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Abstract

Complementary-label learning (CLL) is a weakly-supervised learning paradigm1

that aims to train a multi-class classifier using only complementary labels, which2

indicate classes to which an instance does not belong. Despite numerous algo-3

rithmic proposals for CLL, their practical applicability remains unverified for two4

reasons. Firstly, these algorithms often rely on assumptions about the generation of5

complementary labels, and it is not clear how far the assumptions are from reality.6

Secondly, their evaluation has been limited to synthetic datasets. To gain insights7

into the real-world performance of CLL algorithms, we developed a protocol to8

collect complementary labels from human annotators. Our efforts resulted in the9

creation of four datasets: CLCIFAR10, CLCIFAR20, CLMicroImageNet10, and10

CLMicroImageNet20, derived from well-known classification datasets CIFAR10,11

CIFAR100, and TinyImageNet200. These datasets represent the very first real-12

world CLL datasets. Through extensive benchmark experiments, we discovered13

a notable decrease in performance when transitioning from synthetic datasets to14

real-world datasets. We investigated the key factors contributing to the decrease15

with a thorough dataset-level ablation study. Our analyses highlight annotation16

noise as the most influential factor in the real-world datasets. In addition, we17

discover that the biased-nature of human-annotated complementary labels and the18

difficulty to validate with only complementary labels are two outstanding barriers19

to practical CLL. These findings suggest that the community focus more research20

efforts on developing CLL algorithms and validation schemes that are robust to21

noisy and biased complementary-label distributions.22

1 Introduction23

Ordinary multi-class classification methods rely heavily on high-quality labels to train effective24

classifiers. However, such labels can be expensive and time-consuming to collect in many real-world25

applications. To address this challenge, researchers have turned their attention towards weakly-26

supervised learning, which aims to learn from incomplete, inexact, or inaccurate data sources [20, 28].27

This learning paradigm includes but is not limited to noisy-label learning [5], partial-label learning [2],28

positive-unlabeled learning [3], and complementary-label learning [8].29

In this work, we focus on complementary-label learning (CLL). This learning problem involves30

training a multi-class classifier using only complementary labels, which indicate the classes that a31

data instance does not belong to. Although several algorithms have been proposed to learn from32

complementary labels, they were only benchmarked on synthetic datasets with some idealistic33
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assumptions on complementary-label generation [1, 8, 9, 16, 21]. Thus, it remains unclear how well34

these algorithms perform in practical scenarios.35

In particular, current CLL algorithms heavily rely on the uniform assumption for generating comple-36

mentary labels [8], which specifies that complementary labels are generated by uniformly sampling37

from the set of all possible complementary labels. To alleviate the restrictiveness of the uniform38

assumption, Yu et al. [27] considered a more general class-conditional assumption, where the dis-39

tribution of the complementary labels only depends on its ordinary labels. These assumptions have40

been used in many subsequent works to generate the synthetic complementary datasets for examining41

CLL algorithms [1, 9, 16, 21, 25]. Although these assumptions simplify the design and analysis of42

CLL algorithms, it remains unknown whether these assumptions hold true in practice and whether43

violation of these assumptions will significantly affect the performance of CLL algorithms. In44

addition to the uniform or class-conditional assumptions, most existing studies implicitly assumes45

that the complementary labels are noise-free. That is, they do not mistakenly represent the ordinary46

labels. While some studies claim to be more robust to noisy complementary labels [14], they were47

only tested on synthetic scenarios. It remains unclear how noisy the real-world datasets are, and how48

such noise affects the performance of current CLL algorithms.49

To understand how much the real-world scenario differs from the assumptions, we started by collecting50

the datasets CLCIFAR10 and CLCIFAR20, which are derived from the famous CIFAR datasets51

for ordinary multi-class classification [12]. Since their release in 2023, the datasets [22] have52

been utilized by several emerging CLL studies [15, 23, 24, 26], demonstrating their instantaneous53

impact. We continue to extend the collection and form two additional human-annotated datasets,54

CLMicroImageNet10 and CLMicroImageNet20, which are derived from TinyImageNet200 [13, 19].55

The extension verifies that our observations on CIFAR-derived datasets hold true for other image56

datasets. For all four datasets, we analyze the collected complementary labels, including their noise57

rates and non-uniform nature. Then, we perform benchmark experiments with diverse state-of-the-art58

CLL algorithms and conduct dataset-level ablation study on the assumptions of complementary-label59

generation using the collected datasets. Our studies reveal annotation noise as the most influential60

factor in the real-world datasets, and confirm that the non-uniform nature of human-annotated61

complementary labels cause certain CLL algorithms more susceptible to overfitting. These findings62

immediately suggest that the community focus more research efforts on developing CLL algorithms63

that are robust to noisy and non-uniform complementary-label distributions. In addition, we used64

the collected datasets to demonstrate that existing complementary-label-only validation schemes are65

not mature yet, suggesting the community a novel research direction for making CLL practical. Our66

contributions are summarized as follows:67

• We designed a collection protocol of complementary labels (CLs) for images, and verified68

that the protocol collects reasonable human-annotated CLs across different datasets.69

• We released CLImage, the collected set of four real-world CL datasets to support the contin-70

uous research of the community, publicly released at https://github.com/ntucllab/71

CLImage_Dataset.72

• We analyzed the collected datasets with extensive benchmarking experiments, which pro-73

vides novel and valuable insights for the community.74

2 Preliminaries on CLL75

2.1 Complementary-label learning76

In ordinary multi-class classification, a dataset D = {(xi, yi)}ni=1 that is i.i.d. sampled from an77

unknown distribution is given to the learning algorithm. For each i, xi ∈ RM represents the78

M -dimension feature of the i-th instance and yi ∈ [K] = {1, 2, . . . ,K} represents the class xi79

belongs to. The goal of the learning algorithm is to learn a classifier from D that can predict the80

labels of unseen instances correctly. The classifier is typically parameterized by a scoring function81

g : RM → RK , and the prediction is made by argmaxk∈[K] g(x)k given an instance x, where g(x)k82
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denotes the k-th output of g(x). In contrast to ordinary multi-class classification, CLL shares the83

same goal of learning a classifier but trains with different labels. In CLL, the ordinary label yi is not84

accessible to the learning algorithm. Instead, a complementary label ȳi is provided, which is a class85

that the instance xi does not belong to. The goal of CLL is to learn a classifier that is able to predict86

the correct labels of unseen instances from a complementary-label dataset D̄ = {(xi, ȳi)}ni=1.87

2.2 Common assumptions on CLL88

Researchers have made some additional assumptions on the generation process of complementary89

labels to facilitate the analysis and design of CLL algorithms. One common assumption is the90

class-conditional assumption [27]. It assumes that the distribution of a complementary label only91

depends on its ordinary label and is independent of the underlying example’s feature, i.e., P (ȳi |92

xi, yi) = P (ȳi | yi) for each i. One special case of the class-conditional assumption is the uniform93

assumption, which further specifies that the complementary labels are generated uniformly. That is,94

P (ȳi = k|yi = j) = 1
K−1 for all k ∈ [K]\{j} [8, 9, 14].95

For convenience, a K × K matrix T , called transition matrix, is often used to represent how the96

complementary labels are generated under the class-conditional assumption. Tj,k is defined to be97

the probability of obtaining a complementary label k if the underlying ordinary label is j, i.e.,98

Tj,k = P (ȳ = k | y = j) for each j, k ∈ [K]. The diagonals of T hold the conditional probabilities99

that a complementary label mistakenly represents the ordinary label. That is, they indicate the noise100

level of the complementary labels. When T contains all zeros on its diagonals, the CLL scenario is101

called noiseless. For instance, the uniform and noiseless assumption can be represented by Tj,j = 0102

for each j ∈ [K] and Tj,k = 1
K−1 for each k ̸= j. Class-conditional CLL scenarios based on any103

other non-uniform T are often called biased.104

2.3 A brief overview of CLL algorithms105

The pioneering work by Ishida et al. [8] studied how to learn from complementary labels under106

the uniform assumption by converting the risk estimator in ordinary multi-class classification to an107

unbiased risk estimator (URE) in CLL [8]. URE is then found to be prone to overfitting because108

of negative empirical risks, and is upgraded with two tricks, non-negative risk estimator (URE-NN)109

and gradient accent (URE-GA) [9]. The surrogate complementary loss (SCL) algorithm mitigates110

the overfitting issue of URE by a different loss design that decreases the variance of the empirical111

estimation. However, these algorithms either rely on the uniform assumption in design or are only112

tested on the synthetic datasets that obeys the uniform assumption.113

To make CLL one step closer to practice, researchers have explored algorithms to go beyond the114

uniform (and thus noiseless) assumption. Yu et al. [27] utilized the forward-correction loss (FWD)115

to accommodate biased complementary label generation by adapting techniques from noisy label116

learning [18] to change the loss. Additionally, Gao and Zhang [6] proposed the L-W algorithm based117

on discriminatively modeling the distribution of complementary labels through a weighting function,118

further improving the performance in bias scenario. Furthermore, Ishiguro et al. [10] designed robust119

loss functions for learning from noisy CLs, including MAE and WMAE, by applying the gradient120

ascent technique [9] to handle noisy scenarios.121

Besides CLL algorithms, a crucial component for making CLL practical is model validation. In122

ordinary-label learning, this can be done by naively calculating the classification accuracy on a123

validation dataset. In CLL, this scheme can be intractable if there are not enough ordinary labels. One124

generic way of model validation is based on the result of Ishida et al. [9] by calculating the unbiased125

risk estimator of the zero-one loss, i.e.,126

R̂01(g) =
1

N

N∑
i=1

e⊤yi
(T−1)ℓ01(g(xi)) (1)

where eyi
denotes the one-hot vector of yi, ℓ01(g(xi)) denotes the K-dimensional vector127

(ℓ01(g(xi), 1), . . . , ℓ01(g(xi)),K))
T , and ℓ01(g(xi), k) = 0 if argmaxk∈[K] g(xi) = k and 1 oth-128
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erwise, representing the zero-one loss of g(xi) if the ordinary label is k. This estimator will be used129

in the experiments in Section 6. Another validation objective, surrogate complementary esimation130

loss (SCEL), was proposed by Lin and Lin [14]. SCEL measures the log loss of the complementary131

probability estimates induced by the probability estimates on the ordinary label space. The formula132

to calculate SCEL is as follows,133

R̂SCEL(g) =
1

N

N∑
i=1

− log
(
e⊤yi

T⊤ softmax(g(xi))
)
. (2)

3 Construction of the CLImage collection134

In this section, we introduce the four complementary-labeled datasets that we collected, CLCIFAR10,135

CLCIFAR20, CLMicroImageNet10 and CLMicroImageNet20. All datasets are labeled by human136

annotators on Amazon Mechanical Turk (MTurk)1.137

3.1 Datasets and goals138

The complementary-labeled datasets are derived from ordinary multi-class classification datasets.139

CIFAR10, CIFAR100 and TinyImageNet200 [12, 13, 19]. This selection is motivated by the real-140

world noisy label dataset by Wei et al. [25]. Building upon the CIFAR and TinyImageNet200 datasets141

allow us to estimate the noise rate and the empirical transition matrix easily, as they already contain142

nearly noise-free ordinary labels. In addition, many of the state-of-the-art CLL algorithms have been143

benchmarked on synthetic complementary labels with the CIFAR datasets [4, 11, 17]. Our CLCIFAR144

counterparts immediately allow a fair comparison to those results with the same network architecture.145

In addition to our CLCIFAR extensions, we are the first to introduce (Tiny)ImageNet-derived datasets146

to the CLL literature. Such datasets serve two purposes. First, it allows us to confirm the validity of147

our collection protocol and findings beyond CIFAR-derived datasets. Second, ImageNet knowingly148

contains images of higher complexity than CIFAR and can thus be used to challenge the ability of149

existing CLL algorithms more realistically.150

There is a historical note that is worth sharing with the community: We initially attempted to collect151

complementary labels based on the 100 classes in CIFAR100. But some preliminary testing soon152

revealed that state-of-the-art CLL algorithms cannot produce meaningful classifiers for 100 classes153

even on synthetic complementary labels that are uniformly and noiselessly generated. We thus set154

our collection goals to be 10-class classification, which is the focus of most current CLL studies, and155

20-class classification, which extends the horizon of CLL and matches the 20 super-class structure in156

CIFAR.157

3.2 Complementary label collection protocol158

To collect only complementary labels from the CIFAR, TinyImageNet datasets, for each image in the159

training split, we first randomly sample four distinct labels and ask the human annotators to select any160

of the incorrect one from them. To leave room for analyzing the annotators’ behavior, each image161

is labeled by three different annotators. The four labels are re-sampled for each annotator on each162

image. That is, each annotator possibly receives a different set of four labels to choose from. An163

algorithmic description of the protocol is as follows. For each image x,164

1. Uniformly sample four labels without replacement from the label set [K].165

2. Ask the annotator to select any one of the complementary label ȳ from the four sampled166

labels.167

3. Add the pair (x, ȳ) to the complementary dataset.168

1https://www.mturk.com/
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Note that if the annotators always select one of the correct complementary labels uniformly, the169

empirical transition matrix will also be uniform in expectation. We will inspect the empirical transition170

matrix in Section 4. The labeling tasks are deployed on MTurk by dividing them into smaller we first171

divide the total images into smaller human intelligence tasks (HITs). For instance, for constructing172

the CLCIFAR datasets, we first divide the 50,000 images into five batches of 10,000 images. Then,173

each batch is further divided into 1,000 HITs with each HIT containing 10 images. Each HIT is174

deployed to three annotators, who receive 0.03 dollar as the reward by annotating 10 images. To175

make the labeling task easier and increase clarity, the size of the images are enlarged to 200× 200176

pixels.177

4 Result analysis178

Next, we closely examine the collected complementary labels. We first analyze the error rates of the179

collected labels, and then verify whether the transition matrix is uniform or not. Finally, we end with180

an analysis on the behavior of the human annotators observed in the label collection protocol.181

(a) CLCIFAR10 (b) CLMicroImageNet10

Figure 1: The label distribution of CLCIFAR10 and CLMicroImageNet10 datasets.

Observation 1: noise rate compared to ordinary label collection We first look at the noise rate of182

the collected complementary labels. A complementary label is considered to be incorrect if it is actu-183

ally the ordinary label. The mean error rate made by the human annotators is 3.93% for CLCIFAR10,184

2.80% for CLCIFAR20, 5.19% for CLMicroImageNet10 and 3.21% for CLMicroImageNet20. In185

theory, we can estimate a random annotator achieves a noise rate of 1
K for complementary label186

annotation and a noise rate of K−1
K for ordinary label annotation. If we compare the human annotators187

to a random annotator, then for CLCIFAR10, human annotators have 60.7% less noisy labels than188

the random annotator whereas for CIFAR10-N, human anotators have 80% less noisy labels. This189

demonstrates that human annotators are more competent compared to a random annotator in the190

ordinary-label annotation. Similarly, human annotators have 44% less noise than a random annotator191

for CLCIFAR20 and 73.05% less noise for CIFAR100N-coarse. This observation reveals that while192

the absolute noise rate is lower in annotating complementary labels, it may be more difficult to be193

competent against random labels than the ordinary label annotation.194

Observation 2: imbalanced complementary label annotation Next, we analyze the distribution of195

the collected complementary labels. The frequency of the complementary labels for the CLCIFAR10196

and CLMicroImageNet10 (CLMIN10) datasets are reported in Figure 1. As we can see in the197

figure, the annotators exhibit specific biases towards certain labels. For instance, in CLCIFAR10,198

annotators prefer "airplane" and "automobile," while in CLMIN10, they prefer "pizza" and "torch". In199

CLCIFAR10, the bias is towards labels in different categories, as vehicles ("airplane," "automobile")200

versus animals ("cat", "bird"). In contrast, in CLMIN10, the bias is towards items that are easily201

recognizable ("pizza" and "torch") and against those that are less familiar ("cardigan" or "alp").202

Observation 3: biased transition matrix Finally, we visualize the empirical transition matrix using203

the collected CLs in Figure 2. Based on the first two observations, we could imagine that the transition204

matrix is biased. By inspecting Figure 2, we further discover that the bias in the complementary205

labels are dependent on the true labels. For instance, in CLCIFAR10, despite we see more annotations206

on airplane and automobile in aggregate, conditioning on the transportation-related labels (“airplane”,207
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(a) CLCIFAR10 (b) CLMicroImageNet10

Figure 2: The empirical transition matrices of CLCIFAR10 and CLMicroImageNet10.

“automobile”, etc), the distribution of the complementary labels becomes more biased towards other208

animal-related labels (“bird”, “cat”, etc.) Furthermore, this observation holds true on CLMIN10 as209

well. Next, we study the impact of the bias and noise on existing CLL algorithms.210

We discovered similar patterns in all four human-annotated datasets, validating that our design211

methodology is practical for collecting real-world CLL image datasets. Due to space limitations, we212

have included the detailed analysis of CLCIFAR20 and CLMicroImageNet20 in Appendix B.4.213

5 Experiments214

In this section, we benchmarked several state-of-the-art CLL algorithms on CLImage. A significant215

performance gap between the models trained on the humanly annotated CLCIFAR, CLMicroImageNet216

dataset and those trained on the synthetically generated complementary labels (CL) was observed217

in Section 5.1, which motivates us to analyze the possible reasons for the gap with the following218

experiments. To do so, we discuss the effect of three factors in the label generating process, feature219

dependency, noise, and biasedness, in Section 5.2, Section 5.3, and Section 5.4, respectively. From220

our experiment results, we conclude that noise is the dominant factor affecting the performance of221

the CLL algorithms on CLCIFAR2.222

5.1 Standard benchmark on CLImage223

Baseline methods Several state-of-the-art CLL algorithms were selected for this benchmark. Some224

of them take the transition matrix T as inputs, which we call T -informed methods, including two225

version of forward correction [27]: FWD-U and FWD-R, two version of unbiased risk estimator226

with gradient ascent [9]: URE-GA-U and URE-GA-R, and robust loss [10] for learning from noisy227

CL: CCE, MAE, WMAE, GCE, and SL3. We also included some algorithms that assume the228

transition matrix T to be uniform, called T -agnostic methods, including surrogate complementary229

loss SCL-NL and SCL-EXP [1], discriminative modeling L-W and its weighted variant (L-UW) [6],230

and pairwise-comparison (PC) with the sigmoid loss [8]. The details of the algorithms mentioned231

above are discussed in Appendix D.232

Implementation details We collected and released three CLs per image to prepare for future233

studies. However, for this standard benchmark, we chose the first CL from the collected labels234

for each data instances to form a single CLL dataset, ensuring reproducibility. Then, we trained a235

ResNet18 [7] model using the baseline methods mentioned above on the single CLL dataset using236

2Due to space and time constraints, we only provide the results and discussion on the CLCIFAR datasets.
3Due to space limitations, we only provided the results of MAE. The remaining results and discussions

related to the robust loss methods can be found in Appendix B.3
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Table 1: Standard benchmark results on CLCIFAR/ CLMicroImageNet(CLMIN) and uniform-CIFAR/
MicroImageNet(MIN) datasets. Mean accuracy (± standard deviation) on the testing dataset from
four trials with different random seeds. Highest accuracy in each column is highlighted in bold.

uniform-CIFAR10 uniform-CIFAR20 uniform-MIN10 uniform-MIN20 CLCIFAR10 CLCIFAR20 CLMIN10 CLMIN20

FWD-U 64.19±0.57 21.54±0.37 36.30±1.12 12.57±2.94 34.83±0.50 8.03±0.74 23.85±2.76 6.33±1.04
FWD-R 61.32±0.90 21.50±0.38 35.70±1.19 14.85±1.75 38.13±0.88 20.27±0.53 30.15±1.83 10.60±0.82
URE-GA-U 50.24±1.11 16.67±1.35 35.70±1.97 11.65±1.90 34.72±0.40 10.49±0.52 22.90±2.97 5.75±0.43
URE-GA-R 50.73±1.83 17.57±0.61 33.65±1.40 9.78±3.88 30.23±0.70 6.17±0.82 13.25±5.11 6.50±0.35
SCL-NL 63.76±0.09 21.37±1.18 37.05±1.40 13.00±2.80 34.77±0.60 8.02±0.36 21.80±1.85 6.17±0.49
SCL-EXP 63.29±1.02 21.57±1.13 36.55±1.28 12.95±3.38 35.18±0.67 7.70±0.41 24.80±1.14 5.58±0.13
L-W 54.32±0.41 19.59±0.99 33.80±2.66 12.70±2.35 32.99±1.01 7.71±0.35 23.80±2.64 6.40±0.29
L-UW 57.52±0.59 20.71±0.92 35.10±2.74 12.12±3.13 34.69±0.32 8.15±0.30 22.40±1.67 6.35±0.86
PC-sigmoid 37.78±0.80 14.48±0.47 29.10±0.98 10.72±1.38 32.15±0.80 12.11±0.46 23.15±0.46 6.90±1.04
ROB-MAE 59.38±0.63 18.17±1.31 31.50±1.81 6.35±0.86 20.23±1.02 5.40±0.59 14.15±0.68 5.38±0.33

CIFAR10 CIFAR20 MIN10 MIN20

standard supervision 82.80±0.28 63.80±0.49 68.70±1.53 63.90±1.00

the Adam optimizer for 300 epochs without learning rate scheduling. The weight decay was fixed237

at 10−4 and the batch size was set to 512. The experiments were run with Tesla V100-SXM2. For238

better generalization, we applied standard data augmentation technique, RandomHorizontalFlip,239

RandomCrop, and normalization to each image. The learning rate was selected from {10−3, 5×10−4,240

10−4, 5× 10−5, 10−5} using a 10% hold-out validation set. We selected the learning rate with the241

best classification accuracy on the validation dataset. Note that here we assumed the ordinary labels242

in the validation dataset are known. We will discuss other validation objectives that rely only on243

complementary labels in Section 6. As CLL algorithms are prone to overfitting [1, 9], some previous244

works did not use the model after training for evaluation. Instead, previous works were performed by245

evaluating the model on the validation dataset and selecting the epoch with the highest validation246

accuracy. In this work, we also follow the same aforementioned technique to validate testing set. For247

reference, we also performed the experiments on synthetically-generated CLL dataset, where the CLs248

were generated uniformly and noiselessly, denoted uniform-CIFAR.249

Results and discussion As we can observe in Table 1, there is a significant performance gap between250

the humanly annotated dataset, CLCIFAR, and the synthetically generated dataset, uniform-CIFAR.251

The difference between the two datasets can be divided into three parts: (a) whether the generation252

of complementary labels depends on the feature, (b) whether there is noise, and (c) whether the253

complementary labels are generated with bias. A negative answer to those questions simplify254

the problem of CLL. We can gradually simplify CLCIFAR to uniform-CIFAR by chaining those255

assumptions as follows 4:256

CLCIFAR Section 5.2
==============⇒

Remove feature dependency

Section 5.3
=======⇒

Remove noise

Section 5.4
==========⇒

Remove biasedness
uniform-CIFAR

In the following subsections, we will analyze how these three factors affect the performance of the257

CLL algorithms.258

5.2 Feature dependency259

In this experiment, we verified whether the performance gap resulted from the feature-dependent260

generation of practical CLs. Conceivably, even if two images belong to the same class, the distribution261

on the complementary labels could be different. On the other hand, the distributional difference262

could also be too small to affect model performance, e.g., if P (ȳ | y,x) ≈ P (ȳ | y) for most x.263

Consequently, we decided to further look into whether this assumption can explain the performance264

gap. To observe the effects of approximating P (ȳ | y,x) with P (ȳ | y), we generated two synthetic265

3Note that FWD-R and URE-GA-R assume the empirical transition matrix Te to be provided. The empirical
transition matrix is computed from the labels in the training set, so it is slightly different from a uniform transition
matrix Tu in the uniform-CIFAR datasets. As a result, the performances of FWD-R and URE-GA-R do not
exactly match those of FWD-U and URE-GA-U, respectively, in the uniform-CIFAR datasets.

4The “interpolation” between CLCIFAR and uniform-CIFAR does not necessarily have to be this way. For
instance, one can remove the biasedness before removing the noise. We chose this order to reflect the advance of
CLL algorithms. First, researchers address the uniform case [8], then generalize to the biased case [27], then
consider noisy labels [10]. There is no work considering feature-dependent complementary labels yet.
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complementary datasets, CLCIFAR10-iid and CLCIFAR20-iid by i.i.d. sampling CLs from the em-266

pirical transition matrix in CLCIFAR10 and CLCIFAR20, respectively. We proceeded to benchmark267

the CLL algorithms on CLCIFAR-iid and presented the accuracy difference compared to CLCIFAR268

in Table 2.269

Results and discussion From Table 2, we observed that the accuracy barely changes on the resampled270

CLCIFAR-iid, suggesting that even if the complementary labels in CLCIFAR could be feature-271

dependent, this dependency does not affect the model performance significantly. Hence, there might272

be other factors contributing to the performance gap.273

Table 2: Mean accuracy difference (± standard deviation) of different CLL algorithms. A plus
indicates the performance on is calculated as CLCIFAR-i.i.d. accuracy minus CLCIFAR accuracy.

FWD-U FWD-R URE-GA-U URE-GA-R SCL-NL SCL-EXP L-W L-UW PC-sigmoid

CLCIFAR10-iid -1.1±2.17 -0.36±1.15 -3.03±1.25 0.74±0.35 -0.67±1.81 -1.97±1.16 -2.5±0.56 -3.53±1.36 -2.03±2.05
CLCIFAR20-iid -0.64±0.39 -3.53±1.13 -0.37±0.51 1.79±2.34 -0.28±0.61 -0.39±0.69 -0.5±1.37 -0.82±0.04 -2.24±0.52

5.3 Labeling noise274

In this experiment, we further investigated the impact of the label noise on the performance gap.275

Specifically, we measured the accuracy on the noise-removed versions of CLCIFAR datasets, where276

varying percentages (0%, 25%, 50%, 75%, or 100%) of noisy labels are eliminated.277

Results and discussion We present the performance of FWD trained on the noise-removed CLCI-278

FAR10 dataset in the left figure in Figure 3. The results for other algorithms and the noise-removed279

CLCIFAR20 dataset can be found in Appendix E. From the figure, we observe a strong positive280

correlation between the performance and the proportion of removed noisy labels. When more noisy281

labels are removed, the performance gap diminishes and the accuracy approaches that of the ideal282

uniform-CLFAR dataset. Therefore, we conclude that the performance gap between the humanly283

annotated CLs and the synthetically generated CLs are primarily attributed to the label noise.284

5.4 Biasedness of complementary labels285

To further study the biasedness of CL as a potential factor contributing to the performance gap,286

we removed the biasedness from the noise-removed CLCIFAR dataset and examined the resulting287

accuracy. Specifically, we introduced the same level of uniform noise in uniform-CIFAR dataset and288

reevaluated the performance of FWD algorithms.289

Results and discussion The striking similarity between the two curves in the right figure in Figure 3290

shows that the accuracy is significantly influenced by label noise, while the biasedness of CL has291

a negligible impact on the results. Furthermore, we observe that the accuracy difference between292

the results of the last epoch and the best accuracy of validation set (or early-stopping: ES) results293

becomes smaller when the model is trained on the uniformly generated CLs. That is, the T -informed294

methods are more prone to overfitting when there is a bias in the CL generation.295

With the experiment results in Section 5.2, 5.3, and 5.4, we can conclude that the performance296

gap between humanly annotated CL and synthetically generated CL is primarily attributed to label297

noise. Additionally, the biasedness of CLs may potentially contribute to overfitting, while the feature-298

dependent CLs do not detrimentally affect performance empirically. It is worth noting that in the299

last row of Table 1, the MAE methods that can learn from noisy CL fails to generalize well in the300

practical dataset. These results suggest that more research on learning with noisy complementary301

labels can potentially make CLL more realistic.302

6 Validation Objectives303

Validation is a crucial component in applying CLL algorithms in practice. With the collection of304

the real-world datasets, we are now able to estimate the difference between using ordinary labels305

for validation (the common practice in existing CLL studies, as what we do in Section 5) and using306

complementary labels for validation.307
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Figure 3: Accuracy of FWD-U and FWD-R on the noise-removed CLCIFAR10 dataset (Left) and
the uniform-CIFAR10 dataset with uniform noise (Right) at varying noise rates.

Table 3: The testing accuracy of models evaluated with URE and SCEL.
CLCIFAR10 CLCIFAR20 CLMIN10 CLMIN20

URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓)

FWD-U 33.13±1.30 31.86±1.52 34.83±0.50 1.70 6.70±0.46 7.10±0.48 8.03±0.74 0.93 20.75±2.12 20.20±0.72 23.85±2.76 3.10 4.97±0.72 4.55±0.81 6.33±1.04 1.35
FWD-R 33.70±3.38 35.64±1.37 38.13±0.88 2.49 17.35±2.32 18.40±1.56 20.27±0.53 1.86 22.15±4.15 29.15±1.93 30.15±1.83 1.00 8.60±1.32 9.90±1.19 10.60±0.82 0.70
URE-GA-U 30.45±3.58 33.21±1.12 34.72±0.40 1.51 7.03±0.61 8.71±0.74 10.49±0.52 1.79 17.05±3.35 21.30±3.01 22.90±2.97 1.60 4.27±0.80 5.03±0.48 5.75±0.43 0.72
URE-GA-R 27.39±1.89 28.32±1.38 30.23±0.70 1.91 3.58±0.47 5.42±0.96 6.17±0.82 0.75 8.90±1.03 10.30±1.53 13.25±5.11 2.95 5.15±0.62 5.57±1.54 6.50±0.35 0.93
SCL-NL 33.55±0.79 33.70±1.33 34.77±0.60 1.07 6.73±0.51 7.47±0.56 8.02±0.36 0.55 19.55±1.37 22.15±1.76 21.80±1.85 -0.35 4.83±1.12 5.20±0.51 6.17±0.49 0.98
SCL-EXP 31.30±2.62 33.47±1.16 35.18±0.67 1.71 6.83±0.23 7.03±0.62 7.70±0.41 0.66 18.35±1.60 20.65±1.39 24.80±1.14 4.15 5.05±0.56 4.45±0.74 5.58±0.13 0.52
L-W 27.49±4.30 30.32±2.40 32.99±1.01 2.67 5.90±0.29 7.18±0.31 7.71±0.35 0.53 19.30±4.66 18.95±2.30 23.80±2.64 4.50 5.97±0.33 5.55±0.17 6.40±0.29 0.43
L-UW 28.90±2.01 29.78±2.69 34.69±0.32 4.91 6.40±0.42 8.16±0.30 8.15±0.30 -0.01 18.25±4.31 19.80±1.61 22.40±1.67 2.60 5.82±0.77 6.48±1.03 6.35±0.86 -0.13
PC-sigmoid 24.83±5.94 31.48±1.93 32.15±0.80 0.67 7.98±2.47 10.59±0.87 12.11±0.46 1.51 12.55±1.31 17.85±4.61 23.15±0.46 5.30 6.40±1.19 5.33±1.28 6.90±1.04 0.50
ROB-MAE 18.80±1.64 18.75±0.99 20.23±1.02 1.43 4.70±0.43 4.87±0.32 5.40±0.59 0.53 11.80±2.92 14.35±1.59 14.15±0.68 -0.20 5.08±0.44 4.62±0.66 5.38±0.33 0.30

Validation objectives As discussed in Section 2, validating the model performance solely with308

complementary labels poses a non-trivial challenge. To the best of our knowledge, only two existing309

CLL studies offer some possibility to evaluate a classifier with only complementary labels. They are310

URE [9] and SCEL [14]. We take these two validation objectives to select the optimal learning rate311

from {10−3, 5× 10−4, 10−4, 5× 10−5, 10−5} and provides the accuracy on testing set in Table 3.312

We compare the result to another validation objective that computes the accuracy on an equal number313

of ordinary labels. Our goal was to determine the gap between using complementary labels and314

ordinary labels for validation. We selected the best learning rate based on the validation objectives315

for URE, SCEL, and ordinary-label accuracy, and then report the test performance, as shown in Table316

3 for real-world datasets and Table 4 in the Appendix for synthetic datasets.317

Results and discussion Firstly, there appears no clear winner between URE and SCEL, both using318

only CLs for validation. Validating with the ordinary-label accuracy generally provides stronger319

performance than URE/SCEL, and the test performance gap between validating with ordinary labels320

and validating with complementary labels can be as big as nearly 5%. These findings suggest that321

using purely complementary labels for validation, whether through URE or SCEL, still suffers from a322

non-negligible performance drop compared to using ordinary validation. That is, the numbers reported323

in existing studies, which validates with ordinal labels, can be optimistic for practice. Whether this324

gap can be further reduced remains an open research problem and the community can pay more325

attention on that to make CLL more practical.326

7 Conclusion327

In this paper, we devised a protocol to collect complementary labels from human annotators. Utilizing328

this protocol, we curated four real-world datasets, CLCIFAR10, CLCIFAR20, CLMicroImageNet10,329

and CLMicroImageNet20 and made them publicly available to the research community. Through330

our meticulous analysis of these datasets, we confirmed the presence of noise and bias in the human-331

annotated complementary labels, challenging some of the underlying assumptions of existing CLL332

algorithms. Extensive benchmarking experiments revealed that noise is a critical factor that under-333

mines the effectiveness of most existing CLL algorithms. Furthermore, the biased complementary334

labels can trigger overfitting, even for algorithms explicitly designed to leverage this bias information.335

In addition, our study on the validation objective for CLL suggests that validating with only com-336

plementary labels causes significant performance degrading. These findings emphasize the need for337

the community to dedicate more effort on those issues. The curated datasets pave the way for the338

community to create more practical and applicable CLL solutions.339
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