GRIP: A Graph-Based Reasoning Instruction Producer

Jiankang Wang 1‡* , Jianjun Xu 1* , Xiaorui Wang 2 , Yuxin Wang 1 , Mengting Xing 2 , Shancheng Fang 2 , Hongtao Xie 1† ¹University of Science and Technology of China

²MetaStone Technology, Beijing, China wangjiankang@mail.ustc.edu.cn

Abstract

Large-scale, high-quality data is essential for advancing the reasoning capabilities of large language models (LLMs). As publicly available Internet data becomes increasingly scarce, synthetic data has emerged as a crucial research direction. However, existing data synthesis methods often suffer from limited scalability, insufficient sample diversity, and a tendency to overfit to seed data, which constrains their practical utility. In this paper, we present *GRIP*, a Graph-based Reasoning Instruction Producer that efficiently synthesizes high-quality and diverse reasoning instructions. GRIP constructs a knowledge graph by extracting high-level concepts from seed data, and uniquely leverages both explicit and implicit relationships within the graph to drive large-scale and diverse instruction data synthesis, while employing open-source multi-model supervision to ensure data quality. We apply GRIP to the critical and challenging domain of mathematical reasoning. Starting from a seed set of 7.5K math reasoning samples, we construct **GRIP-MATH**, a dataset containing 2.1 million synthesized question-answer pairs. Compared to similar synthetic data methods, GRIP achieves greater scalability and diversity while also significantly reducing costs. On mathematical reasoning benchmarks, models trained with GRIP-MATH demonstrate substantial improvements over their base models and significantly outperform previous data synthesis methods.

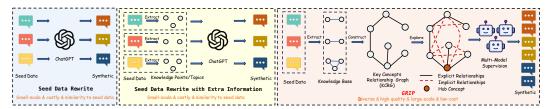


Figure 1: The two methods on the left reconstruct data based on either the seed data itself or extra information, making them similar to the seed and difficult to scale. Our method first extracts key concepts to construct a concept graph, then synthesizes novel questions by leveraging multiple relationships within the graph.

1 Introduction

In recent years, large language models (LLMs) have achieved remarkable performance across a wide range of linguistic tasks [1, 11, 30], largely driven by access to large-scale, high-quality training data. However, recent studies [23, 34]have shown that as the pool of high-quality publicly available data on the Internet continues to diminish, the further advancement of LLMs may be limited by data scarcity.

[‡]Work done during the internship at MetaStone Technology.

^{*}Equal contribution. † Corresponding author.

As a result, the exploration of synthetic data has attracted increasing attention. Several leading commercial models [27, 38, 39] have incorporated large amounts of synthetic data as indispensable components of their training pipelines. Nevertheless, the details of these synthesis processes are often undisclosed, or their resource requirements are prohibitively high. Therefore, developing a practical and highly scalable method for synthesizing high-quality data has become a critical challenge for the continued evolution of large language models.

One approach for building high-quality reasoning datasets is data filtering [27, 40, 43]. This method involves extracting data from pre-training corpora such as Common Crawl and rewriting it using advanced commercial models or human annotation. However, due to these corpora's vast scale and inherent noise, data filtering results in high post-processing costs and inconsistent data quality and distribution. A more efficient approach is data synthesis [14, 19, 20, 21, 33, 41, 42]. Such approaches often leverage prompts to closed-source models [1, 30], rephrasing seed data or generating analogous questions to augment data, as shown in Figure 1. More advanced variants incorporate the knowledge points or topics of the seed data into the prompts, guiding the model to generate new questions centered around this extra information. However, these methods have several inherent limitations. First, since they only rephrase or slightly modify seed questions, the expansion in data volume is inherently limited, and does not achieve orders-of-magnitude growth. Second, the strong dependence on seed data means that the generated questions are often highly similar to the original seeds, restricting the diversity of the synthesized data. Third, the total amount of data that can be synthesized is further restricted by the high cost and limited accessibility of closed-source models, making large-scale generation impractical.

Inspired by human learning patterns, we move beyond directly manipulating seed data and instead focus on the underlying high-level concepts (such as topics and knowledge points) embedded within each example. Typically, a seed example consists of three or four key concepts. Prior methods, which rephrase questions or alter scenarios, in fact only rearrange the same set of core concepts, thus providing limited new information for the model to learn. To address this limitation, we first systematically extract all high-level concepts from the seed data and construct a co-occurrence graph, where two concepts are connected if they ever appear together in the same example. By designing new examples that combine concepts which have never co-occurred in the original data, we are able to synthesize truly novel data that lies outside the original seed distribution. We observe that the number of valid non-co-occurring concept pairs far surpasses co-occurring ones. Even a modest increase in seed data leads to a dramatic growth of novel concept combinations, highlighting the strong scalability enabled by this idea. Building on this idea, we propose *GRIP*: a graph-based framework to efficiently synthesize large-scale, high-quality and diverse reasoning data.

As presented in Figure 1 right, *GRIP* encompasses four steps: (1) Knowledge base construction: We begin by extracting key concepts (KCs) from seed data using a specialized model, such as mathematical theorems (e.g., the Pythagorean theorem), formulas (e.g., the quadratic formula), and key properties (e.g., the distributive law). This is followed by a filtering step to remove duplicates and low-quality key concepts. (2) Building the graph: The Key Concepts Relationship Graph (KCRG) is designed to capture the interconnections among concepts. In the graph, we define two types of relationships to form the KCRG: *explicit* and *implicit*. Explicit relationships are represented by solid lines, connecting concepts that originate from the same example. Implicit relationships, shown as dashed lines, connect concepts that are not directly related in the seed but exist within a certain distance of each other. These implicit relationships are further classified into two-hop and three-hop connections based on their distance. (3) Synthesis: The specialized model generates new samples by feeding its designed prompts and explicit and implicit concept combinations from the KCRG. (4) Data Evaluation: Multiple advanced open-source models are utilized to filter the synthesized data by jointly scoring the new samples.

To demonstrate the effectiveness of GRIP, we apply it to one of the most challenging reasoning domains: mathematics. We use 7.5K question-solution pairs from the MATH training set as seed data and synthesize a new dataset, **GRIP-MATH**, which contains over 2.1 million math question-solution pairs. We use GRIP-MATH to train large language models (LLMs) with diverse architectures and parameter sizes, including Qwen1.5-7B[3], Mistral-7B [17], LLaMA3-8B[22], LLaMA3.1-8B [10], Qwen2-1.5B[37], and Qwen2-7B [37]. On mathematical reasoning benchmarks, models trained with GRIP-MATH demonstrate substantial improvements over their base models and significantly outperform previous data synthesis methods. Furthermore, GRIP-MATH also enhances scientific reasoning performance, highlighting the strong generalization ability of GRIP.

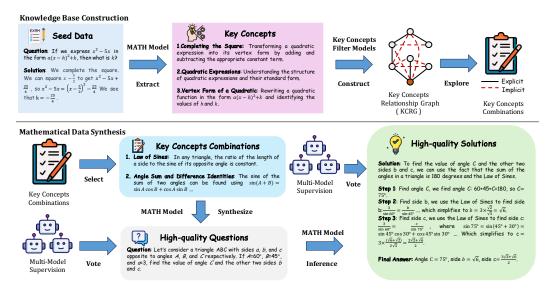


Figure 2: The overview of the Graph-based Reasoning Instruction Producer (GRIP). GRIP begins with seed data and follows a four-step process: (1) knowledge base construction, (2) key concepts relationship graph construction, (3) graph-based synthesis, and (4) evaluation by multiple models voting. After these steps, we obtain the GRIP-MATH dataset.

2 Related work

2.1 LLMs and Mathematical Reasoning

Recent years have seen remarkable advances in large language models (LLMs) for mathematical reasoning. Various strategies have been proposed to further improve LLMs' math abilities, including chain-of-thought prompting [36], program synthesis [27, 35], and fine-tuning on high-quality math corpora [21]. More recently, proprietary models trained on extensive curated datasets and large-scale synthetic data—such as DeepSeekMath [27] and Qwen2.5-Math [39]—have achieved state-of-the-art results. However, the lack of transparency in their data synthesis methods limit reproducibility. In response, research has increasingly focused on synthetic data generation [29, 43] as a scalable and reproducible approach to b oosting LLM performance on mathematical reasoning tasks.

2.2 Data Synthesis

With the imminent exhaustion of Internet data, data synthesis has drawn increasing research attention. In mathematical reasoning, data synthesis is primarily used for instruction fine-tuning, where each sample consists of a question text and its corresponding answer. Our method can synthesize large-scale, high-quality mathematical inference data from limited seed data, making it suitable for continued pre-training tasks. Research efforts primarily concentrate on two pivotal aspects: improving data quality and generating novel questions. Regarding the generation of novel questions, one approach [19, 29, 33, 41, 42] entails rewriting or generating similar questions based on seed data for data augmentation. Another approach [14, 15, 20] involves generating new questions using knowledge points, either by generating new knowledge points via GPT-4 or extracting them from existing knowledge point databases. However, these approaches often suffer from limited scalability, high cost, and high similarity to seed data, due to their reliance on explicit relationships and closed-source models. Our method addresses these limitations by exploring both explicit and implicit relationships between key concepts using the graph and leveraging open-source models for cost-effective data synthesis.

3 Proposed Method

As presented in Figure 2, this section introduces a Graph-based Reasoning Instruction Producer (GRIP), a unified synthetic data framework with four steps: Knowledge Base Construction, Key Concepts Relationship Graph Construction, Synthesis Based on Diverse Key Concept Combinations,

Multi-Model Evaluation, and Dataset Statistics. Detailed descriptions and implementation steps for each component are provided in the subsequent sections.

3.1 Knowledge Base Construction

To enable large language models (LLMs) to more effectively process complex information such as mathematical problems, we first decompose each seed instance into its essential conceptual components, constructing a knowledge base that provides a structured representation of the overall dataset. In principle, a problem may be characterized by multiple hierarchical attributes, such as "Subject" (e.g., "Mathematics"), "Topic" (e.g., "Algebra"), and "Key Concept" (e.g., "Permutations and combinations" or "Difference of cosines formula"). For simplicity and to facilitate both concept extraction and automated modeling, we focus exclusively on extracting "Key Concept" as the key conceptual features for each question. Empirically, we find that this abstraction is sufficient to capture the salient mathematical characteristics of most problems.

GRIP uses the MATH training set as the seed data which consists of 7.5k math problems. We first extract no more than 5 relevant key concepts (KCs) from each seed problem with prompt engineering of Qwen2.5-32B [38] (refer to Prompt A.1 in Appendix A.1). After extracting the KCs, we employ an embedding model [4] and Qwen2.5-7B [38] for dual filtering of the KCs. Initially, the LLM filters out KCs with vagueness, math errors, or excessive details. Subsequently, the embedding model clusters KCs with similar meanings, followed by a second validation using the LLM. Finally, the most appropriate and accurate KC from each cluster is chosen to represent the cluster, resulting in 10K qualified key concepts. More details about dual filtering and KC examples can be found in Appendix D.

3.2 KCRG Construction

To organize the disordered KCs in the knowledge base and explore their specific interconnections, we designed a Key Concepts Relationship Graph (KCRG) to capture the associations between KC pairs.

In the KCRG, each node is represented as a KC, and each solid edge represents that the connected KCs have co-occurred in the same problem. Specifically, the KCRG $\mathbb G$ can be represented as $\mathbb G = (\mathbb K, \mathbb E)$. The nodes $\mathbb K$, which refer to key concepts, are denoted as $\mathbb K = \{\mathbf k_1, \mathbf k_2, \ldots, \mathbf k_{|\mathbb K|}\}$. The edges $\mathbb E$ are denoted as $\mathbb E = \{\mathbb E_{\rm ex}, \mathbb E_{\rm im}\}$, and there are two types: (1) Explicit ($\mathbb E_{\rm ex}$): Key concepts that appear together in the same seed problem are connected by a solid edge. The explicit edges $\mathbb E_{\rm ex}$ can be denoted as $\mathbb E_{\rm ex} = \{(\mathbf k_i, \mathbf k_j) | \mathbf D(\mathbf k_i, \mathbf k_j) = 1\}$, where the edge distance $\mathbf D(\mathbf k_i, \mathbf k_j)$ represents the number of solid edges in the shortest path between $\mathbf k_i$ and $\mathbf k_j$. Additionally, the edge weight $\mathbf W(\mathbf k_i, \mathbf k_j)$ is recorded to denote the co-occurrence frequency between $\mathbf k_i$ and $\mathbf k_j$. (2) Implicit ($\mathbb E_{\rm im}$): Key concepts with more than one solid edge between them are connected by a dashed edge, as visualized in Figure 3. The implicit edges $\mathbb E_{\rm im}$ can be denoted as $\mathbb E_{\rm im} = \{(\mathbf k_i, \mathbf k_j) | \mathbf D(\mathbf k_i, \mathbf k_j) > 1\}$.

3.3 Synthesis Based on Diverse Key Concept Combinations

Different from previous methods that primarily relied on seed data and explicit relationships between KCs, we fully integrate both explicit and implicit relationships to generate more diverse synthetic data. We observed that incorporating overly distant implicit relationships tends to increase the proportion of low-quality data. This is because such KCs exhibit weaker correlations, making it difficult to synthesize meaningful questions. Therefore, we proposed four types of key concept relationships: one-hop, two-hop, three-hop, and community. Exploring implicit relationships has mined more key concept combinations, which is a key driver of GRIP's high scalability. Figure 3 illustrates an example of KCRG construction.

One-hop relationships represent explicit links between pairs of key concepts (KCs) that are directly connected by a single edge in the graph. The edge weight reflects the frequency of their co-occurrence in the seed data. Since these combinations are already present in the seed set, they exhibit high semantic relevance.

Two-hop relationships capture implicit connections, involving pairs of KCs that are connected indirectly through an intermediate node—i.e., two KCs that share a common neighbor. This indirect association often reflects shared characteristics or themes, thus preserving a moderate level of semantic relevance.

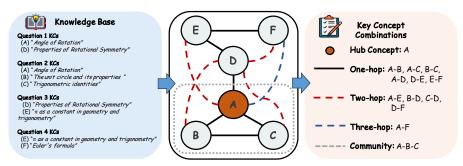


Figure 3: An example of constructing the Key Concepts Relationship Graph (KCRG) from an existing knowledge base and identifying the four key concept combinations we proposed.

Three-hop further explores implicit relationships by considering pairs of key concepts (KCs) that are three edges apart in the graph. In this setting, we focus on hub concepts —those nodes in the knowledge concept relationship graph (KCRG) that have the largest number of connections (i.e., high degree). Such hub concepts serve as central points in the knowledge network, indicating their broad relevance and significance across various topics. A three-hop combination is defined as a pair consisting of a hub concept and another KC that is three edges away from it. As the graph grows larger, multiple hub concepts may exist. Since the semantic relevance between KCs tends to decrease as the path length increases, we restrict three-hop relationships to only those involving hub concepts to help maintain meaningfulness. Additionally, we filter out low-weight three-hop combinations to further ensure that the selected three-hop pairs are relevant and informative.

For example, assume that a hub concept is "calculus". In the seed data, problems only associate "calculus" with fundamental concepts such as "limits" and "derivatives". However, in the KCRG, "calculus" is likely not adjacent but close to KCs such as "Fourier transforms" and "complex functions". By integrating these three-hop KCs (the same applies to two-hop) to construct novel problems, we increase the diversity of the problem set.

Community represents explicit relationships involving three or four key concepts (KCs), where every pair within the group is mutually connected by edges, forming a fully connected subgraph. Such communities indicate a strong correlation among the KCs and typically represent cohesive knowledge areas.

Accordingly, one-hop combinations are used to synthesize high-quality variant problems directly related to the seed data. Implicit relationship combinations are used to synthesize new distribution data, increasing the diversity of the dataset. Community-based combinations are used to synthesize integrative problems that require simultaneously applying multiple closely related key concepts.

As shown in Figure 3, after extracting the KCs from the seed, we construct the KCRG based on their co-occurrence. All key concept combinations in the graph that meet these four relationship types are extracted, and low-weight implicit relations are filtered out. We input the prompt and key concept combinations into the Qwen2.5-32B [38] to synthesize new problems. Different from other methods, we do not include seed data in the prompt, as this would cause the model to generate problems too similar to them. Before solution generation, a rating model assigns a difficulty level to each problem. For medium and low-difficulty issues, Qwen2.5-Math-7B [39] generates the solutions, while Qwen2.5-Math-72B handles high-difficulty problems. The complete prompt template is provided in Appendix A.2, Prompt A.2.

3.4 Multi-Model Evaluation

To match the evaluation effectiveness of closed-source models, we employ a multi-model supervision framework using three state-of-the-art open-source mathematical LLMs: DeepSeek-R1-Distill-Qwen-7B [11], Qwen2.5-Math-Instruct-7B [39], and DeepSeek-Math-RL [27]. These models are jointly used to score and filter the synthesized data, ensuring high quality of both problems and solutions.

For problem evaluation, we use a weighted scoring filtering strategy. Problems are evaluated on two criteria: logical completeness (absence of mathematical errors and accurate relation to provided key concepts) and presentational completeness (clarity, thoroughness, and absence of prompts or answers). Each model assigns a score between 0 and 1 for every problem. A weighted average

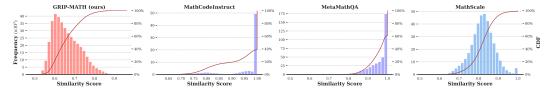


Figure 4: Histogram of the similarity scores between synthesized data and the seed data, including a comparison of GRIP-MATH with three open-source datasets in terms of seed similarity. The bars represent the frequency of the similarity scores, while the red line represents the cumulative distribution function (CDF) of the scores. It can be observed that the similarity scores of GRIP-MATH are concentrated between 0.55 and 0.65, whereas those of the other three methods are more concentrated around 0.85 or even 1. This indicates that GRIP-MATH exhibits lower seed similarity.

Table 1: Comparison of various methods in expansion ratio (\times) and synthesis cost (10^{-2} cents). The expansion ratio represents the proportion of synthesized data to seed data. Synthesis Cost indicates the expenses associated with closed-source models or GPU usage for synthesizing a single data sample. Details of cost calculation are provided in Appendix B.

Method	Data Source	Synthesis Model	Total Seed Data	Total Synthesized Data	Expansion Ratio	Cost	Novelty Rate
MetaMath [41]	GSM8K+MATH	GPT-3.5	15K	395K	26	23	17.9
MathScale [29]	MWPBENCH	GPT-3.5	20K	2M	100	23	37.5
WizardMath [21]	GSM8K+MATH	GPT-4	15K	96K	6.4	220	-
XwinMath [19]	GSM8K+MATH	GPT-4	15k	1.4M	93	220	-
MAmmoTH [42]	MAmmoTH datasets	GPT-4	220K	262K	1.2	220	-
MathCoder [35]	GSM8K+MATH	GPT-4	15K	80K	5.3	220	9.1
GRIP	MATH	Open-Source Model	7.5K	2.1M	280	0.57	71.8

score is then computed, where weights are proportional to each model's demonstrated mathematical ability. Problems with scores below 0.85 are discarded. For solution evaluation, we implement a strict single-vote veto mechanism. A solution must be mathematically correct and fully address all aspects of the problem. The solution is scored as 0 or 1 by each model, and only those unanimously approved by all models (perfect score) are retained. Any solution receiving a negative vote from any model is filtered out to maintain overall dataset quality. After evaluation of problems and solutions, we constructed a dataset named GRIP-MATH comprising 2.1 million high-quality mathematical questions at low cost.

3.5 Dataset Statistics

To demonstrate the superiority of our methodology, we compare various data synthesis methods from multiple dimensions. (1) For scalability, we compare the seed and synthesized data volumes among different methods. As illustrated in Table 1, MathScale [29] is the largest dataset, utilizing GPT-3.5 to expand 20K seed data into 2M samples, reaching a 100-fold expansion ratio. Methods employing GPT-4 for data synthesis demonstrate relatively low expansion ratios due to their high operational costs. In contrast, our approach expands 7.5K seed data to 2.1M samples, reaching the highest expansion ratio of 280-fold. (2) For synthesis cost, we calculate the per-sample synthesis cost for each method. To simplify the comparison, we consider API usage* costs for methods relying on commercial models and GPU computational costs[†] for our approach. As shown in Table 1, our method's per-sample synthesis cost is merely 2% of GPT-3.5-based methods and less than 1% of GPT-4-based methods. (3) For data quality, we compare the similarity between open-source datasets and their corresponding seed data using an embedding model. Specifically, we calculate the similarity between the embedded synthesized data and seed data to obtain the similarity score distribution for each dataset, as visualized in Figure 4. The results show that the rewritten methods of MathCoder [35] and MetaMath [41] show extremely high similarity to the seed data. Although MathScale is not directly based on rewriting, it still exhibits relatively high similarity due to its reliance on explicit relationships in the seed data. In comparison, GRIP-MATH has over 50% of its data similarity below 0.65, with the majority under 0.75 and none exceeding 0.9. (4) For diversity, we further analyzed the diversity of generated datasets by calculating the proportion of questions whose key concept combinations were not present in the seed data. This metric reflects how many genuinely novel questions each method can generate. We found that for other methods, this proportion was consistently below 40%, indicating that they generated relatively few truly novel questions. In contrast, thanks to GRIP's use of implicit relationships, we generated 1.5 million novel questions,

^{*}https://openai.com/api/pricing/

[†]https://power.netmind.ai/rentIntro

Table 2: The performance of models on mathematical reasoning tasks. The results are sourced from the evaluation scripts of MAmmoTH2 and OpenCompass. GK II denotes the 2010-2022 Math II MCQs from GAOKAO-Eval, and GK I represents the 2010-2022 Math I MCQs. * denotes our reproduced results based on the officially released codes.

Model	Base	Size	MATH	GSM8K	GK II	GK I	SVAMP	AV(
Specific Models								
Qwen2-Math	Qwen2	1.5B	44.4	71.3	57.3	50.0	76.4	59.9
Qwen2-Math	Qwen2	7B	50.4	81.2	78.9	62.5	88.1	72.2
DeepseekMath-Instruct	DeepseekMath	7B	46.8	82.9	58.3	46.7	84.0	63.
DeepseekMath-RL	DeepseekMath	7B	51.7	88.2	61.5	58.9	86.4	69.
Base Models								
Mistral-7B	-	7B	11.2	36.2	13.8	12.2	66.9	28.
Qwen2	-	1.5B	21.7	58.5	29.8	28.5	67.4	41.
Qwen2	-	7B	45.2	80.3	66.5	52.8	87.5	66.
Qwen1.5	-	7B	13.3	54.1	56.4	53.7	73.4	50.
LLaMA3	-	8B	21.3	54.8	4.1	7.9	69.7	31.
LLaMA3.1	-	8B	23.1	54.9	10.6	10.8	70.1	33.
Data synthesis method								
MetaMath	Mistral	7B	28.2	77.7	9.2	9.4	77.2	40.
WizardMath	Mistral	7B	31.0	78.0	17.0	15.4	48.5	38.
MathCoder-CL	Mistral	7B	30.2	67.8	9.6	15.9	70.7	38.
MathScale	Mistral	7B	34.5	74.0	36.7	31.3	79.6	51.
MathScale*	Qwen1.5	7B	32.2	69.6	55.2	52.4	75.1	56.
MAmmoTH	Mistral	7B	18.2	61.5	22.0	21.5	71.7	39.
MAmmoTH2	Mistral	7B	36.7	68.4	44.9	29.4	81.8	52.
MAmmoTH2	LLaMA3	8B	35.8	70.4	33.5	24.3	78.6	48.
GRIP Model Trained only	with GRIP-MATH						·	
GRIP	Mistral	7B	41.6	83.5	42.9	33.1	85.4	57.
GRIP	Qwen1.5	7B	37.9	77.1	57.4	56.3	80.8	61.
GRIP	LLaMA3	8B	37.2	76.5	38.5	31.8	82.2	53.
GRIP	LLaMA3.1	8B	37.1	72.0	44.5	35.1	84.2	54.
GRIP	Qwen2	1.5B	41.1	74.9	51.6	44.3	80.9	58.
GRIP	Qwen2	7B	53.4	86.0	68.4	54.2	88.8	70.

with 71.8% of key concept combinations not found in the seed set. This demonstrates a substantial improvement in diversity achieved by our approach.

4 Experiments

4.1 Training Setup

We selected Qwen1.5-7B [3], Mistral-7B [17], LLaMA3-8B [22], LLaMA3.1-8B [10], Qwen2-1.5B [37], and Qwen2-7B [37] as baseline models, and trained all of them exclusively on the GRIP-MATH dataset. The fine-tuning is performed using the LLaMAFactory [44] framework over 2 epochs, with a learning rate of 5e-6, a global batch size of 128, and a maximum sequence length of 4096. A cosine schedule with a 3% warm-up ratio is adopted to regulate the learning rate. For expedited and efficient training, we leveraged DeepSpeed [25] ZeRO Stage 3 and FlashAttention 2 [9]. The synthesis with GRIP was completed in 36 hours using 8 NVIDIA A100 GPUs and vLLM [18].

4.2 Evaluation Datasets

To rigorously assess the enhancement in mathematical reasoning capabilities of models trained with GRIP-MATH, we employed a suite of mathematical evaluation datasets, including GSM8K [7], MATH [13], GAOKAO-Eval [31] and SVAMP [24]. In addition, to assess the impact of GRIP-MATH on the model's reasoning capabilities across other domains (e.g., physics, chemistry, coding, and logic), we evaluate the model using a range of scientific reasoning datasets, including ARC-C [6], MMLU-STEM [13], GPQA-Diamond [26], BBH [28], TheoremQA [5], and MBPP [2]. The results are sourced from the evaluation scripts of MAmmoTH2 [43] and OpenCompass [8].

Table 3: Results on scientific reasoning tasks.

Model	Base	Size	ARC-C	MMLU-STEM	GPQA-Diamond	ввн	TheoremQA	MBPP	AVG
Mistral	-	7B	74.2	50.1	24.7	55.7	19.2	47.5	45.2
Qwen1.5	-	7B	75.6	45.5	26.7	45.2	14.2	52.1	43.2
LLaMA3	-	8B	78.6	55.6	27.2	61.1	20.1	54.9	49.6
LLaMA3.1	-	8B	79.5	54.7	24.2	62.8	20.9	57.2	49.9
Qwen2	-	1.5B	60.5	42.9	23.7	36.8	15.1	36.9	36.0
Qwen2	-	7B	83.6	64.3	32.3	61.7	33.5	60.7	56.0
GRIP	Mistral	7B	78.6	58.6	31.7	61.1	26.5	54.9	51.9
GRIP	Qwen1.5	7B	77.2	56.9	30.0	51.2	22.4	53.7	48.6
GRIP	LLaMA3	8B	80.5	60.8	30.8	63.7	24.2	58.4	53.1
GRIP	LLaMA3.1	8B	82.7	61.8	32.8	63.2	25.9	59.2	54.3
GRIP	Qwen2	1.5B	61.0	43.1	25.9	35.2	18.2	37.8	36.9
GRIP	Qwen2	7B	84.3	65.9	33.4	62.5	34.8	65.9	57.7

4.3 Main Results

Table 2 summarizes the performance of various models on a suite of mathematical reasoning benchmarks. Our experimental findings highlight three main observations:

Substantial improvements over base models. All GRIP-trained models significantly outperform their respective base models across all benchmarks. For example, Mistral-7B, when trained only on GRIP-MATH, achieves an average score of 57.3, compared to 28.0 for the vanilla Mistral-7B—a nearly 30-point improvement. Similar trends are observed for Qwen2 and LLaMA3 families, indicating the large and robust gains brought by high-quality GRIP-MATH data regardless of base model architecture or parameter size.

Outperforms previous data synthesis methods by a large margin. Compared to other open-source data synthesis methods such as MetaMath [41], WizardMath [21], MathScale [29], and MAmmoTH2 [43], our GRIP-trained models consistently obtain much higher scores. For instance, Mistral-7B with GRIP-MATH achieves 57.3 average, dramatically surpassing the best prior method (MathScale, 51.2). On the MATH benchmark, GRIP-7B reaches 41.6, far beyond the scores of WizardMath or MetaMath (31.0 and 28.2, respectively), confirming the effectiveness of our approach in generating high-quality, diverse mathematical reasoning data.

Competitive with proprietary math specialist models. Remarkably, GRIP-trained models close much of the gap between open-source foundation models and proprietary specialist models that leverage substantially more diverse and larger-scale training data (including web data, textbook corpora, exam problems, and Chinese data). On key benchmarks such as MATH, GSM8K, and especially on challenging out-of-domain datasets (GK II, SVAMP), GRIP models achieve performance on par with, or even surpass, proprietary models like DeepSeekMath-RL [27] and Qwen2-Math-7B [39], despite relying solely on GRIP-MATH synthetic data.

Overall, our findings show that GRIP-MATH brings substantial gains to base models, consistently outperforms prior data synthesis methods, and enables competitive or even superior performance to commercial specialist models on major benchmarks, all without using proprietary resources.

4.4 Results on Scientific Reasoning Benchmark

GRIP-MATH is constructed solely from the training set of MATH and does not incorporate any data from other datasets. Nevertheless, experiments show that GRIP-MATH not only enhances the model's mathematical reasoning abilities, but also brings significant improvements on out-of-domain scientific reasoning tasks. As shown in Table 3, we evaluate our models on several widely used datasets covering physics, biology, chemistry, and computer science. Across all benchmarks, GRIP-trained models consistently outperform their respective base models, demonstrating strong cross-domain generalization. For example, GRIP-trained Qwen2-7B achieves an average score of 57.7, compared to 56.0 for the base model, with notable gains on MMLU-STEM, GPQA-Diamond, and MBPP. These results highlight the strong generalization ability of GRIP-MATH across scientific domains, even without explicit exposure to additional out-of-domain training data.

4.5 Ablation Studies about GRIP

Comparison between Multi-Model and GPT-4.1. To investigate the difference between multi-model quality evaluation and using GPT-4.1 alone, we conducted a manual annotation of 500 synthesized math problems. Each sample was independently labeled as "qualified" or "unqualified" by human annotators. We then used various combinations of open-source models (DeepSeek-R1-Distill-Qwen-7B [11], Qwen2.5-Math-Instruct-7B [39], and DeepSeek-Math-RL [27]) and GPT-4.1 to score the same data: a problem was considered qualified if its question score was above 0.85 and its solution score was 1. Finally, we compared the model evaluation results with the manual labels, as shown in Table 5. Table 5 shows that three open-source models outperform GPT-4.1 in accuracy, demonstrating that multi-model supervision is an effective and economical substitute for closed-source evaluation.

Table 4: Ablation on Hop Distance

Method

Table 5: Ablation on Model Combin	nations
Model Combination	ACC
GPT-4.1	94.3
Qwen2.5-Math-Instruct-7B	94.3 81.4
Qwen2.5-Math-Instruct-7B, DeepseekR1-7B	90.5
Qwen2.5-Math-Instruct-7B, DeepseekR1-7B,	
DeepseekMath-RL	95.7

Key Concept Filtering. The quality of key concepts is crucial for subsequent data synthesis. We synthesize questions (excluding solutions) using both unfiltered and filtered key concepts, and evaluate them using the multi-model scoring system to calculate the average score for each setting. As shown in Table 6, applying key concept filtering increases the average

AVG Score

Table 6: Ablation on Filtering						
Method	AVG Score					
w Concept Filtering w/o Concept Filtering	0.83 0.61					

question score by 0.2 points. This improvement is due to the removal of meaningless or incorrect key concepts, which would otherwise mislead the model and lead to lower-quality questions.

The quality of data synthesized from different hop distances. We compared the average scores of data synthesized from one-hop, two-hop, three-hop, and more distant. The results in Table 4 show that as the distance between key concepts increases, the average score of the synthesized data decreases. This is because meaningful combinations are rarer between more distant concepts, leading to a drop in data quality. Nevertheless, it is still possible to synthesize high-quality data from these distant combinations, although this typically comes at a higher synthesis cost. Moreover, utilizing hub concepts to facilitate high-hop data synthesis is an effective strategy for maintaining quality.

Impact of Implicit and Explicit Data on Model Performance. To investigate the effects of implicit and explicit data on model performance, we conducted a comprehensive ablation study. We first randomly sampled 0.2 million examples from the one-hop (explicit) dataset and, based on the same key concept combina-

Table 7: Ablation on I	Datase	ets
Datasets	Math	GSM8K
one-hop, one-hop(duplication) one-hop, two-hop, three-hop	29.3 32.6	67.6 71.2

tions, synthesized another 0.2 million one-hop samples. Additionally, we randomly selected a total of 0.2 million samples from the two-hop and three-hop (implicit) datasets. We then trained Mistral-7B separately with the explicit data group and the implicit data group. As shown in Table 7, the results suggest that introducing novel types of questions is more beneficial for model training than continuing to expose the model to repeated samples of the same type.

5 Conclusion and Future Work

In this paper, we introduce GRIP, an efficient paradigm for synthesizing high-quality data. Utilizing this method, we construct the GRIP-MATH dataset, comprising 2.1 million high-quality question-solution pairs. By leveraging this dataset, GRIP models have demonstrated outstanding performance across mathematical and scientific reasoning benchmarks. Our research indicates that thoroughly exploring implicit knowledge relationships enables larger-scale and more diverse data synthesis; additionally, multi-model evaluation can approach closed-source performance while maintaining cost-effectiveness. Intuitively, GRIP should be applicable to various domains where data can be decomposed into key concepts; however, our current experiments are limited to the mathematics domain, and its effectiveness in other areas is yet to be verified, as we discuss in detail in Appendix F.

Acknowledgment

This work is supported by the National Nature Science Foundation of China (62425114, 62121002, U23B2028, 62232006). We thank MetaStone Technology for providing closed-source model APIs support and GPU computing resources. We acknowledge the support of the GPU cluster built by MCC Lab of Information Science and Technology Institution, USTC, and USTC super-computing center for providing computational resources for this project.

References

- [1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- [2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. *arXiv preprint arXiv:2108.07732*, 2021.
- [3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.
- [4] Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation, 2023.
- [5] Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony Xia. Theoremqa: A theorem-driven question answering dataset. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 7889–7901, 2023.
- [6] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv preprint arXiv:1803.05457*, 2018.
- [7] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
- [8] OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models. https://github.com/open-compass/opencompass, 2023.
- [9] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv* preprint arXiv:2307.08691, 2023.
- [10] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- [11] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- [12] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint arXiv:2009.03300*, 2020.
- [13] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv preprint arXiv:2103.03874*, 2021.
- [14] Yiming Huang, Xiao Liu, Yeyun Gong, Zhibin Gou, Yelong Shen, Nan Duan, and Weizhu Chen. Key-point-driven data synthesis with its enhancement on mathematical reasoning. *arXiv* preprint arXiv:2403.02333, 2024.

- [15] Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang, Zhenguo Li, Linqi Song, and Xiaodan Liang. Mustard: Mastering uniform synthesis of theorem and proof data. *arXiv preprint arXiv:2402.08957*, 2024.
- [16] Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu, Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese evaluation suite for foundation models. Advances in Neural Information Processing Systems, 36, 2024.
- [17] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.
- [18] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems Principles*, pages 611–626, 2023.
- [19] Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and Houwen Peng. Common 7b language models already possess strong math capabilities. *arXiv* preprint arXiv:2403.04706, 2024.
- [20] Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun Wang, Xingxing Zhang, Haoyang Huang, Shaohan Huang, Xiaolong Huang, Zeqiang Huang, Dongdong Zhang, et al. Synthetic data (almost) from scratch: Generalized instruction tuning for language models. *arXiv preprint arXiv:2402.13064*, 2024.
- [21] Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning for large language models via reinforced evol-instruct. *arXiv preprint arXiv:2308.09583*, 2023.
- [22] AI Meta. Introducing meta llama 3: The most capable openly available llm to date, 2024. *URL https://ai. meta. com/blog/meta-llama-3/. Accessed on April*, 26, 2024.
- [23] Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language models. *Advances in Neural Information Processing Systems*, 36:50358–50376, 2023.
- [24] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math word problems? *arXiv preprint arXiv:2103.07191*, 2021.
- [25] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 3505–3506, 2020.
- [26] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. arXiv preprint arXiv:2311.12022, 2023.
- [27] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- [28] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging bigbench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.
- [29] Zhengyang Tang, Xingxing Zhang, Benyou Wan, and Furu Wei. Mathscale: Scaling instruction tuning for mathematical reasoning. *arXiv preprint arXiv:2403.02884*, 2024.

- [30] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- [31] InternLM Team. Internlm: A multilingual language model with progressively enhanced capabilities, 2023.
- [32] InternLM Team. Gaokao-eval: A comprehensive gaokao evaluation. https://github.com/open-compass/GAOKAO-Eval, 2024. Accessed: 2024-06-05.
- [33] Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Gitman. Openmathinstruct-1: A 1.8 million math instruction tuning dataset. *arXiv preprint arXiv:2402.10176*, 2024.
- [34] Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn. Position: Will we run out of data? limits of llm scaling based on human-generated data. In *Forty-first International Conference on Machine Learning*, 2024.
- [35] Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for enhanced mathematical reasoning. *arXiv preprint arXiv:2310.03731*, 2023.
- [36] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
- [37] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.
- [38] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.
- [39] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024.
- [40] Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei Hong, Kuikun Liu, Ziyi Wang, et al. Internlm-math: Open math large language models toward verifiable reasoning. *arXiv preprint arXiv:2402.06332*, 2024.
- [41] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large language models. *arXiv preprint arXiv:2309.12284*, 2023.
- [42] Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen. Mammoth: Building math generalist models through hybrid instruction tuning. *arXiv* preprint arXiv:2309.05653, 2023.
- [43] Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the web. *arXiv preprint arXiv:2405.03548*, 2024.
- [44] Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. Llamafactory: Unified efficient fine-tuning of 100+ language models. *arXiv preprint arXiv:2403.13372*, 2024.

A Prompts

Prompt A.1: Prompt for Key Concepts Extraction

You will be given a mathematics problem and its detailed solution. Please extract 1 to 5 key concepts according to the strict requirements below:

- 1. **Use precise mathematical terminology.** Each key concept must be named using accurate and professional mathematical terms; avoid colloquial, vague, or general language.
- Direct and exclusive relevance. Only include key concepts that are directly applied or explicitly referenced in both the problem and its solution. Exclude unrelated, unused, or general concepts, even if they appear incidentally.
- 3. **Be as specific as possible.** Do not use broad descriptions like "basic algebra" or "elementary mathematics." Specify particular theorems, formulas, properties, or standard techniques (e.g., "Pythagorean theorem," "Closure property of multiples under addition").
- 4. **No repetition or composite items.** Each key concept must correspond to a single, unique, and atomic mathematical concept. Do not combine multiple theorems, laws, or properties into one item; do not list overlapping or paraphrased concepts.
- 5. Do not include procedural descriptions or general skills. Only extract concrete mathematical facts, such as theorems, definitions, formulas, or standard properties. Do not include step-by-step methods or broad problem-solving strategies (e.g., "expand the equation," "calculate the sum").

Prompt A.2: Prompt for New Problem Generation

Please design a brand-new mathematics problem that integrates both "[Key Concept A]" and "[Key Concept B]", according to the following requirements:

- 1. The problem must organically combine the two key concepts within a single mathematical scenario or real-life context. Do not simply split them into two independent sub-questions.
- 2. The content of the problem should be free of logical and mathematical errors or ambiguities; the conditions must be sufficient and clearly stated.
- 3. The problem should have a certain level of difficulty, providing a challenge and thoroughly testing students' ability to apply knowledge comprehensively.
- 4. The context can be realistic or innovative, but the question must remain coherent and natural. You may introduce additional key concepts as needed to create a well-formed and meaningful problem.
- 5. Expression should be concise and clearly structured, without unnecessary or irrelevant information.
- 6. The problem should have a unique and definite answer or solution path.
- 7. Choose an appropriate question type (such as free response, proof, fill-in-the-blank, or multiple choice) according to the chosen key concepts.

B Calculation of Synthesis Cost

For synthesis cost, we posit that methods using closed-source models incur cost solely from the closed-source model cost[‡]; whereas for our method, we only need account for GPU usage cost[§]. Based on information from the web pages, the input cost of GPT-4 is \$10 per 1M tokens, and the output cost is \$30 per 1M tokens. For GPT-3.5, the input cost is \$1.5 per 1M tokens and the output cost is \$2 per 1M tokens. The cost of using one NVIDIA RTX A100 (80G) is \$0.42 per hour.

According to our experiments, synthesizing and scoring problems and solutions requires at least 1000 input tokens and 400 output tokens (with slight differences between various methods). For data synthesis using GPT-4, the cost of synthesizing one data point is calculated as:

$$10 \times 0.001 + 30 \times 0.0004 = 0.022$$
\$

[‡]https://openai.com/api/pricing/

[§]https://power.netmind.ai/rentIntro

In terms of 0.01 cents, the synthesis cost is 220.

For data synthesis using GPT-3.5, the cost of synthesizing one data point is calculated as:

$$1.5 \times 0.001 + 2 \times 0.0004 = 0.0023$$
\$

In terms of 0.01 cents, the synthesis cost is 23.

For GRIP, we leveraged the vLLM [18] and used 8 NVIDIA A100 GPUs for 36 hours to construct 2.1 million data points. The cost of synthesizing one data point is calculated as:

$$\frac{0.42 \times 8 \times 36}{2123345} \approx 0.000057\,\$$$

In terms of 0.01 cents, the synthesis cost is 0.57.

If we were to synthesize 2 million math problems and solutions, it would cost \$44000 using GPT-4, \$4600 using GPT-3.5, but only \$114 using GRIP. This gap becomes even more pronounced as the data volume increases.

C Benchmarks Overview

This section briefly introduces the datasets used in this paper, including the mathematical reasoning dataset, the scientific reasoning dataset, and the general ability dataset.

MATH [12]: MATH is a new dataset of 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanations.

GSM8K [7]: This test dataset contains 1.32K diverse grade school math problems, intended to test basic arithmetic and reasoning ability in an educational context.

GAOKAO-Eval [32]: GAOKAO-Eval is a benchmark from China's Gaokao exam, covering various subjects and question types. Questions include multiple-choice, problem-solving, reading comprehension, and essay writing, with subjective answers scored by high school teachers. This paper evaluates only the mathematics test.

SVAMP [24]: SVAMP is a challenge set for evaluating models on elementary-level Math Word Problems (MWP). The dataset contains a total of 1,000 problems. Each MWP consists of a short natural language narrative that describes a state of the world and poses a question about some unknown quantities.

ARC-C [6]: ARC includes questions derived from various grade-level science exams, testing models' ability to handle both straightforward and complex scientific queries. We use the challenge subset, which contains 1,172 test questions.

MMLU-STEM [13]: Spanning 57 subjects across multiple disciplines, MMLU evaluates the breadth and depth of a model's knowledge in a manner akin to academic and professional testing environments. We select the STEM subset of MMLU with 3.13K problems.

GPQA-Diamond [26]: This dataset provides "Google-proof" questions in biology, physics, and chemistry, designed to test deep domain expertise and reasoning under challenging conditions. We use the diamond subset containing 198 hard problems.

BIG-Bench Hard (BBH) [28]: Consisting of 23 tasks previously found challenging for language models from BIG-Bench (Srivastava et al., 2023), BBH contains a total of 6511 challenging problems examining the capability of LLMs to solve them.

TheoremQA [5]: Focused on applying mathematical theorems to solve advanced problems in fields such as mathematics, physics, and engineering, TheoremQA includes 800 questions that test the theoretical reasoning capabilities.

MBPP [2]: MBPP consists of around 1,000 crowd-sourced Python programming problems, designed to be solvable by entry-level programmers, covering programming fundamentals, standard library functionality, and so on. Each problem consists of a task description, code solution, and 3 automated test cases.

C-Eval [16]: C-Eval is a comprehensive Chinese evaluation suite designed to assess the advanced knowledge and reasoning abilities of large language models. It includes multiple-choice questions across four difficulty levels (middle school, high school, college, and professional) and spans 52 diverse disciplines.

MMLU [13]: MMLU (Massive Multitask Language Understanding) is a benchmark that measures text models' multitask accuracy across 57 tasks, including elementary mathematics, US history, computer science, and law. It requires extensive world knowledge and problem-solving abilities, but even the best models still need significant improvements to reach expert-level accuracy.

D Dual Filtering and KC Examples

D.1 Dual Filtering

Ensuring the quality of KCs is crucial, as using meaningless KCs can result in low-quality synthesized problems while using overly similar KCs can lead to duplicated problems. These issues increase the computational and time costs for both problem synthesis and problem quality validation. We employ a dual filtering strategy using both embedding models and LLMs to remove low-quality and duplicated KCs. The three main steps are as follows:

Eliminating Low-Quality KCs: LLMs are used to filter out KCs that are vague, contain mathematical errors, or are overly detailed. This is because vague KCs can be too broad in meaning, failing to standardize the model's output effectively. Erroneous KCs may lead the model to synthesize incorrect questions, while overly detailed KCs can overly constrain the model's output.

Categorization: We first use an embedding model to calculate pairwise similarity scores between KCs. KCs with similarity scores between 0.90 and 1.0 are deemed to have the same meaning, while those with scores between 0.70 and 0.90 undergo an additional check by the LLM to confirm if they are truly synonymous. KCs with scores below 0.70 are treated as distinct. Based on this process, KCs are grouped into classes with similar KCs placed in the same class. These thresholds were determined through an analysis of the KC set.

Summarization: For each KC class, the LLM identifies the most representative KC to act as the class representative. If no existing KC in the class is suitable, the LLM synthesizes a new KC to represent the class. Finally, we obtained 10K qualified key concepts.

When only the embedding model was used for de-duplication, the quality check revealed that only 26% of the synthesized problems met the quality standard. After introducing dual filtering with the LLM, this proportion increased to 45%. This demonstrates that the dual filtering process significantly improves dataset quality while reducing problem synthesis costs.

D.2 Examples of Bad Key Concepts

The LLM helps the embedding model classify KCs that appear similar but actually have different meanings. For example:

- "Geometric sequence" vs. "Arithmetic sequence" (similarity score: 0.805)
- "Sine function in trigonometry" vs. "Cosine function in trigonometry" (similarity score: 0.865)

The LLM effectively removes vague, mathematically incorrect, or overly detailed KCs. For example:

- Vague KCs:
 - "Problem-solving strategies"
 - "Mathematical techniques"
- Mathematically Incorrect KCs:
 - "The sum of the outer angles of a polygon depends on the number of sides"
 - "The matrix result of multiplying a matrix by its inverse is the matrix itself"
 - "A series converges if its terms approach zero."
 - Some incorrect or incomplete KCs

- Overly Detailed KCs:
 - "Solving the quadratic equation $x^2 + 5x + 6 = 0$ by factoring..."
 - Some specific problems

D.3 Examples of Key Concepts

To demonstrate the diversity and comprehensiveness of our knowledge base, we randomly sampled 20 KCs:

"Angle of Rotation", "The unit circle and its properties", "Solving Equations with Multiple Variables", "Right triangles in a sphere", "Inversions in permutations", "Pi (π) as a constant in geometry and trigonometry", "Perfect Cubes", "Area of Triangles and Squares", "Diophantine Approximation", "Perimeter of a triangle", "Abundant Number", "Graphing a hyperbola", "Determining the base and height of a Parallelogram", "Difference of cosines formula", "Quartic Polynomial", "Polynomial Inequalities", "Congruence of Integers", "Solving equations involving digits", "Sign Analysis", "Calculation of expected value for a fair eight-sided die".

E Additional Experiments and Analyses

E.1 Performance on Additional Challenging Benchmarks

To further reasonably demonstrate the performance gains of GRIP on more difficult benchmarks, we have already added some relatively challenging test benchmarks (e.g., GPQA-Diamond, TheoremQA) to Table 8 in the paper, where GRIP shows significant performance improvements compared to the base models. Furthermore, to further evaluate the models' ability to solve particularly complex mathematical problems, we have also introduced the AIME 2024 dataset and tested their pass@64 performance. These results, particularly on the notoriously difficult AIME benchmark, show a promising signal that GRIP can enhance complex reasoning capabilities, even if the absolute performance remains a frontier challenge. This improvement from zero demonstrates GRIP's potential to unlock new abilities in base models.

Table 8: Performance on additional challenging benchmarks. Results for GPQA-Diamond and TheoremQA are also presented in the main text, but are included here for a comprehensive comparison with AIME 2024.

Model	Base	Size	GPQA-Diamond (Acc)	TheoremQA (Acc)	AIME 2024 (pass@64)
Mistral	-	7B	24.7	19.2	0/30
LLaMA3	-	8B	27.2	20.1	0/30
Qwen2	-	7B	32.3	33.5	3/30
GRIP	Mistral	7B	31.7	26.5	4/30
GRIP	LLaMA3	8B	30.8	24.2	3/30
GRIP	Qwen2	7B	33.4	34.8	6/30

E.2 Decontamination Analysis

To ensure the integrity of our results and address potential data contamination from benchmark test sets, we conducted a thorough decontamination analysis. Our synthesis method, GRIP, is fundamentally designed to generate novel problems by modeling key concepts and performing multihop combinations, rather than rephrasing or imitating existing examples. This design theoretically minimizes the risk of direct duplication. As demonstrated in our main analysis Table 1, our synthetic data exhibits low similarity to its seed data and achieves a high Novelty Rate of 71.8%.

To quantitatively verify the novelty of our dataset against standard benchmarks, we performed a formal n-gram overlap analysis between our GRIP-MATH training set and the official MATH test set. After normalizing the text of both datasets by lowercasing and removing punctuation, we calculated the percentage of overlapping n-grams for various lengths of n.

The results, presented in Table 9, show that the n-gram overlap rate is extremely low, particularly for longer sequences, indicating a negligible level of verbatim contamination. For instance, the 10-gram overlap is only 0.63%, and it drops to less than 0.01% for 15-grams.

Table 9: N-gram overlap analysis between the GRIP-MATH training set and the MATH test set.

Dataset	N=8	N=10	N=13	N=15
MATH	1.94%	0.63%	0.06%	<0.01%

Furthermore, a qualitative analysis of the most frequent overlapping n-grams reveals that they consist of common mathematical phrases, definitions, or generic question stems, rather than specific problem content that would suggest data leakage. The top five most frequent overlapping sequences are:

In conclusion, this two-part analysis, combining our method's theoretical design with a direct empirical decontamination check, confirms that our synthesis process effectively avoids significant contamination from the benchmark test sets, thereby ensuring the validity of our evaluation results.

E.3 Validation of Knowledge Concept Adherence

A crucial aspect of our data synthesis pipeline is its ability to generate problems that faithfully adhere to the guiding knowledge concepts (KCs). To quantitatively evaluate this, we conducted a reverse-validation experiment. Specifically, we employed the same concept extraction model used in our initial pipeline (Qwen2.5-32B-Instruct) to perform a "reverse" concept extraction on a sample of the synthesized problems. Subsequently, we calculated the match ratio between the newly extracted concepts and the original concepts that were used to generate these problems.

We define two levels of adherence to measure the fidelity of the synthesis process. A **Full Match** occurs if all of the original input concepts were successfully re-extracted from the generated problem. A **Partial Match** is registered if at least one of the original input concepts was found.

The results, shown in Table 10, demonstrate a very high degree of fidelity. The Full Match ratio of 88.65% confirms that our method is highly effective at integrating all speci-

Table 10: Adherence ratio of synthesized problems to the guiding knowledge concepts.

Adherence Level	Adherence Ratio
Full Match	88.65%
Partial Match	98.49%

fied concepts into a coherent problem. Furthermore, the 98.49% Partial Match ratio indicates that even in cases where a perfect combination is not achieved, the generated problems remain strongly relevant to the intended knowledge domains. This validation confirms that our data synthesis process is not only scalable but also precise in following the conceptual guidance provided by the knowledge graph.

E.4 Performance Analysis Based on Dataset Scale

To provide a more granular analysis of our method's performance, we present a supplementary comparison that evaluates various data synthesis methods on a single model architecture (Mistral-7B), with datasets grouped by their approximate scale. The effectiveness of a data synthesis method is typically evaluated on two key dimensions: the *quality* of the generated data and the *scalability* of the synthesis process. This analysis is designed to offer further insight into GRIP-MATH's performance along both of these dimensions. The results are presented in Table 11, which is divided into two categories: datasets with approximately 100K samples and those with over 1 million samples.

Performance at a Smaller Scale (~100k). To facilitate a direct comparison of data quality against datasets of a similar size, we randomly sampled 80K question-answer pairs from our full dataset to create GRIP-MATH-mini. As shown in Table 11, this allows for a controlled evaluation where data quantity is normalized. The results demonstrate that the superior quality of data generated by our synthesis method leads to better model performance. Notably, a model trained on GRIP-MATH-mini (43.0%) significantly surpasses one trained on MathCoder (38.8%), which has the same number of samples.

[&]quot;What is the smallest possible value of the"

[&]quot;How many zeros are at the end of"

[&]quot;digit is the same as the units digit"

[&]quot;digit of the sum of the squares of"

[&]quot;is the sum of the lengths of these"

Table 11: Performance comparison of various data synthesis methods on the Mistral-7B model, grouped by dataset scale. The 'AVG' column refers to the average score on the mathematical reasoning benchmarks detailed in the main paper.

Scale	Dataset	Total Seed Data	Total Synthesized Data	AVG
~100K	MetaMath	15K	395K	40.3
	WizardMath	15K	96K	38.0
	MAmmoTH	220K	262K	39.0
	MathCoder	15K	80K	38.8
	GRIP-MATH-mini	7.5K	80K	43.0
>1M	MathScale	20K	2M	51.2
	MAmmoTH2	>10M	10M	52.2
	GRIP-MATH	7.5K	2.1M	57.3

Performance at a Larger Scale (>1M). The second part of the analysis highlights the key metric of scalability. When comparing our full 2.1M-sample dataset against other large-scale methods, GRIP-MATH demonstrates superior efficiency and quality. For example, compared to MAmmoTH2, which filters 10M samples from the massive Common Crawl corpus, our method achieves a 5.1-point higher score (57.3% vs 52.2%) using only 7.5K seed examples. Similarly, our method outperforms MathScale (which uses GPT-3.5) by a margin of 6.1 points. This analysis proves that our synthesis method not only scales data volume effectively but also ensures superior data quality at scale.

F Limitations and Future Work

The primary limitation of this work is that the empirical validation of the GRIP framework is confined to the domain of mathematical reasoning. While our results demonstrate significant success within this area, the effectiveness of GRIP in other domains has not yet been verified.

Our decision to initially focus on mathematics was deliberate. Mathematical reasoning represents a significant challenge for Large Language Models (LLMs), and success in this domain provides strong evidence of a data synthesis method's efficacy. Furthermore, the well-defined, hierarchical knowledge structure of mathematics offered an ideal environment to validate our core hypothesis: that novel and complex problems can be synthesized by combining foundational knowledge concepts.

Despite this specific focus, our work provides initial evidence of GRIP's broader applicability. As shown in Table 3, models trained exclusively on GRIP-MATH demonstrate improved performance on scientific reasoning benchmarks (e.g., BBH, GPQA-Diamond, MMLU-STEM), indicating a degree of cross-domain generalization. We posit that the core GRIP pipeline—"Concept Extraction \rightarrow Knowledge Graph Construction \rightarrow Concept Combination \rightarrow Data Synthesis \rightarrow Filtering"—is fundamentally domain-agnostic. The key to extending GRIP to new domains lies in adapting the definition of a "concept" to the target domain. We envision two primary directions for this extension:

- For structured domains like STEM and programming, the mapping is straightforward, as "concepts" can be directly defined as clear rules, principles, or library functions.
- For less-structured domains like commonsense reasoning, we hypothesize this paradigm remains effective. Here, "concepts" can be defined as higher-level scenarios or activities. For instance, GRIP could combine two distinct but related concepts, such as "planning an international trip" and "dealing with a lost passport," to create a novel, complex reasoning problem that leverages their implicit relationships.

Therefore, a top priority for our future research is to rigorously extend and validate the GRIP framework in these diverse domains, including commonsense and procedural reasoning. Verifying its effectiveness in these areas will be crucial for establishing GRIP as a truly general-purpose data synthesis methodology.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The detailed procedure of GRIP is presented in Section 3, and the data analysis of GRIP-MATH is discussed in Section 3.5. The experimental results in Section 4.3 further demonstrate the effectiveness of our approach.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Intuitively, GRIP should be applicable to various domains where data can be decomposed into key concepts; however, our current experiments are limited to the mathematics domain, and its effectiveness in other areas is yet to be verified. (Appendix F)

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: In Section 3.5, we demonstrate the high scalability, low cost, high quality and diversity of the synthetic data. In the experiments of Section 4.3 and Section 4.4, we show the effectiveness and strong generalization ability of GRIP-MATH, and the ablation studies in Section 4.5 further illustrate the importance of each component of GRIP.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section 3, we provide a detailed introduction to all the algorithmic procedures of GRIP as well as the designed prompts. We will also open-source the code and dataset. Due to company intellectual property limits, we can only provide part of the dataset during the review process, but all code and datasets will be open-sourced immediately after the review period ends.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived
 well by the reviewers: Making the paper reproducible is important, regardless of
 whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We will open-source the code and dataset. Due to company intellectual property limits, we can only provide part of the dataset in the supplementary materials during the review process, but all code and datasets will be open-sourced immediately after the review period ends.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).

- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have described the experimental settings used in Sections 4.1, Sections 4.2, as well as in the ablation studies in Section 4.5.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not report error bars or other measures of statistical significance for the experimental results.

Guidelines: This paper includes holdout experiments to assess statistical significance and provide error bars for the reported results.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The computational resources used for the experiments are provided in Section 4.1, and the cost information is detailed in Appendix B.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is conducted with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: GRIP provides a practical and efficient method for data synthesis, which is crucial for enhancing the capabilities of large language models as the availability of internet data decreases in the future.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.

 If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: This paper cite the original papers such as dataset.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: This paper will release code for GRIP.

Guidelines:

• The answer NA means that the paper does not release new assets.

- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: : This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper provides a detailed description of the large language model used in our experiments.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.

