
Liger-Kernel: Efficient Triton Kernels for LLM Training

Pin-Lun Hsu 1 2 Yun Dai 1 Vignesh Kothapalli 1 Qingquan Song 1 Shao Tang 1 Siyu Zhu 1 Steven Shimizu 1

Shivam Sahni 1 Haowen Ning 1 Yanning Chen 1 Zhipeng Wang 1

Abstract
Training large language models (LLMs) effi-
ciently at scale remains challenging due to ris-
ing compute and memory demands. We present
Liger-Kernel, an open-source Triton kernel
suite for core LLM primitives and diverse loss
functions (pre-training, SFT, distillation, align-
ment, RLHF). Each kernel uses aggressive oper-
ator fusion, in-place gradient computation, and,
where advantageous, input chunking to curb mem-
ory traffic and kernel-launch overhead. On widely
used LLMs, these optimizations boost through-
put by ≈20% and cut GPU memory consumption
by ≈60% versus Hugging Face baselines. The
code is available under a permissive license at
https://github.com/linkedin/Liger-Kernel.

1. Introduction
Training Large Language Models (LLMs) at scale (Vaswani,
2017; Wei et al., 2022; Brown et al., 2020; Team et al., 2023;
Touvron et al., 2023; Dubey et al., 2024; Liu et al., 2024;
Bai et al., 2023) hinges on efficient compute infrastructure,
yet host/device memory constraints and latency–bandwidth
trade-offs often throttle performance. While algorithmic
scaling helps, the true potential for optimization lies in
kernel-level operation fusion that curtails memory traffic
and capitalizes on GPU parallelism. Because such last-mile
optimizations are amplified by inherent parallelism of GPUs,
even the modest speed-ups propagate into large wall-time
and cost reductions. Achieving these gains, however, de-
mands deep expertise in LLM architectures and hardware.

To render such expert-level optimizations broadly acces-
sible, we introduce Liger-Kernel—an open source,
plug-and-play suite of Triton kernels (Tillet et al., 2019)
that delivers state-of-the-art performance gains to any

1LinkedIn Corporation, CA, USA 2Now at xAI, Palo
Alto, CA, USA. Correspondence to: Pin-Lun Hsu <by-
ronhsu1230@gmail.com>, Yun Dai <yundai424@gmail.com>.

Proceedings of the ICML 2025 Workshop on Championing Open-
source Development in Machine Learning (CODEML ’25). Copy-
right 2025 by the author(s).

LLM training pipeline with only a handful of lines of
code. Liger-Kernel enhances the efficiency and scala-
bility of LLM training through a highly flexible and user-
friendly interface. It streamlines complex tensor operations,
minimizes computational overheads with kernel fusions, and
seamlessly integrates with diverse computing environments.
Novice users can improve LLM training efficiency with a
few lines of code, while advanced users can customize their
models with modular components and adaptive layer con-
figurations to suit their needs. Liger-Kernel requires
minimal dependencies, namely, PyTorch and Triton, while
supporting multiple distributed frameworks, such as Py-
Torch FSDP (Zhao et al., 2023), DeepSpeed ZeRO (Rasley
et al., 2020), and ZeRO++(Wang et al., 2023; Dai et al.,
2024). Thus ensuring broad compatibility across platforms.

2. Related Works
PyTorch eager execution (Paszke et al., 2019) simplifies
model authoring experience but incurs function-call, dis-
patch, and kernel-launch overhead. In addition, materializ-
ing activations op-by-op also inflates GPU memory use. A
majority of the efforts to address this issue have focused on
model compilation and algorithmic operation fusion, with
Triton (Tillet et al., 2019) becoming the de-facto route to
replace native PyTorch execution.

2.1. Model Compiler

Model compilers lower high-level computation graphs
(e.g. torch.nn.Module) to hardware-tuned code.
torch.compile (Ansel et al., 2024) captures the graph
just-in-time (JIT), optimizes its intermediate representation
(IR), and translates it into Triton (GPU) or OpenMP C++
(CPU). TVM (Chen et al., 2018) offers a unified IR across
back-ends; XLA (Sabne, 2020) fuses and schedules Ten-
sorFlow/JAX graphs; nvFuser generates CUDA specialized
for NVIDIA GPUs. Each of these systems streamlines
operation fusion, layout selection, and kernel generation,
complementing algorithm-specific kernels.

2.2. Algorithmic Operation Fusion

Operation fusion reduces HBM–SRAM traffic by
co-locating successive computations within a single kernel,

1

https://github.com/linkedin/Liger-Kernel

Liger-Kernel: Efficient Triton Kernels for LLM Training

eliminating per-op launch overhead and materializing
intermediate activations between operations. For example,
FlashAttention (Dao et al., 2022; Dao, 2023) partitions
attention into SRAM-sized tiles, shrinking memory
complexity from O(L2) to O(L) and boosting speed via
higher register and thread utilization. Such algorithm-aware
kernels often surpass generic compiler fusion by exploiting
domain structures (e.g., attention head parallelism or
register allocation patterns).

2.3. Custom Operation Fusion with Triton

Triton provides a Pythonic DSL and JIT compiler for writ-
ing these kernels without low-level CUDA boilerplate, en-
abling portable, self-contained libraries. Meta’s xFormers
(Lefaudeux et al., 2022), Dao’s FlashAttention repo1, and
Unsloth2 exemplify Triton-based LLM optimizations, while
EfficientCrossEntropy3 fuses projection and loss to avoid
full-logit materialization. Liger-Kernel builds on these
ideas (Section 3.2) to provide a unified, extensible suite of
fused kernels for state-of-the-art LLM training.

3. Liger-Kernel
3.1. API Design and Integrations

Ease of use is vital for the wider adoption of any open-source
library. To this end, Liger-Kernel’s API minimizes dis-
ruption to existing code while offering varying levels of cus-
tomization. Depending on the granularity of control, users
can integrate the Liger kernels into their training pipelines
in several ways (see also Figure 1):

1. Using AutoLigerKernelForCausalLM: The
simplest way to leverage Liger kernels. It automat-
ically patches supported causal-LM code with a single
import—no manual model changes required.

2. Model-Specific Patching APIs: For finer control,
users can leverage Liger-Kernel’s model-specific
patching APIs. These APIs can be applied to various
architectures such as sequence classifiers.

3. Customizing Model Architectures: users can im-
port individual Liger kernels (e.g. LigerGEGLUMLP
and LigerCrossEntropyLoss) and design ef-
ficient model architectures (as also shown by the
LigerTransformer example in Figure 1b).

Liger-Kernel has also been successfully integrated
with several popular training frameworks within the ma-
chine learning community, including Hugging Face trans-

1github.com/dao-ailab/flash-attention
2github.com/unslothai/unsloth
3github.com/mgmalek/efficient cross entropy

formers’ Trainer class4, Hugging Face TRL’s (von
Werra et al., 2020) SFTTrainer class5, Axolotl6, and
LLaMA-Factory (Zheng et al., 2024). Thus presenting a
flexible option for developers to integrate Liger kernels into
their workflows and democratize its usage.

3.2. Kernels

Liger-Kernel is mainly composed of two types of ker-
nels: (1) kernels that compute fundamental building blocks
in LLM, and (2) memory efficient kernels that fuse vocabu-
lary space projection layer with downstream losses, chunked
along token dimension.

3.2.1. LLM BUILDING BLOCKS

LLMs share a common set of auxiliary building blocks,
so providing fast, drop-in implementations for these mod-
ules benefits most architectures. Liger-Kernel supplies
highly optimized kernels for RMSNorm, GeGLU/SwiGLU,
RoPE, and other essential components. We deliberately tar-
get operations outside the attention and MLP paths—where
specialist libraries such as FlashAttention and CUTLASS
already excel—to deliver the greatest performance.

Most kernels leverage three key optimization strategies:

Recomputation. This approach trades inexpensive arith-
metic for lower peak memory. For example, RMSNorm
kernel only caches a single reciprocal RMS value per row
in the forward pass, and then reloads it along with the raw
inputs to recompute normalized activations on the backward
pass, saving O(ncol) storage per row at the cost of a few
extra FLOPs.

In-place execution. We eliminate extra allocations and
copies by reusing buffers whenever an intermediate value
has exactly one producer and one consumer. For example,
in our RoPE kernel we overwrite each token’s Q and K
head vectors in-place with their rotated outputs—avoiding a
separate copy of the full tensor.

Coarsening. We fuse fine-grained operations into larger
compute blocks to boost arithmetic intensity and cut down
on kernel launches. For instance, in the RoPE implementa-
tion, both the Q-head and K-head rotations for each token
are handled within a single Triton program, rather than
dispatching two back-to-back kernels, which increases per-
program register usage and reduces scheduling overhead.

3.2.2. FUSED KERNELS WITH INPUT-CHUNKING

The rapid expansion of vocabulary enhances token granu-
larity and achieve more compact prompt representations.

4https://huggingface.co/docs/transformers/en/main classes/trainer
5https://huggingface.co/docs/trl/main/en/sft trainer
6https://axolotl-ai-cloud.github.io/axolotl/#liger-kernel

2

https://github.com/dao-ailab/flash-attention
https://github.com/unslothai/unsloth
https://github.com/mgmalek/efficient_cross_entropy
https://huggingface.co/docs/transformers/en/main_classes/trainer
https://huggingface.co/docs/trl/main/en/sft_trainer
https://axolotl-ai-cloud.github.io/axolotl/#liger-kernel

Liger-Kernel: Efficient Triton Kernels for LLM Training

Model Agnostic Patching API
from liger_kernel.transformers import \
AutoLigerKernelForCausalLM

path="path/to/some/model"
model=AutoLigerKernelForCausalLM.from_pretrained(path)

Model Specific Patching API
from liger_kernel.transformers import \
apply_liger_kernel_to_llama()
model=AutoModelForSequenceClassification.from_pretrained(path)

(a) API usage via patching.

Composable Custom Model API
from liger_kernel.transformers import LigerGEGLUMLP
from liger_kernel.transformers import LigerCrossEntropyLoss

class LigerTransformer(torch.nn.Module):
def __init__(self, *args, **kwargs):

super().__init__()
use Triton-optimized LigerGEGLUMLP
self.geglu_mlp = LigerGEGLUMLP(...)

use the Triton-optimized LigerCrossEntropyLoss
loss_fn=LigerCrossEntropyLoss()
model=LigerTransformer(...)

(b) Integration of custom kernels into model/training workflows.

Figure 1. Approaches to use Liger-Kernel APIs which are compatible with the widely used transformers library.

However, this has revealed a significant challenge: the ma-
terialization of logit tensors during loss computation con-
sumes excessive memory. This issue has become a major
bottleneck in LLM training, limiting the max batch size and
context length. For example, training Gemma (with 256K
vocab size) with batch size of 8 and sequence length of
4096 results in a 16.8 GB logit tensor of precision bfloat16,
causing a huge spike in memory foortprint7.

This motivates us to explore the chunked logit and gradient
computation approaches to amortize the memory consump-
tion8. In this section, we present the Fused Linear Chun-
ked Loss, a flexible and extensible interface that supports
chunked optimization across different loss functions. This
includes both causal loss such as cross-entropy loss, and
post-training objectives such as ORPO, JSD, and GRPO.

We designed the FusedLinearBase class to capture the
essential chunking logic, and implemented it as a custom
torch.autograd.Function. This class orchestrates
the chunking strategy, performs the forward pass of the
language modeling head on the transformer’s last hidden
states, and calls an abstract loss function, which must be
overridden by any downstream subclass implementing a
desired loss. Crucially, FusedLinearBase is also re-
sponsible for computing the gradients of loss computed by
each chunk with respect to the inputs during the forward
pass itself. To avoid the overhead of coding the gradient
computation logic for each specific loss, we make use of
torch.func.grad and value, which provides a con-
venient way to compute both the loss and its gradients within
a single functional interface.

By calculating gradients immediately after each chunk’s
forward computation, the corresponding chunk’s logits can
be safely discarded. This strategy ensures that only a single

7The memory usually peaks at the end of each forward pass
right before the release of the activations in the backward pass.

8This is inspired from the GitHub discussions
https://huggingface.co/docs/transformers/en/main classes/trainer and the
solution from https://github.com/mgmalek/efficient cross entropy

Figure 2. Chunking illustration. The input chunks are fed into
LM head sequentially and produce logit chunks, then the loss
computation with the target chunks is performed.

chunk of logits resides in GPU HBM at any point in time,
substantially reducing peak memory usage and enabling
scalability to larger batch sizes or model variants.

Finally, to maximize kernel-level performance, we wrap
the forward and backward logic of each chunk in a
torch.compile context. This allows the PyTorch com-
piler to fuse operations and eliminate redundant memory
transfers, further improving throughput without compromis-
ing numerical correctness.

3.3. Testing Best Practices

For every code change, Liger-Kernel exercises four
stages of validation—correctness, contiguity, convergence,
and performance—to ensure that no merge ever degrades
precision or throughput. Correctness tests compare each
Triton kernel against a pure PyTorch reference (e.g., Hug-
ging Face’s implementation) over a range of regular and
irregular shapes and dtypes, applying strict tolerances and
only relaxing them when convergence-driven tests justify
it. Contiguity checks enforce all input tensors are laid out
sequentially, catching issues like the RoPE divergence we
once saw when derivatives weren’t stored contiguously.

Beyond unit tests, we run convergence tests on scaled-down,
“real-world” training scenarios to verify that logits, weights,
and loss track exactly with the reference across end-to-
end epochs. Finally, our performance benchmarks mea-

3

https://huggingface.co/docs/transformers/en/main_classes/trainer
https://github.com/mgmalek/efficient_cross_entropy

Liger-Kernel: Efficient Triton Kernels for LLM Training

(a) GeGLU (b) RoPE

Figure 3. Kernel latency benchmarks for GeGLU and RoPE.

(a) GeGLU (b) RoPE

Figure 4. Kernel memory benchmarks for GeGLU and RoPE.

sure speed and memory usage against the baseline using
representative hyperparameters, ensuring every Triton re-
implementation yields tangible gains before it’s merged.

4. Numerical Experiments
This section presents the kernel level and end-end LLM
training benchmarks using Liger-Kernel.

Kernel Benchmarks Figure 3-4 reports benchmarking
result of each LLM building block kernel on a single H100
80GB GPU over 10 trials with [0.2, 0.8] percentile inter-
vals. We benchmark against vanilla implementation in Hug-
ging Face model source code and torch.compile’ed
version. Liger-Kernel’s Triton GeGLU kernel matches
torch.compile latency while cutting peak memory by
≈12–16%, and its RoPE kernel delivers a 2.3× speed-up
and ≈20% lower memory than the Hugging Face baseline
at a 16k hidden size. These double-digit gains achieved
with identical numerical accuracy, underscore the impact
of swapping even a few ubiquitous primitives for their
Liger-Kernel counterparts.

End-to-End benchmarks We fine-tune LLMs on the Al-
paca dataset (512 token context) using the Hugging Face
Trainer across 4 NVIDIA A100 (80 GB) GPUs and vary-
ing batch sizes. All runs use bfloat16 precision, AdamW
with cosine LR decay, and metrics are sampled after 20
warmup steps, with standard errors computed over 5 repeti-
tions. The results are reported in Figure 5 and Appendix C.
At batch size 64, LLaMA 3-8B achieved a 42.8% through-
put boost and a 54.8% GPU-memory reduction, enabling
larger batches or longer sequences on smaller hardware. At
batch size 48, our kernels increased Qwen2 throughput by

(a) Peak allocated memory (b) Throughput

Figure 5. Comparison of peak allocated memory and training
throughput (tokens/sec) for LLaMA 3-8B.

(a) Peak allocated memory (b) Throughput

Figure 6. Comparison of peak allocated memory and throughput
during GRPO training with TRL on Qwen3-0.6B. Liger’s Fused
Linear Chunked Loss reduces memory usage by up to 30% and
allows training with larger batches (12-16) that would otherwise
cause OOM errors – all while maintaining throughput comparable
to the standard TRL implementation.

25.5% while cutting memory use by 56.8% (Figure 13).

5. Conclusions
We introduce Liger-Kernel, a Triton-based library that
brings expert-level optimizations to LLM training. Custom
RMSNorm, RoPE, and GeGLU/SwiGLU kernels outper-
form HuggingFace’s versions—our RoPE is 8× faster and
uses 3× less memory. To alleviate loss-computation bottle-
necks on large vocabularies, we implement input-chunked,
online-softmax kernels with in-place gradient updates, en-
abling larger batches and longer contexts. Our new ORPO-
loss kernel cuts peak memory 15× and decouples it from
batch size, making alignment runs feasible on modest hard-
ware. When fine-tuning LLaMA-3 8B across 4 A100 GPUs,
Liger-Kernel achieves 42.8% higher throughput and
54.8% lower memory consumption.

Since its release, Liger-Kernel has attracted contribu-
tions from the open-source community, extending support
to new models (e.g., Qwen2.5-VL (Bai et al., 2025), LlaVA
(Liu et al., 2023)) and kernels (e.g., GRPO, SparseMax).
We will extend support to alignment, RLHF, and more open-
source models to further empower research and deployment.

4

Liger-Kernel: Efficient Triton Kernels for LLM Training

Acknowledgements
We thank AMD and Intel for funding GPUs for our AMD
and Intel CI. We also thank Modal for funding credits from
GPU MODE IRL for our NVIDIA CI.

We thank Triton9, flash-attention10, and Unsloth11 for the
reference of Triton kernels for LLM training, tiny shake-
speare dataset12 and llm.c13 for convergence testing design,
Efficient Cross Entropy14 for fused linear cross entropy ref-
erence, AutoAWQ15 and Robert Shaw for Automodel API
design, as well as Hugging Face, PyTorch Lightning, Ax-
olotl, and Llama-Factory for the collaboration on framework
integration.

Finally, we extend our sincere appreciation to the
Liger-Kernel open-source community. The meticu-
lous bug reports, well-crafted pull requests, and exhaustive
maintenance efforts have been indispensable to the maturity
and robustness of this project.

Impact Statement
Liger-Kernel is an open-source Triton library that ac-
celerates key LLM operations and significantly reduces peak
GPU memory. Our work facilitates smaller research labs
and companies to train state-of-the-art models, minimize
energy consumption, and contributes to a more sustainable
and accessible AI development life-cycle.

References
Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voz-

nesensky, M., Bao, B., Bell, P., Berard, D., Burovski, E.,
et al. Pytorch 2: Faster machine learning through dynamic
python bytecode transformation and graph compilation.
In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 2, pp. 929–947, 2024.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F., et al. Qwen technical
report. arXiv preprint arXiv:2309.16609, 2023.

Bai, S., Chen, K., Liu, X., Wang, J., Ge, W., Song, S., Dang,
K., Wang, P., Wang, S., Tang, J., et al. Qwen2. 5-vl
technical report. arXiv preprint arXiv:2502.13923, 2025.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,

9https://triton-lang.org/main/getting-
started/tutorials/index.html

10https://github.com/dao-ailab/flash-attention
11https://github.com/unslothai/unsloth
12https://huggingface.co/datasets/karpathy/tiny shakespeare
13https://github.com/karpathy/llm.c
14https://github.com/mgmalek/efficient cross entropy
15https://github.com/casper-hansen/AutoAWQ

J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
In Proceedings of the 34th International Conference on
Neural Information Processing Systems, pp. 1877–1901,
2020.

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D.,
and Dao, T. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. arXiv preprint
arXiv:2401.10774, 2024.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., et al. TVM:
An automated End-to-End optimizing compiler for deep
learning. In 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18), pp. 578–594,
2018.

Dai, Y., Dharamsi, T., Hsu, P.-L., Song, T., and Firooz,
H. Enhancing stability for large models training in con-
strained bandwidth networks. In Workshop on Efficient
Systems for Foundation Models II @ ICML2024, 2024.

Dao, T. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. arXiv preprint arXiv:2205.14135, 2022.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Hong, J., Lee, N., and Thorne, J. Reference-free monolithic
preference optimization with odds ratio. arXiv preprint
arXiv:2403.07691, 2024.

Lefaudeux, B., Massa, F., Liskovich, D., Xiong, W.,
Caggiano, V., Naren, S., Xu, M., Hu, J., Tintore, M.,
Zhang, S., Labatut, P., Haziza, D., Wehrstedt, L., Reizen-
stein, J., and Sizov, G. xFormers: A modular and hack-
able transformer modelling library. https://github.
com/facebookresearch/xformers, 2022.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437, 2024.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction tun-
ing. Advances in neural information processing systems,
36:34892–34916, 2023.

5

https://triton-lang.org/main/getting-started/tutorials/index.html
https://triton-lang.org/main/getting-started/tutorials/index.html
https://github.com/dao-ailab/flash-attention
https://github.com/unslothai/unsloth
https://huggingface.co/datasets/karpathy/tiny_shakespeare
https://github.com/karpathy/llm.c
https://github.com/mgmalek/efficient_cross_entropy
https://github.com/casper-hansen/AutoAWQ
https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers

Liger-Kernel: Efficient Triton Kernels for LLM Training

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
speed: System optimizations enable training deep learn-
ing models with over 100 billion parameters. In Proceed-
ings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 3505–3506,
2020.

Sabne, A. XLA : Compiling machine learning for peak
performance, 2020.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Roformer,
Y. L. Enhanced transformer with rotary position embed-
ding., 2021. DOI: https://doi. org/10.1016/j. neucom,
2023.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Tillet, P., Kung, H.-T., and Cox, D. Triton: an intermediate
language and compiler for tiled neural network computa-
tions. In Proceedings of the 3rd ACM SIGPLAN Interna-
tional Workshop on Machine Learning and Programming
Languages, pp. 10–19, 2019.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

von Werra, L., Belkada, Y., Tunstall, L., Beeching, E.,
Thrush, T., Lambert, N., Huang, S., Rasul, K., and
Gallouédec, Q. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl,
2020.

Wang, G., Qin, H., Jacobs, S. A., Holmes, C., Rajbhandari,
S., Ruwase, O., Yan, F., Yang, L., and He, Y. Zero++:
Extremely efficient collective communication for giant
model training. arXiv preprint arXiv:2306.10209, 2023.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022.

Zhang, B. and Sennrich, R. Root mean square layer nor-
malization. Advances in Neural Information Processing
Systems, 32, 2019.

Zhao, Y., Gu, A., Varma, R., Luo, L., Huang, C.-C., Xu, M.,
Wright, L., Shojanazeri, H., Ott, M., Shleifer, S., et al.
Pytorch FSDP: Experiences on scaling fully sharded data
parallel. Proceedings of the VLDB Endowment, 16(12):
3848–3860, 2023.

Zheng, Y., Zhang, R., Zhang, J., Ye, Y., Luo, Z., Feng,
Z., and Ma, Y. Llamafactory: Unified efficient fine-
tuning of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 3: System Demonstrations),
Bangkok, Thailand, 2024. Association for Computational
Linguistics. URL http://arxiv.org/abs/2403.
13372.

6

https://github.com/huggingface/trl
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

Liger-Kernel: Efficient Triton Kernels for LLM Training

A. Kernels and Benchmarks
Throughout the discussion, vectors and matrices are represented by bolded lowercase and uppercase letters, e.g., x ∈ Rn

and W ∈ Rm×n. Vectors are assumed to be column vectors unless otherwise specified. The all-ones vector is denoted as
1n ∈ Rn. Functions are applied to the variable element-wise, i.e., f(x)i = f(xi). We use ⊙ to denote the element-wise
product between tensors, and the super-script ⊤ to denote the matrix transpose. Unless otherwise specified in our kernel
implementations, both input and output tensors are reshaped into two-dimensional matrices with the shape (B × T,H),
where B is the batch size, T is the sequence length and H is the hidden dimension. In each kernel, Triton parallelizes
operations on each row of input16. Therefore, we focus on the mathematical operations given a row of input x ∈ RH and
the corresponding output y ∈ RH across all kernels discussed below. Finally, considering a loss L ∈ R during training, we
use ∇yL to denote the gradient back-propagated to y during the backward-pass.

A.1. Rotary Position Embedding (RoPE)

We fuse the query and key rotation embedding computation into a single kernel to reduce overheads. For each rotary position
embedding computation, given the input x ∈ Rd, the token position m and the rotation matrix RH

Θ,m ∈ RH×H , the output
y ∈ RH is

y = RH
Θ,mx. (1)

Here the RH
Θ,m matrix is given by:

cosmθ1 . . . 0 − sinmθ1 . . . 0
0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

0 . . . cosmθH/2 0 . . . − sinmθH/2
sinmθ1 . . . 0 cosmθ1 . . . 0

0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

0 . . . sinmθH/2 0 . . . cosmθH/2


. (2)

Our implementation of RoPE assumes a rotation matrix in the form of HuggingFace model instead of the rotation matrix
described in Su et al. (2023). The parameters Θ are model specific. In the backward pass, we have:

∇xL = (RH
Θ,m)⊤∇yL. (3)

In the implementation, due to the sparsity of RH
Θ,m, we adopt the efficient sparse computation in Su et al. (2023).

A.2. GeGLU

Given the input x ∈ RH and learnable parameters W ∈ RH×H ,V ∈ RH×H , b ∈ RH and c ∈ RH , the output y ∈ RH is
defined as (Shazeer, 2020):

y = GELU(Wx+ b)⊙ (V x+ c), (4)

where we use the tanh approximation of GELU (Hendrycks & Gimpel, 2016). Let c1 = 0.044715, c2 = 0.134145. The
GELU(z) is formulated as:

GELU(z) ≈ 0.5z
(
1 + tanh

[√
2/π

(
z + c1z

3
)])

. (5)

Let x(1) = Wx+ b ∈ RH and x(2) = V x+ c ∈ RH . The forward pass can be computed as:

y(x(1),x(2)) = GELU(x(1))⊙ x(2). (6)

16We compute the number of warps based on the block size, which is dependent upon the size of each row. We reuse the
calculate settings function from https://github.com/unslothai/unsloth/blob/main/unsloth/kernels/utils.py.

7

https://github.com/unslothai/unsloth/blob/main/unsloth/kernels/utils.py

Liger-Kernel: Efficient Triton Kernels for LLM Training

In the backward pass, we have:

∇x(1)L = ∇yL ⊙∇x1GELU(x(1))⊙ x(2),

∇x(2)L = ∇yL ⊙ GELU(x(1)),
(7)

where:

∇x(1)GELU(x(1)) ≈ 0.5⊙ (1 + u(x1))+√
1/(2π)x(1) ⊙

(
1− u(x(1))2

)
⊙

(
1 + c2(x

(1))2
)
,

u(x(1)) = tanh
[√

2/π
(
x(1) + c1(x

(1))3
)]

.

(8)

A.3. Cross-Entropy (CE)

We move the gradient computation to the forward function along with an inplace replacement of the logit tensor to avoid
them being materialized simultaneously. We also adopt online softmax computation to compute the gradient on the fly.
Given the input logits x ∈ RV , where V is the vocabulary size, and target one-hot encoded label t, the output probabilities
are given as:

y = softmax(x), (9)

and the cross-entopy loss is defined as L = −
∑

i ti log(yi). The gradient back-propagated to x is given by:

∇xL = y − t. (10)

Additionally, we also employ the safe log operation to avoid numerical instabilities.

A.4. RMSNorm.

We fuse the normalization and scaling steps of the RMSNorm computation into a single Triton kernel17. Specifically, given
the input x ∈ RH and the learnable parameters γ ∈ RH , the output y ∈ RH is defined as (Zhang & Sennrich, 2019):

y = x̂⊙ γ, x̂ =
x

RMS(x)
, (11)

where x̂ ∈ RH is the normalized input, RMS(x) =
√∑

i x
2
i /H + ϵ and ϵ is a small constant for numerical stability. In the

backward pass, we have the gradient back-propagated to x and γ as

∇xL =
1

RMS(x)

∇yL ⊙ γ −
[
x̂⊤(∇yL ⊙ γ)/H

]︸ ︷︷ ︸
a numerical value

x̂

 ,

∇γL = ∇yL ⊙ x̂.

(12)

Since the same γ is applied to all input vectors x in the same batch, the gradients need to be summed up.

A.5. SwiGLU.

We fuse the element-wise operations in the SwiGLU computation into a single kernel. Given the input x ∈ RH and learnable
parameters W ∈ RH×H ,V ∈ RH×H , b ∈ RH and c ∈ RH , the output y ∈ RH is defined as (Shazeer, 2020):

y = Swishβ=1(Wx+ b)⊙ (V x+ c)

= SiLU(Wx+ b)⊙ (V x+ c),
(13)

17The implementation is referenced the code from https://github.com/unslothai/unsloth/blob/main/unsloth/kernels/rms layernorm.py and https://triton-
lang.org/main/getting-started/tutorials/05-layer-norm.html.

8

https://github.com/unslothai/unsloth/blob/main/unsloth/kernels/rms_layernorm.py
https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html

Liger-Kernel: Efficient Triton Kernels for LLM Training

Figure 7. Profiling trace view of FLCE optimization. Here ‘+’ denotes the optimization added to the previous step.

where SiLU(z) = zσ(z) and σ(z) = (1 + exp(−z))−1 is the sigmoid function. We only consider the β = 1 case here
where Swish degenerates to SiLU, which aligns with the implementation of existing supported HuggingFace LLMs. Denote
the values x1 = Wx+ b ∈ RH and x2 = V x+ c ∈ RH , we implement the kernel for the forward pass as:

y(x1,x2) = SiLU(x1)⊙ x2. (14)

Recall ∇yL as the gradient back-propagated from L to y. In the backward pass, we have

∇x1L = ∇yL ⊙ [σ(x1) + SiLU(x1)⊙ (1− σ(x1))]⊙ x2,

∇x2L = ∇yL ⊙ SiLU(x1).
(15)

A.6. FusedLinearCrossEntropy (FLCE)

The main idea of FLCE is to avoid the materialization of output logits of the language model head. We achieved so by
conducting three levels of optimization compared with torch eager mode. Firstly, in eager pytorch, cross entropy consists of
LogSoftmax + NLL Loss. We leverage Liger CE to fuse Log softmax and NLL loss into one kernel call. Secondly, we fuse
CE forward and backward, so the gradient is computed right after we get the activations in a single kernel call. Finally, we
chunk the input based on batch size and seq length dimension and compute the input sequentially. We show an illustration
of chunking performed in FLCE in Figure 2.

Given the linear head matrix W ∈ RH×V , with a vocabulary size V , and Zi ∈ RSchunk×H , denoting a chunk of the flattened
hidden state matrix Z ∈ RBT×H where B is the batch size, T is the sequence length, H is the hidden size, and Schunk is the
chunk size, the forward pass for a chunk through the linear layer is computed as:

Oi = ZiW for i = 1, 2, . . . , nchunk. (16)

Here, Oi represents the logits projected from Zi, for which, gradients can be derived based on (10). Since the same weight
W is used for projecting all chunks, its final gradient needs to be summed up. The gradient computation in the backward
pass can be represented as:

∇Zi
L = ∇Oi

L ·W⊤, ∇WL =

nchunk∑
i

Z⊤
i ∇Oi

L (17)

While it is intuitive to assume that chunking might degrade performance, our findings indicate that careful chunking of
the input tensor allows us to retain the compute-bound behavior. This is attributable to the sufficiently large size of W ,
which allows us to effectively leverage chunking while maintaining computational efficiency. In practice, we set the chunk
size to be 2⌈log2 ⌈ BT

⌈V/H⌉ ⌉⌉ with an intuition on picking the chunk size to be closer to the hidden dimension size to balance
the trade-off between memory allocation and processing speed. Figure 7 shows the optimizations from a profiling trace
perspective.

9

Liger-Kernel: Efficient Triton Kernels for LLM Training

Figure 8. FLCE chunking on medusa. The input chunks are fed into multiple LM heads sequentially.

A.7. Medusa

Medusa (Cai et al., 2024) is a simple framework that accelerates token decoding in auto-regressive LLMs by using multiple
decoding heads to predict several subsequent tokens in parallel. Especially, the linear head matrix W ∈ RH×V along with
K Medusa heads {W̃i}Ki=1 ∈ RH×V are employed to predict the next (K + 1) tokens in parallel. Medusa training has two

flavors. The first, called Stage-1, involves training only the additional Medusa heads {W̃i}
K

i=1 while keeping the backbone
LLM frozen. The second approach, called Stage-2, tunes the backbone model, the original LM head and the Medusa heads

{W̃i}
K

i=1 ∪W simultaneously. Due to the parallel decoding nature of the K Medusa heads, the peak memory required to
train the model scales almost linearly with K, especially when the vocabulary size is significantly larger than the hidden
feature dimension.

The Liger FLCE kernel is particularly effective in this context, as it eliminates the need to materialize logits for each
decoding head (See Figure 8). This is critical in scenarios with large vocabulary sizes, such as LLaMA-3’s 128K tokens,
where materializing logits can lead to significant memory consumption. In particular, by leveraging the Liger FLCE kernel,
we ensure that the computes gradients are stored ‘in-place’, without materializing the full logits tensor. Thus enabling the
users to scale hyper-parameters pertaining to sequence lengths/batch size, hidden dimension for exploration and development
in multi-token prediction.

A.8. Odds Ratio Loss

The Liger optimized CE/FLCE kernels are generic in nature and can be widely employed in LLM pre-training and supervised
fine-tuning (SFT) workflows. Additionally, to cater to use-cases which require preference tuning of LLMs, we develop an
optimized Odds Ratio Loss kernel as part of the Odds Ratio Preference Optimization (ORPO) training framework (Hong
et al., 2024). Formally, for an input sequence s to the LLM, the probability of predicting a specific output sequence o of
length M is given by:

logP (o|s) = 1

M

M∑
i=1

logP (oi|s,o<i). (18)

10

Liger-Kernel: Efficient Triton Kernels for LLM Training

Figure 9. Odds Ratio Loss with chunked batches of preferred and rejected responses, that are sequentially fed into the LM head to reduce
peak memory consumption.

With this notation in place, the odds of predicting a specific preferred response ow is given by:

odds(ow|s) =
P (ow|o)

1− P (ow|s)
. (19)

In the preference tuning paradigm, we are generally provided with a dis-preferred (rejected) response ol along with a
preferred response ow for a given input s. The odds ratio loss LOR aims to maximize the odds of predicting ow over ol,
and can be formulated as:

LOR = − log σ

(
log

odds(ow|s)
odds(ol|s)

)
, (20)

where σ denotes the softmax function. The ORPO training strategy combines LOR with the standard CE loss (denoted by
LSFT) over the tokens of the preferred response ow. Thus, LORPO can be given as (Hong et al., 2024):

LORPO = E(s,ow,ol) [LSFT + λLOR] (21)

Observe that the logits corresponding to both ow,ol are required for computing LOR over a single sequence x. In
essence, the memory overheads posed by LOR are relatively higher than LSFT and hinder the user from scaling the batch
size/sequence length during training.

To addresses these issues for a given batch of sequences, we create multiple chunked batches with pairs of preferred and
dis-preferred (rejected) responses to calculate LOR,LSFT and accumulate the gradients of the materialized logits ‘in-place’
(see Figure 9). Furthermore, the softmax operation is computed in an online fashion, resulting in significant memory savings
(similar to FLCE).

Remark on compiled variants. As discussed in Section 2.1, employing torch.compile to capture and optimize the
IR computational graph during model training is an approach that is being gradually embraced by the community. However,
we emphasize that the compiler optimizations are currently not rich enough to automatically implement input-chunking
based forward pass operations and in-place gradient computations by themselves. On the other hand, one can implement
torch native input-chunking operations, and defer the atomic operations on each of the chunk to the compiler for obtaining
an optimized triton kernel. We leverage a similar approach to develop our Odds Ratio Loss kernel and improve it further
using online softmax computations.

11

Liger-Kernel: Efficient Triton Kernels for LLM Training

(a) Peak allocated memory (b) Throughput

Figure 10. Comparison of peak allocated memory and throughput for ORPO loss computation.

Remark on scaling gradients with FLCE variants. We additionally scale the gradients of the chunked inputs and the
projection layer weights with the ratio of chunk size

B×T . Formally, when a mean reduction is employed during the CE loss
calculation, the gradients are calculated for a particular input chunk and are not normalized over the entire input sequence.
This additional scaling factor addresses such approximation issues.

Numerical Experiments. Recall from equation 21 that LORPO is the weighted sum of LSFT and LOR and the chunking
operation is performed on the batch of pairs of preferred and rejected responses. We consider a setting with vocab size
128256 and final hidden states with a sequence length 1024 and dimension 768. By varying the batch size from {32, 64, 128},
we plot the peak memory usage and the throughput (number of tokens processed/sec) in Figure 10. At a batch size of 32, the
default HF implementation requires a peak memory of 76 GB, whereas the Liger variant requires just 5 GB, i.e a reduction
factor of ≈ 15×. Furthermore, since the Liger variant is limited by the peak memory required for a chunked-batch, our
approach can be scaled to batch sizes of 128 with just 6.1 GB peak memory. Additionally, the throughput scales linearly
with batch size as the chunked-batch operations pose minimal latency overheads.

A.9. Kernel Benchmark

Setup. All benchmarks are run on a single NVIDIA H100 GPU (80 GB) with library versions torch==2.4.0+cu118,
triton==3.0.0, transformers==4.51.3. The CrossEntropy kernel is benchmarked on vocab sizes in the set
{40960, 81920, 122880, 163840}. The GeGLU and SwiGLU kernels are benchmarked on varying sequence lengths,
whereas the RMSNorm and RoPE kernels are benchmarked on varying hidden dimensions. The sequence lengths and
hidden dimension sizes are chosen from {4096, 8192, 12288, 16384}. All benchmarks are repeated 10 times to plot the
median speed and memory along with [0.2, 0.8] quantile values as the lower and upper bounds.

Results. The kernel speed and memory benchmarks are illustrated in Figure 11, 12 respectively. Observe that all the
Liger-Kernel implementations either execute faster, consume less memory or provide both of these benefits when
compared to the baseline implementations. In the case of the CrossEntropy kernel, the online softmax computation along
with in-place replacement of the kernel inputs with their gradients leads to approximately 3× faster execution (Figure 11a)
and consumes approximately 5× less memory (Figure 12a) for a vocab size of 163840. For GeGLU, we maintain parity
with the baseline in terms of speed (Figure 3a) and reduce the peak memory consumption by roughly 1.6× (when sequence
length is 16384) by recomputing the SiLU(·) and GELU(·) outputs during the backward pass (Figure 4a).

The RMSNorm implementation fuses the normalization and scaling operations into a single triton kernel and caches the root
mean square values for usage in the backward pass. This avoids repetitive data transfers and floating point operations with
minimal memory overheads. Figure 11c illustrates approximately 7× reduction in execution time and roughly 3× reduction
in peak memory consumption for a hidden dimension of 16384 respectively. Finally, for the RoPE kernel, we employ a

12

Liger-Kernel: Efficient Triton Kernels for LLM Training

(a) CrossEntropy (b) SwiGLU (c) RMSNorm

Figure 11. Kernel execution speed benchmarks.

(a) CrossEntropy (b) SwiGLU (c) RMSNorm

Figure 12. Kernel peak allocated memory benchmarks.

flattened 1D tensor to represent the rotation matrix and leverage the repeated blocks in Rd
Θ,m to significantly reduce the

growth in latency with an increase in hidden dimension size. In particular, we achieve approximately 8× speedup with
approximately 3× lower memory consumption for a hidden size of 16384.

B. Testing Best Practices
B.1. Correctness

Ensuring kernel precision is crucial, as any deviation from the original implementation could impact model convergence or
cause critical errors. To achieve this, we prepare a pure PyTorch implementation (e.g., one provided by HuggingFace) for
comparison and test the implementation with various input shapes and data types. We include regular shapes (e.g., powers
of 2) and test irregular shapes to ensure proper handling of edge cases. We set appropriate absolute and relative tolerance
levels: for fp32, use atol = 10−7 and rtol = 10−5; for bf16, use atol = 10−3 and rtol = 10−2 18.

Furthermore, large tensor dimensions can lead to inadvertent memory access issues. By default, the program id in
the kernels are stored as int32. If program id * Y stride > 2,147,483,647, the value becomes negative,
resulting in illegal memory access. Such overflows and incorrect memory addressing errors can be avoided by converting it
to int64 when dealing with large dimensions.

B.2. Contiguity

Since Triton operates directly on physical memory, non-contiguous tensors (where elements are not arranged sequentially)
can lead to illegal memory access or incorrect outputs. For example, when deploying our RoPE kernel for production
training, we encountered loss divergence issues because the derivative from the scaled dot product attention
function was not stored contiguously. To prevent such issues, it’s best practice to ensure contiguity before passing tensors to
the kernel.

18Note that in practice, the tolerance may need further relaxation by one or two orders of magnitude, even for exact kernels. We use
convergence tests to ensure exactness in cases where the tolerance for correctness needs to be loose.

13

Liger-Kernel: Efficient Triton Kernels for LLM Training

(a) Peak allocated memory (b) Throughput

Figure 13. Comparison of peak allocated memory and training throughput (tokens/sec) for Qwen2.

(a) Peak allocated memory (b) Throughput

Figure 14. Comparison of peak allocated memory and training throughput (tokens/sec) for Gemma 7b.

C. Usecase Benchmark
Performance Comparison. At a batch size of 64, LLaMA 3-8B demonstrates a 42.8% increase in throughput, coupled
with a 54.8% reduction in GPU memory usage (Figure 5). This enables training on smaller GPUs or using larger batch
sizes and longer sequence lengths with lower resource consumption. Similarly, at a batch size of 48 our kernels improve the
throughput of Qwen2 by 25.5%, while achieving a 56.8% reduction in GPU memory usage (Figure 13). For Gemma,
throughput improves by 11.9% with a 51.8% reduction in memory usage at a batch size of 48 (Figure 14). Mistral,
at a batch size of 128, exhibits a 27% increase in throughput, with a 21% drop in GPU memory usage (Figure 15).
Finally, Phi3, at a batch size of 128, shows a 17% increase in throughput, while reducing memory usage by 13% (Figure
16). Overall, the results highlight several notable use cases. LLaMA 3-8B’s exceptional improvements make it ideal for
resource-constrained environments where GPU memory is a bottleneck. Additionally, Qwen2’s strong memory reductions
position it well for tasks involving large datasets or extended training durations. Mistral’s high throughput gains make it
advantageous for workloads requiring large batch sizes.

Medusa. Recall that Medusa training has two flavors. The first approach involves training only the additional Medusa
heads while keeping the backbone LLM frozen. The second approach tunes both the backbone and the LLM heads

14

Liger-Kernel: Efficient Triton Kernels for LLM Training

(a) Peak allocated memory (b) Throughput

Figure 15. Comparison of peak allocated memory and training throughput (tokens/sec) for Mistral 7b.

(a) Peak allocated memory (b) Throughput

Figure 16. Comparison of peak allocated memory and training throughput (tokens/sec) for Phi3.

15

Liger-Kernel: Efficient Triton Kernels for LLM Training

(a) Peak allocated memory (b) Throughput

Figure 17. Comparison of peak allocated memory and throughput for Stage 1 with 3 Medusa heads.

(a) Peak allocated memory (b) Throughput

Figure 18. Comparison of peak allocated memory and throughput for Stage 2 with 5 Medusa heads.

simultaneously. We have benchmarked both cases, and the Liger kernel has demonstrated reduced memory usage and
improved throughput. Without it, experiments are highly prone to out of memory issues. In Figures 17-18, the standard
errors measured from repetitive runs are < 1%.

Note: Our work focuses solely on improving the computational performance. Generating LM heads that can accelerate
inference for the LLaMA3-8B model is not within the scope of this paper. Such work requires extra work for training data
selection, hyperparameter tuning, and warmup techniques to ensure proper model convergence. Our experiments utilize
8 NVIDIA A100 GPUs (80 GB each) to train the LLaMA 3-8B model with a variable sequence length, a batch size of 4,
bfloat16 precision and AdamW optimizer.

16

