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ABSTRACT

We study a new framework of learning mixture models via data partitioning called
PRESTO, wherein we optimize a joint objective function on the model parameters
and the partitioning, with each model tailored to perform well on its specific parti-
tion. In contrast to prior work, we do not assume any generative model for the data.
We connect our framework to a number of past works in data partitioning, mixture
models, and clustering, and show that PRESTO generalizes several loss functions
including the k-means, Bregman clustering objective, the Gaussian mixture model
objective, mixtures of support vector machines, and mixtures of linear regression.
We convert our training problem to a joint parameter estimation cum a subset se-
lection problem, subject to a matroid span constraint. This allows us to reduce our
problem into a constrained set function minimization problem, where the under-
lying objective is monotone and approximately submodular. We then propose a
new joint discrete-continuous optimization algorithm which achieves a bounded
approximation guarantee for our problem. We show that PRESTO outperforms
several alternative methods. Finally, we study PRESTO in the context of resource
efficient deep learning, where we train smaller resource constrained models on
each partition and show that it outperforms existing data partitioning and model
pruning/knowledge distillation approaches, which in contrast to PRESTO, require
large initial (teacher) models.

1 INTRODUCTION

In the problem space of learning mixture models, our goal is to fit a given set of models implicitly
to different clusters of the dataset. Mixture models are ubiquitous approaches for prediction tasks
on heterogeneous data (Dasgupta, 1999; Achlioptas & McSherry, 2005; Kalai et al., 2010; Belkin
& Sinha, 2010a; Pace & Barry, 1997; Belkin & Sinha, 2010b; Sanjeev & Kannan, 2001; Hopkins
& Li, 2018; Fu & Robles-Kelly, 2008), and find use in a plethora of applications, e.g., finance, ge-
nomics (Dias et al., 2009; Liesenfeld, 2001; Pan et al., 2003), etc. Existing literature on mixture
models predominately focuses on the design of estimation algorithms and the analysis of sample
complexity for these problems (Faria & Soromenho, 2010; Städler et al., 2010; Kwon et al., 2019;
Yi et al., 2014), and analyzes them theoretically for specific and simple models such as Gaussians,
linear regression, and SVMs. Additionally, erstwhile approaches operate on realizable settings —
they assume specific generative models for the cluster membership of the instances. Such an as-
sumption can be restrictive, especially when the choice of the underlying generative model differs
significantly from the hidden data generative mechanism. Very recently, Pal et al. (2022) consider
a linear regression problem in a non-realizable setting, where they do not assume any underlying
generative model for the data. However, their algorithm and analysis is tailored towards the linear
regression task.

1.1 PRESENT WORK

Responding to the above limitations, we design PRESTO, a novel data partitioning based framework
for learning mixture models. In contrast to prior work, PRESTO is designed for generic deep learning
problems including classification using nonlinear architectures, rather than only linear models (linear
regression or SVMs). Moreover, we do not assume any generative model for the data. We summarize
our contributions as follows.
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Novel framework for training mixture models. At the outset, we aim to simultaneously partition
the instances into different subsets and build a mixture of models across these subsets. Here, each
model is tailored to perform well on a specific portion of the instance space. Formally, given a set
of instances and the architectures of K models, we partition the instances into K disjoint subsets
and train a family of K component models on these subsets, wherein, each model is assigned to
one subset, implictly by the algorithm. Then, we seek to minimize the sum of losses yielded by
the models on the respective subsets, jointly with respect to the model parameters and the candidate
partitions of the underlying instance space.

Note that our proposed optimization method aims to attach each instance to one of the K models
on which it incurs the least possible error. Such an approach requires that the loss function helps
guide the choice of the model for an instance, thus rendering it incompatible for use at inference
time. We build an additional classifier to tackle this problem; given an instance, the classifier takes
the confidence from each of the K models as input and predicts the model to be assigned to it.

Design of approximation algorithm. Our training problem involves both continuous and com-
binatorial optimization variables. Due to the underlying combinatorial structure, the problem is
NP-hard even when all the models are convex. To solve this problem, we first reduce our training
problem to a parameter estimation problem in conjunction with a subset selection task, subject to a
matroid span constraint (Iyer et al., 2014). Then, we further transform it into a constrained set func-
tion minimization problem and show that the underlying objective is a monotone and α-submodular
function (El Halabi & Jegelka, 2020; Gatmiry & Gomez-Rodriguez, 2018) and has a bounded cur-
vature. Finally, we design PRESTO, an approximation algorithm that solves our training problem,
by building upon the majorization-minimization algorithms proposed in (Iyer & Bilmes, 2015; Iyer
et al., 2013a; Durga et al., 2021). We provide the approximation bounds of PRESTO, even when the
learning algorithm provides an imperfect estimate of the trained model. Moreover, it can be used
to minimize any α-submodular function subject to a matroid span constraint and therefore, is of
independent interest.

Application to resource-constrained settings. With the advent of deep learning, the complexity
of machine learning (ML) models has grown rapidly in the last few years (Liu et al., 2020; Arora
et al., 2018; Dar et al., 2021; Bubeck & Sellke, 2021; Devlin et al., 2018; Liu et al., 2019; Brown
et al., 2020). The functioning of these models is strongly contingent on the availability of high
performance computing infrastructures, e.g., GPUs, large RAM, multicore processors, etc.

The key rationale behind the use of an expensive neural model is to capture the complex nonlinear
relationship between the features and the labels across the entire dataset. Our data partitioning
framework provides a new paradigm to achieve the same goal, while enabling multiple lightweight
models to run on a low resource device. Specifically, we partition a dataset into smaller subslices
and train multiple small models on each subslice— since each subslice is intuitively a smaller and
simpler data subset, we can train a much simpler model on the subslice thereby significantly reducing
the memory requirement. In contrast to approaches such as pruning (Wang et al., 2020a; Lee et al.,
2019; Lin et al., 2020; Wang et al., 2020b; Jiang et al., 2019; Li et al., 2020; Lin et al., 2017)
and knowledge distillation (Hinton et al., 2015; Son et al., 2021), we do not need teacher models
(high compute models) with the additional benefit that we can also train these models on resource
constrained devices.

Empirical evaluations. Our experiments reveal several insights, summarized as follows.
(1) PRESTO yields significant accuracy boost over several baselines. (2) PRESTO is able to trade-off
accuracy and memory consumed during training more effectively than several competitors, e.g.,
pruning and knowledge distillation approaches. At the benefit of significantly lower memory usage,
the performance of our framework is comparable to existing pruning and knowledge distillation
approaches and much better than existing partitioning approaches and mixture models.

1.2 RELATED WORK

Mixture Models and Clustering:. Mixture Models (Dempster et al., 1977; Jordan & Jacobs, 1994)
and k-means Clustering (MacQueen, 1967; Lloyd, 1982) are two classical ML approaches, and have
seen significant research investment over the years. Furthermore, the two problems are closely con-
nected and the algorithms for both, i.e., the k-means algorithm and the Expectation Maximization
algorithm for mixture models are closely related – the EM algorithm is often called soft-clustering,
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wherein one assigns probabilities to each cluster. Mixture models have been studied for a number
of problems including Gaussian Mixture Models (Xu & Jordan, 1996), Mixtures of SVMs (Col-
lobert et al., 2001; Fu & Robles-Kelly, 2008), and linear regression (Faria & Soromenho, 2010;
Städler et al., 2010; Kwon et al., 2019; Pal et al., 2022). As we will show in this work, our loss
based data partitioning objective generalizes the objectives of several tasks, including k-means clus-
tering (Lloyd, 1982), Clustering with Bregman divergences (Banerjee et al., 2005), and mixture
models with SVMs and linear regression (Collobert et al., 2001; Pal et al., 2022).

Following initial analysis of the EM for Gaussian Models (Jordan & Jacobs, 1994; Xu & Jordan,
1996), mixture models have also been studied for SVMs (Collobert et al., 2001), wherein the authors
extend the mixture-model formulation to take the SVM loss instead of the Gaussian distribution. A
lot of recent work has studied mixtures of linear regression models. Most prior work involving
mixture models pertaining to regression is in the realizable setting, with the exception of (Pal
et al., 2022). Mixture model papers aim at using the expectation-maximisation (EM) algorithm for
parameter estimation. Balakrishnan et al. (2017) study the EM algorithm which is initialised with
close estimates to ground truth, concluding that it is able to give reasonable fits to the data. When
the sample size is finite, (Balakrishnan et al., 2017) show convergence within l2 norm of the true
parameters. Yi et al. (2014) provide yet another initialisation procedure which uses eigenspace
analysis and works for two bimodal regressions.These works assume that the underlying Gaussian
distributions have the same shared covariance. Li & Liang (2018) lift this assumption, proving
near-optimal complexity. Pal et al. (2022) approach the problem of linear regression under the non-
realizable setting by defining prediction and loss in the context of mixtures and formulating a novel
version of the alternating maximisation (AM) algorithm.

Resource-constrained learning. In the pursuit of better performance, most state of the art deep
learning models are often over-parameterized. This makes their deployment in the resource con-
strained devices nearly impossible. To mitigate the problems, several handcrafted architectures such
as SqueezeNets (Iandola et al., 2016; Gholami et al., 2018), MobileNets (Howard et al., 2017; San-
dler et al., 2018) and ShuffleNets (Zhang et al., 2018; Ma et al., 2018) were designed to work in
mobile devices. Recently, EfficientNet (Tan & Le, 2019) was proposed, that employs neural archi-
tecture search. However, these models are designed to work on the entire training set, and leave a
heavy memory footprint.

Simultaneous model training and subset selection. Data subset selection approaches are pre-
dominately static, and most often, do not take into account the model’s current state (Wei et al.,
2014a;b; Kirchhoff & Bilmes, 2014; Kaushal et al., 2019; Liu et al., 2015; Bairi et al., 2015; Lucic
et al., 2017; Campbell & Broderick, 2018; Boutsidis et al., 2013). Some recent approaches attempt
to solve the problem of subset selection by performing joint training and subset selection (Mirza-
soleiman et al., 2020a;b; Killamsetty et al., 2021b;a; Durga et al., 2021). On the other hand, some
other approaches (Mirzasoleiman et al., 2020a; Killamsetty et al., 2021a) select subsets that approx-
imate the full gradient. Further, some of these approaches (Killamsetty et al., 2021b;a) demonstrate
improvement in the robustness of the trained model by selecting subsets using auxiliary or valida-
tion set. Durga et al. (2021) train the model in such a way that the validation set error is controlled.
All the aforementioned techniques try to determine (for purposes of training), a single subset of the
training set.In this paper we propose PRESTO as a method to simultaneously select multiple subsets
and also learn mixture of models (with a model corresponding to each subset), in order to improve
robustness of the trained model, even in resource-constrained settings.

2 PROBLEM FORMULATION

In this section, we first present the notations and then formally state our problem. Finally, we
instantiate our problem in different clustering and mixture modeling scenarios.

2.1 NOTATIONS

We have N training instances {(xi, yi) | 1 ≤ i ≤ N}, where xi ∈ X is the feature vector and yi ∈ Y
is the label of the ith instance. In our work, we set X = Rd and treat Y to be discrete1. Given K, we
denote hθ1

, .., hθK
as the component models that are going to be used for the K subsets resulting

from a partition of X . Here θk is the trainable parameter vector of hθk
. These parameters are not

1For brevity, we present our analysis for the classification setup. However, our framework is also applicable, as-it-is, to the regression
setup.
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shared across different models, i.e., there is no overlap between θk and θk′ for k ̸= k′. In fact,
the models hθk

and hθk′ can even have different architectures. Moreover, the representation of
the output hθk

can vary across different settings. For example, given x ∈ X , sign(hθk
(x)) is a

predictor of y for support vector machines with Y ∈ {±1} whereas, for multiclass classification,
hθk

(x) provides a distribution over Y . To this end, we use ℓ(hθk
(x), y) to indicate the underlying

loss function for any instance (x, y). We define [A] = {1, . . . , A} for an integer A.

2.2 PROBLEM STATEMENT

High level objective. Our broad goal is to fit a mixture of models on a given dataset, without
making any assumption concerning the generative process, the instances or features. Given a family
of model architectures, our aim is to learn to partition the instance space X into a set of subsets,
determine the appropriate model architecture to be assigned to each subset and to subsequently train
the appropriate models on the respective subsets.

Problem statement. We are given the training instances D, the number of subsets K resulting from
partitioning D and a set of model architectures hθ1

, . . . , hθK
. Our goal, then, is to partition the

training set D into K subsets S1, ..SK with Sk ∩ Sk′ = ∅ and ∪kSk = D so that when the model
hθk

is trained on Sk for k ∈ [K], the total loss is minimized. To this end, we define the following
regularized loss, i.e.,

F ({(Sk,θk) | k ∈ [K]}) =
∑

k∈[K]

∑
i∈Sk

[
ℓ
(
hθk

(xi), yi
)
+ λ||θk||2

]
. (1)

Then, we seek to solve the following constrained optimization problem:
minimize
θ1,...,θK ,
S1,...SK

F ({(Sk,θk) | k ∈ [K]}) subject to, Sk ∩ Sk′ = ∅, ∀k ∈ [K], ∪k∈[K]Sk = D. (2)

Here, λ is the coefficient of the L2 regularizer in Eq. (2). The constraint Sk ∩ Sk′ = ∅ ensures that
that each example i ∈ D belongs to exactly one subset and the constraint ∪k∈[K]Sk = D entails that
the subsets {Sk | k ∈ [K]} cover the entire dataset. The above optimization problem is a joint model
parameter estimation and a partitioning problem. If we fix the partition {S1, S2, ..., SK}, then the
optimal parameter vector θk depends only on Sk, the subset assigned to it. To this end, we denote
the optimal value of θk for the above partition as θ∗

k(Sk) and transform the optimization (2) into the
following equivalent problem:
minimize
S1,S2,...,SK

F ({Sk,θ
∗
k(Sk) | k ∈ [K]}) subject to, Sk ∩ Sk′ = ∅, ∀k ∈ [K],∪k∈[K]Sk = D. (3)

Note that, computing θ∗
k(Sk) has a polynomial time complexity for convex loss functions. However,

even for such functions, minimizing F as defined above is NP-hard.

Test time prediction. Since computation of the optimal partitioning requires us to solve the opti-
mization (3), it cannot be used to assign an instance x to a model hθk

during the test time. To get
past this blocker, we train an additional multiclass classifier πϕ : X → [K], which is trained on
{(xi, k)} pairs where i ∈ Sk, so that, during test time, it can assign an unseen instance x to a model
component hθk

using k = πϕ(x).

2.3 INSTANTIATIONS IN CLUSTERING AND MIXTURE MODELING

In this section, we show how the formulations listed in the previous section (e.g., Eqn (1)) have
appeared in several applications ranging from clustering to mixture modeling.

K-Means Clustering: Since k-means clustering (Lloyd, 1982; MacQueen, 1967) is unsuper-
vised, we do not have access to labels yi. It then turns out that θk = µk, the cluster means, and
ℓ(hθk

(xi)) = ||xi − µk||2.

Bregman Clustering: K-means clustering is a special case of the more general clustering with
Bregman divergences (Banerjee et al., 2005). Again, in this case, the parameters θk = µk, the
cluster means and ℓ(hθk

(xi)) = Bϕ(xi, µk)
2.

Mixture of SVMs: The mixture of Support Vector Machines (Fu & Robles-Kelly, 2008) is a special
case of Eq. (1) with ℓ(hθk

(xi), yi) = max(0, 1− hθk
(xi)yi).

2The Bregman divergence is defined as: Bϕ(x, y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x− y⟩.
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Mixture of Linear Regression: The mixture of linear regression models (Pal et al., 2022) is a
special case of Eqn. (1) with ℓ(hθk

(xi), yi) = ||hθk
(xi)− yi||2.

2.4 APPLICATION IN THE RESOURCE-CONSTRAINED SETUP

In general, the relationship between an instance x and the label y can be arbitrarily nonlinear. A
complex deep neural network captures such relationship by looking into the entire dataset. However,
such networks require high performance computing infrastructure for training and inference. The
training problem (3) can be used to build K lightweight models hθ1

, . . . , hθK
, each of which is

localized to a specific regime of the instance space X . Thus, a model is required to capture the
nonlinearity only from the region assigned to it and not the entire set X . As a result, it can be
lightweight and used with limited resources.

Consider a large model with number of parameters equal to the total number of parameters collec-
tively across the K models, i.e.,

∑K
k=1 dim(θk). Such a model has to be loaded entirely into a GPU

RAM for training or inference, and thus requires a larger GPU RAM. In contrast, our approach re-
quires us to load at a time, only one model component hθk

and the corresponding subset Sk during
both training and test. This is instead of having to load all the K model components and the entire
dataset. While this can increase both training and inference time, it can substantially reduce the
memory consumption by 1/K times in comparison to a large model having similar expressiveness.

3 PRESTO: PROPOSED FRAMEWORK TO SOLVE THE TRAINING PROBLEM (3)

In this section, we first show that the optimization problem (3) is equivalent to minimizing a mono-
tone set function subject to matroid span constraint (Iyer et al., 2014; Schrijver et al., 2003). Subse-
quently, we show that this set function is α-submodular and admits a bounded curvature. Finally, we
use these results to design PRESTO, an approximation algorithm to solve the underlying constrained
set function optimization problem. We next present these analyses, beginning with the necessary
definitions about monotonicity, α-submodularity and different matroid related properties.

Definition 1. (1) Monotonicity, α-submodularity and generalized curvature: Given a ground
set V, let G : 2V → R be a set function whose marginal gain is denoted by G(e |S) = G(S∪{e})−
G(S). The function G is monotone non-decreasing if G(e |S) ≥ 0 for all S ⊂ V and e ∈ V\S.
G is α-submodular with α ∈ (0, 1] if G(e |S) ≥ αG(e |T) for all S ⊆ T and e ∈ V\T (Hashemi
et al., 2019; El Halabi & Jegelka, 2020). The generalized curvature of G(S) is defined as κG(S) =
1 − mine∈S G(e |S\e)/G(e | ∅) (Iyer et al., 2013b; Zhang & Vorobeychik, 2016). (2) Base, rank
and span of a matroid: Consider a matroid M = (V, I) where I is the set of independent sets
(Refer to Appendix A.1 for more details). A base of M is a maximal independent set. The rank
function rM : 2V → N is defined as: rM(S) = maxI∈I:I⊂S |I|. A set S is a spanning set if it is
the superset of a base or equivalently, rM(S) = rM(V) (Schrijver et al., 2003; Iyer et al., 2014;
Edmonds, 2003).

3.1 REPRESENTATION OF (3) AS A MATROID SPAN CONSTRAINED SUBSET SELECTION TASK

Transforming partitions into 2D configurations. Given the training instances D and the size
of partition K, we first define the ground set V in the space of Cartesian products of D and
[K], i.e., V = D × [K]. Thus V consists of all pairs {(i, k) | i ∈ D, k ∈ [K]} which enumer-
ates all possible assignments between the instances and model components. Moreover, we define
Vi⋆ = {(i, k) | k ∈ [K]} and V⋆k = {(i, k) | i ∈ D}. Here, Vi⋆ = {i} × [K] enumerates all pos-
sible assignments of the ith instance and V⋆k = D × {k} enumerates all possible configurations
specifically wherein Sk is assigned to an instance.

Reformulating optimization (3) in constrained subset selection. Having defined the ground set
V and the partitions in 2D configuration space as above, we define S = {(i, k) | i ∈ Sk, k ∈ [K]}
that encodes the set of assignments in space of V induced by the underlying partition. Then, the set
Ŝk = {(i, k) | i ∈ Sk} specifies the set of instances attached to the subset k and elucidates the subset
containing i. It can be observed that Ŝk = S ∩ V⋆k. Since every instance is assigned exactly to one
subset Sk ∈ {S1, . . . , SK}, we have that |S ∩ Vi⋆| = 1. To this end, we introduce the following
set function, which is the sum of the fitted loss functions defined in Eq. (1), trained over individual
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subsets.

G(S) =
∑

k∈[K]

∑
(i,•)∈S∩V⋆k

[
ℓ
(
hθ∗

k(S∩V⋆k)(xi), yi

)
+ λ||θk||2

]
. (4)

We rewrite our optimization problem (3) as follows:

minimize
S⊂V

G(S) subject to, |S ∩ Vi⋆| = 1 ∀ i ∈ D. (5)

Theoretical characterization of the objective and constraints in Eq. (5). Here, we show that
our objective admits monotonicity, α-submodularity and bounded curvature in a wide variety of
scenarios (Proven in Appendix A.2)

Theorem 2. Given the set function G(S) defined in Eq. (4) and the individual regularized loss
functions ℓ introduced in Eq. (1), we define: εmin = maxk,i Eigenmin[∇2

θk
ℓ(hθk

(xi), yi)], ℓmin =

mini∈Dθk
[ℓ(hθk

(xi), yi) + λ||θk||2 and ℓmin = maxi∈D minθk
[ℓ(hθk

(xi), yi) + λ||θk||2]. Then,
we have the following results:

(1) Monotonicity: The function G(S) defined in Eq. (4) is monotone non-decreasing in S.
(2) α-submodularity: If ℓ(hθk

(x), y) is L-Lipschitz for all k ∈ {1, ..,K} and the regularizing coef-
ficient λ satisfies: λ > −εmin, function G(S) is α-submodular with

α ≥ αG =
ℓmin

ℓmin + 2L2

λ+0.5εmin
+ λL2

(λ+0.5εmin)2

(6)

(3) Generalized curvature: The generalized curvature κG(S) for any set S is given by: κG(S) ≤
κ∗
G = 1− ℓmin/ℓmin.

Solving the optimization (5) is difficult due to the equality constraint. However, as suggested by
Theorem 2 (1), G(S) is monotone in S. Hence, even if we relax the equality constraints |S∩Vi⋆| = 1
to the inequality constraint |S∩Vi⋆| ≥ 1, they achieve the equality at the optimal solution S∗. Thus,
the optimization (5) becomes

minimize
S⊂V

G(S) subject to, |S ∩ Vi⋆| ≥ 1 ∀ i ∈ D. (7)

As we formally state in the following proposition, the above constraint (set) can be seen as a matroid
span constraint for a partition matroid. This would allow us to design an approximation algorithm
to solve this problem.

Proposition 3. Suppose that set S satisfies |S ∩ Vi⋆| ≥ 1 for all i ∈ D. Then S is a spanning
set of the partition matroid M = (V, I) where I = {I | |I ∩ Vi⋆| ≤ 1}. Moreover, if S satisfies
|S ∩ Vi⋆| = 1 for all i ∈ D, then S is a base of M.

The above proposition suggests that the optimal solution S∗ of the optimization (7) is a base of the
partition matroid M = (V, I) with I = {I | |I ∩ Vi⋆| ≤ 1}.

3.2 PRESTO: AN APPROXIMATION ALGORITHM TO SOLVE THE OPTIMIZATION PROBLEM (7)

In this section, we present our approximation algorithm PRESTO for minimizing the optimization
problem (5), which is built upon the algorithm proposed by Durga et al. (2021). Their algorithm aims
to approximately minimize an α-submodular function, whereas we extend their algorithm for min-
imizing an α-submodular function with matroid span constraint and derive an approximation guar-
antee for it. Specifically, we employ the Majorization-Minimization approach (Iyer et al., 2013a;b)
for minimizing the optimization problem (5). Toward that goal, we first develop the necessary in-
gredients as follows.

Computation of modular upper bound. First, we present a modular upper bound for G(S) (Iyer
et al., 2013a). Given a fixed set Ŝ and the set function G which is α-submodular and monotone, let
the modular function mG

Ŝ
[S] be defined as follows:

mG
Ŝ [S] =G(Ŝ)−

∑
(i,k)∈Ŝ

αGG((i, k) | Ŝ\ {(i, k)}) +
∑

(i,k)∈Ŝ∩S

αGG((i, k) | Ŝ\ {(i, k)}) +
∑

(i,k)∈S\Ŝ

G((i, k) | ∅)
αG

.

(8)
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Algorithm 1 The PRESTO Algorithm
Require: Training data D, αG, K model architectures,

Iterations.
1: Output: The learned parameters {θk | k ∈ [K]},

the partitioning of D: D = ∪k∈[K]Ŝk

2: Ŝ1 ← ∅, .., ŜK ← ∅
3: for k ∈ [K] do
4: θ̂k ← INITPARAMS( )
5: for all i ∈ D do
6: G({(i, k)})← Train({i} ; θ̂k)
7: end for
8: end for

9: for r ∈ [Iterations] do
10: for k ∈ [K] do
11: Ŝk ←

{
(i, k) | i ∈ Ŝk

}
12: θ̂k, G(Ŝk)← Train(Ŝk;θk)

13: for i ∈ Ŝk do
14: G(Ŝk\(i, k))←Train(Ŝk\i;θk)

15: M [i][k]← αG[G(Ŝk)−G(Ŝk\{(i, k)})]
16: end for
17: for all i /∈ Ŝk, set M [i][k] =

G({(i, k)})
αG

18: end for
19: (i∗, k∗)← argmini,k(M [i][k])

20: Ŝk∗ ← Ŝk∗ ∪ i∗

21: For all k ̸= k∗ : Sk ← Sk\ {i∗}
22: Ŝ←

{
(i, k) | i ∈ Ŝk, k ∈ [K]

}
23: end for
24: Return θ̂1, ..., θ̂K , Ŝ

If G is α-submodular and monotone, it holds
that G(S) ≤ mG

Ŝ
[S] for all S ⊆ D (Durga et al.,

2021). Note that when G is submodular, i.e.,
when α = 1, the expression mG

Ŝ
[S] gives us the

existing modular upper bounds for submodular
functions (Nemhauser et al., 1978; Iyer et al.,
2013a; Iyer & Bilmes, 2012).

Outline of PRESTO (Alg. 1). The goal of Al-
gorithm 1 is to iteratively minimize mG

Ŝ
[S] with

respect to S in a majorization-minimization
manner (Iyer et al., 2013a;b; Durga et al.,
2021). Having computed S that minimizes
mG

Ŝ
[S] in the iteration r − 1, we set Ŝ = S

for the iteration r and minimize mG
Ŝ
[S] with re-

spect to S.

We start with Ŝ = ∅ (the empty partition) in
line 2. Since we minimize mG

Ŝ
[S] with re-

spect to S, the key components for calculation
are the last two terms of the RHS in Eq. (8),
i.e., G({(i, k)})/αG and G((i, k) | Ŝ\{(i, k}).
We pre-compute the former in lines 3–8 for
all pairs (i, k). The complexity of this
operation is O(|D|K). We can compute
G((i, k) | Ŝ\{(i, k}) by finding the correspond-
ing partitions {Ŝ1, · · · , ŜK} and for each k,
compute G(Ŝk) and G(Ŝk\(i, k)), (i, k) ∈ Ŝk
(lines 13–16). Finally, once we compute the
modular upper bound mG

Ŝ
[S], we minimize it

subject to the matroid span constraint– thus, we get a partition. Since G is a modular function, we
are guaranteed to find a set which is in the base of the partition matroid. Finally, note that to evalu-
ate G, we need to train the algorithm on the specific datapoints and partition, as encapsulated in the
Train( ) routine in Algorithm 1. Here, Train(S, θk) trains the model for partition k on the subset Ŝk

for a few iterations and, returns the estimated parameters θ̂k and the objective G(Ŝk).

Approximation guarantee. The following theorem shows that if G is α-submodular with α > αG,
and curvature κ > κG, Algorithm 1 enjoys an approximation guarantee (Proven in Appendix A.3).

Theorem 4. Given the set function G(S) defined in Eq. (4), let OPT be an optimal solution of
the optimization problem (5) (or equivalently (7)). If Algorithm 1 returns Ŝ as the solution, then
G(Ŝ) ≤ G(OPT )/[(1− κG)α

2
G], where κG and αG are computed using Theorem 2

4 EXPERIMENTS WITH REAL DATA

In this section, we provide a comprehensive evaluation of our method on four real world classi-
fication datasets and show that our method is able to outperform several unsupervised partitioning
methods and mixture models. Next, we evaluate PRESTO in the context of resource constrained deep
learning methods, where we show that PRESTO is able to provide comparable accuracy with respect
to state-of-the-art models for network pruning and knowledge distillation. Appendix F contains
additional experimental results.

4.1 EXPERIMENTAL SETUP

Datasets. We experiment with four real world classification datasets, viz., CIFAR10 (Krizhevsky,
2009), PathMNIST (PMNIST) (Yang et al., 2021), DermaMNIST (DMNIST) (Yang et al., 2021)
and SVHN (Netzer et al., 2011). Appendix D contains additional details about the datasets.
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Accuracy P(ŷ = y) Macro F1-score
Method CIFAR10 PMNIST DMNIST SVHN CIFAR10 PMNIST DMINST SVHN
Equal-Kmeans 89.83 82.91 73.97 87.41 89.84 77.60 43.00 86.00
Kmeans++ 89.50 82.64 73.72 87.02 89.48 77.20 44.30 85.50
Agglomerative 89.35 81.67 75.46 87.26 89.34 75.30 47.00 85.90
MoE 88.73 81.29 72.37 85.68 88.69 75.57 37.11 84.23
GMM 89.66 83.20 73.72 87.15 89.65 77.60 44.30 85.80
BGMM 89.66 81.88 73.72 87.35 89.65 75.82 44.30 85.90
Learn-MLR 89.99 81.57 74.02 87.07 89.98 75.90 43.60 85.70
PRESTO 90.04 83.70 75.61 88.11 90.00 77.80 47.70 86.80

Table 1: Comparison of classification accuracy P(ŷ = y) and Macro-F1 score of PRESTO against
three unsupervised partitioning methods (Equal-Kmeans (Bennett et al., 2000), Kmeans++ (Arthur
& Vassilvitskii, 2006), Agglomerative (Müllner, 2011)); Mixture of Experts(MoE) (Shazeer et al.,
2017) and three mixture models (GMM (Bishop & Nasrabadi, 2006), BGMM (Attias, 1999) and
Learn-MLR (Pal et al., 2022)) for all datasets. In all cases, we used exactly the same model ar-
chitecture for each component, which is a ResNet18 network with reduced capacity (described in
Section 4.1) The best and second best results are highlighted in green and yellow respectively.

Implementation details. For all models, we extract features x from fifth layer of a pre-trained
ResNet18 (He et al., 2016). We design hθk

using a neural architecture similar to ResNet18 with
reduced capacity– specifically, starting with the sixth layer and until the eighth layer, we reduce
the number of convolutional filters to 4 instead of 128, 8 instead of 256 and 16 instead of 512,
respectively. In each case, we set the number of model components K using cross validation. We
found K = 4 for all datasets except DMNIST and K = 3 for DMNIST. We use a fully connected
single layer neural network to model the additional classifier πϕ that is used to decide the model
component to be assigned to an instance during inference. The experimental setup is discussed in
further details in Appendix D.

4.2 RESULTS

Comparison with unsupervised partitioning methods and mixture models. We first compare
our method against several unsupervised partitioning methods and mixture models. In the case
of unsupervised partitioning, we use clustering methods to slice the data into K partitions before
the start of the training and then use these data partitions to train the K models. Specifically, we
consider three unsupervised partitioning methods, viz., (1) Equal-Kmeans (Bennett et al., 2000)
which is a K-means clustering method that ensures equal distribution of instances across different
clusters, (2) Kmeans++ (Arthur & Vassilvitskii, 2006), a variant of K-means method that uses a
smarter initialisation of cluster centers. (3) Agglomerative clustering (Müllner, 2011), where the
clusters are built hierarchically; (4) Mixture of Experts(MoE) (Shazeer et al., 2017), a Sparsely-
Gated Mixture-of-Experts layer (MoE), which selects a sparse combination from a set of expert
models using a trainable gating mechanism to process each input, and three mixture models, viz.,
(5) Gaussian mixture models (GMM) (Bishop & Nasrabadi, 2006), (6) Bayesian Gaussian mixture
model (BGMM) (Attias, 1999) and (7) Learn-MLR (Pal et al., 2022) which presents a version of the
AM algorithm for learning mixture of linear regressions. We adapt this algorithm for classification as
a baseline for PRESTO. Across all baselines, we employed exactly same set of model architectures.
More implementation details of these methods is given in Appendix D.

In Table 1, we summarize the results in terms of classification accuracy P(ŷ = y) and Macro-F1
score. The Macro-F1 score is the harmonic mean of the precision and recall. We make the following
observations. (1) PRESTO demonstrates better predictive accuracy than all the baselines. (2) For
three out of four datasets, the unsupervised partitioning methods outperform the mixture models.
Note that there is no consistent winner among the partitioning methods. Thus, the best choice of
the underlying partitioning algorithm changes across different dataset. However, since the optimal
clusters obtained by our method are guided by a supervised loss minimization, PRESTO performs
well across all datasets.

Application on resource constrained learning. Given K, the number of partitions, PRESTO works
with K lightweight models, which can be trained on different partitions of a dataset, instead of
training a very large model on the entire dataset. To evaluate the efficacy of PRESTO on a resource
constrained learning setup, we compare it against two model pruning methods, viz., (1) GraSP (Wang
et al., 2020a), (2) SNIP (Lee et al., 2019) and two methods for knowledge distillation, viz., (3)
KD (Hinton et al., 2015) (4) DGKD (Son et al., 2021) in terms of both accuracy and GPU memory
used during training. Pruning methods mask connections of a larger model that are relatively less
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Method Accuracy P(ŷ = y) Training time GPU Usage (MiB)
CIFAR10 PMNIST DMNIST SVHN CIFAR10 PMNIST DMNIST SVHN

GraSP 89.37 85.60 74.71 89.16 1107.21 1173.46 1173.16 1173.97
SNIP 88.24 85.28 73.77 89.36 863.73 1149.08 910.49 910.54
KD 90.06 75.32 72.37 89.08 272.00 250.69 250.56 251.81
DGKD 90.17 76.24 72.02 88.97 272.00 250.09 250.56 252.06
PRESTO 90.04 83.70 75.61 88.11 173.43 182.24 58.12 234.48

Table 2: Comparison of accuracy P(ŷ = y) and maximum GPU memory used during training
(in mebibytes, MiB) between PRESTO and two model pruning methods, viz., GraSP (Wang et al.,
2020a) and SNIP (Lee et al., 2019) and two knowledge distillation methods, viz., KD (Hinton et al.,
2015) and DGKD (Son et al., 2021) on 20% held-out set. Numbers in green and yellow indicate the
best and the second best method.
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Figure 3: Trade off between accuracy and maximum GPU memory for KD, DGKD and PRESTO
during training (panel (a)) and inference (panel (b)) for CIFAR10 and PMNIST.

important for training, whereas knowledge distillation methods start with a high capacity model
(teacher model) and then design a lightweight model (student) that can mimic the output of the
large model with fewer parameters. For a fair comparison, we maintain roughly similar (with 5%
tolerance) number of parameters of each of the final lightweight models obtained by the pruning
methods and of the student models given by the knowledge distillation methods; the total number
parameters used in our approach is

∑K
k=1 dim(θk)

First, we set K of PRESTO same as in Table 1. This gives the number of parameters of PRESTO
as 82690 for CIFAR10, 54993 for PMNIST, 41047 for DMNIST and 55138 for SVHN. In Table 2,
we summarize the results for this setup. We observe that PRESTO consumes significantly lesser
GPU memory than any other method across all datasets, whereas it yields the best accuracy for
DMNIST. For DMNIST, it consumes an impressive 77% lesser GPU memory than the second most
efficient method, viz., DGKD. The existing baselines use high capacity models, as reference models
in pruning and teacher models in knowledge distillation, resulting in high training GPU memory
consumption.

Next we vary the number of parameters p of PRESTO (through K) as well as the baselines
p ∈ [62020, 124030] for CIFAR10, p ∈ [41247, 82485] for PMNIST, p ∈ [41047, 82087] for DM-
NIST, p ∈ [41356, 82702] for SVHN and probe the variation accuracy vs. maximum GPU memory
used during both training and test. In Figure 3, we summarize the results for PRESTO and KD and
DGKD— the two most resource efficient methods from Table 2. We make the following observa-
tions. (1) PRESTO consumes significantly lower memory for diverse model size during both training
and inference; and, (2) In most cases, as we change the model size, the accuracies obtained by the
baselines vary widely whereas, our model often shows only insignificant changes as we change the
model size.

5 CONCLUSION

We present PRESTO, a novel framework of learning mixture models via data partitioning. Individual
models specialising on a data partition, present a good alternative to learning one complex model and
help achieve better generalisation. We present a joint discrete-continuous optimization algorithm to
form the partitions with good approximation guarantees. With our experiments we demonstrate that
PRESTO achieves best performance across different datasets when compared with several mixture-
models and unsupervised partitioning methods. We also present that PRESTO achieves best accuracy
vs. memory utilisation trade-off when compared with knowledge distillation and pruning methods.
Our work opens several areas for research, such as that of handling datasets with larger class imbal-
ance, outlier detection, handling out of distribution data, etc.
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6 REPRODUCIBILITY STATEMENT

We provide a zip file containing all the source code for PRESTO as well as the various baselines we
use, as a part of the supplementary material. The implementation details and machine configuration
for our experiments are given in Section D of the Appendix. All our datasets are public and can be
obtained easily. Users can download the datasets and use the provided code to reproduce the results
presented in this paper.
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Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms. CoRR, abs/1109.2378,
2011. URL http://dblp.uni-trier.de/db/journals/corr/corr1109.html#
abs-1109-2378.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations
for maximizing submodular set functions—i. Mathematical programming, 14(1):265–294, 1978.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33
(3):291–297, 1997.

Soumyabrata Pal, Arya Mazumdar, Rajat Sen, and Avishek Ghosh. On learning mixture of linear
regressions in the non-realizable setting. In International Conference on Machine Learning, pp.
17202–17220. PMLR, 2022.

Wei Pan, Jizhen Lin, and Chap T Le. A mixture model approach to detecting differentially expressed
genes with microarray data. Functional & integrative genomics, 3(3):117–124, 2003.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

13

http://dblp.uni-trier.de/db/journals/corr/corr1109.html#abs-1109-2378
http://dblp.uni-trier.de/db/journals/corr/corr1109.html#abs-1109-2378


Under review as a conference paper at ICLR 2023

David Rau. Sparsely-gated mixture-of-experts pytorch implementation, 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Arora Sanjeev and Ravi Kannan. Learning mixtures of arbitrary gaussians. In Proceedings of the
thirty-third annual ACM symposium on Theory of computing, pp. 247–257, 2001.

Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=B1ckMDqlg.

Wonchul Son, Jaemin Na, Junyong Choi, and Wonjun Hwang. Densely guided knowledge distilla-
tion using multiple teacher assistants, 2021.
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Appendix

A PROOFS OF THE TECHNICAL RESULTS IN SECTION 3

A.1 FORMAL DISCUSSION ON MATROID

Definition 5. A matroid is a combinatorial structure M := (V, I) defined on a ground set V and a
family of independent sets I ⊆ 2V, which satisfies two conditions.

(1) If S ⊆ T and T ∈ I, then S ∈ I.
(2) If S ∈ I and T ∈ I and |T| > |S|, then there exists a e ∈ T\S so that S ∪ {e} ∈ I.

From the above definition, it is clear the all the maximal independent sets have same cardinality. A
maximum independent set is called the base of the matroid.

A.2 MONOTONICITY AND α-SUBMODULARITY OF G

Here we prove the claims of Theorem 2. We repeat the theorem for convenience

Theorem (2). Given the set function G(S) defined in Eq. (4) and the individual regularized loss
functions ℓ introduced in Eq. (1), we define: εmin = maxk,i Eigenmin[∇2

θk
ℓ(hθk

(xi), yi)], ℓmin =

mini∈D minθk
[ℓ(hθk

(xi), yi) + λ||θk||2] and ℓmin = maxi∈D minθk
[ℓ(hθk

(xi), yi) + λ||θk||2].
Then, we have the following results:

(1) Monotonicity: The function G(S) defined in Eq. (4) is monotone non-decreasing in S.
(2) α-submodularity: If ℓ(hθk

(x), y) is L-Lipschitz for all k ∈ {1, ..,K} and that the regularizing
coefficient λ satisfies: λ > −εmin, function G(S) is α-submodular with

α ≥ α∗ =
ℓmin

ℓmin + 2L2

λ+0.5εmin
+ λL2

(λ+0.5εmin)2

(9)

(3) Generalized curvature: The generalized curvature κG(S) for any set S is given by: κG(S) ≤
κ∗
G = 1− ℓmin/ℓmin.

Proof. (1) (Proof of monotonicity) We define the regularized g(θk, S) =
∑

i∈S ℓ(hθk
(xi), yi) +

λ∥θk∥2. First, we show that g(θ∗
k(S ∪ {j}), S ∪ {j})− g(θ∗

k(S), S) > 0. To that aim, note that,
g(θ∗

k(S ∪ {j}), S ∪ {j})− g(θ∗
k(S), S)

= g(θ∗
k(S ∪ {j}), S ∪ {j})− g(θ∗

k(S ∪ {j}), S) + g(θ∗
k(S ∪ {j}), S)− g(θ∗

k(S), S) (10)
Now, since θ∗

k(S) = argminθk
g(θk, S), we have g(θ∗

k(S∪{j}), S) ≥ g(θ∗
k(S), S). From Eq. (10),

this leads to the following inequality:
g(θ∗

k(S ∪ {j}), S ∪ {j})− g(θ∗
k(S), S) ≥ g(θ∗

k(S ∪ {j}), {j}) ≥ ℓmin > 0 (11)
Now, if we include a new element (j, t) into S, then it will only change the loss g(θ∗

t (S), S) among
all model components. Thus we have,

G(S ∪ {(j, t)})−G(S) ≥ g(θ∗
t (S ∪ {j}), (S ∪ {j}))− g(θ∗

t (S), S) > 0

(2) (Proof of α-submodularity) First, we try to show α-submodularity of g(θ∗
k(S), S). Hence, we

first bound the following ratio:
g(θ∗

k(S ∪ {j}), S ∪ {j})− g(θ∗
k(S), S)

g(θ∗
k(T ∪ {j}), T ∪ {j})− g(θ∗

k(T ), T )
(12)

Eq. (11) directly provides bound on the numerator of this ratio:
g(θ∗

k(S ∪ {j}), S ∪ {j})− g(θ∗
k(S), S) ≥ ℓmin (13)

Next, we try to upper bound g(θ∗
k(T ∪ {j}), T ∪ {j})− g(θ∗

k(T ), T ). We note that:
g(θ∗

k(T ∪ {j}), T ∪ {j})− g(θ∗
k(T ), T )

= g(θ∗
k(T ∪ {j}), T ∪ {j})− g(θ∗

k(T ), T ∪ {j}) + g(θ∗
k(T ), T ∪ {j})− g(θ∗

k(T ), T ).
(14)

Now, since θ∗
k(T ∪ {j}) = argminθk

g(θk, T ∪ {j}), we have:

g(θ∗
k(T ∪ {j}), T ∪ {j})− g(θ∗

k(T ), T ∪ {j}) ≤ 0 (15)
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Next, we note that g(θ∗
k(T ), T ∪ {j})− g(θ∗

k(T ), T ) = g(θ∗
k(T ), {j}) which gives us:

g(θ∗
k(T ∪ {j}), T ∪ {j})− g(θ∗

k(T ), T ) = g(θ∗
k(T ), {j}) (16)

This leads us to bound the ratio in Eq. (12) as follows:
g(θ∗

k(S ∪ {j}), S ∪ {j})− g(θ∗
k(S), S)

g(θ∗
k(T ∪ {j}), T ∪ {j})− g(θ∗

k(T ), T )
(17)

≥ g(θ∗
k(S ∪ {j}), {j})
g(θ∗

k(T ), {j})

≥ g(θ∗
k(S ∪ {j}), {j})

g(θ∗
k(S ∪ {j}), {j}) + g(θ∗

k(T ), {j})− g(θ∗
k(S ∪ {j}), {j})

. (18)

To bound the denominator, we note that:
g(θ∗

k(T ), {j})− g(θ∗
k(S ∪ {j}), {j}) ≤ ℓ(hθ∗

k(T )(xj), yj)− ℓ(hθ∗
k(S∪{j})(xj), yj) + λ∥θ∗

k(T )∥2

Now, we note that

0 ≥ g(θ∗
k(T ), T )− g(0, T ) = λ∥θ∗

k(T )∥2 +

(
∇θℓ(hθ(xi), yi)

)⊤

θ=0

θ∗
k(T )

+
1

2
[θ∗

k(T )∇2ℓ(hθ(xi), yi)]θ∈(0,θ∗
k(T ))θ

∗
k(T )

=⇒ 1

2
∥θ∗

k(T )∥2εmin + λ∥θk∥2 − L∥θk∥ < 0 (19)

Thus, we have: ∥θk∥ ≤ L
λ+

εmin
2

. Putting this in Eq. (19), we have:

g(θ∗
k(T ), {j})− g(θ∗

k(S ∪ {j}), {j}) ≤ L∥θ∗
k(T )− θ∗

k(S ∪ {j})∥+ λ∥θ∗
k(T )∥2 (20)

≤ 2L2

λ+ εmin

2

+
λL2

(λ+ εmin

2 )2
(21)

Thus, replacing the above quantity in Eq. (18), we have:

α ≥ α∗ =
ℓmin

ℓmin + 2L2

λ+0.5εmin
+ λL2

(λ+0.5εmin)2

(22)

(3) (Proof of the bound on Generalized curvature) From the definition of curvature,

1− κg(S) = min
a∈V

g(θ∗
k(S), S)− g(θ∗

k(S \ {a}), S \ {a})
g(θ∗

k({a}), {a})
(23)

From Eq. (11),
g(θ∗

k(S), S)− g(θ∗
k(S \ {a}), S \ {a}) ≥ ℓmin (24)

g(θ∗
k({a}), {a}) ≤ max

a

[
λ∥θk∥2 + l(fθk

(xa), ya)
]
= ℓmin (25)

Thus,

κg(S) ≤ 1−
ℓmin

ℓmin

(26)

If we add an element a = (j, t) to S only g(θt, S) will be changed among the component models.
Thus,

κG(S) = 1−min
a∈V

G(S)−G(S \ {a})
G(a)

(27)

= 1−min
a∈V

g(θ∗
t (S), S)− g(θ∗

t (S \ {a}), S \ {a})
g(θ∗

t ({a}), {a})

≥ 1−
ℓmin

ℓmin
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A.3 APPROXIMATION GUARANTEES

We next prove the approximation bound for Theorem 4.
Theorem (4). If the function G is αG-submodular and has a curvature κG, Algorithm 1 obtains an
approximation guarantee of |D|

αG(1+(|D|−1)(1−κG)αG) ≤ 1
α2

G(1−κG)
assuming there exists a perfect

training oracle in Lines (6,12,14).

Proof. From the definition of α-submodularity, note that αGG(S) ≤
∑

i∈S G(i). Next, we can
obtain the following inequality for any k ∈ S using weak submodularity:

G(S)−G(k) ≥ αG

∑
j∈S\k

(G(j|S\j) (28)

We can add this up for all k ∈ S and obtain:

|S|G(S)−
∑
k∈S

G(k) ≥ αG

∑
k∈S

∑
j∈S\k

(G(j|S\j)

≥ αG(|S| − 1)
∑
k∈S

G(k|S\k) (29)

Finally, from the definition of curvature, note that G(k|S\k) ≤ (1 − κf )G(k). Combining all this
together, we obtain:

|S|G(S) ≥ (1 + αG(1− κf )(|S| − 1))
∑
j∈S

G(j) (30)

which implies: ∑
j∈S

G(j) ≤ |S|
1 + αG(1− κG)(|S| − 1)

G(S) (31)

Combining this with the fact that αGG(S) ≤
∑

i∈S G(i), we obtain that:

G(S) ≤ 1

αG

∑
i∈S

G(i) ≤ |S|
αG(1 + αG(1− κG)(|S| − 1))

G(S) (32)

Note that |S|/(1 + αG(1 − κG)(|S| − 1) ≤ 1/α2
G(1 − κG) so we just use this factor in the ap-

proximation bound. The approximation guarantee then follows from some simple observations. In
particular, given an approximation

mG(S) =
1

αG

∑
i∈S

G(i) (33)

which satisfies G(S) ≤ mG(S) ≤ βGG(S), we claim that optimizing mG essentially gives a βG

approximation factor. To prove this, let S∗ be the optimal subset, and Ŝ be the subset obtained after
optimizing mG. The following chain of inequalities holds:

G(Ŝ) ≤ mG(Ŝ) ≤ mG(S∗) ≤ βGG(S∗) (34)

This shows that Ŝ is a βG approximation of S∗. Finally, note that this is just the first iteration of
PRESTO, and with subsequent iterations, PRESTO is guaranteed to reduce the objective value since
we only proceed if there is a reduction in objective value.
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B COMPARISON WITH EM ALGORITHM

General EM algorithm usually considers a prior and computes the membership probability of each
datapoint at each iteration. It makes assumption about the generative mechanism of the data as well
as the prior about the cluster probabilities. Such a probabilistic approach naturally leads one to
develop EM algorithm.

On the other hand, our method makes no assumption about the data as well as cluster membership.
We do not make any probabilistic assumption which naturally led us to develop a set optimization
problem— we do not make use of any “continuous” or “soft” scores on cluster membership. Thus,
our method is an MM algorithm which is an iterative set optimization algorithm, which is function-
ally very different from EM algorithm.

C DIFFERENCE WITH MIXTURE OF LINEAR REGRESSION

All our experiments consider classification tasks. Therefore, we modify Learn-MLR (Pal et al.,
2022) to a mixture of classifiers. However, we note that the optimization problem formulation of
the mixture of linear regression (or classification) can be viewed as special case of the problem
formulation of our method.

In most cases, the existing methods make assumptions about the generative mechanism of the cluster
membership (e.g., some definite prior) and resort to an algorithm which makes an involved use of
that assumption and is significantly tailored to a particular task (mixture of regression or classifica-
tion).

In contrast, our framework operates on a generic framework and does not make any specific assump-
tion about the data or the cluster membership. Moreover, the algorithm is very different from what
is used by the usual mixture model learning algorithms.

D ADDITIONAL EXPERIMENTAL SETUP

D.1 DATASET DETAILS

We experiment with four real world classification datasets in our experiments,

• CIFAR10 (Krizhevsky, 2009) has images of 10 different real-world objects.
• SVHN (Netzer et al., 2011) has real-world images for the 10 digits classification task
• PathMNIST (PMNIST) (Yang et al., 2021) has images of colorectal cancer histology

slides.
• DermaMNIST (DMNIST) (Yang et al., 2021) has dermatoscopic images of common pig-

mented skin lesions.

Table 4 lists the further details of these datasets. We see that CIFAR10 is a balanced dataset where
as PathMNIST, DermaMNIST and SVHN have large skew in their label proportions.

Dataset #Classes #Instances #Train #Test #Avg points per class
CIFAR10 10 60,000 50,000 10,000 5,000 ± 0
SVHN 10 99,289 73,257 26,032 7325.7 ± 2800.66
PMNIST 9 107,180 89,996 7,180 9,999.56 ± 1592.4
DMNIST 7 10,015 7,007 2,005 1,001 ± 1,530.9

Table 4: Dataset statistics

Using a ResNet18 (He et al., 2016) model whose weights are initialised with weights obtained while
training with Imagenet (Deng et al., 2009) dataset, we get feature embedding of these datasets. For
CIFAR10 dataset we extract embeddings from the fourth last layer of pretrained ResNet18 and for
other datasets we extract embeddings from the fifth last layer.
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D.2 MODEL ARCHITECTURE USED FOR OUR METHOD, THE UNSUPERVISED PARTITIONING
METHODS AND THE MIXTURE MODELS

In case of our method, the unsupervised partitioning methods and the mixture models (all methods
in Table 1 and PRESTO in Table 2), we use a relatively light model. This model is exactly same in
terms of architecture design to the final five layers of ResNet18 for PMNIST, DMNIST and SVHN,
final four layers of ResNet18 for CIFAR10. This model design is chosen because we use extracted
embeddings for training. The model reduces the convolution filters at various junctures. The fifth
last layer has a filter of size 128 which is replaced with a filter of size 4. Similarly, the filter at fourth
last layer is changed from 256 to 8, filter at third last layer is changed from 512 to 16. We train an
additional classifier. This classifier is a single layer fully connected feed forward network that aids
in predicting the final class for each instance.

D.3 IMPLEMENTATION DETAILS FOR PRESTO

Number of partitions K. Number of partitions (K) is found for various datasets by performing an
analysis of classification accuracy v/s K in the validation. Table 5 shows K for each dataset.

Initialization. PRESTO is initialised using one of the clustering techniques depending on the dataset.
We also try to ensure that the clusters are of approximately the same size. We impose |N |

|K| size
constraints for each of the bin with some leeway. The leeway granted for every dataset is also a
tunable hyperparameter.

Final selection of (i, k) from the matrix M . The values of the matrix M computed in line 19 of
Algorithm 1 are supplemented with euclidean distance (D) of a point to the existing bin center. The
final criterion for binning becomes M + ϵD. Here, ϵ = 3e− 3 for CIFAR10, SVHN and PMNIST.
However, for DMNIST, we have ϵ = 6e− 3.

Optimizer. We use an Adam optimizer with the Cross-Entropy Loss to train the PRESTO models
and the classifier. The learning rate is set to 0.01. Table 5 encapsulates the various hyperparameters
discussed for the datasets. We set the value of the regularizer λ = 1e− 4.

Dataset K Initialization Leeway
CIFAR10 4 Equal-KMeans 0

SVHN 4 Equal-KMeans 3000
PMNIST 4 Equal-KMeans 3000
DMNIST 3 KMeans++ 500

Table 5: Dataset specific hyperparameters for PRESTO

In Algorithm 1, Train(·) train the models on the respective data partitions for 10 epochs. We set
Iterations = 30. The additional classifier πϕ is also trained for 10 epochs.

Table 1 mentions various baselines. Details about each baseline is covered in the following points.

D.4 IMPLEMENTATION DETAILS ABOUT THE UNSUPERVISED PARTITIONING METHODS AND
MIXTURE MODELS

Equal-Kmeans. We use the (Josh Levy-Kramer, 2022) implementation of Constrained K means
clustering. We run the algorithm for K clusters, and constrain the size of a cluster to be within[
|N |
|K|−Leeway, |N |

|K|+ Leeway
]

, i.e. roughly equally sized clusters with tolerance equal to the Lee-

way parameter. A Kmeans++ initialization is used for selecting the initial centroids. We keep the
number of times the algorithm will be run with different centroid seeds as n init = 10. The final
result is the best output of n init consecutive runs in terms of inertia. The algorithm runs either a
max of 300 iterations or convergence, whichever occurs earlier. The convergence criterion is defined
as the Frobenius norm of the difference in the cluster centers of two consecutive iterations becoming
less than 1e− 4.

Kmeans++. We use the scikit-learn (Pedregosa et al., 2011) implementation of Kmeans++ with the
following parameters:
The number of clusters is set as K. A Kmeans++ initialization is used for selecting the initial
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centroids. We keep the number of times the algorithm will be run with different centroid seeds
as n init = 10. The final result is the best output of n init consecutive runs in terms of inertia.
The algorithm runs either a max of 300 iterations or convergence, whichever occurs earlier. The
convergence criterion is defined as the Frobenius norm of the difference in the cluster centers of two
consecutive iterations becoming less than 1e− 4.

Agglomerative. It is a bottom-up hierarchical clustering approach. We use the scikit-learn (Pe-
dregosa et al., 2011) implementation of Agglomerative We use the Euclidean distance metric to
calculate distance between data points. Initially each data point is in its own cluster. The clusters
are subsequently merged based on a linkage criterion. We use the ward linkage criterion, which
minimizes the sum of square differences within each cluster. The number of clusters is set as K.

GMM. We use the scikit-learn (Pedregosa et al., 2011) implementation of GMM with the number
of components = K. The GMM weights are initialized according to a KMeans initialization. The
convergence threshold for the EM iterations is set as 1e− 3.

BGMM. We use the scikit-learn (Pedregosa et al., 2011) implementation of BMM with the number
of components = K. The BGM weights are initialized according to a KMeans initialization. The
convergence threshold for the EM iterations is set as 1e − 3. The weight concentration prior is set
as dirichlet process.

Learn-MLR. We adapt the original paper (Pal et al., 2022) for the purpose of classification. The
initial partitioning is random and the we do not have a leeway when the data is re-partitioned. The ϵ
parameter which gives a contribution to the euclidean distance (D) is set to 0. An Adam optimizer
is used with Cross-Entropy loss. The learning rate is set to 0.01 and the regularizer λ = 1e− 4.

Mixture of Experts. We use the Sparse-MoE layer described in (Shazeer et al., 2017) for classi-
fication. The expert networks have the architecture described in Section D.2. We adapt the (Rau,
2019) implementation for this purpose. We use Noisy Top-K Gating as described in (Shazeer et al.,
2017), which balances the number of training examples each expert receives. We set the number of
experts used for each batch element, k = 4.

D.5 IMPLEMENTATION DETAILS FOR RESOURCE-CONSTRAINED EXPERIMENTS

We evaluate PRESTO in a resource-constrained learning setting by comparing with model pruning
and knowledge distillation methods. The specifications for them are mentioned in the following
points.

SNIP (Lee et al., 2019). SNIP is a pruning at initialization method, that given a large reference
network prunes network connections to a desired sparsity level (i.e. number of non-zero weights).
Pruning is done prior to training, in a data-dependent way based on the loss function at a variance
scaling initialization, to create a sparse subnetwork which is then used for inference. We adapt the
implementation from (Su et al., 2020) to run experiments using SNIP. We train a large reference
model, with the same architecture as the PRESTO models described in Section D.2. The reference
model has the convolution filter size at the fifth last layer as 256, at the fourth last layer as 512 and
at the third last layer as 1024. The pruning ratio is set so that the number of nonzero parameters
in the reference network after pruning are equal to that of the corresponding PRESTO model in all
experiments. The models are trained on using an Adam optimizer and the Cross-Entropy loss with
a learning rate of 0.1. The reference models are trained for 300 epochs, and the subsequent pruned
models are trained for a total of 20 epochs till convergence.

GraSP (Wang et al., 2020a). GraSP is a pruning at initialization method similar to SNIP and
also learns a smaller subnetwork given a reference network, which can subsequently be trained
independently. The gradient norm after pruning is the pruning criterion in GraSP, and those weights
whose removal will result in least decrease in the gradient norm after pruning are pruned. We adapt
the implementation from (Su et al., 2020) to run experiments using SNIP. We train a large reference
model, with the same architecture as the PRESTO models described in Section D.2. The reference
model has the convolution filter size at the fifth last layer as 256, at the fourth last layer as 512
and at the third last layer as 1024. The pruning ratio in all experiments is set so that the number
of nonzero parameters in the reference network after pruning are equal to that of the corresponding
PRESTO model in all experiments. The models are trained on using an Adam optimizer and the
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Cross-Entropy loss with a learning rate of 0.1. The reference models are trained for 300 epochs, and
the subsequent pruned models are trained for a total of 20 epochs till convergence.

KD (Hinton et al., 2015). We train two models, a teacher model and a student model. The architec-
ture of these models is same as the PRESTO models described in Section D.2. The teacher model is
heavier in size, the convolution filter size at the fifth last layer is 128, at the fourth last layer is 256
and at the third last layer is 512. On the other hand, the lighter student model has convolution filter
size set to 12,16 and 32. The models are trained on using an Adam optimizer and the Cross-Entropy
loss. The KD Temperature hyperparameter is set to 5. The teacher model is trained and the loss of
the student model is modified to include a contribution from the teacher model. The multiplicative
hyperparameter controlling the contribution of the teacher model is set to 0.9.

DGKD (Son et al., 2021). This method requires us to train 3 models, a teacher model, a TA model
and a student model. The teacher model is the heaviest, having the convolution filters set to 128,
256 and 512. The TA model is slightly lighter with filter size of 32, 64 and 128. The student model
is the lightest with filter size of 12, 16 and 32. The temperature hyperparameter is 5 and the factor
controlling the contribution of the teacher and TA model is set at 0.9. We train the teacher and the
TA models independently. As in KD, the loss function of the student model is tweaked to consider
a contribution from the teacher and the TA models.

Machine configuration. We performed our experiments on a computer system with Ubuntu 16.04.6
LTS, an i-7 with 8 cores CPU and a total RAM of 528 GBs. The system had a single Titan RTX
GPU which was employed in our experiments.
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Figure 6: Snapshot of the true partition (panel (a)); and, the snapshots of the trained models
{hθk

| k ∈ [K]} and the partitions {Sk | k ∈ [K]} predicted by PRESTO (panels (b)–(d)) on the syn-
thetic dataset during progression of Algorithm 1. The dataset is generated using a degenerate mixture
model with K = 4 components. Here, an instance (xi, yi) belongs to exactly one of the four sets
{S∗

k | k ∈ [4]} with probability 1, where S∗
k are defined in Eqs. (35)— (38). Each model component

is an SVM, i.e., hθk
(x) = w⊤

k x + bk and ℓ(ŷ, y) = (1 − ŷy)+. We observe that as r increases,
PRESTO becomes more and more accurate in assigning an instance to the correct mixture component
and finally, at r = 50, it is almost able to recover the true mixture component— the ground truth
assignments of the instances (panel (a)) is extremely close to the final assignments (panel (d)).

E EXPERIMENTS ON SYNTHETIC DATA

In this section, we experiment with synthetically generated instances from a latent degenerate mix-
ture distribution and show that, Algorithm 1 can accurately recover the partitions which correspond
to the true mixture components.

E.1 EXPERIMENTAL SETUP

Dataset generation. We generate |D| = 20000 examples {(xi, yi)}i∈D where X = [−1.73, 1.73]×
[−1.17, 2.59] and Y = {−1,+1}. The instances (x, y) belong to one of the K = 4 sets, viz.,
S∗
1 , S

∗
2 , S

∗
3 , S

∗
4 , defined as follows:

S∗
1 = {(x, y) | 7x[1] + x[2]− 2y − 27 = 0 ∧ x ∈ [−1.73,−0.86]× [−1.16, 0.04]} (35)

S∗
2 = {(x, y) | 20(x[1]2)− 200x[1] + 414 + x[2]− 2y ∧ x ∈ [−0.87, 0.01]× [−1.15, 2.59]}

(36)
S∗
3 = {(x, y) |x[2] + 1 + exp(−x[1]) + 2y ∧ x ∈ [−0.01, 0.87]× [−1.17, 2.56]} (37)

S∗
4 = {(x, y) | 7x[1] + x[2]− 2y + 43 = 0 ∧ x ∈ [0.86, 1.73]× [−1.17, 0.04]} (38)

Panel (a) of Figure 6 shows a scatter plot of (x, y). The instances are homogeneously distributed
across all components, i.e., |S∗

k | = 5000.

Choice of fθk
and ℓ. We consider K = 4 linear support vector machines hθk

(x) = w⊤
k x+ bk with

θk = {wk, bk} set ℓ as the margin based hinge loss, i.e., ℓ(hθk
(x), y) = (1−y(wkxk+bk))+. Then

we apply PRESTO (Algorithm 1) to simultaneously learn the parameters {(wk, bk) | 1 ≤ k ≤ 4}
and the partitions Sk such that D = ∪4

k=1Sk. In addition to the classification accuracy, we also
measure the aggregated error in predicting the correct mixture component which is defined as ErrS =∑

i,j 1(i, j ∈ S∗
k , i ∈ St, j ∈ St′with t ̸= t′). Thus, ∅ computes the number of pairs that belong to

the same latent mixture component S∗
k , but are predicted to have different mixture components by

PRESTO.

E.2 RESULTS

In Figure 6, we plot different snapshots of the models hθk
and the partitions D = ∪4

k=1Sk, as
PRESTO progresses during different iterations r (line 9 in Algorithm 1). We make the following
observations: (1) As r increases, the classification accuracy increases as well as mixture component
prediction error ErrS decreases. For r = 50, we observe that ErrS becomes very small and PRESTO
is able to recover the true partitions, i.e., S∗

k ≈ Sk (2) We observe that PRESTO finds it relatively
difficult to correctly assign the instances on S∗

2 and S∗
3 to the right mixture components. This is

due to two reasons: first, the instances on S∗
2 and S∗

3 fit naturally to a nonlinear SVMs, whereas we
attempt to fit a linear SVM; second, the instances in S∗

2 and S∗
3 , which are around (0, 0), are close

to each other— this poses difficulty in demarcating their model components.
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F ADDITIONAL EXPERIMENTS ON REAL DATA

Accuracy vs K. Here, we aim to assess the impact of number of partitions (K) on the accuracy. K
is varied from 3 to 6. Figure 7 shows the variation of K with the test accuracy and the Macro-F1
score. We observe that the performance is stable across these range.
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Figure 7: Accuracy vs. the number of partitions K

Accuracy vs GPU usage for DMNIST and SVHN. Here, we perform the same experiments on
DMNIST and SVHN as Figure 3. Figure 8 summarizes the results, which reveal same insights as
Figure 3.

230 240 250 260
GPU (in MiB)→

87

88

89

90

91

A
cc

u
ra

cy
→ SVHNPresto

KD

DGKD

50 105 160 215 270
GPU (in MiB)→

70

72

74

76

A
cc

u
ra

cy
→ DMNIST

Presto

KD

DGKD

(a) Training

6 9 12 15
GPU (in MiB)→

87

88

89

90

91

A
cc

u
ra

cy
→ SVHNPresto

KD

DGKD

4 8 12 16
GPU (in MiB)→

70

72

74

76

A
cc

u
ra

cy
→ DMNIST

Presto

KD

DGKD

(b) Inference

Figure 8: Trade off between accuracy and maximum GPU memory for KD, DGKD and PRESTO
during training (panel (a)) and inference (panel (b)) for DMNIST and SVHN.

G EXPLANATION OF PRESTO (ALGORITHM 1)

In PRESTO we aim to minimize a monotone approximate-submodular function G. In contrast to
submodular or approximate submodular maximization where one can use greedy algorithms, min-
imizing the approximate submodular function G needs a completely different approach. Here, we
resort to minimizing an upper bound m of G— reducing the value of this upper bound m will ensure
the value of the underlying function G remains low. Now, such an upper bound m has to be such
that the gap between m and G is low and maximizing m is convenient. To this aim, we choose m
to be modular. One can connect such a modular approximation of a set function to a simple linear
approximation of a complex nonlinear function in the context of continuous optimization.

Now minimizing the modular function mŜ[S] wrt S is equivalent to taking the minimum of
[mŜ[(i, k)] over different (i, k) pairs ( since, modular(Set) =

∑
e∈Set modular(e)). In each

iteration of Algorithm 1, we simply compute the minimum of m and update S accordingly. Note
that:

mG
Ŝ [S] = G(Ŝ)−

∑
(i,k)∈Ŝ

αGG((i, k)|Ŝ\ {(i, k)}) +
∑

(i,k)∈Ŝ∩S

αGG((i, k)|Ŝ\ {(i, k)}) (39)

+
∑

(i,k)∈S\Ŝ

G((i, k)|∅)
αG

Now, maximizing mG
Ŝ [(i, k)] is same as maximizing αGG((i, k)|Ŝ\ {(i, k)}) or G((i,k)|∅)

αG
depending

on whether (i, k) ∈ Ŝ (3nd term in Eq (39)) or (i, k) ̸∈ Ŝ (4th term in Eq (39)). We compute these
two quantities in L15 (line no. 15 in Algorithm 1) and L17 of the algorithm and store the values of
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m at different pairs (i, k) in the matrix M. Finally, we take the minimum of M to find (i∗, k∗) (L19)
which indicates that the partition k∗ should contain i∗. Therefore, we include i∗ to Ŝk∗ (L20). Now,
since any instance can belong to exactly one partition, we remove i∗ from all other partition k ̸= k∗

(L21). Finally, we update Ŝ (L22).

H ADDITIONAL EXPERIMENTS WITH DATASETS HAVING LABEL NOISE

The datasets are homogenous, extremely balanced and there is a lack of noise. In this section, we
present experiments where we added different amounts of label noise. Specifically, we changed each
label y to a wrong label y

′
with probability 10% and then probe the performance. The results for

CIFAR10 and DMNIST are presented in Table 9. We observe that PRESTO performs much better
than the clustering baselines.

Accuracy P(ŷ = y)
Method CIFAR10 DMNIST

PRESTO 89.01 75.31
EqKMeans 88.49 74.46
Kmeans++ 88.08 74.11

Agglomerative 87.59 74.46

Table 9: Comparison of classification accuracy P(ŷ = y) of PRESTO against three unsupervised par-
titioning methods (Equal-Kmeans (Bennett et al., 2000), Kmeans++ (Arthur & Vassilvitskii, 2006),
Agglomerative (Müllner, 2011)). We change each label y to a wrong label y

′
with probability 10%,

thereby adding heterogenity to the dataset. Numbers in green and yellow indicate the best and the
second best method.

I TIME COMPLEXITY ANALYSIS

Although PRESTO performs data partitioning while simultaneously learning a set of mixture of
models, the partitioning time (lines 19-22 in Algorithm 1) is negligible as the bulk of the time is
devoted to training (lines 10-18 in Algorithm 1). Since the training stage is common to all the
methods, PRESTO does not provide much disadvantage in terms of the time. Table 10 presents an
analysis of the per-iteration training time.

Training time per iteration
Method CIFAR10 PMNIST DMNIST SVHN

PRESTO 9.6 min 16.6min 1.65 min 14.6 min
EqKMeans 9.4 min 16.6min 1.49 min 14.52 min
Kmeans++ 7.96 min 16.6min 1.43 min 14.46 min

Table 10: Comparison of training time per iteration of PRESTO against Equal-Kmeans (Bennett
et al., 2000) and Kmeans++ (Arthur & Vassilvitskii, 2006)
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