gram or
Continuous-Bag-Of-Words (CBOW) to learn word embedding based on a fixed length of windowed
context. Doc2Vec extends Word2Vec and adds another ID token for document/sentence represen-
tation with the Distributed Memory (PVDM) and Distributed Bag-Of-Words (DBOW) variance.
Tokenization is also an important task in language models, since the performance can vary signifi-
cantly depending on the quality of the tokenizers. There are different levels of tokenization, such as
character level and subword level. Byte Pair Encoding (BPE) [24, 25] generates subword vocabulary
by learning the frequency of characters in a large corpus. Unigram [26] learns the language model by
optimizing the word occurrence given a sequence and then builds the vocabulary by sorting the loss
of subwords. These methods are used to combat the out-of-vocabulary (OOV) issues, which many
large-scale language models can struggle with.

3 GENERATIVE DENOISING SKIP-GRAM TRANSFORMER

In this section, we describe the details of GenTAL with respect to three major components: prepro-
cessing, including instruction masking and encoding; the code fragment encoding using Transformer;
and the reconstruction loss through a skip-gram style approach. The overall framework of GenTAL is
shown in Fig. 2. Given a sequence of assembly instructions, which is generated from disassembling
the binary data into assembly code, we preprocess the assembly code first to extract the instructions
as subword sequences and apply masking. Then each subword is mapped into subword embedding
and coupled with an instruction-level positional embedding. After being merged as the instruction
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MOV rax 0A41210084421h 
MOV edx ecx
MOV rsi 285021088402120h 
MOV rdi rdx 
SUB rdi [rbp+var_18] 
[MASK] rsi [MASK]
[MASK] [MASK] [MASK]
MOV [rbp+var_30] rsi
SUB rdx [rbp+var_18] 
[MASK] [MASK] [MASK]
SHL rax cl
MOV [rbp+var_38] rax
CMP [rbp+var_18] 40h
JZ loc_DD20
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MOV rax 0A41210084421h 
MOV edx ecx
MOV rsi 285021088402120h 
MOV rdi rdx 
SUB rdi [rbp+var_18] 
MOV rcx rdi
SHL rsi cl
MOV [rbp+var_30] rsi
SUB rdx [rbp+var_18] 
MOV rcx rdx 
SHL rax cl
MOV [rbp+var_38] rax
CMP [rbp+var_18] 40h
JZ loc_DD20
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Figure 2: GenTAL’s model architecture for training. Given the assembly instructions and their
subwords, it first masks certain assembly instructions with a probability. The masked sequences
are fed into token embedding and position embedding, in which the results are aggregated to form
instruction embeddings. The Transformer then encodes the instructions, where we extract the first
cls hidden layer output and use it to reconstruct the mask instructions, following a skip-gram style
prediction design.

level embeddings, we feed them into a Transformer encoder and obtain the CLS step hidden layer
output, which is finally position-encoded again to recover the masked instructions. We formally
define GenTAL’s goal as to learn an encoding function G that maps a sequence of instructions into a
b-dimensional space C → Rb where its semantics will be preserved by optimizing:∑

j

∑
i
P (ti|pj , G(C)) (1)

Here C is the sequence of assembly code, pj is the position of the j-th masked instruction, and ti is
the i-th subword of that j-th instruction. Simply put, we reconstruct the full instruction rather than
individual disconnected subwords or the original tokens.

3.1 INSTRUCTION PREPROCESSING, MASKING, AND RAGGED TENSOR

An assembly instruction contains an operation and operands. We first treat each instruction as a
plain text sequence and clean up the assembly code by removing address-specific literals such as
loc_DD20. These literals depend on the base address of the binary and can be changed when
generated in a slightly different environment. Next, we pre-tokenize the assembly code following
the syntax of the assembly language as this can help us alleviate the out-of-vocabulary (OOV)
issues. For example, instead of treating [rbg+var_19] as a single token, we break it into [,
rbg, +, var, 19]. After, we train an unigram [26, 27] model on the training corpus for
subword tokenization. This can further mitigate the OOV issue, especially on long constants. For
example, 0x00fffff1 will be broken down as 0x00, ffff, and f1. If any compiler or obfuscator
manipulates this constant by shifting or padding, the subwords can still be matched.
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Given a sequence of assembly instructions in a linear order, we follow the Masked Language Model
used in BERT. However, instead of masking individual subwords or subwords that constitute an
original token, we mask a full instruction, since there exists a strong correlation among subwords
presented in a single instruction. For example, operand PUSH will very likely be followed by a stack
register. XOR is also used quite often with the same register as its two operands. This issue will make
the reconstruction task too easy. Instead, we mask the complete instruction.

Unlike many approaches that treat assembly instructions as a flat sequence of words, we keep the
original structure and dimension of [blocks, instructions, tokens] as input to preserve
the execution logic and carry better semantics. In the past, it was very difficult to model the data
structure this way, due to the padding issue where some instructions have a significantly larger number
of subwords. Our implementation uses the recent ragged tensor interface in TensorFlow, which allows
variable sequence length over the subword dimension without padding. Besides masking, we add a
CLS token at the start of the assembly instructions, which acts as a condensed vector for a collective
representation. CLS is left out for masking.

3.2 CODE FRAGMENT ENCODING

Next, we obtain subword embeddings and aggregate them into instruction-level representation, before
feeding it into the Transformer. Given a subword t of instruction, we map it to its subword embedding,
and then couple it with a position embedding. After, we aggregate the position-encoded subword
embedding into instruction-level embedding as e. Specifically:

e = 1/m ∗
∑

t
EM(t) + PE1(t) (2)

where m is the instruction’s subword count. The subword-level positional embedding is important in
our case, since long strings and constants are broken down into different subwords. For example, the
two constants 00f1 and f100 may yield the same set of subwords f1 and 00. With position encoding,
the information order can be preserved. After obtaining the embedding for instructions, we feed them
into a Transformer model. Suppose the embedding of all the instructions is denoted as E, and e is
one of them, we have:

H = TE(E) (3)

Note that in this step, the CLS token is treated as an individual instruction to distinguish it from the
other instructions, and the Transformer only runs over the instruction-level embeddings. This design
also helps us mitigate the sequence length limit of assembly code. Assembly code fragments are
typically much longer than a natural language sentence in terms of subwords count. Now the limit
applies to the number of instructions rather than the number of subwords.

3.3 SKIP-GRAM RECONSTRUCTION LOSS

In previous BERT-based methods such as Yu, et al. [10], the MLM task is to predict the masked
tokens with the vector outputs from the Transformer corresponding to the time dimension:

ymlm
j = Θ(hi

j),∀j ∈M (4)

where M is the masked tokens in an assembly instruction and Θ denotes a standard softmax function.
The authors also propose other binary classification tasks including next sentence prediction (NSP),
same graph prediction task (SGP), and graph classification task (GC). They use the first vector output
from the Transformer for classification:

ynsp, ysgp, ygc = σ(hi
0) (5)

where σ denotes a sigmoid function. Although this approach is able to predict the masked token
with full exposure to the token embedding, the vector used for the downstream task carries less
information.

Similar to the MLM task in BERT, we have replaced the original tokens with a MASK token, swapped
it with a random token from the corpus or kept it unchanged. Since we do not fully adopt BERT and
only train the MLM task, the blocks are not sampled to be pairs, but individually fed into the network.
The training task is to recover the masked or swapped tokens within each instruction using the output
from the positional encoding layer. With all the instruction vectors hi from the Transformer encoder,
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we take the first one hcls, which is the CLS vector. Using a skip-gram approach, hcls is treated as the
paragraph (collectively representing all instructions in our case) representation. In order to model
the position information, we duplicate the hcls vector and tile it to the original instruction length
Lins to get the matrix hcls. It is concatenated to another positional encoding layer PE2 before the
final prediction layer. PE2 encodes the prediction position, which contains the mask locations. This
way, we enable hcls to also carry the position information while maintaining a condense learning
representation. In particular:

p = PE2(mask)

hp = hcls ⊕ p
(6)

where hp is the final prediction vector, encoded with position corresponding to each masked instruc-
tion position. Each hp

l predicts all m tokens within the instruction l. Formally, we define our MLM
task to be:

yl1, ...y
l
m = Φ(hp

l ),∀l ∈ Lins (7)
Φ denotes the sampled softmax [28], a more efficient method compared to the standard softmamx.
For multiclass training, we need to train a function F (x, y), which is GenTAL in this case, to compute
the logits, which is the relative log probabilities of class y given the context x:

F (xi, y)← log(P (y|x)) +K(x) (8)
where K(x) is an arbitrary function that does not depend on y. We use a larger vocabulary size
compared to NLP tasks, such as BERT, because of OOV and the training can slow down significantly.
Sampled softmax can accelerate the process by reducing the softmax logits calculated for each
training example by picking a small set of sampled classes S ⊂ L using a sampling function Q(y|x):

P (Si = S|xi) =
∏
y∈S

Q(y|xi)
∏

y∈(L−S)

(1−Q(y|xi)) (9)

Then a set of candidates Ci = Si ∪ ti can be created which contains the union of the target class and
sampled classes. Through computing posterior probability that y is the target class given xi and Ci,
which is P (ti = y|xi, Ci), we can obtain:

log(P (ti = y|xi, Ci)) = log(P (y|xi))− log(Q(y|xi)) +K ′(xi, Ci) (10)
which are the sampled relative logits that can feed into a softmax classifier. We can further write it as:

logits = F (x, y)− log(Q(x|y)) (11)

4 EXPERIMENTS

Experiments are conducted on a Linux server with 4 Nvidia RTX6000s, an Intel Xeon Gold 5218
CPU, and 300 GB of memory. The software used includes Python 3.8.6 and Tensorflow 2.4.1.

We collect two independent datasets, where one is for unsupervised training and the other is for
evaluation. For the training set, we collect malware from MalwareBazaar and Malpedia1 as well as
benign system and software programs for Linux and Windows (see Table. 1). Each method is trained
on 100,000 code fragments and roughly 1 million assembly instructions. The training set is split
into 90% training and 10% validation for hyperparameter tuning. GenTAL is trained multiple times
with different random seeds to estimate the variance. The vocabulary size is 80,000 for training the
unigram tokenizer through the SentencePiece package. The maximum sequence length is 512, the
embedding dimension is 192, the number of attention heads is 6, and the feedforward dimension is
32.

The evaluation dataset is generated by compiling four widely used utility and numeric libraries
in different configurations. In practical scenarios, the ground truth similarity is difficult to obtain,
especially on the block-level mapping. We present the first verified block-level assembly fragment
mapping dataset. Matching on block-level is much difficult than on function-level, since it lacks many
details present in the other blocks. Additionally, the function-level mapping used in the other related
works cannot guarantee that the assembly code is actually mapping to the same source code, since
optimization or obfuscation will mix source code from different functions and break function integrity.
We generate mapping pairs based on (1) cross-compiler mapping blocks compiled with GCC and
Clang, (2) cross-optimization mapping blocks with different optimizations, and (3) cross-obfuscation
mapping original and obfuscated blocks [29].

1https://malpedia.caad.fkie.fraunhofer.de/, and https://bazaar.abuse.ch/
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Table 1: Datasets Statistics
Training Evaluation

MalwareBazaar Malpedia Benign OpenSSL GMP libtomcrypt ImageMagick

86,225 3,158 343,235 4,777 1,351 590 2,733

4.1 COMPARED METHODS AND EVALUATION METRICS

We use mean rank (MRR) and precision at 1 (P@1) as the evaluation metrics, since the similarity
detection task can be regarded as an information retrieval task. The following list contains the
baselines we implement to compare against GenTAL:

TFIDF-str: TFIDF-based matching [30] by treating code as text. IDF is directly estimated on the
testing set, so this approach has more edge over other DL-based methods.

TFIDF-mne: same as TFIDF-str, but we only use the operands of the instruction [30]. IDF is directly
estimated on the testing set, so this approach has more edge over other DL-based methods.

MLM: BERT-based solution [10] that shows superior results compared to other binary code similarity
detection works, such as Gemini [8] and Skip-thought [31], by a large margin, as well as other machine
learning solutions. Only the MLM task is included in this variant.

MLM+NSP: Same as MLM, but with the additional NSP task.

MLM+SGP: Same as MLM, but this variant adds the same graph prediction (SGP) task to classify
whether the pairs belong to the same graph.

MLM+SFP: Same as MLM, but we introduce an additional task in which to identify if the pairs are
extracted from the same function to further add in more supervision.

MLM+GC: Same as MLM, but with the GC task (graph supervision) from Yu, et al [10]. The task
includes classification of optimization level and architecture.

MLM+DIS: We implemented ELECTRA [21], where a discriminator is added to MLM to predict
which tokens are originally masked, after the generator part of the model has recovered the tokens.

All-no-GC: This variant includes MLM, NSP, SGP, SFP, and DIS, except GC. GC includes supervi-
sion and can potentially correlate to the evaluation task.

ALL: We include all previous BERT-based tasks including GC.

4.2 RESULTS

We first evaluate the cross-compiler task between Clang and GCC shown in Table 2. The table on the
top shows the evaluation when only the code fragments with the same number of instructions are used.
The assembly code will be more similar than in the other situations, such as obfuscation. Therefore
all baselines have relatively good performance. GenTAL is able to outperform most other baselines,
except a slightly lower MRR for libtomcrypt against MLM+DIS. The evaluation of cross-compiler
with different lengths is at the bottom. It is clear that similar pieces of binary code with different
lengths can be much harder to detect, due to changed sequences and tokens. Moreover, when using
O0, which is unoptimized, the outcomes between different compilers can vary more. We show
that BERT-based models struggle to capture the semantics, regardless of the tasks learned, while
GenTAL is able to significantly perform better under this circumstance. For the cross-optimization
level evaluation shown in Table 3, O2-O3 is shown at the top and O0-O3 is at the bottom. For O2-O3,
all methods have again good performance, since O3 is closer to O2 and both optimization levels
usually perform the same. Note that all BERT-based models are nearly identical in this task, leading
to another confirmation that additional tasks have little contribution to the specific downstream task.
For O0-O3, there are gaps in the results, as shown in the bottom table. While GenTAL is able to
achieve greater than 0.5 MRR most of the time, BERT-based models struggle to identify similar
binary code, due to the larger difference between the two optimization levels. Finally, Table 4 shows
the evaluation for the obfuscation task, where GenTAL leads all the other methods. Code obfuscation
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Table 2: Cross-compiler evaluation: Clang O0 vs GCC O0
Same OpenSSL GMP libtomcrypt ImageMagick Average
Length MRR P@1 MRR P@1 MRR P@1 MRR P@1 MRR P@1

TFIDF-mne [30] 0.46 0.38 0.72 0.60 0.66 0.50 0.31 0.21 0.54 0.42
TFIDF-str [30] 0.75 0.68 0.88 0.85 0.50 0.25 0.47 0.35 0.65 0.53
MLM [10] 0.61 0.55 0.72 0.60 0.68 0.50 0.38 0.28 0.60 0.48
MLM+NSP [10] 0.63 0.57 0.80 0.70 0.65 0.50 0.39 0.27 0.62 0.51
MLM+SGP [10] 0.62 0.56 0.78 0.65 0.61 0.44 0.38 0.26 0.60 0.48
MLM+SFP 0.62 0.56 0.81 0.70 0.61 0.44 0.38 0.26 0.61 0.49
MLM+GC [10] 0.62 0.55 0.80 0.70 0.59 0.38 0.38 0.28 0.60 0.48
MLM+DIS 0.65 0.58 0.76 0.65 0.63 0.38 0.45 0.34 0.63 0.49
All-no-GC 0.64 0.57 0.79 0.65 0.48 0.25 0.36 0.22 0.57 0.42
ALL [10] 0.66 0.58 0.85 0.75 0.69 0.56 0.44 0.32 0.66 0.55
GenTAL 0.76 0.69 0.97 0.95 0.76 0.69 0.57 0.47 0.76 0.70
Different OpenSSL GMP libtomcrypt ImageMagick Average
Length MRR P@1 MRR P@1 MRR P@1 MRR P@1 MRR P@1

TFIDF-mne [30] 0.12 0.07 0.46 0.31 0.33 0.21 0.14 0.09 0.26 0.17
TFIDF-str [30] 0.35 0.29 0.57 0.47 0.39 0.27 0.25 0.19 0.39 0.30
MLM [10] 0.15 0.10 0.37 0.24 0.26 0.14 0.15 0.09 0.23 0.14
MLM+NSP [10] 0.16 0.11 0.40 0.26 0.27 0.15 0.17 0.10 0.25 0.16
MLM+SGP [10] 0.16 0.11 0.41 0.28 0.27 0.15 0.17 0.09 0.25 0.16
MLM+SFP 0.16 0.11 0.41 0.28 0.27 0.14 0.17 0.09 0.25 0.16
MLM+GC [10] 0.15 0.10 0.40 0.29 0.26 0.15 0.16 0.09 0.24 0.16
MLM+DIS 0.22 0.16 0.50 0.39 0.31 0.18 0.21 0.13 0.31 0.22
All-no-GC 0.17 0.11 0.44 0.32 0.27 0.13 0.16 0.09 0.26 0.16
ALL [10] 0.25 0.18 0.55 0.46 0.36 0.23 0.21 0.13 0.34 0.25
GenTAL 0.40 0.33 0.69 0.61 0.49 0.36 0.35 0.28 0.48 0.39

Table 3: Cross-optimimzation level evaluation O2 vs O3 O0 vs O3
OpenSSL GMP libtomcrypt ImageMagick Average

O2-O3 MRR P@1 MRR P@1 MRR P@1 MRR P@1 MRR P@1

TFIDF-mne [30] 0.20 0.13 0.83 0.75 1.00 1.00 0.47 0.34 0.63 0.56
TFIDF-str [30] 0.82 0.80 1.00 1.00 0.96 0.93 0.93 0.91 0.93 0.91
MLM [10] 0.82 0.81 1.00 1.00 0.96 0.93 0.92 0.90 0.93 0.91
MLM+NSP [10] 0.82 0.81 1.00 1.00 0.96 0.93 0.92 0.90 0.93 0.91
MLM+SGP [10] 0.82 0.81 1.00 1.00 0.96 0.93 0.92 0.90 0.93 0.91
MLM+SFP 0.82 0.81 1.00 1.00 0.96 0.93 0.92 0.90 0.93 0.91
MLM+GC [10] 0.82 0.81 1.00 1.00 0.96 0.93 0.92 0.91 0.93 0.91
MLM+DIS 0.82 0.81 1.00 1.00 0.96 0.93 0.91 0.89 0.93 0.91
All-no-GC 0.82 0.81 1.00 1.00 1.00 1.00 0.90 0.88 0.93 0.92
ALL [10] 0.82 0.81 1.00 1.00 0.96 0.93 0.92 0.90 0.93 0.91
GenTAL 0.87 0.83 1.00 1.00 1.00 1.00 0.94 0.91 0.95 0.94

OpenSSL GMP libtomcrypt ImageMagick Average
O0-O3 MRR P@1 MRR P@1 MRR P@1 MRR P@1 MRR P@1

TFIDF-mne [30] 0.05 0.02 0.35 0.23 0.52 0.36 0.11 0.06 0.26 0.17
TFIDF-str [30] 0.48 0.35 0.62 0.52 0.68 0.57 0.73 0.66 0.63 0.53
MLM [10] 0.08 0.05 0.28 0.19 0.56 0.36 0.25 0.18 0.29 0.19
MLM+NSP [10] 0.08 0.05 0.26 0.16 0.53 0.29 0.22 0.14 0.27 0.16
MLM+SGP [10] 0.08 0.04 0.26 0.15 0.56 0.36 0.22 0.13 0.28 0.17
MLM+SFP 0.07 0.04 0.25 0.15 0.56 0.36 0.21 0.13 0.28 0.17
MLM+GC [10] 0.08 0.04 0.26 0.16 0.53 0.29 0.21 0.15 0.27 0.16
MLM+DIS 0.15 0.08 0.36 0.24 0.67 0.50 0.30 0.21 0.37 0.26
All-no-GC 0.06 0.03 0.25 0.14 0.52 0.36 0.23 0.16 0.27 0.17
ALL [10] 0.14 0.07 0.41 0.27 0.67 0.50 0.23 0.15 0.36 0.25
GenTAL 0.46 0.34 0.78 0.67 0.70 0.57 0.67 0.61 0.65 0.55
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Figure 3: Performance on unseen obfuscated code over training epochs. GenTAL’s error bars are also
shown.

Table 4: Obfuscation evaluation with GCC O0
OpenSSL GMP libtomcrypt ImageMagick Average

MRR P@1 MRR P@1 MRR P@1 MRR P@1 MRR P@1

TFIDF-mne [30] 0.51 0.41 0.46 0.33 0.36 0.26 0.42 0.31 0.44 0.33
TFIDF-str [30] 0.67 0.59 0.25 0.19 0.58 0.45 0.42 0.33 0.48 0.39
MLM [10] 0.48 0.39 0.14 0.09 0.34 0.23 0.23 0.16 0.30 0.22
MLM+NSP [10] 0.51 0.43 0.16 0.10 0.36 0.25 0.25 0.18 0.32 0.24
MLM+SGP [10] 0.51 0.43 0.15 0.10 0.37 0.26 0.25 0.18 0.32 0.24
MLM+SFP 0.51 0.43 0.16 0.10 0.37 0.26 0.25 0.18 0.32 0.24
MLM+GC [10] 0.53 0.44 0.17 0.11 0.37 0.26 0.27 0.20 0.34 0.25
MLM+DIS 0.53 0.43 0.19 0.13 0.39 0.28 0.31 0.23 0.35 0.27
All-no-GC 0.49 0.40 0.17 0.12 0.36 0.25 0.26 0.19 0.32 0.24
ALL [10] 0.56 0.47 0.20 0.14 0.39 0.28 0.31 0.23 0.36 0.28
GenTAL 0.74 0.64 0.40 0.31 0.57 0.46 0.51 0.40 0.55 0.45

is the most impactful similarity detection task, since malware often bypass detection software using
it.

Overall, we can show that GenTAL consistently outperforms all baselines under all compiling
configurations, with significant margins. We observe that for more difficult tasks, such as cross-
compiler with different lengths, O0-O3, and obfuscation, our design still has reasonable performance
with the MRR ranging from 0.3 to 0.7. GenTAL only trains with the MLM task. Therefore it also
eliminates the need for sampling pairs for training additional tasks, such as NSP and SFP. Moreover,
the model parameter is much smaller compared to the BERT-based models, since we use only 1
Transformer encoder and much smaller dimensions in the other layers. The additional training tasks
on top of MLM result in little to no performance gain as shown in all tables. In Fig. 3, we plot the
training epochs vs. similarity detection evaluation on the fly for the obfuscation task. Even with
only learning the MLM task, GenTAL’s evaluation performance increases faster than for all the
other baselines. Therefore, we believe that a more condensed vector using skip-gram contains more
semantic information and can result in better similarity detection.

5 CONCLUSION

In this paper, we propose GenTAL, a generative approach with denoising skip-gram and Transformer
for binary code similarity detection. We improve upon the BERT-based representation learning
specifically for assembly code, by introducing the PVDM paradigm to condense the code fragment
representation. This design allows us to capture more semantics from assembly code, which is
important as often the compiled code can have different lengths and tokens based on configurations,
such as optimization levels, compilers, and obfuscations. When evaluating GenTAL, we show that its
performance is superior to both BERT-based and TFIDF-based methods for all the different compiler
configurations. In practice, our approach is able to train with fewer data and adapt to more scenarios
due to its generative nature. The limitation of GenTAL is that the downstream similarity detection
performance can be hindered by the OOV problem, especially for heavy numeric libraries with many
constants. Although GenTAL achieves better generalizability than the state-of-the-art solutions, there
are still areas or tasks, such as other obfuscation methods, which were not evaluated.
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