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Abstract

Large-scale, high-quality data is essential for advancing the reasoning capabilities
of large language models (LLMs). As publicly available Internet data becomes
increasingly scarce, synthetic data has emerged as a crucial research direction.
However, existing data synthesis methods often suffer from limited scalability,
insufficient sample diversity, and a tendency to overfit to seed data, which constrains
their practical utility. In this paper, we present GRIP, a Graph-based Reasoning
Instruction Producer that efficiently synthesizes high-quality and diverse reasoning
instructions. GRIP constructs a knowledge graph by extracting high-level concepts
from seed data, and uniquely leverages both explicit and implicit relationships
within the graph to drive large-scale and diverse instruction data synthesis, while
employing open-source multi-model supervision to ensure data quality. We apply
GRIP to the critical and challenging domain of mathematical reasoning. Starting
from a seed set of 7.5K math reasoning samples, we construct GRIP-MATH, a
dataset containing 2.1 million synthesized question-answer pairs. Compared to
similar synthetic data methods, GRIP achieves greater scalability and diversity
while also significantly reducing costs. On mathematical reasoning benchmarks,
models trained with GRIP-MATH demonstrate substantial improvements over their
base models and significantly outperform previous data synthesis methods.
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Figure 1: The two methods on the left reconstruct data based on either the seed data itself or extra information,
making them similar to the seed and difficult to scale. Our method first extracts key concepts to construct a
concept graph, then synthesizes novel questions by leveraging multiple relationships within the graph.

1 Introduction

In recent years, large language models (LLMs) have achieved remarkable performance across a wide
range of linguistic tasks [[1;[11,130], largely driven by access to large-scale, high-quality training data.
However, recent studies [23} 134]Jhave shown that as the pool of high-quality publicly available data on
the Internet continues to diminish, the further advancement of LLMs may be limited by data scarcity.
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As a result, the exploration of synthetic data has attracted increasing attention. Several leading
commercial models [27,138,139] have incorporated large amounts of synthetic data as indispensable
components of their training pipelines. Nevertheless, the details of these synthesis processes are often
undisclosed, or their resource requirements are prohibitively high. Therefore, developing a practical
and highly scalable method for synthesizing high-quality data has become a critical challenge for the
continued evolution of large language models.

One approach for building high-quality reasoning datasets is data filtering [27, 140, 43]]. This method
involves extracting data from pre-training corpora such as Common Crawl and rewriting it using
advanced commercial models or human annotation. However, due to these corpora’s vast scale and
inherent noise, data filtering results in high post-processing costs and inconsistent data quality and
distribution. A more efficient approach is data synthesis [14} 19} 20,21} 33} 141} 142]]. Such approaches
often leverage prompts to closed-source models [[1}30], rephrasing seed data or generating analogous
questions to augment data, as shown in Figure[I] More advanced variants incorporate the knowledge
points or topics of the seed data into the prompts, guiding the model to generate new questions
centered around this extra information. However, these methods have several inherent limitations.
First, since they only rephrase or slightly modify seed questions, the expansion in data volume is
inherently limited, and does not achieve orders-of-magnitude growth. Second, the strong dependence
on seed data means that the generated questions are often highly similar to the original seeds,
restricting the diversity of the synthesized data. Third, the total amount of data that can be synthesized
is further restricted by the high cost and limited accessibility of closed-source models, making
large-scale generation impractical.

Inspired by human learning patterns, we move beyond directly manipulating seed data and instead
focus on the underlying high-level concepts (such as topics and knowledge points) embedded within
each example. Typically, a seed example consists of three or four key concepts. Prior methods,
which rephrase questions or alter scenarios, in fact only rearrange the same set of core concepts,
thus providing limited new information for the model to learn. To address this limitation, we first
systematically extract all high-level concepts from the seed data and construct a co-occurrence graph,
where two concepts are connected if they ever appear together in the same example. By designing
new examples that combine concepts which have never co-occurred in the original data, we are able
to synthesize truly novel data that lies outside the original seed distribution. We observe that the
number of valid non-co-occurring concept pairs far surpasses co-occurring ones. Even a modest
increase in seed data leads to a dramatic growth of novel concept combinations, highlighting the
strong scalability enabled by this idea. Building on this idea, we propose GRIP: a graph-based
framework to efficiently synthesize large-scale, high-quality and diverse reasoning data.

As presented in Figure [T] right, GRIP encompasses four steps: (1) Knowledge base construction:
We begin by extracting key concepts (KCs) from seed data using a specialized model, such as
mathematical theorems (e.g., the Pythagorean theorem), formulas (e.g., the quadratic formula), and
key properties (e.g., the distributive law). This is followed by a filtering step to remove duplicates and
low-quality key concepts. (2) Building the graph: The Key Concepts Relationship Graph (KCRG)
is designed to capture the interconnections among concepts. In the graph, we define two types of
relationships to form the KCRG: explicit and implicit. Explicit relationships are represented by solid
lines, connecting concepts that originate from the same example. Implicit relationships, shown as
dashed lines, connect concepts that are not directly related in the seed but exist within a certain
distance of each other. These implicit relationships are further classified into two-hop and three-hop
connections based on their distance. (3) Synthesis: The specialized model generates new samples by
feeding its designed prompts and explicit and implicit concept combinations from the KCRG. (4)
Data Evaluation: Multiple advanced open-source models are utilized to filter the synthesized data by
jointly scoring the new samples.

To demonstrate the effectiveness of GRIP, we apply it to one of the most challenging reasoning
domains: mathematics. We use 7.5K question-solution pairs from the MATH training set as seed data
and synthesize a new dataset, GRIP-MATH, which contains over 2.1 million math question-solution
pairs. We use GRIP-MATH to train large language models (LLMs) with diverse architectures and
parameter sizes, including Qwen1.5-7B[3]], Mistral-7B [[17], LLaMA3-8B[22]], LLaMA3.1-8B [10],
Qwen2-1.5B[37], and Qwen2-7B [37]. On mathematical reasoning benchmarks, models trained
with GRIP-MATH demonstrate substantial improvements over their base models and significantly
outperform previous data synthesis methods. Furthermore, GRIP-MATH also enhances scientific
reasoning performance, highlighting the strong generalization ability of GRIP.
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Figure 2: The overview of the Graph-based Reasoning Instruction Producer (GRIP). GRIP begins with seed
data and follows a four-step process: (1) knowledge base construction, (2) key concepts relationship graph
construction, (3) graph-based synthesis, and (4) evaluation by multiple models voting. After these steps, we
obtain the GRIP-MATH dataset.

2 Related work

2.1 LLMs and Mathematical Reasoning

Recent years have seen remarkable advances in large language models (LLMs) for mathematical
reasoning. Various strategies have been proposed to further improve LLMs’ math abilities, including
chain-of-thought prompting [36], program synthesis [27, 35]], and fine-tuning on high-quality math
corpora [21]. More recently, proprietary models trained on extensive curated datasets and large-scale
synthetic data—such as DeepSeekMath [27]] and Qwen2.5-Math [39]—have achieved state-of-the-art
results. However, the lack of transparency in their data synthesis methods limit reproducibility. In
response, research has increasingly focused on synthetic data generation [29,!43] as a scalable and
reproducible approach to b oosting LLM performance on mathematical reasoning tasks.

2.2 Data Synthesis

With the imminent exhaustion of Internet data, data synthesis has drawn increasing research attention.
In mathematical reasoning, data synthesis is primarily used for instruction fine-tuning, where each
sample consists of a question text and its corresponding answer. Our method can synthesize large-
scale, high-quality mathematical inference data from limited seed data, making it suitable for
continued pre-training tasks. Research efforts primarily concentrate on two pivotal aspects: improving
data quality and generating novel questions. Regarding the generation of novel questions, one
approach [19} 29/ 33| 141} 142]] entails rewriting or generating similar questions based on seed data
for data augmentation. Another approach [14, [15| 20]] involves generating new questions using
knowledge points, either by generating new knowledge points via GPT-4 or extracting them from
existing knowledge point databases. However, these approaches often suffer from limited scalability,
high cost, and high similarity to seed data, due to their reliance on explicit relationships and closed-
source models. Our method addresses these limitations by exploring both explicit and implicit
relationships between key concepts using the graph and leveraging open-source models for cost-
effective data synthesis.

3 Proposed Method

As presented in Figure 2] this section introduces a Graph-based Reasoning Instruction Producer
(GRIP), a unified synthetic data framework with four steps: Knowledge Base Construction, Key
Concepts Relationship Graph Construction, Synthesis Based on Diverse Key Concept Combinations,



Multi-Model Evaluation, and Dataset Statistics. Detailed descriptions and implementation steps for
each component are provided in the subsequent sections.

3.1 Knowledge Base Construction

To enable large language models (LLMs) to more effectively process complex information such
as mathematical problems, we first decompose each seed instance into its essential conceptual
components, constructing a knowledge base that provides a structured representation of the overall
dataset. In principle, a problem may be characterized by multiple hierarchical attributes, such as
“Subject” (e.g., “Mathematics”), “Topic” (e.g., “Algebra”), and “Key Concept” (e.g., “Permutations
and combinations” or “Difference of cosines formula™). For simplicity and to facilitate both concept
extraction and automated modeling, we focus exclusively on extracting “Key Concept” as the key
conceptual features for each question. Empirically, we find that this abstraction is sufficient to capture
the salient mathematical characteristics of most problems.

GRIP uses the MATH training set as the seed data which consists of 7.5k math problems. We first
extract no more than 5 relevant key concepts (KCs) from each seed problem with prompt engineering
of Qwen2.5-32B [38] (refer to Prompt A.1 in Appendix [A.T)). After extracting the KCs, we employ
an embedding model [4]] and Qwen2.5-7B [38] for dual filtering of the KCs. Initially, the LLM
filters out KCs with vagueness, math errors, or excessive details. Subsequently, the embedding model
clusters KCs with similar meanings, followed by a second validation using the LLM. Finally, the
most appropriate and accurate KC from each cluster is chosen to represent the cluster, resulting in
10K qualified key concepts. More details about dual filtering and KC examples can be found in

Appendix D]
3.2 KCRG Construction

To organize the disordered KCs in the knowledge base and explore their specific interconnections, we
designed a Key Concepts Relationship Graph (KCRG) to capture the associations between KC pairs.

In the KCRG, each node is represented as a KC, and each solid edge represents that the connected KCs
have co-occurred in the same problem. Specifically, the KCRG G can be represented as G = (K, E).
The nodes K, which refer to key concepts, are denoted as K = {ki, ko, ..., kg/}. The edges
E are denoted as E = {E¢, Ein}, and there are two types: (1) Explicit (Eex): Key concepts that
appear together in the same seed problem are connected by a solid edge. The explicit edges E.x
can be denoted as Eex = {(k;, k;)|D(k;, k;) = 1}, where the edge distance D(k;, k;) represents
the number of solid edges in the shortest path between k; and k;. Additionally, the edge weight
W (k;, k;) is recorded to denote the co-occurrence frequency between k; and k;. (2) Implicit (Eip):
Key concepts with more than one solid edge between them are connected by a dashed edge, as
visualized in Figure[3] The implicit edges Ein, can be denoted as Eim = {(k;, k;)|[D(k;, k;) > 1}.

3.3 Synthesis Based on Diverse Key Concept Combinations

Different from previous methods that primarily relied on seed data and explicit relationships between
KCs, we fully integrate both explicit and implicit relationships to generate more diverse synthetic data.
We observed that incorporating overly distant implicit relationships tends to increase the proportion
of low-quality data. This is because such KCs exhibit weaker correlations, making it difficult to
synthesize meaningful questions. Therefore, we proposed four types of key concept relationships:
one-hop, two-hop, three-hop, and community. Exploring implicit relationships has mined more
key concept combinations, which is a key driver of GRIP’s high scalability. Figure3]illustrates an
example of KCRG construction.

One-hop relationships represent explicit links between pairs of key concepts (KCs) that are directly
connected by a single edge in the graph. The edge weight reflects the frequency of their co-occurrence
in the seed data. Since these combinations are already present in the seed set, they exhibit high
semantic relevance.

Two-hop relationships capture implicit connections, involving pairs of KCs that are connected
indirectly through an intermediate node—i.e., two KCs that share a common neighbor. This indirect
association often reflects shared characteristics or themes, thus preserving a moderate level of
semantic relevance.
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Figure 3: An example of constructing the Key Concepts Relationship Graph (KCRG) from an existing
knowledge base and identifying the four key concept combinations we proposed.

Three-hop further explores implicit relationships by considering pairs of key concepts (KCs) that
are three edges apart in the graph. In this setting, we focus on hub concepts —those nodes in the
knowledge concept relationship graph (KCRG) that have the largest number of connections (i.e.,
high degree). Such hub concepts serve as central points in the knowledge network, indicating their
broad relevance and significance across various topics. A three-hop combination is defined as a pair
consisting of a hub concept and another KC that is three edges away from it. As the graph grows
larger, multiple hub concepts may exist. Since the semantic relevance between KCs tends to decrease
as the path length increases, we restrict three-hop relationships to only those involving hub concepts
to help maintain meaningfulness. Additionally, we filter out low-weight three-hop combinations to
further ensure that the selected three-hop pairs are relevant and informative.

For example, assume that a hub concept is “calculus”. In the seed data, problems only associate
“calculus” with fundamental concepts such as “limits” and “derivatives”. However, in the KCRG,
“calculus” is likely not adjacent but close to KCs such as “Fourier transforms” and “complex functions”.
By integrating these three-hop KCs (the same applies to two-hop) to construct novel problems, we
increase the diversity of the problem set.

Community represents explicit relationships involving three or four key concepts (KCs), where every
pair within the group is mutually connected by edges, forming a fully connected subgraph. Such
communities indicate a strong correlation among the KCs and typically represent cohesive knowledge
areas.

Accordingly, one-hop combinations are used to synthesize high-quality variant problems directly
related to the seed data. Implicit relationship combinations are used to synthesize new distribution
data, increasing the diversity of the dataset. Community-based combinations are used to synthesize
integrative problems that require simultaneously applying multiple closely related key concepts.

As shown in Figure |3| after extracting the KCs from the seed, we construct the KCRG based on their
co-occurrence. All key concept combinations in the graph that meet these four relationship types are
extracted, and low-weight implicit relations are filtered out. We input the prompt and key concept
combinations into the Qwen2.5-32B [38]] to synthesize new problems. Different from other methods,
we do not include seed data in the prompt, as this would cause the model to generate problems
too similar to them. Before solution generation, a rating model assigns a difficulty level to each
problem. For medium and low-difficulty issues, Qwen2.5-Math-7B [39] generates the solutions, while
Qwen2.5-Math-72B handles high-difficulty problems. The complete prompt template is provided in
Appendix [A.2] Prompt A.2.

3.4 Multi-Model Evaluation

To match the evaluation effectiveness of closed-source models, we employ a multi-model supervision
framework using three state-of-the-art open-source mathematical LLMs: DeepSeek-R1-Distill-Qwen-
7B [L1], Qwen2.5-Math-Instruct-7B [39], and DeepSeek-Math-RL [27]. These models are jointly
used to score and filter the synthesized data, ensuring high quality of both problems and solutions.

For problem evaluation, we use a weighted scoring filtering strategy. Problems are evaluated on
two criteria: logical completeness (absence of mathematical errors and accurate relation to provided
key concepts) and presentational completeness (clarity, thoroughness, and absence of prompts or
answers). Each model assigns a score between O and 1 for every problem. A weighted average
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Figure 4: Histogram of the similarity scores between synthesized data and the seed data, including a comparison
of GRIP-MATH with three open-source datasets in terms of seed similarity. The bars represent the frequency of
the similarity scores, while the red line represents the cumulative distribution function (CDF) of the scores. It
can be observed that the similarity scores of GRIP-MATH are concentrated between 0.55 and 0.65, whereas
those of the other three methods are more concentrated around 0.85 or even 1. This indicates that GRIP-MATH
exhibits lower seed similarity.

Table 1: Comparison of various methods in expansion ratio (x) and synthesis cost (102 cents). The expansion
ratio represents the proportion of synthesized data to seed data. Synthesis Cost indicates the expenses associated
with closed-source models or GPU usage for synthesizing a single data sample. Details of cost calculation are

provided in Appendix [B]

Method Data Source Synthesis Model Total Seed Data  Total Synthesized Data Expansion Ratio Cost Novelty Rate
MetaMath [41] GSM8K+MATH GPT-3.5 15K 395K 26 23 17.9
MathScale [29 MWPBENCH GPT-3.5 20K 2M 100 23 375

WizardMath [21 GSM8K+MATH GPT-4 15K 96K 6.4 220 -
XwinMath [19] GSM8K+MATH GPT-4 15k 1.4M 93 220
MAmmoTH [42] MAmmoTH datasets GPT-4 220K 262K 1.2 220 -
MathCoder [35 GSM8K+MATH GPT-4 15K 80K 53 220 9.1
GRIP MATH Open-Source Model 7.5K 2.IM 280 0.57 71.8

score is then computed, where weights are proportional to each model’s demonstrated mathematical
ability. Problems with scores below 0.85 are discarded. For solution evaluation, we implement a
strict single-vote veto mechanism. A solution must be mathematically correct and fully address all
aspects of the problem. The solution is scored as 0 or 1 by each model, and only those unanimously
approved by all models (perfect score) are retained. Any solution receiving a negative vote from any
model is filtered out to maintain overall dataset quality. After evaluation of problems and solutions,
we constructed a dataset named GRIP-MATH comprising 2.1 million high-quality mathematical
questions at low cost.

3.5 Dataset Statistics

To demonstrate the superiority of our methodology, we compare various data synthesis methods
from multiple dimensions. (1) For scalability, we compare the seed and synthesized data volumes
among different methods. As illustrated in Table[I] MathScale [29] is the largest dataset, utilizing
GPT-3.5 to expand 20K seed data into 2M samples, reaching a 100-fold expansion ratio. Methods
employing GPT-4 for data synthesis demonstrate relatively low expansion ratios due to their high
operational costs. In contrast, our approach expands 7.5K seed data to 2.1M samples, reaching the
highest expansion ratio of 280-fold. (2) For synthesis cost, we calculate the per-sample synthesis
cost for each method. To simplify the comparison, we consider API usagdcosts for methods relying
on commercial models and GPU computational cost{] for our approach. As shown in Table
our method’s per-sample synthesis cost is merely 2% of GPT-3.5-based methods and less than 1%
of GPT-4-based methods. (3) For data quality, we compare the similarity between open-source
datasets and their corresponding seed data using an embedding model. Specifically, we calculate
the similarity between the embedded synthesized data and seed data to obtain the similarity score
distribution for each dataset, as visualized in Figure 4] The results show that the rewritten methods
of MathCoder [35] and MetaMath [41]] show extremely high similarity to the seed data. Although
MathScale is not directly based on rewriting, it still exhibits relatively high similarity due to its
reliance on explicit relationships in the seed data. In comparison, GRIP-MATH has over 50% of its
data similarity below 0.65, with the majority under 0.75 and none exceeding 0.9. (4) For diversity,
we further analyzed the diversity of generated datasets by calculating the proportion of questions
whose key concept combinations were not present in the seed data. This metric reflects how many
genuinely novel questions each method can generate. We found that for other methods, this proportion
was consistently below 40%, indicating that they generated relatively few truly novel questions. In
contrast, thanks to GRIP’s use of implicit relationships, we generated 1.5 million novel questions,
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Table 2: The performance of models on mathematical reasoning tasks. The results are sourced from
the evaluation scripts of MAmmoTH2 and OpenCompass. GK II denotes the 2010-2022 Math 11
MCQs from GAOKAO-Eval, and GK I represents the 2010-2022 Math I MCQs. * denotes our
reproduced results based on the officially released codes.

Model Base Size ‘ MATH GSMSK GKII GK1 SVAMP ‘ AVG
Specific Models

Qwen2-Math Qwen2 1.5B 44.4 71.3 57.3 50.0 76.4 59.9
Qwen2-Math Qwen2 7B 50.4 81.2 78.9 62.5 88.1 72.2
DeepseekMath-Instruct DeepseekMath 7B 46.8 82.9 583 46.7 84.0 63.7
DeepseekMath-RL DeepseekMath 7B 51.7 88.2 61.5 58.9 86.4 69.3
Base Models

Mistral-7B - 7B 112 36.2 13.8 12.2 66.9 28.0
Qwen2 - 1.5B 21.7 58.5 29.8 28.5 67.4 41.2
Qwen2 - 7B 452 80.3 66.5 52.8 875 66.5
Qwenl.5 - 7B 133 54.1 56.4 53.7 73.4 50.2
LLaMA3 - 8B 213 54.8 4.1 7.9 69.7 31.6
LLaMA3.1 - 8B 23.1 54.9 10.6 10.8 70.1 339

Data synthesis method

MetaMath Mistral 7B 28.2 71.1 9.2 9.4 77.2 40.3
WizardMath Mistral 7B 31.0 78.0 17.0 15.4 48.5 38.0
MathCoder-CL Mistral 7B 30.2 67.8 9.6 15.9 70.7 38.8
MathScale Mistral 7B 345 74.0 36.7 31.3 79.6 51.2
MathScale* Qwenl.5 7B 322 69.6 55.2 524 75.1 56.9
MAmmoTH Mistral 7B 18.2 61.5 22.0 21.5 71.7 39.0
MAmmoTH2 Mistral 7B 36.7 68.4 449 294 81.8 52.2
MAmmoTH2 LLaMA3 8B 35.8 70.4 335 24.3 78.6 48.5

GRIP Model Trained only with GRIP-MATH

GRIP Mistral 7B 41.6 83.5 429 33.1 85.4 573
GRIP Qwenl.5 7B 37.9 77.1 57.4 56.3 80.8 61.9
GRIP LLaMA3 8B 37.2 76.5 38.5 31.8 82.2 532
GRIP LLaMA3.1 8B 37.1 72.0 44.5 35.1 84.2 54.6
GRIP Qwen2 1.5B 41.1 74.9 51.6 443 80.9 58.6
GRIP Qwen2 7B 534 86.0 68.4 54.2 88.8 70.2

with 71.8% of key concept combinations not found in the seed set. This demonstrates a substantial
improvement in diversity achieved by our approach.

4 Experiments

4.1 Training Setup

We selected Qwen1.5-7B [3]], Mistral-7B [17]], LLaMA3-8B [22], LLaMA3.1-8B [10], Qwen2-
1.5B [37], and Qwen2-7B [37] as baseline models, and trained all of them exclusively on the
GRIP-MATH dataset. The fine-tuning is performed using the LLaMAFactory [44]] framework over
2 epochs, with a learning rate of 5e-6, a global batch size of 128, and a maximum sequence length
of 4096. A cosine schedule with a 3% warm-up ratio is adopted to regulate the learning rate. For
expedited and efficient training, we leveraged DeepSpeed [25] ZeRO Stage 3 and FlashAttention 2 [9].
The synthesis with GRIP was completed in 36 hours using 8 NVIDIA A100 GPUs and vLLM [18].

4.2 Evaluation Datasets

To rigorously assess the enhancement in mathematical reasoning capabilities of models trained with
GRIP-MATH, we employed a suite of mathematical evaluation datasets, including GSMS8K [7],
MATH [13], GAOKAO-Eval [31] and SVAMP [24]. In addition, to assess the impact of GRIP-MATH
on the model’s reasoning capabilities across other domains (e.g., physics, chemistry, coding, and
logic), we evaluate the model using a range of scientific reasoning datasets, including ARC-C [6],
MMLU-STEM [13]], GPQA-Diamond [26], BBH [28]], TheoremQA [5], and MBPP [2]]. The results
are sourced from the evaluation scripts of MAmmoTH?2 [43]] and OpenCompass [8].



Table 3: Results on scientific reasoning tasks.

Model Base Size ‘ ARC-C  MMLU-STEM GPQA-Diamond BBH TheoremQA MBPP | AVG
Mistral - 7B 74.2 50.1 24.7 55.7 19.2 475 452
Qwenl.5 - 7B 75.6 45.5 26.7 45.2 14.2 52.1 432
LLaMA3 - 8B 78.6 55.6 27.2 61.1 20.1 54.9 49.6
LLaMA3.1 - 8B 79.5 54.7 24.2 62.8 20.9 57.2 49.9
Qwen2 - 1.5B 60.5 429 237 36.8 15.1 36.9 36.0
Qwen2 - 7B 83.6 64.3 323 61.7 335 60.7 56.0
GRIP Mistral 7B 78.6 58.6 31.7 61.1 26.5 54.9 51.9
GRIP Qwenl.5 7B 77.2 56.9 30.0 51.2 224 53.7 48.6
GRIP LLaMA3 3B 80.5 60.8 30.8 63.7 24.2 584 53.1
GRIP LLaMA3.1 8B 82.7 61.8 32.8 63.2 259 59.2 54.3
GRIP Qwen2 1.5B 61.0 431 25.9 35.2 18.2 37.8 36.9
GRIP Qwen2 7B 84.3 65.9 334 62.5 34.8 65.9 57.7

4.3 Main Results

Table 2] summarizes the performance of various models on a suite of mathematical reasoning bench-
marks. Our experimental findings highlight three main observations:

Substantial improvements over base models. All GRIP-trained models significantly outperform
their respective base models across all benchmarks. For example, Mistral-7B, when trained only
on GRIP-MATH, achieves an average score of 57.3, compared to 28.0 for the vanilla Mistral-
7B—a nearly 30-point improvement. Similar trends are observed for Qwen2 and LLaMA3 families,
indicating the large and robust gains brought by high-quality GRIP-MATH data regardless of base
model architecture or parameter size.

Outperforms previous data synthesis methods by a large margin. Compared to other open-
source data synthesis methods such as MetaMath [41], WizardMath [21]], MathScale [29], and
MAmmoTH?2 [43]], our GRIP-trained models consistently obtain much higher scores. For instance,
Mistral-7B with GRIP-MATH achieves 57.3 average, dramatically surpassing the best prior method
(MathScale, 51.2). On the MATH benchmark, GRIP-7B reaches 41.6, far beyond the scores of
WizardMath or MetaMath (31.0 and 28.2, respectively), confirming the effectiveness of our approach
in generating high-quality, diverse mathematical reasoning data.

Competitive with proprietary math specialist models. Remarkably, GRIP-trained models close
much of the gap between open-source foundation models and proprietary specialist models that lever-
age substantially more diverse and larger-scale training data (including web data, textbook corpora,
exam problems, and Chinese data). On key benchmarks such as MATH, GSM8K, and especially on
challenging out-of-domain datasets (GK II, SVAMP), GRIP models achieve performance on par with,
or even surpass, proprietary models like DeepSeekMath-RL [27] and Qwen2-Math-7B [39], despite
relying solely on GRIP-MATH synthetic data.

Overall, our findings show that GRIP-MATH brings substantial gains to base models, consistently
outperforms prior data synthesis methods, and enables competitive or even superior performance to
commercial specialist models on major benchmarks, all without using proprietary resources.

4.4 Results on Scientific Reasoning Benchmark

GRIP-MATH is constructed solely from the training set of MATH and does not incorporate any data
from other datasets. Nevertheless, experiments show that GRIP-MATH not only enhances the model’s
mathematical reasoning abilities, but also brings significant improvements on out-of-domain scientific
reasoning tasks. As shown in Table [3] we evaluate our models on several widely used datasets
covering physics, biology, chemistry, and computer science. Across all benchmarks, GRIP-trained
models consistently outperform their respective base models, demonstrating strong cross-domain
generalization. For example, GRIP-trained Qwen2-7B achieves an average score of 57.7, compared
to 56.0 for the base model, with notable gains on MMLU-STEM, GPQA-Diamond, and MBPP. These
results highlight the strong generalization ability of GRIP-MATH across scientific domains, even
without explicit exposure to additional out-of-domain training data.



4.5 Ablation Studies about GRIP

Comparison between Multi-Model and GPT-4.1. To investigate the difference between multi-model
quality evaluation and using GPT-4.1 alone, we conducted a manual annotation of 500 synthesized
math problems. Each sample was independently labeled as “qualified” or “unqualified” by human
annotators. We then used various combinations of open-source models (DeepSeek-R1-Distill-Qwen-
7B [11], Qwen2.5-Math-Instruct-7B [39]], and DeepSeek-Math-RL [27]]) and GPT-4.1 to score the
same data: a problem was considered qualified if its question score was above 0.85 and its solution
score was 1. Finally, we compared the model evaluation results with the manual labels, as shown in
Table[5] Table[5]shows that three open-source models outperform GPT-4.1 in accuracy, demonstrating
that multi-model supervision is an effective and economical substitute for closed-source evaluation.

Table 4: Ablation on Hop Distance Table 5: Ablation on Model Combinations
Method | AVG Score Model Combination |ACC
One-hop 0.94 GPT-4.1 94.3
Two-hop 0.72 Qwen2.5-Math-Instruct-7B 81.4
Three-hop 0.62 Qwen2.5-Math-Instruct-7B, DeepseekR1-7B | 90.5
Three-hop w/o hub KCs 0.39 Qwen?2.5-Math-Instruct-7B, DeepseekR1-7B,
Four-hop w/o hub KCs 0.21 DeepseekMath-RL 95.7

Key Concept Filtering. The quality of key concepts is cru- Table 6: Ablation on Filtering
cial for subsequent data synthesis. We synthesize questions '\ fothod | AVG Score
(excluding solutions) using both unfiltered and filtered key con-
cepts, and evaluate them using the multi-model scoring system
to calculate the average score for each setting. As shown in
Table [6] applying key concept filtering increases the average
question score by 0.2 points. This improvement is due to the removal of meaningless or incorrect key
concepts, which would otherwise mislead the model and lead to lower-quality questions.

w Concept Filtering 0.83
w/o Concept Filtering 0.61

The quality of data synthesized from different hop distances. We compared the average scores
of data synthesized from one-hop, two-hop, three-hop, and more distant. The results in Table []
show that as the distance between key concepts increases, the average score of the synthesized data
decreases. This is because meaningful combinations are rarer between more distant concepts, leading
to a drop in data quality. Nevertheless, it is still possible to synthesize high-quality data from these
distant combinations, although this typically comes at a higher synthesis cost. Moreover, utilizing
hub concepts to facilitate high-hop data synthesis is an effective strategy for maintaining quality.

Impact of Implicit and EXpliCit Data on Model Per- Table 7: Ablation on Datasets
formance. To investigate the effects of implicit and  ,cers |Math GSMSK
explicit data on model performance, we conducted a
comprehensive ablation study. We first randomly sam-
pled 0.2 million examples from the one-hop (explicit)
dataset and, based on the same key concept combina-
tions, synthesized another 0.2 million one-hop samples. Additionally, we randomly selected a total of
0.2 million samples from the two-hop and three-hop (implicit) datasets. We then trained Mistral-7B
separately with the explicit data group and the implicit data group. As shown in Table[7} the results
suggest that introducing novel types of questions is more beneficial for model training than continuing
to expose the model to repeated samples of the same type.

one-hop, one-hop(duplication)| 29.3  67.6
one-hop, two-hop, three-hop |32.6 71.2

5 Conclusion and Future Work

In this paper, we introduce GRIP, an efficient paradigm for synthesizing high-quality data. Utilizing
this method, we construct the GRIP-MATH dataset, comprising 2.1 million high-quality question-
solution pairs. By leveraging this dataset, GRIP models have demonstrated outstanding performance
across mathematical and scientific reasoning benchmarks. Our research indicates that thoroughly
exploring implicit knowledge relationships enables larger-scale and more diverse data synthesis;
additionally, multi-model evaluation can approach closed-source performance while maintaining
cost-effectiveness. Intuitively, GRIP should be applicable to various domains where data can be
decomposed into key concepts; however, our current experiments are limited to the mathematics
domain, and its effectiveness in other areas is yet to be verified, as we discuss in detail in Appendix [F]
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A Prompts

Prompt A.1 : Prompt for Key Concepts Extraction

You will be given a mathematics problem and its detailed solution. Please extract 1 to 5 key concepts
according to the strict requirements below:

1. Use precise mathematical terminology. Each key concept must be named using accurate
and professional mathematical terms; avoid colloquial, vague, or general language.

2. Direct and exclusive relevance. Only include key concepts that are directly applied or
explicitly referenced in both the problem and its solution. Exclude unrelated, unused, or
general concepts, even if they appear incidentally.

3. Be as specific as possible. Do not use broad descriptions like “basic algebra” or “elementary
mathematics.” Specify particular theorems, formulas, properties, or standard techniques (e.g.,
“Pythagorean theorem,” “Closure property of multiples under addition”).

4. No repetition or composite items. Each key concept must correspond to a single, unique,
and atomic mathematical concept. Do not combine multiple theorems, laws, or properties
into one item; do not list overlapping or paraphrased concepts.

5. Do not include procedural descriptions or general skills. Only extract concrete math-
ematical facts, such as theorems, definitions, formulas, or standard properties. Do not
include step-by-step methods or broad problem-solving strategies (e.g., “expand the equation,”
“calculate the sum”).

Prompt A.2 : Prompt for New Problem Generation

Please design a brand-new mathematics problem that integrates both “[Key Concept A]” and “[Key
Concept B]”, according to the following requirements:

1. The problem must organically combine the two key concepts within a single mathematical
scenario or real-life context. Do not simply split them into two independent sub-questions.

2. The content of the problem should be free of logical and mathematical errors or ambiguities;
the conditions must be sufficient and clearly stated.

3. The problem should have a certain level of difficulty, providing a challenge and thoroughly
testing students’ ability to apply knowledge comprehensively.

4. The context can be realistic or innovative, but the question must remain coherent and natural.
You may introduce additional key concepts as needed to create a well-formed and meaningful
problem.

5. Expression should be concise and clearly structured, without unnecessary or irrelevant
information.

6. The problem should have a unique and definite answer or solution path.

7. Choose an appropriate question type (such as free response, proof, fill-in-the-blank, or
multiple choice) according to the chosen key concepts.

B Calculation of Synthesis Cost

For synthesis cost, we posit that methods using closed-source models incur cost solely from the
closed-source model cosﬂ whereas for our method, we only need account for GPU usage cos
Based on information from the web pages, the input cost of GPT-4 is $10 per 1M tokens, and the
output cost is $30 per 1M tokens. For GPT-3.5, the input cost is $1.5 per 1M tokens and the output
cost is $2 per 1M tokens. The cost of using one NVIDIA RTX A100 (80G) is $0.42 per hour.

According to our experiments, synthesizing and scoring problems and solutions requires at least
1000 input tokens and 400 output tokens (with slight differences between various methods). For data
synthesis using GPT-4, the cost of synthesizing one data point is calculated as:

10 x 0.001 + 30 x 0.0004 = 0.022 $

*https://openai.com/api/pricing/
*https://power.netmind.ai/rentIntro
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In terms of 0.01 cents, the synthesis cost is 220.

For data synthesis using GPT-3.5, the cost of synthesizing one data point is calculated as:
1.5 x 0.001 4+ 2 x 0.0004 = 0.0023 $

In terms of 0.01 cents, the synthesis cost is 23.

For GRIP, we leveraged the vLLM [18]] and used 8 NVIDIA A100 GPUs for 36 hours to construct
2.1 million data points. The cost of synthesizing one data point is calculated as:

0.42 x 8 x 36

9123345 ~ 0.000057 $

In terms of 0.01 cents, the synthesis cost is 0.57.

If we were to synthesize 2 million math problems and solutions, it would cost $44000 using GPT-4,
$4600 using GPT-3.5, but only $114 using GRIP. This gap becomes even more pronounced as the
data volume increases.

C Benchmarks Overview

This section briefly introduces the datasets used in this paper, including the mathematical reasoning
dataset, the scientific reasoning dataset, and the general ability dataset.

MATH [12]: MATH is a new dataset of 12,500 challenging competition mathematics problems. Each
problem in MATH has a full step-by-step solution which can be used to teach models to generate
answer derivations and explanations.

GSMBSK [7]]: This test dataset contains 1.32K diverse grade school math problems, intended to test
basic arithmetic and reasoning ability in an educational context.

GAOKAO-Eval [32]: GAOKAO-Eval is a benchmark from China’s Gaokao exam, covering various
subjects and question types. Questions include multiple-choice, problem-solving, reading comprehen-
sion, and essay writing, with subjective answers scored by high school teachers. This paper evaluates
only the mathematics test.

SVAMP [24]: SVAMP is a challenge set for evaluating models on elementary-level Math Word
Problems (MWP). The dataset contains a total of 1,000 problems. Each MWP consists of a short
natural language narrative that describes a state of the world and poses a question about some
unknown quantities.

ARC-C [6]: ARC includes questions derived from various grade-level science exams, testing models’
ability to handle both straightforward and complex scientific queries. We use the challenge subset,
which contains 1,172 test questions.

MMLU-STEM [13]: Spanning 57 subjects across multiple disciplines, MMLU evaluates the breadth
and depth of a model’s knowledge in a manner akin to academic and professional testing environments.
We select the STEM subset of MMLU with 3.13K problems.

GPQA-Diamond [26]: This dataset provides “Google-proof” questions in biology, physics, and
chemistry, designed to test deep domain expertise and reasoning under challenging conditions. We
use the diamond subset containing 198 hard problems.

BIG-Bench Hard (BBH) [28]: Consisting of 23 tasks previously found challenging for language
models from BIG-Bench (Srivastava et al., 2023), BBH contains a total of 6511 challenging problems
examining the capability of LLMs to solve them.

TheoremQA [5]]: Focused on applying mathematical theorems to solve advanced problems in fields
such as mathematics, physics, and engineering, TheoremQA includes 800 questions that test the
theoretical reasoning capabilities.

MBPP [2]: MBPP consists of around 1,000 crowd-sourced Python programming problems, designed
to be solvable by entry-level programmers, covering programming fundamentals, standard library
functionality, and so on. Each problem consists of a task description, code solution, and 3 automated
test cases.
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C-Eval [16]: C-Eval is a comprehensive Chinese evaluation suite designed to assess the advanced
knowledge and reasoning abilities of large language models. It includes multiple-choice questions
across four difficulty levels (middle school, high school, college, and professional) and spans 52
diverse disciplines.

MMLU [13]: MMLU (Massive Multitask Language Understanding) is a benchmark that measures
text models’ multitask accuracy across 57 tasks, including elementary mathematics, US history,
computer science, and law. It requires extensive world knowledge and problem-solving abilities, but
even the best models still need significant improvements to reach expert-level accuracy.

D Dual Filtering and KC Examples

D.1 Dual Filtering

Ensuring the quality of KCs is crucial, as using meaningless KCs can result in low-quality synthesized
problems while using overly similar KCs can lead to duplicated problems. These issues increase
the computational and time costs for both problem synthesis and problem quality validation. We
employ a dual filtering strategy using both embedding models and LLMs to remove low-quality and
duplicated KCs. The three main steps are as follows:

Eliminating Low-Quality KCs: LLMs are used to filter out KCs that are vague, contain mathematical
errors, or are overly detailed. This is because vague KCs can be too broad in meaning, failing to
standardize the model’s output effectively. Erroneous KCs may lead the model to synthesize incorrect
questions, while overly detailed KCs can overly constrain the model’s output.

Categorization: We first use an embedding model to calculate pairwise similarity scores between
KCs. KCs with similarity scores between 0.90 and 1.0 are deemed to have the same meaning, while
those with scores between 0.70 and 0.90 undergo an additional check by the LLM to confirm if they
are truly synonymous. KCs with scores below 0.70 are treated as distinct. Based on this process, KCs
are grouped into classes with similar KCs placed in the same class. These thresholds were determined
through an analysis of the KC set.

Summarization: For each KC class, the LLM identifies the most representative KC to act as the
class representative. If no existing KC in the class is suitable, the LLM synthesizes a new KC to
represent the class. Finally, we obtained 10K qualified key concepts.

When only the embedding model was used for de-duplication, the quality check revealed that only
26% of the synthesized problems met the quality standard. After introducing dual filtering with the
LLM, this proportion increased to 45%. This demonstrates that the dual filtering process significantly
improves dataset quality while reducing problem synthesis costs.

D.2 Examples of Bad Key Concepts

The LLM helps the embedding model classify KCs that appear similar but actually have different
meanings. For example:

* “Geometric sequence” vs. “Arithmetic sequence” (similarity score: 0.805)

* “Sine function in trigonometry” vs. “Cosine function in trigonometry” (similarity score:

0.865)
The LLM effectively removes vague, mathematically incorrect, or overly detailed KCs. For example:

* Vague KCs:
— “Problem-solving strategies”
— “Mathematical techniques”

* Mathematically Incorrect KCs:
— “The sum of the outer angles of a polygon depends on the number of sides”
— “The matrix result of multiplying a matrix by its inverse is the matrix itself”
— “A series converges if its terms approach zero.”
— Some incorrect or incomplete KCs
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* Overly Detailed KCs:

— “Solving the quadratic equation x* + 5z + 6 = 0 by factoring. ..”
— Some specific problems

D.3 Examples of Key Concepts

To demonstrate the diversity and comprehensiveness of our knowledge base, we randomly sampled
20 KCs:

“Angle of Rotation”, “The unit circle and its properties”, “Solving Equations with Multiple Variables”,
“Right triangles in a sphere”, “Inversions in permutations”, “Pi (T) as a constant in geometry and
trigonometry”, “Perfect Cubes”, “Area of Triangles and Squares”, “Diophantine Approximation”,
“Perimeter of a triangle”, “Abundant Number”, “Graphing a hyperbola”, “Determining the base and
height of a Parallelogram”, “Difference of cosines formula”, “Quartic Polynomial”, “Polynomial
Inequalities”, “Congruence of Integers”, “Solving equations involving digits”, “Sign Analysis”,
“Calculation of expected value for a fair eight-sided die”.

E Additional Experiments and Analyses

E.1 Performance on Additional Challenging Benchmarks

To further reasonably demonstrate the performance gains of GRIP on more difficult benchmarks, we
have already added some relatively challenging test benchmarks (e.g., GPQA-Diamond, TheoremQA)
to Table [§] in the paper, where GRIP shows significant performance improvements compared to
the base models. Furthermore, to further evaluate the models’ ability to solve particularly complex
mathematical problems, we have also introduced the AIME 2024 dataset and tested their pass @64
performance. These results, particularly on the notoriously difficult AIME benchmark, show a promis-
ing signal that GRIP can enhance complex reasoning capabilities, even if the absolute performance
remains a frontier challenge. This improvement from zero demonstrates GRIP’s potential to unlock
new abilities in base models.

Table 8: Performance on additional challenging benchmarks. Results for GPQA-Diamond and
TheoremQA are also presented in the main text, but are included here for a comprehensive comparison
with AIME 2024.

Model Base Size ‘ GPQA-Diamond (Acc) TheoremQA (Acc) AIME 2024 (pass@64)
Mistral - 7B 24.7 19.2 0/30
LLaMA3 - 8B 27.2 20.1 0/30
Qwen2 - 7B 323 335 3/30
GRIP Mistral 7B 31.7 26.5 4/30
GRIP LLaMA3 8B 30.8 24.2 3/30
GRIP Qwen2 7B 334 34.8 6/30

E.2 Decontamination Analysis

To ensure the integrity of our results and address potential data contamination from benchmark
test sets, we conducted a thorough decontamination analysis. Our synthesis method, GRIP, is
fundamentally designed to generate novel problems by modeling key concepts and performing multi-
hop combinations, rather than rephrasing or imitating existing examples. This design theoretically
minimizes the risk of direct duplication. As demonstrated in our main analysis Table[I] our synthetic
data exhibits low similarity to its seed data and achieves a high Novelty Rate of 71.8%.

To quantitatively verify the novelty of our dataset against standard benchmarks, we performed a
formal n-gram overlap analysis between our GRIP-MATH training set and the official MATH test set.
After normalizing the text of both datasets by lowercasing and removing punctuation, we calculated
the percentage of overlapping n-grams for various lengths of n.

The results, presented in Table 9] show that the n-gram overlap rate is extremely low, particularly for
longer sequences, indicating a negligible level of verbatim contamination. For instance, the 10-gram
overlap is only 0.63%, and it drops to less than 0.01% for 15-grams.
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Table 9: N-gram overlap analysis between the GRIP-MATH training set and the MATH test set.
Dataset N=8 N=10 N=13 N=15

MATH 1.94%  0.63% 0.06% <0.01%

Furthermore, a qualitative analysis of the most frequent overlapping n-grams reveals that they consist
of common mathematical phrases, definitions, or generic question stems, rather than specific problem
content that would suggest data leakage. The top five most frequent overlapping sequences are:

“What is the smallest possible value of the”
“How many zeros are at the end of”

“digit is the same as the units digit”

“digit of the sum of the squares of”’

“is the sum of the lengths of these”

In conclusion, this two-part analysis, combining our method’s theoretical design with a direct
empirical decontamination check, confirms that our synthesis process effectively avoids significant
contamination from the benchmark test sets, thereby ensuring the validity of our evaluation results.

E.3 Validation of Knowledge Concept Adherence

A crucial aspect of our data synthesis pipeline is its ability to generate problems that faithfully
adhere to the guiding knowledge concepts (KCs). To quantitatively evaluate this, we conducted a
reverse-validation experiment. Specifically, we employed the same concept extraction model used in
our initial pipeline (Qwen2.5-32B-Instruct) to perform a “reverse” concept extraction on a sample of
the synthesized problems. Subsequently, we calculated the match ratio between the newly extracted
concepts and the original concepts that were used to generate these problems.

We define two levels of adherence to measure the fidelity Table 10: Adherence ratio of synthe-
of the synthesis process. A Full Match occurs if all of the sized problems to the guiding knowl-
original input concepts were successfully re-extracted from edge concepts.

the generated problem. A Partial Match is registered if at
least one of the original input concepts was found.

Adherence Level  Adherence Ratio

Full Match 88.65%
Partial Match 98.49%

The results, shown in Table[I0] demonstrate a very high
degree of fidelity. The Full Match ratio of 88.65% confirms
that our method is highly effective at integrating all speci-
fied concepts into a coherent problem. Furthermore, the 98.49% Partial Match ratio indicates that
even in cases where a perfect combination is not achieved, the generated problems remain strongly
relevant to the intended knowledge domains. This validation confirms that our data synthesis process
is not only scalable but also precise in following the conceptual guidance provided by the knowledge
graph.

E.4 Performance Analysis Based on Dataset Scale

To provide a more granular analysis of our method’s performance, we present a supplementary
comparison that evaluates various data synthesis methods on a single model architecture (Mistral-7B),
with datasets grouped by their approximate scale. The effectiveness of a data synthesis method is
typically evaluated on two key dimensions: the quality of the generated data and the scalability of the
synthesis process. This analysis is designed to offer further insight into GRIP-MATH’s performance
along both of these dimensions. The results are presented in Table which is divided into two
categories: datasets with approximately 100K samples and those with over 1 million samples.

Performance at a Smaller Scale (~100k). To facilitate a direct comparison of data quality against
datasets of a similar size, we randomly sampled 80K question-answer pairs from our full dataset to
create GRIP-MATH-mini. As shown in Table[T]] this allows for a controlled evaluation where data
quantity is normalized. The results demonstrate that the superior quality of data generated by our
synthesis method leads to better model performance. Notably, a model trained on GRIP-MATH-mini
(43.0%) significantly surpasses one trained on MathCoder (38.8%), which has the same number of
samples.
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Table 11: Performance comparison of various data synthesis methods on the Mistral-7B model,
grouped by dataset scale. The ’AVG’ column refers to the average score on the mathematical
reasoning benchmarks detailed in the main paper.

Scale Dataset Total Seed Data Total Synthesized Data AVG
~100K MetaMath 15K 395K 40.3
WizardMath 15K 96K 38.0
MAmmoTH 220K 262K 39.0
MathCoder 15K 80K 38.8
GRIP-MATH-mini 7.5K 80K 43.0
>IM MathScale 20K M 51.2
MAmmoTH2 >10M 10M 522
GRIP-MATH 7.5K 2.1M 57.3

Performance at a Larger Scale (>1M). The second part of the analysis highlights the key metric
of scalability. When comparing our full 2.1M-sample dataset against other large-scale methods,
GRIP-MATH demonstrates superior efficiency and quality. For example, compared to MAmmoTH?2,
which filters 10M samples from the massive Common Crawl corpus, our method achieves a 5.1-point
higher score (57.3% vs 52.2%) using only 7.5K seed examples. Similarly, our method outperforms
MathScale (which uses GPT-3.5) by a margin of 6.1 points. This analysis proves that our synthesis
method not only scales data volume effectively but also ensures superior data quality at scale.

F Limitations and Future Work

The primary limitation of this work is that the empirical validation of the GRIP framework is confined
to the domain of mathematical reasoning. While our results demonstrate significant success within
this area, the effectiveness of GRIP in other domains has not yet been verified.

Our decision to initially focus on mathematics was deliberate. Mathematical reasoning represents
a significant challenge for Large Language Models (LLMs), and success in this domain provides
strong evidence of a data synthesis method’s efficacy. Furthermore, the well-defined, hierarchical
knowledge structure of mathematics offered an ideal environment to validate our core hypothesis:
that novel and complex problems can be synthesized by combining foundational knowledge concepts.

Despite this specific focus, our work provides initial evidence of GRIP’s broader applicability. As
shown in Table [3| models trained exclusively on GRIP-MATH demonstrate improved performance
on scientific reasoning benchmarks (e.g., BBH, GPQA-Diamond, MMLU-STEM), indicating a
degree of cross-domain generalization. We posit that the core GRIP pipeline—*“Concept Extraction
— Knowledge Graph Construction — Concept Combination — Data Synthesis — Filtering”—is
fundamentally domain-agnostic. The key to extending GRIP to new domains lies in adapting the
definition of a “concept” to the target domain. We envision two primary directions for this extension:

* For structured domains like STEM and programming, the mapping is straightforward, as
“concepts” can be directly defined as clear rules, principles, or library functions.

* For less-structured domains like commonsense reasoning, we hypothesize this paradigm
remains effective. Here, “concepts” can be defined as higher-level scenarios or activities.
For instance, GRIP could combine two distinct but related concepts, such as “planning an
international trip” and “dealing with a lost passport,” to create a novel, complex reasoning
problem that leverages their implicit relationships.

Therefore, a top priority for our future research is to rigorously extend and validate the GRIP
framework in these diverse domains, including commonsense and procedural reasoning. Verifying
its effectiveness in these areas will be crucial for establishing GRIP as a truly general-purpose data
synthesis methodology.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
¢ Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The detailed procedure of GRIP is presented in Section[3] and the data analysis
of GRIP-MATH is discussed in Section[3.3] The experimental results in Section [.3] further
demonstrate the effectiveness of our approach.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Intuitively, GRIP should be applicable to various domains where data can
be decomposed into key concepts; however, our current experiments are limited to the
mathematics domain, and its effectiveness in other areas is yet to be verified. (Appendix [F)

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In Section we demonstrate the high scalability, low cost, high quality and
diversity of the synthetic data. In the experiments of Section[4.3|and Section[4.4] we show
the effectiveness and strong generalization ability of GRIP-MATH, and the ablation studies
in Section[4.5] further illustrate the importance of each component of GRIP.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]

Justification: In Section[3] we provide a detailed introduction to all the algorithmic proce-
dures of GRIP as well as the designed prompts. We will also open-source the code and
dataset. Due to company intellectual property limits, we can only provide part of the dataset
during the review process, but all code and datasets will be open-sourced immediately after
the review period ends.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will open-source the code and dataset. Due to company intellectual
property limits, we can only provide part of the dataset in the supplementary materials
during the review process, but all code and datasets will be open-sourced immediately after
the review period ends.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have described the experimental settings used in Sections .1 Sections 4.2}
as well as in the ablation studies in Section d.5]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not report error bars or other measures of statistical significance
for the experimental results.

Guidelines: This paper includes holdout experiments to assess statistical significance and
provide error bars for the reported results.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8.

10.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources used for the experiments are provided in Section
[4.1] and the cost information is detailed in Appendix [B]

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research is conducted with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: GRIP provides a practical and efficient method for data synthesis, which is
crucial for enhancing the capabilities of large language models as the availability of internet
data decreases in the future.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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12.

13.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: This paper cite the original papers such as dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: This paper will release code for GRIP.
Guidelines:

* The answer NA means that the paper does not release new assets.
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15.

16.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: : This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper provides a detailed description of the large language model used in
our experiments.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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