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Abstract

Most image fusion methods are designed for ideal scenarios and struggle to handle
noise. Existing noise-aware fusion methods are supervised and heavily rely on
constructed paired data, limiting performance and generalization. This paper
proposes a novel unsupervised noisy visible and infrared image fusion method,
comprising two key modules. First, when only noisy source images are available,
a convolutional low-rank optimization module decomposes clean components
based on convolutional low-rank priors, guiding subsequent optimization. The
unsupervised approach eliminates data dependency and enhances generalization
across various and variable noise. Second, a unified network jointly realizes
denoising and fusion. It consists of both intra-modal recovery and inter-modal
recovery and fusion, also with a convolutional low-rankness loss for regularization.
By exploiting the commonalities of denoising and fusion, the joint framework
significantly reduces network complexity while expanding functionality. Extensive
experiments validate the effectiveness and generalization of the proposed method
for image fusion under various and variable noise conditions. The code is publicly
available at https://github. com/hanna-xu/Deno- IF.

1 Introduction

The widely used visible images, although rich in color and textures, are vulnerable to environmental
factors, e.g,, illumination variations and occlusions. In contrast, infrared images can capture thermal
radiation information under extreme-light or obscured conditions while they often suffer from
poor details and low quality. Therefore, visible and infrared image fusion aims to combine the
complementary and valuable information of these two modalities. The single fused image can
retain the clarity and fine details of the visible image while incorporating the prominence of thermal
targets in the infrared image for comprehensive representation. The fusion results can aid in both the
human visual perception and subsequent widespread applications, such as object detection [26, 51} [7]],
semantic segmentation [20, 43]], autonomous driving [47, [3].

With the rapid development of deep learning, many learning-based fusion methods have been
proposed. These methods can be categorized into: methods based on auto-encoder (AE) [2, 40,
convolutional neural network (CNN) [31} 21} [32], generative adversarial networks (GANSs) [[11}
42| 18], Transformer [[16} [13], Mamba [29] and Diffusion [S0} 35, 23]. Despite the progress in
network architectures, these methods purely aim to preserve the original information in source images
without distinguishing the information quality. In real-world scenarios, the quality of imaging is
adversely affected by challenging conditions (e.g., poor illumination) and the inherent constraints
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Figure 1: Comparison of Deno-IF with SOTA image denoising and fusion methods by: i) similarity
with clean source images (measured by PSNR), ii) image quality assessment (measured by BRISQUE),
and iii) complexity (measured by parameter numbers and represented by circle sizes). The high- and
low-saturation circle regions represent parameters of fusion and denoising method [23]], respectively.

of cost-effective multi-modal devices. These systems are prone to significant noise, stemming
from degraded signal acquisition (especially in low-cost microbolometers and CMOS sensors) and
ineffective embedded processing pipelines. Under interference conditions, there remain several
critical challenges that need to be addressed to achieve robust high-quality fusion results [33].

As most existing fusion methods are tailored for standard scenarios and ineffective at suppressing
noise, an intuitive approach is to first denoise the source images before performing fusion. However,
the framework taking denoising and fusion as independent tasks presents two limitations. On the
one hand, denoising methods are typically deployed on a single source image, making it challenging
to leverage complementary knowledge from the other modality. When denoising performance is
limited, fusion methods are unable to handle the residual noise or over-smoothness, leading to its
persistence in the fusion result, as shown in the result in Fig.[I] On the other hand, the mutually
independent framework suffers from significant redundancy. The goal of image fusion is to extract
vital and complementary information, which is then integrated into the fused images. Besides, image
denoising aims to mine essential clean data from noisy inputs. From the perspective of essential
information extraction and mining, their objectives are consistently aligned to some extent. The
independent framework ignores the commonality, leading to redundancy as Fig. [T} There remains the
potential to jointly realize denoising and fusion in a streamlined manner.

Although some degradation-aware image fusion methods exist [22 [36]), they are supervised methods
aimed at learning the mapping from degraded source images to clean fused images. The key lies in
the construction of large amount of noisy and clean source image pairs. Their denoising effectiveness
is limited by the fixed and limited mapping relationship between the constructed noisy and clean data,
resulting in poor generalization. As a result, these methods are only effective for specific types of
noise with particular variances. Facing various and variable noise encountered in real-world scenarios,
these methods are highly susceptible to failure, as shown in their performances in Fig.[I]

To overcome these issues, this paper proposes an unsupervised noisy visible and infrared image
fusion method, termed as Deno-IF. It consists of two modules, including a convolutional low-rank
optimization module and a joint denoising and fusion module. First, based on the convolutional low-
rank property of high-quality data, the convolutional low-rank optimization module decomposes clean
component from noisy input through convolution nuclear norm minimization in an unsupervised
manner. Then, the joint denoising and fusion module takes noisy source images as input and
directly outputs the fused image. The network includes both intra-modal recovery and inter-modal
recovery and fusion, with self- and cross-modal attention to deal with complex individual-modal and
complementary multi-modal information. The decomposed data provides the optimization guidance
for the joint denoising and fusion module. Besides, a convolution matrix-based regularization loss is



designed to further suppress noise in fused images. Thus, it can realize denoising and fusion jointly
and generate clean fused images. The contributions are summarized as:

* We propose an unsupervised noisy visible and infrared image fusion method. Without the super-
vision of clean data, it can still realize denoising and fusion simultaneously with fewer network
parameters, and is robust against various and variable noise conditions, ensuring effective across
diverse scenarios.

 For noisy source images, we design a convolutional low-rank optimization module. As clean data
usually exhibits convolutional low-rankness, we introduce the convolution nuclear norm minimization
to decompose clean data from noisy inputs. It provides the optimization guidance for fusion network
in the training phase.

* For joint denoising and fusion, a Transformer-based network consisting of intra-modal recovery
and inter-modal recovery and fusion is designed. It leverages self- and cross-modal attention to
collaboratively strive to approximate the optimization guidance. Besides, a convolution matrix-based
regularization loss is designed to further suppress noise in fused images.

2 Related Work

Learning-Based Image Fusion Methods. These methods preserve the information in source images
through the design of network architectures and loss functions. According to architectures, they can be
divided into AE, CNN, GAN, Transformer, Mamba and Diffusion-based methods. AE-based methods
design encoders and decoders for feature extraction and reconstruction, with traditional or learning-
based [30] fusion strategies. CNN-based methods utilize end-to-end fusion [41} 6] and the key lies
in pixel-level loss functions. GAN-based methods preserve unique information through adversarial
games from the perspective of probability distribution while they always suffer from unstable training
and model collapse [12,[17]. Transformer and Mamba-based methods build long-range dependency
to solve the limited receptive field of CNN [13 24, 29| [15]. Diffusion-based methods leverages the
powerful generative properties of diffusion models to establish a stable fusion process [38, 4, [34]].
However, these methods are designed for normal scenarios and ignore degradations in real world.
Facing degraded images, they fail to tackle degradations, reducing the quality and usability of results.

Degradation-Aware Image Fusion Methods. Some fusion methods suppress degradations and
achieve fusion in a unified network. Text-IF [36] leverages the text prompts with degradation
information to guide the enhanced fusion. The network is trained with the manually constructed
paired degraded and high-quality source images. DRMF [22] pretrains multiple degradation robust
diffusion models and devises a combination module to integrate priors. Similarly, the performance
also depends on paired constructed data. They can handle different types of degradations including
noise. However, since the introduced noise has fixed variance, it demonstrates limited generalization.
These methods heavily rely on paired constructed data. This paper proposes an unsupervised method
that requires only degraded data for training. We infer the clean component to guide the fusion
network, significantly reducing the data demand and the number of network parameters.

3 Proposed Method

3.1 Problem Formulation

Mathematically, a pair of observed noisy visible and infrared images {V, R} can be decomposed as:
V:Lv+sva R:Lr+sr7 (1

where L,, L, is the clean data and S,,, S, is the noise. As clean data, L,, L, should be of convolu-
tional low-rankness [8]]. S,, S, should be small-scale perturbations with limited overall energy and
amplitude to ensure the convolutional low-rankness of L,,, L.

Taking noisy source images V, R as input, the jointly denoising and fusion module generates a
high-quality fused image F free from noise. Based on the decomposition assumption in Eq. (IJ), the
goal is equivalent to making F contain vital information in L,,, L,, mined from V, R, respectively.

As shown in Fig. 2] the overall framework consists of the convolutional low-rank optimization module
and the joint denoising and fusion module. The convolutional low-rank optimization module solves
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Figure 2: Overall framework of the unsupervised noisy infrared and visible image fusion method.

the ill-posed decomposition problem to provide precise guidance for network optimization. In the
joint denoising and fusion module, a network F takes noisy source image as input, consists of intra-
modal recovery and inter-modal recovery and fusion. Based on Transformer, intra-modal recovery
leverages the self-attention mechanism to enhance restoration by capturing long-range dependencies
within individual modality. Inter-modal recovery and fusion exploits cross-modal attention, enabling
the joint restoration and fusion of complementary multi-modal information. F is optimized with the
results of the convolutional low-rank optimization module to realize joint denoising and fusion.

3.2 Convolutional Low-Rank Optimization Module

For the decomposition problem in Eq. , we take the infrared image R € R"*™ as example
(subscript 7 is temporarily omitted for simplification). To ensure the respective properties of L and S,
the problem can be formulated as:

min [ Ag (L) + B[S|%, st R=L+S, (@)
where the first term is based on convolution nuclear norm, which is the nuclear norm of its convolution
matrix [8]]. Ay (-) is a linear map from R"*% to RP"**1k2 where k; (1 < ky < h) and ko (1 < ky <

h) denote the kernel size in Ay (-). It produces the convolution matrix of the input. || - ||, and || - || 7
denote nuclear and Frobenius norms, respectively. 8 controls the trade-off between these terms.

Within the maximum a posteriori (MAP) inference framework, L and S can be obtained by minimizing
the following energy function:

E(L,S) = R — L = S|[% + al A (L)« + B[SII%, ©)

where the first term is fidelity term and the last two terms are regularization term denoting imposed
priors over L and S. « also controls the trade-off.

With [19] releasing nuclear norm as:
1 1
X[l = min S||AIE + 5B, st X = AB, @)
the energy function can be rewritten as:

(&% (0%
E(L,S,M,N) = |[R — L =S| + S[IM||% + 5 N[ + 7] Ax (L) = MN| % + B[IS|7,  (5)
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where M € RPw>m N € R™*k1kz  ig a trade-off parameter.

This problem can be solved by iteratively addressing the subproblems related to L, S, M, N. With ¢
denotes the iteration step, the problem can be partitioned into the following four subproblems:

L, = argmLin IR—L—S; 1]|% + [ Ar(L) = M;_1N;_1||%, (6a)
S; = argmin [R — L; — S||% + 8S, (6b)

M; = argmin Z[IM[[3 + 5] Ac(Lo) - MNea |, (60)

N; = argmin 2 [NI[% + /A (Le) - MoN| 3. (6d)

When t=1, we initially set the variables as L; = R. S; is set to randomly distributed noise. M; and
N; are set to identity-like diagonal matrix. During the iteration process, the closed-form solutions for
these four subproblems can then be obtained as:

_ R - St—l + ’}/AZ(Mt—th—l)

L , 7
¢ o (7
where A7 (+) is the Hermitian adjoint of Ay,
R-L _
Si= 57 T M= 294 (LN (ol + 29NN ) T (8)
where I is a m X m identity matrix.
Ny = 2y(ad + 29M, M) "M Ag(Ly). )

For the visible image V € R"*%*¢, the primary distinction to infrared data lies in three channels.
It results in slight differences in the construction of convolution matrix and the shapes of M, N.
Specifically, Ax(V) is a linear map from RM*wX¢ to Rhwexkikzks “where ky (1 < ky < h),
ko (1 < ky < w) and k3 (1 < k3 < c) are the kernel size. M € R"¢X™ and N € R"*Fikzks

3.3 Joint Denoising and Fusion Module

Network Architecture. Directly denoising multi-modal source images as a whole without distinction
will overlook the modal differences and noise characteristics between multi-modal images, posing
greater challenges to . Thus, the fusion network F comprises two key components: intra-modal
recovery and inter-modal recovery and fusion. In one source image, the modality is unique and the
noise characteristics are consistent. We first perform intra-modal feature recovery in visible and
infrared domains, respectively. Then, the inter-modal recovery and fusion integrates information
across different modalities while effectively handling the complex noise characteristics among these
modalities. The overall network is named as I2Former. The output is the clean fused image F.

For the two components in F, we adopt the Transformer block [39] for intra- and inter-modal feature
extraction and integration. In intra-modal recovery, we respectively extract features from V, R as
f,, .. In each block, the intra-modal multi-Dconv head transposed attention (73,.) generates query,
key and value projections for £, f,. as:

{QvaKIMVU} = Tt‘gr(fU% {QNK?‘?VT} = Ttljr(fT>' (10)

Then, the output visible feature maps are f; = Softmax ( K”;Q” )V, +£,, where ¢ is a learnable scaling
parameter. Infrared features are modulated similarly. The features are passed through gated-Dconv
feed-forward network for controllable transformation. Multiple blocks generate multi-scale features.

In inter-modal recovery and fusion, the visible and infrared features of the smallest scale are concate-
nated, fed into a convolutional layer for channel reduction and upsampled. With f; and f,,, ;. as input,
the inter-modal multi-Dconv head transposed attention (7},,) generates projections as:

{QfaKfan}:Ttra (W(flnfraff))a (11)

where W is a convolutional layer for channel reduction. The final output features can be obtained as
f} = SoftmaX(Kf ;Qf Vi + W (£,,£,£;). The fused features of the original scale are finally passed

through some blocks for refinement and a convolutional layer to generate the fused image F.




Loss Functions. From the aspect of network optimization, clean components derived with convo-
lutional low-rank priors serve as i) physics-driven prior injector to regularize fused images, and ii)
implicit teachers that enable knowledge distillation of denoising priors into the fusion network. It
enables simultaneous noise suppression and information fusion. Thus, the loss functions of F consist
of some data fidelity terms and a regularization term.

Data Fidelity Terms. Sec.[3.2]obtains the estimation of L,, and L,.. The data fidelity terms constrain
the fused image F to keep similarity with L,, and L,. from multiple perspectives to preserve the scene
information, including intensity, gradients, and chrominance components.

The intensity loss makes F capture proper intensity distribution. One target is to preserve the thermal
prominence in L,.. Considering the low thermal radiation regions in L, and low-light regions in
L,, the other target is to preserve the more prominent information. The intensity loss is denoted as
Lin = ||FY —max(L¥,L,)|; where LY, F¥ are the Y channels of L,,, F in YCbCr space, respectively.

The gradient loss preserves the prominent textures in L,,, L, to present more contents. We generate a

b}

gradient mask M considering the gradient relationship between LY, L,.. When ‘VLy ‘ > |VL”‘J

vij

my, = 1 where V is Laplacian operator, ¢ and j indicate the spatial position. Otherwise, mg, ;=
0.The loss constrains the gradient similarity as:

Ly=|VF —[m, - VLY + (1 —-my)- - VL,] ;. (12)

The chrominance loss preserves the chrominance information in L,, into F. L,,, F are translated into
YCbCr space and the constraint is performed on chrominance channels as:

Lenr = [F" =Ll + [FT" — L7 1. (13)

Regularization Term. In the optimization process of F, the performance gap in intra-modal recovery
and the residual and cumulative deviation in inter-modal recovery and fusion will affect performance.
To further correct deviations, the convolutional low rank of fused image is regularized as:

‘Crank: - ||Ak(F)||*7 (14)

where Ay (F) computes the convolution matrix of F. Ax(:) is a linear map from R"*w*¢ to
Rhwexkikaks (defined at the end of Sec. [3.2). The nuclear norm imposes a low-rank constraint
on the convolution matrix of F, thereby reducing residual noise in F by mining its intrinsic structure.

With hyper-parameters A, ), s to control the trade-off, the final loss function is defined as:

l:]: = £in + )\‘Cg + 77£ch7' + '%Erank- (15)

4 Experiments and Results

Datasets and Implementation. Existing datasets are collected for the target of high image quality,
thus relying on cost-prohibitive imaging systems to ensure high signal-to-noise ratios. As there are no
publicly available noisy infrared and visible datasets for direct use, We simulate real-life noisy source
images by injecting two representative types of noise with various levels (additive Gaussian noise and
multiplicative speckle noise) into clean data [[27,/46].The clean data is not used during training. We
train Deno-IF on 2120 pairs of visible and infrared images across two datasets, including LLVIP [3]]
and M3FD [9]. For the introduced noise, o randomly distributed in [10, 50]. In the training phase,
images are randomly cropped into patches of 128 x 128 for training. The evaluation is performed on
image pairs introduced Gaussian or speckle noise with randomly distributed variance.

In convolutional low-rank optimization module, h and w are 128, ¢ = 3. Kernel size of A (-) are
k1, ke =12, k3 = 2. m,n = 256. We perform 30 iterations for each patch. For parameters in Eq. (3),
B = 2. «,y are empirically related to data characteristics. As an unsupervised method, for a patch
X, we roughly estimate its noise level as n = E [|V(x) — V(G(x))|], where G(-) is Gaussian blur.
a is 200n and 80n for visible and infrared data respectively. 8 = 15n. These manually designed
settings stem from the consideration of i) a principled trade-off for adaptive regularization (strong
for high-level noise for noise suppression, weak for low-level noise to preserve details); and ii)
computational efficiency for an optimal efficiency-accuracy balance.
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Figure 3: Qualitative results when both source images are subject to various-level Gaussian/speckle
noise on LLVIP and M3FD datasets.

Table 1: Quantitative results when both source images suffer from various-level Gaussian or Speckle
noise (bold: optimal, underline: suboptimal).

Gaussian LLVIP Dataset M3FD Dataset
Metrics SSIM T PSNR? FSIM?T ccr BRISQUE| SSIMt PSNRT FSIM?T cct BRISQUE|
CT.+Tar. 0.42140.169 15.600+1.464 0.792+0.024 0.680+0.082 19.519+8.577 | 0.469+0.143 14.597+2.781 0.756+0.032 0.513+0.195 24.898+9.713

CT.+CDD. 0.446+0.206 15.881+1.366 0.803+0.028 0.698+0.072 33.929+20.019 | 0.466+0.140 15.076+2.789 0.772+0.031 0.501+£0.226 42.196414.175
CT.+DDFM | 0.474+0.178 16.782+1.138 0.815+0.022 0.736:+0.077 30.624+16.59 | 0.489+0.165 15.525+2.513 0.767+0.051 0.587+0.191 35.771+13.177
CT.+Meta. 0.502:40.099  15.27441.193  0.694+0.045 0.662+0.083 24.597+12.281 | 0.533+£0.132 14.606+2.650 0.675+0.053 0.548+0.194 14.430+5.869
CT.+Fusion. | 0.270+0.135 11.694+0.624 0.760+0.042 0.679+0.078 26.381+11.446 | 0.459+0.094 10.618+1.040 0.744+0.047 0.565+0.158 16.474+11.822
CT.+Prompt. | 0.433+0.197 15.811+1.331 0.803+0.029 0.702:£0.073 36.876+19.142 | 0.474+0.125 15.007+2.679 0.777+0.033 0.470+0.243 25.837+13.808

DRMF 0.148+0.081 11.899+1.242 0.693+0.031 0.489+0.156 67.922+12.462 | 0.280+0.121 13.482+1.628 0.738+0.043 0.334+0.219 44.186+11.117
Text-IF 0.208+0.069 14.956+1.125 0.770+£0.025 0.652+0.071 54.482+10.614 | 0.225+0.089 13.837+2.509 0.710+0.055 0.404:+£0.209 37.228+8.241
OmniFuse 0.377+0.080 12.64240.727 0.731+0.026 0.642+0.089 41.046+3.748 | 0.540+0.098 14.488+2.119 0.763+0.031 0.459+0.211 46.787+6.876
Deno-IF 0.616+0.064 17.070+1.426 0.811+0.023 0.738+0.074 16.725+4.091 | 0.585+0.081 15.637+2.899 0.788+0.029 0.563+0.205 24.298+7.095
Speckle LLVIP Dataset MB3FD Dataset

Metrics SSIM T PSNR* FSIM? ccr BRISQUE| SSIM T PSNRT FSIM?T cct BRISQUE|
CT.+Tar. 0.42340.073  15.125+1.464 0.776+0.024 0.687+0.072 13.375+9.263 | 0.553+0.129 15.358+2.393 0.775+0.039 0.553+0.206 13.950+9.283

CT.+CDD. 0.419+0.096 1552741515 0.789+0.026 0.681+0.063 45.497+13.496 | 0.539+0.145 15.906+2.520 0.789+0.041 0.558+0.215 25.231414.022
CT.+DDFM | 0.474+0.086 16.191+1.218 0.808+0.022 0.723+0.069 32.897+12.572 | 0.584+0.125 16.23242.259 0.806+0.047 0.641+0.157 18.320+11.767
CT.+Meta. 0.538+0.072  15.10241.220 0.697+0.043 0.669+0.075 10.860+9.531 | 0.615+0.115 15.606+2.526 0.710+0.046 0.611+0.164 10.412+6.587
CT.+Fusion. | 0.338+0.055 11.909+0.694 0.737+0.032 0.683+0.066 29.446+7.250 | 0.51640.106 10.9500.807 0.774:£0.034 0.612+£0.150 21.178+9.460
CT.+Prompt. | 0.381+0.085 15.212+1.313 0.787+0.026 0.681:+0.066 48.286+12.442 | 0.522+0.146 15.881+2.447 0.784+0.041 0.521+0.244 21.837+12.825

DRMF 0.475+£0.047 1241741377 0.72240.021 0.567+0.137 21.406:£10.566 | 0.649+0.100 14.147+2.561 0.790+£0.026 0.423+0.246 43.180+17.155
Text-IF 0.400+£0.054 13.953+1.119  0.7594+0.019  0.665+0.060 27.072+£9.667 | 0.554+0.128 15.941+2.402 0.780+£0.037 0.496+0.235 18.908+10.381
OmniFuse 0.479+0.052  12.85940.775 0.741+0.017 0.665+0.074  39.696+4.430 | 0.585+0.104 15.221+2.089 0.767+0.033 0.523+0.213  44.850+7.131
Deno-IF 0.633+0.052  16.528+1.370 0.805+0.022 0.738+0.065  9.280+5.918 | 0.656:0.075 16.525+2.800 0.813+0.026 0.648+0.155 16.514:8.460

In the joint denoising and fusion module, I2Former is updated with Adam Optimizer with batch size
as 4 and epoch as 80. Learning rate is 2e-4 with exponential decay. Hyper-parameters are A = 1e3,
1 = 30. k increases during training and equals the multiplication of 1e-6 and epoch. Numbers of
blocks in Fig. |Z|are L.,Ls =2, L1, Ly = 4. Experiments are conducted on an NVIDIA 3090 GPU.

Comparison Results. We consider two typical types of noise (additive and multiplicative noise)
during imaging process, e.g., Gaussian and speckle noise in source images. For noisy source
images, we compare Deno-IF with both the combination of SOTA denoising and fusion methods and
degradation-aware image fusion methods. As some fusion methods (TarDAL [9], CDDFuse [49]],
DDFM [30], MetaFusion [48]], FusionBooster [[]], and PromptFusion [10]) cannot handle noise,
CTNet [25]] (supervised denoising method) is used for pre-denoising before these fusion methods
are performed. The rationale of selecting CTNet for comparison is two-fold: i) validating the
unsupervised generalization of the proposed method against the supervised denoising performance
of CTNet; ii) validating the improvements of architecturally relevant frameworks and objectives as
CTNet also designs a Transformer-based network. The supervised degradation-aware fusion methods
(DRMF [22]], Text-IF [36], and OmniFuse [44]) directly fuse noisy source images.

Qualitative Results. Qualitative results where both source images suffer from various-level Gaus-
sian or speckle noise across two datasets are shown in Fig.[3] First, as Deno-IF jointly realizes
denoising and fusion, it avoids the residual noise in competitors caused by the limited pre-denoising
performance. Second, as an unsupervised method, Deno-IF can infer clean data from source images
which both suffer from noise and present clear fused images. On the other hand, it shows robust
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Figure 4: Qualitative results when only one source image is sub_]ect to various-level noise.
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Figure 5: Quantitative results in difference situations of noise presence on two datasets (see Supple-
mentary Material for results in specific situations).

performance across various noise types and levels, addressing the low generalization of existing
supervised denoising and fusion methods. Finally, the inference on clean data in Deno-IF is based on
convolutional low-rankness, avoiding excessive distortion of meaningful scene content in competitors.

Quantitative Results. Traditional fusion metrics fall into similarity-based metrics (evaluating similarity
between fused and source images) and statistics-based metrics (measuring image characteristics,
e.g., SD, SF, EN, etc.). However, when fusing noisy images, statistics-based metrics may produce
misleading results as noise may artificially inflate these values (e.g., higher EN/SF caused by noise
rather than meaningful information). Thus, in this work, we prioritize similarity-based full-reference
metrics (i.e., SSIM [28], PSNR, feature similarity index (FSIM) [43]] and correlation coefficient
(CO)) and a quality-based no-reference metric BRISQUE [[14] to evaluate denoising and fusion
performances on 30 image pairs.

As reported in Tab. [T} Deno-IF achieves optimal performances on most metrics. The results on full-
reference metrics indicate that our results show high similarity with clean source images. The results
on the non-reference metric indicate that our results have less distortion. Finally, the comprehensive
results and small variances indicate the generalization of Deno-IF for various scenes, noise types, and
noise levels.

Validation on Single-Modal Noise. To validate the generalization under different noise presence
situations especially specific-modal noise, we perform experiments where only one source image
suffers from noise. We take source images with Gaussian noise for example and qualitative results are
shown in Fig. ] On the one hand, Deno-IF effectively removes noise in infrared or visible modalities
without being affected by modal differences, avoiding residual noise in results. On the other hand,
it indicates the generalization of Deno-IF in different noise presence situations. As reported in the
quantitative results of each situation in Fig. [5] Deno-IF shows the optimal results in SSIM, PSNR and
FSIM, and suboptimal results in CC and BRISQUE in total amount. From the perspective of variance
across situations and datasets, Deno-IF achieves advantageous and balanced performances.
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Figure 6: Impacts of decomposition parameter settings and results of ablation experiments.

Table 2: Quantitative results of ablation study and performances on dealing with different-level noise.

Metrics SSIM{ PSNR{ FSIM{ CCl ‘ PSNR? \ SSIMY | FSIM{ | cet | BRISQUE/
o | DRMF Text. Omn. Deno. | DRMF Text. Omn. Deno.| DRMF Text. Omn. Deno.| DRMF Text. Omn. Deno.| DRMF Text. Omn. Deno.

w/o intra-modal  0.606  16.960 0.799 0.730

wlo direct fusion 0.613 16.965 0797 0.730 10| 11.997 16.141 12522 16.878 | 0.309 0431 0484 0.675 0.716 0.814 0.747 0818 0.557 0.702 0.667 0.740 | 26.855 33.060 41.297 15.364
wlo E;, 0.600 16.160 0789 0.685 20| 11.874 15.736 12.551 17.097 | 0.182 0.239 0.427 0.650 | 0.705 0.793 0.738 0.816 | 0.528 0.681 0.657 0.738 | 58.717 45.843 41.610 16.493
WIo Lyan 0611 16554 0802 0727 30| 11.949 14.433 12701 17.199 | 0.170 0.148 0.384 0.632 | 0.700 0.737 0.732 0.813 | 0.510 0.629 0.648 0.735 | 66.016 58.087 40.411 17.989
Deno-IF (ours) 0616 17.070 0811 0738 40| 11.935 14,182 12.803 17.262| 0.138 0.109 0.350 0.617 0.688 0.725 0.728 0.809 0.467 1‘.(.’)‘)4 0.636 0.733 | 74.548 61.441 38531 20514
50| 11.719 13.477 12.848 17.242| 0.106 0.084 0318 0.602 | 0.675 0.693 0.722 0.805 | 0423 0.562 0.624 0.732 | 75.814 66.258 35.604 24.256

(a) Results of ablation study. (b) Results on dealing with different-level noise.

Optimization Parameter Settings. We validate impacts of «, 3, in Eq. (3) on the estimation of
clean component L. We first analysis impacts of «, y and then analyze the impact of 5 with fixed «, 7.
Taking visible data for example, when 3 = 2, Fig.[6h shows results with varying «,y. a constrains
the Frobenius norm of M, N. ~y constrains similarity between .4 (L) and MN. Small ~ fails to ensure
similarity. Regardless of varying «, L tends to be noisy. As ~ increases, Ay (L) tends to be low-rank
for clarify. Excessively large « disrupts the similarity between L + S and noisy image, leading to
brightness and content distortions. With appropriate -, a small « leads to texture distortion. A large
« leads to smoothing and hazy appearance. By carefully tuning «, the details can be adjusted for
balance. Then, the decomposition results with varying § are shown in Fig. [6p. When £ is small,
the constraint on S is weak and many contents are mistakenly decomposed into S. When £ is large
enough, S contains little information, resulting in residual noise in L.

Ablation Study. We validate some architecture designs and loss functions. For architectures, we
consider: i) intra-modal recovery in I2Former. We remove it and modify [2Former to a Restormer-like
structure with similar parameters. ii) direct fusion. Rather than learning a residual image to noisy
inputs, [2Former directly generates fused image. It learns a residual image F, to a pre-fused image
F, as fused image F = F, + F,, where F, = ¢(max(V¥,R), VE*, VE"). For loss functions, we
remove the gradient loss £, and regularization term L,.qn%. As in Fig. |§|:, F, contains noise. Without
intra-modal recovery, the result shows diagonal effects. If learning a residual image to F,,, the unstable
training process results in slight intensity and color casts. The lack of £, results in blur contents.
Without L., the result cannot infer more contents according to convolutional low-rank property.
Deno-IF generates clear results with more contents. The results in Tab. [2a]are also consistent with
qualitative results. Without L, it shows the worst performance. By introducing intra-modal recovery,
direct fusion, and L;.4,x, our method achieves the optimal performance among all the settings.

Performances on Different-Level Noise. Experiments on different-level noise Gaussian noise
(as a representative) are reported in Tab.[2b] As o increases, the performances of the competitors
significantly decrease on most metrics. Although it is an increasingly challenging trend for recovering
under more severe noise, our method shows smaller fluctuations, showing its robustness.
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Figure 7: Results of different-level noise and external verification on high-level task.

Table 3: Computational efficiency comparison of different methods.

Methods ‘ Tar. CDD. DDFM Meta. Fusion. l’rompt.‘ CT.+4Tar. CT4+CDD. CT.+DDFM CT.+Meta. CT.+Fusion. CT.+Prompt. DRMF Text-IF Omn. Deno-IF

Para (M) 0.30 1.19 552.66 081  0.56 7.44 5171 52.60 604.07 5222 51.97 5891 170.98 215.12 98.15 1.433
FLOPs (G) | 91 548 5221 159 241 36877 41695 42152 46824 41763 41845 78481 4576 1519 5471 115
Runtime (s) | 0.03 0.23  68.79 0.04 249 1.08 13.50 13.70 82.26 13.51 15.96 14.55 4.47 031 453 0.06

External Verification on High-Level Task. The denoising and fusion performances are externally
validated by a subsequent high-level task—object detection. In Fig.[7p, it is challenging to accurately
detect some targets in a single noisy visible/infrared image. By denoising and fusing noisy source
images, some competitors can boost detection accuracy while some methods exhibit notable mis-
classification. Our result eliminates noise interference and preserve essential information, improving
both detection accuracy and precision. Quantitative results are reported in Supplementary Material.

Efficiency Comparison. The efficiency is evaluated by parameter numbers, FLOPs, and runtime.
Due to the large parameters, high computational complexity, and runtime of denoising method CTNet,
we also report the efficiency of pure fusion methods. As reported in Tab. [3] our method shows higher
efficiency than the competitors. It also achieves simultaneous denoising and fusion with an efficiency
that is comparable or even superior to those of pure fusion networks.

5 Conclusion

This paper proposes an unsupervised noisy visible and infrared image fusion method, addressing the
limitations of existing methods that cannot handle noise interference or rely on paired data restricted by
noise characteristics. The proposed network, featuring a convolutional low-rank optimization module
and a joint denoising and fusion module, eliminates data dependency and improves generalization
while reducing complexity. Experimental results demonstrate its effectiveness and robustness.
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Technical Appendices and Supplementary Material

1. Details of Transformer Block and Variation of Losses under Different Network Settings

The network architecture of the Transformer Block in Fig. [2]is shown in Fig.[8h, where the left part is
multi-dconv head transposed attention and the right part is the gated dconv feed-forward network.

In the ablation study introduced in Sec.[d] we perform the experiments by removing the intra-modal
recovery and learning a residual image to a pre-fused image (w/o direct fusion). The variation of
losses under these settings during the training phase is shown in Fig.[8p. By comparison, the I2Former
in Deno-IF achieves both faster convergence speed and higher convergence accuracy.
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Figure 8: Details of Transformer block and variation of losses under different network settings.

2. Quantitative Results of Generalization in More Situations of Noise Presence

The quantitative results on five metrics across two datasets when fusing i) noisy visible and clean
infrared images; ii) clean visible and noisy infrared images are reported in Tabs. ] and 3] respectively.
In these situations, our method can still achieve optimal or comparable performances, indicating its
generalization for various situation of noise presence.

Table 4: Quantitative results when fusing noisy visible and clean infrared images (bold: optimal,

underline: suboptimal).
Datasets | LLVIP | M3FD
Metrics ‘ SSIM?t PSNR? FSIM1 cCcr BRISQUE| ‘ SSIM T PSNR? FSIMt cCr BRISQUE|
CT.+Tar. 0.370+0.133  15.174+1.444 0.804+0.028 0.691+0.073 25.623+8.442 | 0.683+0.111 15.423+2.617 0.809+0.034 0.532+0.199 21.485+5.250
CT.+CDD. 0.459+0.150 15.665+1.510 0.814+0.026 0.712+0.068 37.863+19.525 | 0.67440.125 15.609+2.704 0.81240.043 0.520+0.224 27.945+6.977
CT.+DDFM | 0.493+0.112 16.915+1.353 0.825+0.020 0.753+0.068 32.374+15.354 | 0.699+0.111 15.929+2.368 0.814+0.056 0.612+0.189 29.635+6.150
CT.+Meta. 0.494+0.072  15.348+1.285 0.687+0.033 0.687+0.078 30.694+7.736 | 0.6424+0.114 14.926+2.402 0.72940.052 0.569+0.185 16.723+9.889
CT.+Fusion. | 0.30940.100 11.756+0.663 0.816+0.020 0.720+0.075 36.910£13.231 | 0.636+0.075 10.951+0.983 0.824+0.038 0.605+0.151 26.701+7.944
CT.+Prompt. | 0.449+0.145 15.743+1.410 0.814+0.025 0.713+0.069 37.690+17.569 | 0.659+0.128 15.561+2.593 0.806+0.045 0.474+0.243  26.715+7.489
DRMF 0.116+0.045 11.124+0.688 0.673+0.019 0.489+0.150 75.159+4.613 | 0.346+0.144 13.7524+2.144 0.73940.043 0.3514+0.232 42.136+15.254
Text-IF 0.365+0.112  14.571+1.222  0.776+0.022 0.696+0.071 15.487+8.137 | 0.660+0.137 15.400+3.025 0.814+0.044 0.465+0.225 38.897+8.459
OmniFuse 0.456+0.061 12.252+0.852 0.748+0.014 0.654+0.093 40.314+2.856 | 0.66340.101 15.255+2.486 0.801+0.033 0.439+0.237 53.264+5.029
Deno-IF 0.685+0.040 17.104+1.691 0.827+0.022 0.749+0.076  23.779+4.270 | 0.69140.082 15.973+2.905 0.822+0.032 0.592+0.174 27.164+5.110

Table 5: Quantitative results when fusing clean visible and noisy infrared images.

Datasets | LLVIP | M3FD
Metrics ‘ SSIMT PSNR7 FSIMt CcCr BRISQUE/ ‘ SSIMT PSNR?T FSIMt cCt BRISQUE]
CT.+Tar. 0.341+0.138  14.610+1.300 0.772+0.021 0.687+0.077 20.811+8.946 | 0.511+0.177 15.467+2.243 0.778+0.036 0.609+0.161 19.693+9.830
CT.+CDD. 0.346+0.154  14.9924+1.316 0.785+0.021 0.709+0.073 44.857+11.512 | 0.541+0.165 16.048+2.466 0.798+0.026 0.605+0.188 35.030+17.913
CT.4+DDFM | 0.419+0.137 16.064+1.220 0.803+0.017 0.752+0.073 36.578+11.318 | 0.555+0.177 16.211+£2.278 0.80340.042 0.675+0.148 30.017+15.380
CT.+Meta. 0.543+0.060 14.70141.189 0.685+0.034 0.676+0.084 18.320+10.509 | 0.608+0.100 15.512+2.471 0.696+£0.043 0.642+0.150 10.293+7.004
CT.+Fusion. | 0.44240.062 11.516+0.652 0.757+0.029 0.742+0.072 31.142+5.761 | 0.573+0.083 11.081+0.835 0.784+0.037 0.663+0.130 18.544+5.514
CT.+Prompt. | 0.332+0.146 14.845+1.311 0.782+0.022 0.707+0.073 47.847+12.074 | 0.550+0.143 16.326+2.311 0.795+0.026 0.576+0.208 25.187+14.365
DRMF 0.560+0.055 13.508+1.760 0.739+0.027 0.601+0.133  25.842+7.661 0.693+0.078 15.675+2.150 0.808+0.026 0.452+0.221 46.885+10.449
Text-IF 0.546+0.089 15.097+1.355 0.770+0.026 0.697+£0.066 22.293+7.881 0.660+0.113  16.505+2.464 0.795+0.032 0.561+£0.211 25.388+6.248
OmniFuse 0.548+0.050 12.72140.912 0.754+0.021 0.688+0.076 36.807+4.436 | 0.688+0.091 15.790+2.374 0.806+0.023 0.541+0.215 48.140+4.642
Deno-IF 0.660+0.052 16.072+1.183 0.797+0.017 0.732+0.064 20.248+7.930 | 0.684+0.072 16.530+2.496 0.812+0.023 0.650+0.172 19.422+9.141
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3. Results on the Original Clean Visible and Infrared Image Fusion Task

We conduct the experiment to fuse the original clean visible and infrared images. The experiment
merely compares the fusion performances of Deno-IF and SOTA image fusion methods and verifies
whether the proposed method will blur clean data. As shown in Figs. our method can preserve
the content of two source images in a more balanced manner, thus reflecting more scene contents in
the fused image and assisting in human visual perception with comparable contrast.

FusionBooster PromptFusion DRMF Text-IF OmniFuse Deno-IF (ours)

Figure 9: Qualitative results on the LLVIP dataset when fusing clean visible and infrared images.

Visible Infrared TarDAL CDbFuse DDFM MetaFusion

v

5 "Ew (8 o )

FusionBooster PromptFusion DRMF Text-IF OmniFuse Deno-IF (ours)

Figure 10: Qualitative results on the M3FD dataset when fusing clean visible and infrared images.

4. Quantitative Results of Detection under Noise Interference

Tab. [6]reports the quantitative results of detection on the fusion results of noisy source images. The
metrics include precision, recall, average precision (AP), and mean AP (mAP). mAP is the average
of all APs at IoU thresholds from 0.5 to 0.95 in steps of 0.05.

Table 6: Object detection results when source images suffer from noise.

‘CT.+Tar. CT+CDD. CT+DDFM CT.+Meta. CT.+Fusion. CT.+Prompt. DRMF Text-IF OmniFuse Deno-IF

Precision 0.888 0917 0.877 0.917 0.857 0.883 0.877  0.902 0.897 0.878
Recall 0.619 0.670 0.701 0.653 0.657 0.645 0.601  0.688 0.697 0.724
AP@0.5 0.763 0.787 0.811 0.772 0.758 0.769 0.722  0.786 0.802 0.807
mAP 0.488 0.516 0.535 0.496 0.489 0.496 0.437  0.507 0.525 0.536

5. Validation of Convergence during Iterative Process

The first module is the convolutional low-rank module, which aims to decompose the noisy input
into clean and noisy components. The decomposition problem is rewritten as the energy function in
Eq. (3). To validate the convergence during the iterative process, we document several terms of this
energy function during iteration.

As summarized in Tab. [7] the iterative process of low-rank optimization module demonstrates
convergence. For M and N, they are initialized as rectangular identity-like matrices (all elements
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on the main diagonal are 1 and other elements are 0). As the initialized matrices do not contain
much information, |[M|| ¢ and ||N|| ¢ initially increase to incorporate more information, followed by
a gradual stabilization as iteration progresses.

Table 7: Changes of various terms in the energy function during the iteration process.

Iterations ‘ 2 4 6 8 10 12 14 16
|IR—L-S|Fr 227.970 87.555 44.188 33.726 31.791 31.446 31.390 31.390
[ Ak (L) — MN|| ¢ 3821.812  2395.634 1220.628  940.686  889.409  880.317 878.878  878.862
IIS|| 7 0.456 0.175 0.088 0.067 0.064 0.063 0.063 0.063

From the aspect of network optimization, clean components derived with convolutional low-rank
priors serve as i) physics-driven prior injector to regularize fused images, and ii) implicit teachers that
enable knowledge distillation of denoising priors into the fusion network. It enables simultaneous
noise suppression and information fusion

6. Analysis of Computational Training Cost

As the training latency is dominated by the first stage (convolutional low-rank optimization module),
we quantify the computational bottleneck within this module. In this module, computational com-
plexity scales primarily with i) convolution kernel size (k1, k2) and ii) number of iterations (1") for
solving the low-rank subproblem. The training costs of different settings are reported in Tab. (8| It
is observed that increasing k1, ko incurs significant increase in training time while the number of
iteration scales linearly with computational cost. Nevertheless, the entire training process remains
practical, completing within several days.

Table 8: Changes of various terms in the energy function during the iteration process.

Ky, ks | 12 18 24 30 36 42

Training Time (m)/Epoch | 41.31 5435 7151 9328  121.22 15168
T |10 20 30 40 50 60

Training Time (m)/Epoch | 2058 3085 4131  51.61 61.62 71.62

7. Differences with Prior Low-Rank Methods in Other Domains

While low-rank methods exist in some image processing (e.g., image smoothing, restoration, denois-
ing), the proposed method differs from existing works in task formulation and low-rank theory.

For task formulation, the proposed method differs with prior low-rank methods in input complexity
and objective shift. For input complexity, we handle multi-modal data rather than single-modal inputs.
For objective, we focus on joint denoising and fusion rather than a single image processing task.

For low-rank theory, the proposed theory differs in energy function formulation and optimization
strategy. For energy function, the regularization term is based on convolutional low-rank prior
by the convolution nuclear norm. Compared with standard low-rank theory, it can avoid excessive
smoothing and structural damage for better local structure preservation, noise robustness, and physical
interpretability. For optimization strategy, previous researches directly implement the objective
function as the loss of network. Differently, we design a two-phase optimization strategy. In the
first phase, we rewrite the energy function and iteratively address the subproblems with analytical
solutions. In the second phase, we design a deep network to distill the physics-driven priors and
realize denoising and fusion jointly.

8. Limitations

The convolutional low-rank optimization module serves as the theoretical cornerstone of the joint
denoising and fusion network. It ensures physically-consistent guidance through iterative refinement
during training but requires iterative optimization. Although it is not applied in the testing phase, it
lengthens the overall training time. In future work, we plan to investigate more efficient optimization
schemes to preserve performance while reducing training costs.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction of the paper clearly state the claims made,
including the contributions made in the paper and important assumptions and limitations.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses the limitations of the work performed by the authors,
providing a balanced view of the study’s scope and potential areas for improvement.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All the theorems, formulas, and proofs in the paper have been numbered and
cross-referenced, and all assumptions have been clearly stated or referenced in the statement
of any theorems.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper has fully disclosed all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and conclusions
of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will open access to the code after the paper is accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test details necessary to understand the
results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars and other appropriate information about the
statistical significance of the experiments, ensuring the reliability and validity of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resource for experi-
ments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms in every respect with the
NeurIPS Code of Ethics, ensuring ethical standards are upheld throughout the study.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work performed, providing a comprehensive evaluation of the study’s
broader implications.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper describes safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse, ensuring that appropriate measures
are taken to mitigate potential risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are properly credited,
and the license and terms of use are explicitly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

21



13.

14.

15.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:[Yes]

Justification: The new assets introduced in the paper are well documented, and the docu-
mentation is provided alongside the assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in the paper does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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