
Emergence in Non-Neural Models:
Grokking Modular Arithmetic via Average Gradient Outer Product

Neil Mallinar 1 2 Daniel Beaglehole 1 Libin Zhu 1 Adityanarayanan Radhakrishnan 2 Parthe Pandit 3

Mikhail Belkin 4

Abstract
Neural networks trained to solve modular arith-
metic tasks exhibit grokking, the phenomenon
where the test accuracy improves only long after
the model achieves 100% training accuracy in the
training process. It is often taken as an exam-
ple of “emergence”, where model ability mani-
fests sharply through a phase transition. In this
work, we show that the phenomenon of grokking
is not specific to neural networks nor to gradi-
ent descent-based optimization. Specifically, we
show that grokking occurs when learning modu-
lar arithmetic with Recursive Feature Machines
(RFM), an iterative algorithm that uses the Av-
erage Gradient Outer Product (AGOP) to en-
able task-specific feature learning with kernel ma-
chines. We show that RFM and, furthermore, neu-
ral networks that solve modular arithmetic learn
block-circulant features transformations which
implement the previously proposed Fourier multi-
plication algorithm.

1. Introduction
In recent years the idea of “emergence” has become an
important narrative in machine learning. While there is
no broad agreement on the definition (Rogers & Luccioni,
2023), it is often argued that “skills” emerge during the
training process once certain data size, compute, or model
size thresholds are achieved (Wei et al., 2022; Arora &
Goyal, 2023). Furthermore, these skills are believed to ap-
pear rapidly, exhibiting sharp and seemingly unpredictable
improvements in performance at these thresholds. One of

1Department of Computer Science and Engineering, UC San
Diego, La Jolla, CA, USA 2The Broad Institute of MIT and
Harvard, Cambridge, MA, USA 3IIT Bombay, Mumbai, Maha-
rashtra, India 4Halıcıoğlu Data Science Institute, UC San Diego,
La Jolla, CA, USA. Correspondence to: Neil Mallinar <nmal-
lina@ucsd.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Ac
cu

ra
cy

RFM Iterations

Sq
ua

re
 L

os
s

Learned Feature (AGOP) Matrices

Figure 1. Recursive Feature Machines grok the modular arithmetic
task f∗(x, y) = (x+ y)mod 59.

the simplest, most striking examples supporting this idea is
“grokking” modular arithmetic (Power et al., 2022; Nanda
et al., 2023). A neural network trained to predict modular
arithmetic operations on a fixed data set rapidly transitions
from near-zero to perfect (100%) test accuracy at a certain
point in the optimization process. Surprisingly, this tran-
sition point occurs long after perfect training accuracy is
achieved. Not only is this contradictory to traditional wis-
dom regarding overfitting but, as we will show, some aspects
of grokking do not fit neatly with our modern understanding
of “benign overfitting” (Bartlett et al., 2021; Belkin, 2021).

Despite a large amount of recent work on emergence and,
specifically, grokking, (see, e.g., (Power et al., 2022; Liu
et al., 2023; Nanda et al., 2023; Thilak et al., 2022; Furuta
et al., 2024; Miller et al., 2024)), the nature and existence of
the emergent phenomena remains contested. The recent pa-
per (Schaeffer et al., 2023) suggests that the rapid emergence
of skills may be a “mirage” due to the mismatch between the
discontinuous metrics used for evaluation, such as accuracy,
and the continuous loss used in training. The authors argue
that, in contrast to accuracy, the test (or validation) loss or
some other suitably chosen metric may decrease gradually

1

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

A
cc

ur
ac

y
(%

)

RFM Iterations

Te
st

Lo
ss

RFM Iterations

Te
st

 L
os

s
of

C
or

re
ct

 O
ut

pu
t

C
la

ss
C
ir
cu

la
nt

D
ev

ia
tio

n
A
G

O
P

A
lig

nm
en

t

RFM Iterations RFM Iterations

Accuracy & Loss

Progress Measures

Add Div

A

B

RFM
Circ:
frob

Figure 2. RFM with the quadratic kernel on modular arithmetic
with modulus p = 61 trained for 30 iterations. (A) Test accuracy,
test loss (mean squared error) over all output coordinates, and test
loss of the correct class output coordinate do not change in the first
8 iterations and then, sharply transition. (B) Circulant deviation
and AGOP alignment show gradual progress towards generalizing
solutions despite accuracy and loss metrics not changing in the
initial iterations. For division (Div), circulant deviation is measured
with respect to the feature sub-matrices after reordering by the
discrete logarithm. Plots for subtraction (Sub) and multiplication
(Mul) are in Appendix Figure 1.

throughout training and thus provide a useful measure of
progress. Another possible progress measure is the train-
ing loss. As SGD-type optimization algorithms generally
result in a gradual decrease of the training loss, one may
posit that skills appear once the training loss falls below a
certain threshold in the optimization process. Indeed, such
a conjecture is in the spirit of classical generalization theory,
which considers the training loss to be a useful proxy for
the test performance (Mohri et al., 2018).

In this work, we show that sharp emergence in modular
arithmetic arises entirely from feature learning, indepen-
dently of other aspects of modeling and training, and is not
predicted by standard measures of progress. We then clarify
the nature of feature learning leading to the emergence of
skills in modular arithmetic. We discuss these contributions
in further detail below.

Summary of the contributions. We demonstrate empiri-
cally that grokking modular arithmetic: (1) is not specific to
neural networks (to the best of our knowledge, no prior work
shows a non-neural model that learns modular arithmetic);
(2) is not tied to gradient-based optimization methods; (3)

is not predicted by training or test loss1, let alone accuracy.

Specifically, we show grokking for Recursive Feature Ma-
chines (RFM) (Radhakrishnan et al., 2024a), an algorithm
that iteratively uses the Average Gradient Outer Product
(AGOP) to enable task-specific feature learning in general
machine learning models. In this work, we use RFM to en-
able feature learning in kernel machines, which are a class
of predictors with no native mechanism for feature learning.
In this setting, RFM iterates between three steps: (i) training
a kernel machine, f , to fit training data; (ii) computing the
AGOP matrix of f , M , over the training data to extract
task-relevant features; and (iii) transforming input data, x,
using the learned features via the map x → Ms/2x for a
matrix power s > 0 (see Section 2 for details).

In Fig. 1 we give an example of RFM grokking modular
addition, despite not using any gradient-based optimization
methods and achieving numerically zero training loss at
every iteration. During the first few iterations both the test
loss and and test accuracy remain at the constant (random)
level. Around iteration 10 the test loss starts improving and,
a few iterations later, test accuracy quickly transitions to
100%. We also observe that early in the iteration, structure
emerges in AGOP feature matrices (see Fig. 1). The gradual
appearance of structure in these feature matrices is striking
given that the training loss is identically zero at every iter-
ation and the test loss does not significantly change until
iteration 8. The striped patterns observed in feature matrices
correspond to matrices whose sub-blocks are circulant with
entries that are constant along the “long” diagonals which
wrap around the matrix.2 Such circulant feature matrices
are key to learning modular arithmetic. In Section 3 we
demonstrate that standard kernel machines using random
circulant features easily learn modular operations. As these
random circulant matrices are generic, we argue that no
additional structure is required to solve modular arithmetic.

To demonstrate that the feature matrices evolve toward this
structure (including for multiplication and division under
an appropriate re-ordering of the input coordinates), we
introduce two “hidden progress measures” (Barak et al.,
2022): (1) Circulant deviation, which measures constancy
of the diagonals of a matrix, and (2) AGOP alignment, which
measures similarity between the feature matrix at iteration
t and the AGOP of a fully trained model. We will see that
both of these measures show gradual (initially nearly linear)
progress toward a model that generalizes.

We further argue that emergence in fully connected neural
networks trained on modular arithmetic identified in prior

1We note that for neural networks trained by SGD, emergence
cannot be decoupled from training loss, as non-zero loss is required
for training to occur at all.

2Feature sub-matrices may also be constant on anti-diagonals.
We also refer to these matrices as circulant.

2

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

work (Gromov, 2023; Liu et al., 2022) is analogous to that
for RFM and is exhibited through the AGOP (see Section 4).
By visualizing covariances of network weights, we observe
that these models also learn block-circulant features for
modular arithmetic. We demonstrate that these features are
highly correlated with the AGOP of neural networks, cor-
roborating prior observations from (Radhakrishnan et al.,
2024a). Paralleling our observations for RFM, our progress
measures indicate gradual progress toward a generalizing
solution during neural network training. Finally we demon-
strate that training neural networks on data transformed
by random block-circulant matrices dramatically decreases
training time needed to learn modular arithmetic.

Why are these learned block circulant features effective
for modular arithmetic? We provide supporting theoretical
evidence that circulant features result in kernel machines
implementing the Fourier Multiplication Algorithm (FMA)
for modular arithmetic (see Section 5). For the case of neu-
ral networks, several prior works have argued empirically
and theoretically that neural networks learn to implement
the FMA to solve modular arithmetic (Nanda et al., 2023;
Varma et al., 2023; Morwani et al., 2024). While kernel
RFM and neural networks utilize different classes of predic-
tive models, our results suggest that they discover similar
algorithms for implementing modular arithmetic.

By decoupling feature learning from predictor training, our
results provide evidence for emergent properties of machine
learning models arising purely as a consequence of their
ability to learn features. We hope our work will help isolate
the underlying mechanisms of emergence and shed light
on the key practical concern of how, when, and why these
seemingly unpredictable transitions occur.

2. Preliminaries
Learning modular arithmetic. Let Zp = Z/pZ denote the
field of integers modulo a prime p and let Z∗

p = Zp\{0}.
We learn modular functions f∗(a, b) = g(a, b)mod p where
f∗ : Zp × Zp → Zp, a, b ∈ Zp, and g : Z × Z → Z is an
arithmetic operation on a and b, e.g. g(a, b) = a+ b. Note
that there are p2 discrete input pairs (a, b) for all modular
operations except for f∗(a, b) = (a÷ b)mod p, which has
p(p− 1) inputs as the denominator cannot be 0.

To train models on modular arithmetic tasks, we construct
input-label pairs by one-hot encoding the input and label
integers. Specifically, for every pair a, b ∈ Zp, we write
the input as ea ⊕ eb ∈ R2p and the output as ef∗(a,b) ∈
Rp, where ei ∈ Rp is the i-th standard basis vector in p
dimensions and ⊕ is concatenation. The training dataset
consists of a random subset of n = r ×N input/label pairs,
where r is the training fraction and N = p2 or p(p− 1) is
the number of possible discrete inputs.

Complex inner product and Discrete Fourier Transform.
In our theoretical analysis in Section 5, we will utilize the
following notions of complex inner product and DFT. The
complex inner product ⟨·, ·⟩C is a map from Cd × Cd → C
of the form

⟨u, v⟩C = u⊤v̄ , (1)

where v̄j is the complex conjugate of vj . Let i =
√
−1 and

let ω = exp(−2πi
d). The DFT is the map F : Cd → Cd of

the form F(u) = Fu, where F ∈ Cd×d is a unitary matrix
with Fij =

1√
d
ωij . In matrix form, F is given as

F =
1√
d

1 1 1 · · · 1
1 ω ω2 · · · ωd−1

1 ω2 ω4 · · · ω2(d−1)

...
...

...
. . .

...
1 ωd−1 ω2(d−1) · · · ω(d−1)(d−1)

 .

(2)

Circulant matrices. The features that RFMs and neural
networks learn in order to solve modular arithmetic contain
blocks of circulant matrices, which are defined as follows.
Let σ : Rp → Rp be the cyclic permutation which acts on
a vector u ∈ Rp by shifting its coordinates by one cell to
the right: [σ(u)]j = uj−1mod p , for j ∈ [p]. We write the
ℓ-fold composition of this map σℓ(u) ∈ Rp with entries
[σℓ(u)]j = uj−ℓmod p. A circulant matrix C ∈ Rp×p is de-
termined by a vector c = [c0, . . . , cp−1] ∈ Rp, and has rows
(in order from first to last): c, σ(c), . . . , σp−1(c). Feature
matrices may also have have constant anti-diagonals (“Han-
kel matrices”). To ease terminology, we will use the word
circulant to refer to both Hankel and circulant matrices.

Average Gradient Outer Product (AGOP). The AGOP
matrix is central to our discussion and defined as follows.

Definition 2.1 (AGOP). Given a predictor f : Rd → Rc

with c outputs, f(x) ≡ [f0(x), . . . , fc−1(x)], let ∂f(x′)
∂x ∈

Rd×c be the Jacobian (transposed) of f evaluated at some
point x′ ∈ Rd with entries [∂f(x

′)
∂x]s,ℓ =

∂fℓ(x
′)

∂xs
. Then, for

f trained on a set of data points {x(j)}nj=1, with x(j) ∈ Rd,
the Average Gradient Outer Product (AGOP), G ∈ Rd×d,
is defined as,

G(f ; {x(j)}nj=1) =
1

n

n∑
j=1

∂f(x(j))

∂x

∂f(x(j))

∂x

⊤

. (3)

For simplicity, we omit the dependence on the dataset in
the notation. Top eigenvectors of AGOP can be viewed as
the “most relevant” input features, those input directions
that influence the output of a general predictor (for example,
a kernel machines or a neural network) the most. As a
consequence, the AGOP can be viewed as a task-specific

3

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

transformation that can be used to amplify relevant features
and improve sample efficiency of machine learning models.

Indeed, a line of prior works (Yuan et al., 2023; Trivedi
et al., 2014; Hristache et al., 2001) have used the AGOP
to improve the sample efficiency of predictors trained on
multi-index models, a class of predictive tasks in which the
target function depends on a low-rank subspace of the data.
Though the study of AGOP has been motivated by these
multi-index examples, we will see that the AGOP can be
used to recover useful features for modular arithmetic that
are, in fact, not low-rank.

AGOP and feature learning in neural networks. (Rad-
hakrishnan et al., 2024a) posited that AGOP was a mech-
anism through which neural networks learn features. The
authors introduce the Neural Feature Ansatz (NFA) stating
that for any layer ℓ of a trained neural network with weights
Wℓ, the Neural Feature Matrix (NFM), WT

ℓ Wℓ, are highly
correlated to the AGOP of the model computed with respect
to the input of layer ℓ. The NFA suggests that neural net-
works learn features at each layer by utilizing the AGOP.
For more details on the NFA, see Appendix C.

Recursive Feature Machine (RFM). Importantly, AGOP
can be computed for any differentiable predictor, includ-
ing those such as kernel machines that have no native fea-
ture learning mechanism. As such, the authors of (Rad-
hakrishnan et al., 2024a) developed an algorithm known
as RFM, which iteratively uses the AGOP to extract fea-
tures. Below, we present the RFM algorithm used in con-
junction with kernel machines. Suppose we are given
data samples (X, y) ∈ Rn×d × Rn where X contains n
samples denoted {x(j)}nj=1. Given an initial symmetric
positive-definite matrix M0 ∈ Rd×d, and Mahalanobis ker-
nel k(·, · ;M) : Rd × Rd → R, RFM iterates the following
steps for t ∈ [T]:

Step 1 (Predictor training): f (t)(x) = k(x,X;Mt)α (4)

with α = k(X,X;Mt)
−1y ; (5)

Step 2 (AGOP update): Mt+1 = [G(f (t))]s ; (6)

where s > 0 is a matrix power and k(X,X;M) ∈
Rn×n denotes the matrix with entries [k(X,X;M)]j1j2 =
k(x(j1), x(j2);M) for j1, j2 ∈ [n]. In this work, we se-
lect s = 1

2 for all experiments (see Algorithm 1 for
complete pseudocode). We use the following two Maha-
lanobis kernels: (1) the quadratic kernel, k(x, x′;M) =(
x⊤Mx′)2 ; and (2) the Gaussian kernel k(x, x′;M) =

exp
(
−∥x− x′∥2M/L

)
, where for z ∈ Rd, ∥z∥2M = z⊤Mz,

and L is the bandwidth.

3. Emergence with RFM
We now show that RFM exhibits sharp transitions in perfor-
mance on modular arithmetic tasks (addition, subtraction,

Add

Sub Mul
(reordered)

Div
(reordered)

Learned Feature Matrices (AGOP)

A

C
Mul

(original)
Div

(original)

B

Figure 3. RFM with the quadratic kernel for modular arithmetic
with p = 61. (A) The square root of the kernel AGOPs for addition
(Add), subtraction (Sub) visualized without their diagonals to
emphasize the off-diagonal blocks. (B) Square root of the kernel
AGOP for multiplication (Mul), division (Div). (C) For Mul and
Div, rows and columns of each sub-matrix is re-ordered by the
discrete log. base 2.

multiplication, and division) due to the emergence of block-
circulant features.

We will use a modulus of p = 61 and train RFM with
quadratic and Gaussian kernel machines (experimental de-
tails are provided in Appendix D). As we solve kernel ridge-
less regression exactly, all iterations of RFM result in zero
training loss and 100% training accuracy. The top two rows
of Fig. 2A show that the first several iterations of RFM result
in near-zero test accuracy and approximately constant, large
test loss. Despite these standard progress measures initially
not changing, continuing to iterate RFM leads to a dramatic,
sharp increase to 100% test accuracy and a corresponding
decrease in the test loss later in the iteration process.

Sharp transition in loss of correct output coordinate. It
is important to note that our total loss function is the square
loss averaged over p = 61 classes. It is thus plausible that,
due to averaging, the near-constancy of the total square loss
over the first few iterations conceals steady improvements
in the predictions of the correct class. However, in Fig. 2A
we show that the test loss for the output coordinate of the
correct class closely tracks the total test loss.

Emergence of block-circulant features in RFM. To under-
stand RFM generalization, we visualize the 2p× 2p feature
matrix given by the square root of the AGOP from the final
iteration of RFM. We first visualize the feature matrices for
RFM trained on modular addition/subtraction in Fig. 3A.
Their visually-evident striped structure suggests a more pre-
cise characterization:

4

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

Observation 1 (Block-circulant features). Feature matrix
M∗ ∈ R2p×2p at the final iteration of RFM on modular
addition/subtraction is of the form

M∗ =

(
A C⊤

C A

)
, (7)

where A,C ∈ Rp×p, C is an asymmetric circulant matrix. ,
A = c1I + c211

⊤ for scalars c1, c2.

Similarly to addition and subtraction, RFM successfully
learns multiplication and division. Yet, in contrast to addi-
tion and subtraction, the structure of feature matrices for
these tasks, shown in Fig. 3B, is not at all obvious. Nev-
ertheless, re-ordering the rows and columns of the feature
matrices for these tasks brings out their hidden circulant
structure of the form stated in Eq. (7). We show the ef-
fect of re-ordering in Fig. 3C (see also Appendix Fig. 2
for the evolution of re-ordered and original features during
training).

We briefly discuss the reordering procedure below and pro-
vide further details in Appendix E. To reorder, we use
the fact of group theory that the multiplicative group Z∗

p

is a cyclic group of order p − 1 (e.g., (Koblitz, 1994)).
By definition of the cyclic group, there exists at least
one element g ∈ Z∗

p, known as a generator, such that
Z∗
p = {gi ; i ∈ {1, . . . , p − 1}}. As we will see, re-

ordering the rows and columns of the AGOP by powers
of a generator reveals circulant structure. For modular mul-
tiplication/division, the map taking gi to i is known as the
discrete logarithm base g (Koblitz, 1994, Ch.3). It is natural
to expect block-circulant feature matrices to arise in modu-
lar multiplication/division after reordering by the discrete
log as the discrete log converts modular multiplication/divi-
sion into modular addition/subtraction. We note the recent
work (Doshi et al., 2024) also used the discrete log to re-
order coordinates in the context of constructing a solution
for solving modular multiplication with neural networks.

Progress measures. We propose two measures of feature
learning, circulant deviation and AGOP alignment.

Circulant deviation. As the final feature matrices contain
circulant sub-blocks, a natural progress measure for learning
modular arithmetic with RFM is how far AGOP feature ma-
trices are from a block-circulant matrix. For a feature matrix
M , let A denote the bottom-left sub-block of M . We define
circulant deviation as the total variance of the (wrapped)
diagonals of A normalized by the norm ∥A∥2F . In particular,
let S ∈ Rp×p → Rp×p denote the shift operator, which
shifts the ℓ-th row of the matrix by ℓ positions to the right.
Also let Var(v) =

∑p−1
j=0(vj − Ev)2 be the variance of a

vector v. If A[j] denotes the j-th column of A, we define cir-
culant deviationD as: D(A) = 1

∥A∥2
F

∑p−1
j=0 Var(S(A)[j]).

As circulant matrices are constant along their (wrapped)
diagonals, they have a circulant deviation of 0.

Te
st
 L
os
s

Te
st
 A
cc
ur
ac
y
(%
)

Te
st
 L
os
s

Te
st
 A
cc
ur
ac
y
(%
)

Training fraction (%) Training fraction (%)

Add Mul

Figure 4. Random circulant features generalize with standard ker-
nels for modular arithmetic. RFM with the Gaussian kernel on
addition (Add) and multiplication (Mul) for modulus p = 61 is
compared to a base Gaussian kernel machine trained on random
circulant features (for Mul, the sub-blocks are circulant after re-
ordering by the discrete logarithm base 2).

We see in Fig. 2B that circulant deviation exhibits gradual
improvement through the course of training with RFM. We
find that for the first 10 iterations, while the training loss is
numerically zero and the test loss does not improve, circu-
lant deviation exhibits gradual, nearly linear, improvement.
The improvements in circulant deviation reflect visual im-
provements in features, as was also shown in Fig. 1. These
curves provide further support for Observation 1, as circu-
lant deviation is close to 0 at the end of training.

Circulant deviation depends crucially on the observation
that for modular arithmetic the feature matrices contained
circulant blocks. For more general tasks, we may not be
able to identify such structure. Thus, we propose a second,
more general progress measure, AGOP alignment.

AGOP alignment. Given two matrices A,B ∈ Rd×d, let
ρ(A,B) denote the standard cosine similarity between these
two matrices when vectorized. Specifically, let Ã, B̃ ∈
Rd2

denote the vectorization of A and B respectively, then
ρ(A,B) = ⟨Ã,B̃⟩

∥Ã∥ ∥B̃∥ .

If Mt denotes the AGOP at iteration t of RFM (or epoch
t of a neural network) and M∗ denotes the final AGOP of
the trained RFM (or neural network), then AGOP alignment
at iteration t is given by ρ(Mt,M

∗). The same measure
of alignment was used in (Zhu et al., 2024), except their
alignment was computed with respect to the AGOP of the
ground truth model. Note that as modular operations are
discrete, in our setting there is no unique ground truth model
for which AGOP can be computed.

Like circulant deviation, AGOP alignment exhibits gradual
improvement in the regime that test loss is constant and large
(see Fig. 2B, bottom row). Moreover, AGOP alignment is

5

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

a more general progress measure since it does not require
assumptions on the structure of the AGOP. For instance,
AGOP alignment can be measured without reordering for
modular multiplication/division. While AGOP alignment
does not require a specific form of the final features, it is
still an a posteriori measurement of progress as it requires
access to the features of a fully trained model.

Random circulant features allow standard kernels to
generalize. We conclude this section by providing fur-
ther evidence that the form of feature matrices given in
Observation 1 is key to enabling generalization in kernel
machines trained to solve modular arithmetic tasks. We now
show that a transformation with a generic block-circulant
matrix enables kernels machines to learn modular arith-
metic. We generate a random circulant matrix C by first
sampling entries of the first column i.i.d. from the uni-
form distribution on [0, 1] ⊂ R and then shifting the col-
umn to generate the remaining columns of C. We con-
struct M∗ in Observation 1 with c1 = 1, c2 = −1/p. For
modular addition, we transform the input data by mapping
xab = ea ⊕ eb to x̃ab = (M∗)

1
4xab , and then train on the

new data pairs (x̃ab, ea+bmod p) for a subset of all possible
pairs (a, b) ∈ Z2

p. Note that transforming data with (M∗)
1
4

is akin to using s = 1/2 in RFM.

We do the same for modular multiplication after reordering
the random circulant by the discrete logarithm as described
above. The experiments in Fig. 4 show that standard kernel
machines trained on feature matrices with random circulant
blocks outperform RFM that learns such features through
AGOP. We also find that directly enforcing circulant blocks
in the sub-matrices of Mt throughout RFM iterations accel-
erates grokking and improves test loss (see Appendix F, Ap-
pendix Fig. 3). These experiments provide direct evidence
that the structure in Observation 1 is key for generaliza-
tion on modular arithmetic and, furthermore, no additional
structure beyond a generic circulant is required.

4. Emergence in Neural Nets through AGOP
We now show that grokking in two-layer neural networks
relies on the same principles as grokking by RFM. Specif-
ically we demonstrate that (1) block-circulant features are
key to neural networks grokking modular arithmetic; and
(2) our measures (circulant deviation and AGOP alignment)
indicate gradual progress towards generalization, while stan-
dard measures of generalization exhibit sharp transitions.
All experimental details are provided in Appendix D.

Grokking with neural networks. We first reproduce
grokking with modular arithmetic using fully-connected net-
works as identified in prior works (Fig. 5A) (Gromov, 2023).
In particular, we train one hidden layer fully connected net-
works f : R2p → Rp of the form f(x) = W2ϕ(W1x) with
quadratic activation ϕ(z) = z2 on modulus p = 61 data

A
cc

ur
ac

y
(%

)

Epochs

Lo
ss

Epochs

Lo
ss

 o
f
C
or

re
ct

O

ut
pu

t
C
la

ss
C
ir
cu

la
nt

D
ev

ia
tio

n
A
G

O
P

A
lig

nm
en

t

Epochs Epoch

Accuracy & Loss

Progress Measures

Add Div

A

B

NN
Circ:
frob

Figure 5. One hidden layer fully-connected networks with
quadratic activations trained on modular arithmetic with p = 61
trained for 50 epochs with the square loss. (A) Test accuracy, test
loss over all outputs, and test loss of the correct class output do not
change in the initial iterations. (B) Progress measures for circulant
deviation and AGOP alignment. Circulant deviation for Div is
computed after reordering by the discrete logarithm base 2. Plots
for Sub and Mul can be found in Appendix Figure 5.

with a training fraction 50%.

Consistent with prior work (Gromov, 2023) and analogously
to RFMs, neural networks exhibit an initial training period
where the train accuracy reaches 100%, while test accuracy
is at 0% and test loss does not improve (see Fig. 5A). After
this point, we see that the accuracy rapidly improves to
achieve perfect generalization. We further verify that the
sharp transition in test loss is not an artifact of averaging the
loss over all output coordinates. In the third row of Fig. 5A
we show that the test loss of the individual correct output
coordinate closely tracks the total loss.

Emergence of block-circulant features in neural net-
works. To understand the features learned by neural net-
works we visualize the first layer Neural Feature Matrix.

Definition 4.1. (Neural Feature Matrix) Given a fully con-
nected network f(x) = a⊤ϕ(W1x), the first layer Neural
Feature Matrix (NFM) is the matrix W⊤

1 W1 ∈ R2p×2p.

The NFM is the un-centered covariance of network weights
and has been used in prior work in order to understand the
features learned by various neural network architectures at
any layer (Radhakrishnan et al., 2024a; Trockman et al.,
2022). Fig. 6A displays the NFM for one hidden layer neu-
ral networks with quadratic activations trained on modular

6

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

Add Div (reordered)

NN
AGOP

NFM

B

A

Figure 6. Feature matrices from one hidden layer neural networks
with quadratic activations trained on addition and division modulo
61. The Pearson correlations between the NFM and square root
of the AGOP for each task are 0.955 (Add), 0.929 (Div). Div is
shown after reordering by the discrete logarithm base 2. Plots for
Sub and Mul can be found in Appendix Figure 7.

arithmetic tasks. For addition/subtraction, we find that the
NFM exhibits block circulant structure, akin to the feature
matrix for RFM. As described in Section 3 and Appendix E,
we reorder the NFM for networks trained on multiplica-
tion/division with respect to a generator for Z∗

p in order to
observe block-circulant structure (see Appendix Fig. 6A for
a comparison of multiplication/division NFMs before and
after reordering). The block-circulant structure in both the
NFM and the feature matrix of RFM suggests that the two
models are learning similar sets of features.

The work (Radhakrishnan et al., 2024a) posited that AGOP
is the mechanism through which neural networks learn fea-
tures. The authors stated their claim in the form of the
Neural Feature Ansatz (NFA), which states that NFMs are
proportional to a matrix power of AGOP through training
(see Eq. (15) for a restatement of the NFA). As such, we
additionally compute the square root of the AGOP to ex-
amine the features learned by neural networks trained on
modular arithmetic tasks. We visualize the square root of
the AGOPs of these trained models in Fig. 6B and also find
that the square root of the AGOP and the NFM are highly
correlated (greater than 0.92), where Pearson correlation is
equal to cosine similarity after centering the inputs to be
mean 0. Moreover, we find that the square root of AGOP of
neural networks again exhibits the same structure as stated
in Observation 1 (see Appendix Fig. 6B for a comparison of
multiplication/division AGOPs before and after reordering).

Random circulant maps improve generalization of neu-
ral networks. To further establish the importance and gen-
erality of block-circulant features, we demonstrate that train-
ing networks on inputs transformed with a random block-
circulant matrix greatly accelerates learning. In Fig. 7, we
compare the performance of neural networks trained on
one-hot encoded modulo p integers and the same integers

Epochs Epochs

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

S
qu

ar
e

Lo
ss

S
qu

ar
e

Lo
ss

NN Random Circulant + NN

17.5% - ¼ M matrix

Add

Figure 7. Random circulant features speed up generalization in
neural networks for modular addition. We compare one hidden
layer MLPs with quadratic activations trained on modular addition
and multiplication for p = 61 using standard one-hot encodings
or those transformed by random circulant matrices. The same
experiments for Mul are in Appendix Figure 9.

transformed with a random block-circulant matrix. At a
training fraction of 17.5%, we find that networks trained on
transformed integers achieved 100% test accuracy within
several hundred epochs and exhibit little delayed generaliza-
tion while networks trained on non-transformed integers do
not achieve 100% test accuracy even within 3000 epochs.

Progress measures. Given that the square root of the AGOP
of neural networks exhibits block-circulant structure, we
use circulant deviation and AGOP alignment to measure
progress of neural networks toward a generalizing solution.
As before, we measure circulant deviation in the case of mul-
tiplication/division after reordering the feature submatrix
by a generator of Z∗

p. In Fig. 5B, we see that our measures
indicate gradual progress in contrast to sharp transitions in
the standard measures of progress shown in Fig. 5A. There
is a period of 5-10 epochs where circulant deviation and
AGOP alignment improve while test loss and test accuracy
do not. As with RFM, these metrics reveal gradual progress
of neural networks toward generalizing solutions.

5. Fourier Multiplication from Circulants
We have seen so far that features containing circulant sub-
blocks enable generalization for RFMs and neural networks
across modular arithmetic tasks. We now provide theo-
retical support that shows how kernel machines equipped
with such circulant features learn generalizing solutions. In
particular, we show that there exist block-circulant feature
matrices, as in Observation 1, such that kernel machines
equipped with these features and trained on all available data
for a given modulus p solve modular arithmetic through the
Fourier Multiplication Algorithm (FMA). Notably, the FMA
has been argued both empirically and theoretically in prior

7

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

works to be the solution found by neural networks to solve
modular arithmetic (Nanda et al., 2023; Zhong et al., 2024).
For completeness, we state the FMA for modular addition/-
subtraction from (Nanda et al., 2023) below. While prior
works write this algorithm in terms of cosines and sines, our
presentation simplifies the statement by using the DFT.

Fourier Multiplication Algorithm for modular addi-
tion/subtraction. Consider the modular addition task
with f∗(a, b) = (a + b)mod p. For a given input x =
x[1] ⊕ x[2] ∈ R2p, the FMA generates a value for output
class ℓ, yadd(x; ℓ), through the following computation:

1. Compute the Discrete Fourier Transform (DFT) for
each digit vector x[1] and x[2], which we denote x̂[1] =
Fx[1] and x̂[2] = Fx[2] where the matrix F is defined
in Eq. (2).

2. Compute the element-wise product x̂[1] ⊙ x̂[2].

3. Return
√
p · ⟨x̂[1]⊙ x̂[2], Feℓ⟩C where eℓ denotes ℓ-th

standard basis vector and ⟨·, ·⟩C denotes the complex
inner product (see Eq. (1)).

This algorithmic process can be written concisely in the
following equation:

yadd(x; ℓ) =
√
p ·

〈
Fx[1] ⊙ Fx[2], Feℓ

〉
C . (8)

Note that for x = ea ⊕ eb, the second step of the FMA
reduces to

Fea ⊙ Feb =
1
√
p
Fe(a+b)mod p . (9)

Using the fact that F is a unitary matrix, the output of the
FMA is given by

√
p ·

〈
1
√
p
Fe(a+b)mod p, Feℓ

〉
C

(10)

=e⊤(a+b)mod pF
⊤F̄eℓ (11)

=e⊤(a+b)mod peℓ (12)

=1{(a+b)mod p=ℓ} . (13)

Thus, the output of the FMA is a vector e(a+b)mod p, which
is equivalent to modular addition. We provide an example
of this algorithm for p = 3 in Appendix I.

Remarks. We note that our description of the FMA uses
all entries of the DFT, referred to as frequencies, while the
algorithm as proposed in prior works allows for utilizing a
subset of frequencies. Also note that the FMA for subtrac-
tion, written ysub, is similar and given by

ysub(x; ℓ) =
√
p ·

〈
Fx[1] ⊙ Fep−ℓ−1, Fx[2]

〉
C . (14)

Having described the FMA, we now state our theorem.

Theorem 5.1. Given all of the discrete data{(
ea ⊕ eb, e(a−b)mod p

)}p−1

a,b=0
, for each output class

ℓ ∈ {0, · · · , p − 1}, suppose we train a separate kernel
predictor fℓ(x) = k(x,X;Mℓ)α

(ℓ) where k(·; ·;Mℓ)

is a quadratic kernel with Mℓ =

(
0 Cℓ

(Cℓ)⊤ 0

)
and

C ∈ Rp×p is a circulant matrix with first row e1. When
α(ℓ) is the solution to kernel ridgeless regression for each
ℓ, the kernel predictor f = [f0, . . . , fp−1] is equivalent to
Fourier Multiplication Algorithm for modular subtraction
(Eq. (14)).

As C is circulant, Cℓ is also circulant. Hence, each Mℓ

has the structure described in Observation 1, where A = 0.
Note our construction differs from RFM in that we use a dif-
ferent feature matrix Mℓ for each output coordinate, rather
than a single feature matrix across all output coordinates.
Nevertheless, Theorem 5.1 provides support for the fact
that block-circulant feature matrices can be used to solve
modular arithmetic.

We provide the proof for Theorem 5.1 in Appendix J. The
argument for the FMA for addition (Eq. (8)) is identical
provided we replace Cℓ with CℓR and (Cℓ)⊤ with (CℓR)⊤

in each Mℓ, where R is the Hankel matrix that reverses the
row order (i.e. ones along the main anti-diagonal, zero’s
elsewhere), whose first row is ep−1. An analogous result
follows for multiplication and division under re-ordering by
a group element, as described in Section 3.

Our proof uses the well-known fact that circulant matri-
ces can be diagonalized using the DFT matrix (Gray et al.,
2006) (see Lemma J.2 for a restatement of this fact). This
fundamental relation intuitively connects circulant features
and the FMA. By using kernels with block-circulant Ma-
halanobis matrices, we effectively represent the one-hot
encoded data in terms of their Fourier transforms. We con-
jecture that this implicit representation is what enables RFM
to learn modular arithmetic with more general circulant ma-
trices when training on just a fraction of the discrete data.

Not only do neural networks and RFM learn similar features,
we now have established a setting where kernel methods
equipped with block-circulant feature matrices learn the
same out-of-domain solution as neural networks on modular
arithmetic tasks. This result is interesting as the only con-
straint for generalization on these tasks is to obtain perfect
accuracy on inputs that are standard basis vectors. As such
functions can be extended arbitrarily over all of R2d, there
are infinitely many generalizing solutions where the particu-
lar out-of-domain solution found by training is determined
by the specifics of the learning algorithm. It is intriguing
that kernel-RFMs and neural networks, which are clearly
quite different algorithms, are both implicitly biased toward
solutions that involve block-circulant feature matrices.

8

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

6. Discussion and Conclusions
Most classical analyses of generalization relied on the train-
ing loss serving as a proxy for the test loss and thus a useful
measure of generalization. Empirical results of deep learn-
ing have upended this long-standing belief. In many settings,
predictors that fit the data exactly can still generalize, thus
invalidating training loss as a predictor of test performance.
This has led to the recent developments in understanding
benign overfitting, in neural networks as well as in classi-
cal kernel and linear models (Belkin, 2021; Bartlett et al.,
2021). Since the training loss may not predict generalization,
the common suggestion has been to use the validation loss
computed on a separate validation dataset. Emergent phe-
nomena, such as grokking, show that we cannot rely even on
validation performance at intermediate training steps to pre-
dict generalization at the end of training. Indeed, validation
loss at a certain iteration may not be indicative of the valida-
tion loss itself only a few iterations later. Further, contrary
to (Schaeffer et al., 2023), we show these phase transitions
in performance are not generally “a mirage” since, as we
observe in this work, they are not always predicted by a pri-
ori measures of performance, continuous or discontinuous.
Instead, emergence is fully determined by feature learning,
which is difficult to observe without having access to a fully
trained model. Indeed, the progress measures discussed in
this work, as well as those suggested in, e.g., (Barak et al.,
2022; Nanda et al., 2023; Doshi et al., 2024) can be termed
a posteriori progress indicators. They all require either un-
derstanding of the algorithm implemented by a generalizing
trained model (such as our circulant deviation, the Fourier
gap considered in (Barak et al., 2022), or the Inverse Par-
ticipation Ratio in (Doshi et al., 2024)) or access to such a
model (e.g. AGOP alignment).

Consider generalizing features for modular multiplication
shown in Fig. 3. The original features shown in panel B of
this figure do not have an easily identifiable pattern. In con-
trast, re-ordered features in panel C are clearly striped, con-
taining block-circulants. As discussed in Section 3, reorder-
ing of features requires understanding that the multiplicative
group Z∗

p is cyclic of order p− 1. While a well-known re-
sult, it is far from obvious a priori. It is thus plausible that
in other settings hidden feature structures may be hard to
identify due to a lack of mathematical insight.

Why is learning modular arithmetic surprising? The
task of learning modular operations is different from many
other statistical machine learning tasks. In continuous ML
settings, we typically posit that the “ground truth” target
function is smooth in an appropriate sense. Hence any gen-
eral purpose algorithm capable of learning smooth functions
(such as, for example, k-nearest neighbors) should be able
to learn the target function given enough data. Primary dif-
ferences between learning algorithms are thus in sample
and computational efficiency. In contrast, it is unclear what

principle leads to learning modular arithmetic from partial
observations. There are many ways to fill in the missing
data and we do not know a simple inductive bias, to guide us
toward a solution. Several recent works argued that margin
maximization with respect to certain norms can account
for learning modular arithmetic (Morwani et al., 2024; Lyu
et al., 2023; Mohamadi et al., 2024). While the direction is
promising, general underlying principles are not yet clear.

Analyses of grokking. Recent works (Kumar et al., 2024;
Lyu et al., 2023; Mohamadi et al., 2024) argue that grokking
occurs in neural networks through a two phase mechanism
that transitions from a “lazy” regime, with no feature learn-
ing, to a “rich” feature learning regime. Our experiments
clearly show that grokking in RFM does not undergo such
a transition. For RFM on modular arithmetic tasks, our
progress measures indicate that the features evolve grad-
ually toward the final circulant matrices, even as test per-
formance initially remains constant (Fig. 2). Grokking in
these settings is entirely due to the gradual feature quality
improvement and two-phase grokking does not occur. Addi-
tionally, we have not observed significant evidence of “lazy”
to “rich” transition as a mechanism for grokking in our ex-
periments with neural networks, as most of our measures
of feature learning start improving early on in the training
process (improvement in circulant deviation measure is de-
layed for addition and subtraction, but not for multiplication
and division, while AGOP feature alignment initially shows
near linear improvement for all tasks), see Fig. 5. Our ob-
servations for neural networks are in line with the results
in (Doshi et al., 2024; Nanda et al., 2023), where their pro-
posed progress measures, Inverse Participation Ratio and
Gini coefficients of the weights in the Fourier domain, are
shown to increase prior to improvements in test loss and
accuracy for modular arithmetic.

Furthermore, as grokking modular arithmetic occurs in a
kernel model equipped with a linear feature learning mech-
anism, a general explanation for grokking cannot depend
on mechanisms that are specific to neural networks. There-
fore explanations for grokking that depend on the magni-
tude of the weights, neural circuit efficiency, or specific
optimization methods, for example, cannot account for the
phenomena described in our work.

Conclusions. In this paper, we showed that grokking modu-
lar arithmetic happens in feature learning kernel machines
in a manner very similar to what has been observed in neural
networks. Remarkably we observe that feature learning can
happen independently of improvements in both training and
test loss. Not only does this finding reinforce the narrative
of rapid emergence of skills in neural networks, it is also
not easily explicable within the framework of the existing
generalization theory.

9

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ardeshir, N., Hsu, D. J., and Sanford, C. H. Intrinsic di-

mensionality and generalization properties of the r-norm
inductive bias. In Neu, G. and Rosasco, L. (eds.), Pro-
ceedings of Thirty Sixth Conference on Learning Theory,
volume 195 of Proceedings of Machine Learning Re-
search, pp. 3264–3303. PMLR, 12–15 Jul 2023. URL
https://arxiv.org/pdf/2206.05317.

Arora, S. and Goyal, A. A theory for emergence of
complex skills in language models. arXiv preprint
arXiv:2307.15936, 2023. URL https://arxiv.
org/pdf/2307.15936.

Barak, B., Edelman, B., Goel, S., Kakade, S., Malach, E.,
and Zhang, C. Hidden progress in deep learning: Sgd
learns parities near the computational limit. Advances
in Neural Information Processing Systems, 35:21750–
21764, 2022. URL https://openreview.net/
pdf?id=8XWP2ewX-im.

Bartlett, P. L., Montanari, A., and Rakhlin, A. Deep learning:
a statistical viewpoint. Acta numerica, 30:87–201, 2021.
URL https://arxiv.org/pdf/2103.09177.

Beaglehole, D., Radhakrishnan, A., Pandit, P., and Belkin,
M. Mechanism of feature learning in convolutional neural
networks. arXiv preprint arXiv:2309.00570, 2023. URL
https://arxiv.org/pdf/2309.00570.

Beaglehole, D., Mitliagkas, I., and Agarwala, A. Feature
learning as alignment: a structural property of gradient
descent in non-linear neural networks. arXiv preprint
arXiv:2402.05271, 2024a. URL https://arxiv.
org/pdf/2402.05271.

Beaglehole, D., Súkenı́k, P., Mondelli, M., and Belkin, M.
Average gradient outer product as a mechanism for deep
neural collapse. arXiv preprint arXiv:2402.13728, 2024b.
URL https://arxiv.org/pdf/2402.13728.

Belkin, M. Fit without fear: remarkable mathematical
phenomena of deep learning through the prism of in-
terpolation. Acta Numerica, 30:203–248, 2021. URL
https://arxiv.org/pdf/2105.14368.

Damian, A., Lee, J., and Soltanolkotabi, M. Neural networks

can learn representations with gradient descent. In Confer-
ence on Learning Theory, pp. 5413–5452. PMLR, 2022.
URL https://arxiv.org/pdf/2206.15144.

Davies, X., Langosco, L., and Krueger, D. Unifying
grokking and double descent. ML Safety Workshop, 36th
Conference on Neural Information Processing Systems
(NeurIPS 2022), 2023. URL https://arxiv.org/
abs/2303.06173.

Doshi, D., He, T., Das, A., and Gromov, A. Grokking mod-
ular polynomials. International Conference on Learning
Representations (ICLR): BGPT Workshop, 2024. URL
https://arxiv.org/abs/2406.03495.

Furuta, H., Minegishi, G., Iwasawa, Y., and Matsuo, Y.
Interpreting grokked transformers in complex modular
arithmetic. arXiv preprint arXiv:2402.16726, 2024. URL
https://arxiv.org/pdf/2402.16726.

Gray, R. M. et al. Toeplitz and circulant matrices: A re-
view. Foundations and Trends® in Communications and
Information Theory, 2(3):155–239, 2006. URL https:
//ee.stanford.edu/˜gray/toeplitz.pdf.

Gromov, A. Grokking modular arithmetic. arXiv preprint
arXiv:2301.02679, 2023. URL https://arxiv.
org/pdf/2301.02679.

Gunasekar, S., Woodworth, B. E., Bhojanapalli, S.,
Neyshabur, B., and Srebro, N. Implicit regularization
in matrix factorization. Advances in neural information
processing systems, 30, 2017.

Hoffman, J., Roberts, D. A., and Yaida, S. Robust
learning with jacobian regularization. arXiv preprint
arXiv:1908.02729, 5(6):7, 2019.

Hristache, M., Juditsky, A., Polzehl, J., and Spokoiny, V.
Structure adaptive approach for dimension reduction. An-
nals of Statistics, pp. 1537–1566, 2001. URL https:
//doi.org/10.1214/aos/1015345954.

Koblitz, N. A course in number theory and cryptography,
volume 114. Springer Science & Business Media, 1994.

Kumar, T., Bordelon, B., Gershman, S. J., and Pehlevan, C.
Grokking as the transition from lazy to rich training dy-
namics. International Conference on Learning Represen-
tations (ICLR), 2024. URL https://openreview.
net/pdf?id=vt5mnLVIVo.

Liu, Z., Kitouni, O., Nolte, N. S., Michaud, E., Tegmark,
M., and Williams, M. Towards understanding grokking:

10

https://arxiv.org/pdf/2206.05317
https://arxiv.org/pdf/2307.15936
https://arxiv.org/pdf/2307.15936
https://openreview.net/pdf?id=8XWP2ewX-im
https://openreview.net/pdf?id=8XWP2ewX-im
https://arxiv.org/pdf/2103.09177
https://arxiv.org/pdf/2309.00570
https://arxiv.org/pdf/2402.05271
https://arxiv.org/pdf/2402.05271
https://arxiv.org/pdf/2402.13728
https://arxiv.org/pdf/2105.14368
https://arxiv.org/pdf/2206.15144
https://arxiv.org/abs/2303.06173
https://arxiv.org/abs/2303.06173
https://arxiv.org/abs/2406.03495
https://arxiv.org/pdf/2402.16726
https://ee.stanford.edu/~gray/toeplitz.pdf
https://ee.stanford.edu/~gray/toeplitz.pdf
https://arxiv.org/pdf/2301.02679
https://arxiv.org/pdf/2301.02679
https://doi.org/10.1214/aos/1015345954
https://doi.org/10.1214/aos/1015345954
https://openreview.net/pdf?id=vt5mnLVIVo
https://openreview.net/pdf?id=vt5mnLVIVo

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

An effective theory of representation learning. Advances
in Neural Information Processing Systems, 35:34651–
34663, 2022.

Liu, Z., Michaud, E. J., and Tegmark, M. Omni-
grok: Grokking beyond algorithmic data. Interna-
tional Conference on Learning Representations (ICLR),
2023. URL https://openreview.net/pdf?
id=zDiHoIWa0q1.

Lyu, K., Jin, J., Li, Z., Du, S. S., Lee, J. D., and Hu,
W. Dichotomy of early and late phase implicit biases
can provably induce grokking. In The Twelfth Interna-
tional Conference on Learning Representations (ICLR),
2023. URL https://openreview.net/forum?
id=XsHqr9dEGH.

Miller, J., O’Neill, C., and Bui, T. Grokking beyond neural
networks: An empirical exploration with model com-
plexity. Transactions on Machine Learning Research
(TMLR), 2024. URL https://openreview.net/
pdf?id=ux9BrxPCl8.

Mohamadi, M. A., Li, Z., Wu, L., and Sutherland, D. J.
Why do you grok? a theoretical analysis on grokking
modular addition. In Forty-first International Conference
on Machine Learning (ICML), 2024. URL https://
openreview.net/forum?id=ad5I6No9G1.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-
tions of machine learning. MIT Press, 2018.

Moitra, A. Algorithmic aspects of machine learning. Cam-
bridge University Press, 2018.

Morwani, D., Edelman, B. L., Oncescu, C.-A., Zhao,
R., and Kakade, S. Feature emergence via margin
maximization: case studies in algebraic tasks. In-
ternational Conference on Learning Representations
(ICLR), 2024. URL https://openreview.net/
pdf?id=i9wDX850jR.

Mousavi-Hosseini, A., Park, S., Girotti, M., Mitliagkas,
I., and Erdogdu, M. A. Neural networks efficiently
learn low-dimensional representations with sgd. arXiv
preprint arXiv:2209.14863, 2022. URL https://
arxiv.org/pdf/2209.14863.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mech-
anistic interpretability. International Conference on
Learning Representations (ICLR), 2023. URL https:
//openreview.net/pdf?id=9XFSbDPmdW.

Parkinson, S., Ongie, G., and Willett, R. Relu neural net-
works with linear layers are biased towards single- and
multi-index models. arXiv preprint arXiv:2305.15598,
2023. URL https://arxiv.org/pdf/2305.
15598.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and
Misra, V. Grokking: Generalization beyond overfit-
ting on small algorithmic datasets. arXiv preprint
arXiv:2201.02177, 2022.

Radhakrishnan, A., Beaglehole, D., Pandit, P., and Belkin,
M. Mechanism of feature learning in deep fully con-
nected networks and kernel machines that recursively
learn features. arXiv preprint arXiv:2212.13881, 2022.

Radhakrishnan, A., Beaglehole, D., Pandit, P., and Belkin,
M. Mechanism for feature learning in neural networks
and backpropagation-free machine learning models. Sci-
ence, 383(6690):1461–1467, 2024a. doi: 10.1126/
science.adi5639. URL https://www.science.
org/doi/abs/10.1126/science.adi5639.

Radhakrishnan, A., Belkin, M., and Drusvyatskiy, D. Linear
recursive feature machines provably recover low-rank
matrices. arXiv preprint arXiv:2401.04553, 2024b. URL
https://arxiv.org/pdf/2401.04553.

Rogers, A. and Luccioni, S. Position: Key claims in llm
research have a long tail of footnotes. In Forty-first Inter-
national Conference on Machine Learning, 2023. URL
https://arxiv.org/pdf/2308.07120.

Schaeffer, R., Miranda, B., and Koyejo, S. Are emergent
abilities of large language models a mirage? In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=ITw9edRDlD.

Thilak, V., Littwin, E., Zhai, S., Saremi, O., Paiss, R.,
and Susskind, J. The slingshot mechanism: An em-
pirical study of adaptive optimizers and the grokking
phenomenon. arXiv preprint arXiv:2206.04817, 2022.
URL https://arxiv.org/abs/2206.04817.

Trivedi, S., Wang, J., Kpotufe, S., and Shakhnarovich,
G. A consistent estimator of the expected gra-
dient outerproduct. In UAI, pp. 819–828, 2014.
URL https://www.columbia.edu/˜skk2175/
Papers/GOP-UAI.pdf.

Trockman, A., Willmott, D., and Kolter, J. Z. Understanding
the covariance structure of convolutional filters. arXiv
preprint arXiv:2210.03651, 2022.

11

https://openreview.net/pdf?id=zDiHoIWa0q1
https://openreview.net/pdf?id=zDiHoIWa0q1
https://openreview.net/forum?id=XsHqr9dEGH
https://openreview.net/forum?id=XsHqr9dEGH
https://openreview.net/pdf?id=ux9BrxPCl8
https://openreview.net/pdf?id=ux9BrxPCl8
https://openreview.net/forum?id=ad5I6No9G1
https://openreview.net/forum?id=ad5I6No9G1
https://openreview.net/pdf?id=i9wDX850jR
https://openreview.net/pdf?id=i9wDX850jR
https://arxiv.org/pdf/2209.14863
https://arxiv.org/pdf/2209.14863
https://openreview.net/pdf?id=9XFSbDPmdW
https://openreview.net/pdf?id=9XFSbDPmdW
https://arxiv.org/pdf/2305.15598
https://arxiv.org/pdf/2305.15598
https://www.science.org/doi/abs/10.1126/science.adi5639
https://www.science.org/doi/abs/10.1126/science.adi5639
https://arxiv.org/pdf/2401.04553
https://arxiv.org/pdf/2308.07120
https://openreview.net/forum?id=ITw9edRDlD
https://openreview.net/forum?id=ITw9edRDlD
https://arxiv.org/abs/2206.04817
https://www.columbia.edu/~skk2175/Papers/GOP-UAI.pdf
https://www.columbia.edu/~skk2175/Papers/GOP-UAI.pdf

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

Varma, V., Shah, R., Kenton, Z., Kramár, J., and Ku-
mar, R. Explaining grokking through circuit efficiency.
International Conference on Learning Representations
(ICLR), 2023. URL https://openreview.net/
pdf?id=7Zbg38nA0J.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D.,
Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O.,
Liang, P., Dean, J., and Fedus, W. Emergent abili-
ties of large language models. Transactions on Ma-
chine Learning Research (TMLR), 2022. URL https:
//openreview.net/pdf?id=yzkSU5zdwD.

Yuan, G., Xu, M., Kpotufe, S., and Hsu, D. Efficient estima-
tion of the central mean subspace via smoothed gradient
outer products. arXiv preprint arXiv:2312.15469, 2023.
URL https://arxiv.org/pdf/2312.15469.

Zhong, Z., Liu, Z., Tegmark, M., and Andreas, J. The clock
and the pizza: Two stories in mechanistic explanation
of neural networks. Advances in Neural Information
Processing Systems, 36, 2024.

Zhu, L., Liu, C., Radhakrishnan, A., and Belkin, M. Cata-
pults in sgd: spikes in the training loss and their impact
on generalization through feature learning. International
Conference on Machine Learning (ICML), 235, 2024.

12

https://openreview.net/pdf?id=7Zbg38nA0J
https://openreview.net/pdf?id=7Zbg38nA0J
https://openreview.net/pdf?id=yzkSU5zdwD
https://openreview.net/pdf?id=yzkSU5zdwD
https://arxiv.org/pdf/2312.15469

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

Algorithm 1 Recursive Feature Machine (RFM) (Radhakrishnan et al., 2024a)

Require: X, y, k, T, L ▷ Train data: (X, y), base kernel: k, iters.: T , matrix power: s, and bandwidth: L
M0 = Id
for t = 0, . . . , T − 1 do

Solve α← k(X,X;Mt)
−1y ▷ f (t)(x) = k(x,X;Mt)α

Mt+1 ← [G(f (t))]s

end for
return α,MT−1 ▷ Solution to kernel regression: α, and feature matrix: MT−1

A. Additional discussion
Low rank learning. The problem of learning modular arithmetic can be viewed as a type of matrix completion –
completing the p× p matrix (so-called Cayley table) representing modular operations, from partial observations. The best
studied matrix completion problem is low rank matrix completion, where the goal is to fill in missing entries of a low rank
matrix from observing a subset of the entries (Moitra, 2018, Ch.8). While many specialized algorithms exist, it has been
observed that neural networks can recover low rank matrix structures (Gunasekar et al., 2017). Notably, in a development
paralleling the results of this paper, low-rank matrix completion can provably be performed by linear RFMs using the same
AGOP mechanism (Radhakrishnan et al., 2024b).

It is thus tempting to posit that grokking modular operations in neural networks or RFM can be explained as a low rank
prediction problem. Indeed modular operations can be implemented by an index 4 model, i.e., a function of the form
f = g(Ax), where x ∈ R2p and A is a rank 4 matrix (see Appendix K for the construction). It is a plausible conjecture
as there is strong evidence, empirical and theoretical, that neural networks are capable of learning such multi-index
models (Damian et al., 2022; Mousavi-Hosseini et al., 2022) as well as low-rank matrix completion. Furthermore, a
phenomenon similar to grokking was discussed in (Radhakrishnan et al., 2022, Fig. 5, 6) in the context of low rank feature
learning for both neural networks and RFM. However, despite the existence of generalizeable low rank models, the actual
circulant features learned by both Neural Networks and RFM are not low rank. Interestingly, this observation mirrors the
problem of learning parity functions through neural network inspired minimum norm interpolation, which was analyzed
in (Ardeshir et al., 2023). While single-directional (index one) solutions exist in that setting, the authors show that the
minimum norm solutions are all multi-dimensional.

Explanations for deep learning Finally, this work adds to the growing body of evidence that the AGOP-based mechanisms
of feature learning can account for some of the most interesting phenomena in deep learning. These include generalization
with multi-index models (Parkinson et al., 2023), deep neural collapse (Beaglehole et al., 2024b), and the ability to perform
low-rank matrix completion (Radhakrishnan et al., 2024b). Thus, RFM provides a framework that is both practically
powerful and serves as a theoretically tractable model of deep learning.

B. Additional Preliminaries
For completeness we replicate the algorithm definition for Recursive Feature Machines (RFM) provided by Radhakrishnan
et al. (2024a) in Algorithm 1. This procedure recursively fits a kernel estimator for a chosen base kernel, k, then updates the
feature matrix, M , by computing a matrix power of the Average Gradient Outer Product (AGOP) for that estimator. The
algorithm terminates after a total of T iterations. The final estimator and feature matrix are then returned by the algorithm.

C. Neural Feature Ansatz
While the NFA has been observed generally across depths and architecture types (Radhakrishnan et al., 2024a; Beaglehole
et al., 2023; 2024a), we restate this observation for fully-connected networks with one hidden-layer of the form f(x) =
a⊤ϕ(W1x).

Ansatz 1 (Neural Feature Ansatz for one hidden layer). For a one hidden-layer neural network fNN and a matrix power
s ∈ (0, 1], the following holds:

W⊤
1 W1 ∝ G(fNN)s . (15)

Note that this statement implies that W⊤
1 W1 and G(fNN)s have a cosine similarity of ±1.

13

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

In this work, we choose α = 1
2 , following the main results in (Radhakrishnan et al., 2024a). While the absolute value of

the cosine similarity is written in Eq. (15) to be 1, it is typically a high value less than 1, where the exact value depends
on choices of initialization, architecture, dataset, and training procedure. For more understanding of these conditions,
see (Beaglehole et al., 2024a).

D. Model and training details
Gaussian kernel: Throughout this work we take bandwidth L = 2.5 when using the Mahalanobis Gaussian kernel. We
solve ridgeless kernel regression using NumPy on a standard CPU.

Neural networks: Unless otherwise specified, we train one hidden layer neural networks with quadratic activation
functions and no biases in PyTorch on a single A100 GPU. Models are trained using AdamW with hidden width 1024, batch
size 32, learning rate of 10−3, weight decay 1.0, and standard PyTorch initialization. All models are trained using the Mean
Squared Error loss function (square loss).

For the experiments in Appendix Fig. 8, we train one hidden layer neural networks with quadratic activation and no biases
on modular addition modulo p = 61. We use 40% training fraction, PyTorch standard initialization, hidden width of 512,
weight decay 10−5, and AGOP regularizer weight 10−3. Models are trained with vanilla SGD, batch size 128, and learning
rate 1.0.

E. Reordering feature matrices by group generators
Our reordering procedure uses the standard fact of group theory that the multiplicative group Z∗

p is a cyclic group of order
p− 1 (Koblitz, 1994). By definition of the cyclic group, there exists at least one element g ∈ Z∗

p, known as a generator,
such that Z∗

p = {gi ; i ∈ {1, . . . , p− 1}}.

Given a generator g ∈ Z∗
p, we reorder features according to the map, ϕg : Z∗

p → Z∗
p, where if h = gi, then ϕg(h) = i.

In particular, given a matrix B ∈ Rp×p, we reorder the bottom right (p − 1) × (p − 1) sub-block of B as follows: we
move the entry in coordinate (r, c) with r, c ∈ Z∗

p to coordinate (ϕg(r), ϕg(c)). For example if g = 2 in Z∗
5, then (2, 3)

entry of the sub-block would be moved to coordinate (1, 3) since 21 = 2 and 23 mod5 = 3. In the setting of modular
multiplication/division, the map ϕg defined above is known as the discrete logarithm base g (Koblitz, 1994, Ch.3). The
discrete logarithm is analogous to the logarithm defined for positive real numbers in the sense that it converts modular
multiplication/division into modular addition/subtraction. Lastly, in this setting, we note that we only reorder the bottom
(p− 1)× (p− 1) sub-block of B as the first row and column are 0 (as multiplication by 0 results in 0).

Upon re-ordering the p × p off-diagonal sub-blocks of the feature matrix by the map ϕg, the feature matrix of RFM for
multiplication/division tasks contains circulant blocks as shown in Fig. 3C. Thus, the reordered feature matrices for these
tasks also exhibit the structure in Observation 1. As a remark, we note that there can exist several generators for a cyclic
group, and thus far, we have not specified the generator g we use for re-ordering. For example, 2 and 3 are both generators
of Z∗

5 since {2, 22, (23 mod5), (24 mod5)} = {3, (32 mod5), (33 mod5), (34 mod5)} = Z∗
5. Lemma J.1 implies that the

choice of generator does not matter for observing circulant structure. As a convention, we simply reorder by the smallest
generator.

F. Enforcing circulant structure in RFM
We see that the structure in Observation 1 gives generalizing features on modular arithmetic when the circulant C is
constructed from the RFM matrix. We observe that enforcing this structure at every iteration, and comparing to the standard
RFM model at that iteration, improves test loss and accelerates grokking on e.g. addition (Appendix Fig. 3). The exact
procedure to enforce this structure is as follows. We first perform standard RFM to generate feature matrices M1, . . . ,MT .
Then for each iteration of the standard RFM, we construct a new M̃t on which we solve ridgeless kernel regression for a
new α and evaluate on the test set. To construct M̃ , we take D = diag (Mt) and first let M̃ = D−1/2MD−1/2, to ensure
the rows and columns have equal scale. We then reset the top left and bottom right sub-matrices of M̃ as I − 1

p11
T , and

replace the bottom-left and top-right blocks with C and C⊤, where C is an exactly circulant matrix constructed from Mt.
Specifically, where c is the first column of the bottom-left sub-matrix of Mt, column ℓ of C is equal to σℓ(Mt).

14

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

G. Grokking multiple tasks
Throughout the main paper, we focused on modular arithmetic settings for a single task. In more general domains such
as language, one may expect there to be many “skills” that need to be learned. In such settings, it is possible that these
skills are grokked at different rates. While a full discussion is beyond the scope of this work, to illustrate this behavior, we
performed additional experiments in here, where we train RFM on a pair of modular arithmetic tasks simultaneously and
demonstrate that different tasks are indeed grokked at different points throughout training.

We train RFM to simultaneously solve the following two modular polynomial tasks: (1) x+ ymod p ; (2) x2 + y2 mod p
for modulus p = 61. We train RFM with the Mahalanobis Gaussian kernel using bandwidth parameter L = 2.5. Training
data for both tasks is constructed from the same 80% training fraction. In addition to concatenating the one-hot encodings
for x, y, we also append an extra bit indicating which task to solve (0 indicating task (1) and 1 indicating task (2)). The
classification head is shared for both tasks (e.g. output dimension is still Rp).

In Appendix Fig. 4, we observe that there are two sharp transitions in the test loss and test accuracy. By decomposing the
loss into the loss per task, we observe that RFM groks task (1) prior to grokking task (2). Overall, these results illustrate that
grokking of different tasks can occur at different training iterations.

H. AGOP regularization and weight decay for grokking modular arithmetic.
It has been argued in prior work that weight decay (ℓ2 regularization on network weights) is necessary for grokking to occur
when training neural networks for modular arithmetic tasks (Varma et al., 2023; Davies et al., 2023; Nanda et al., 2023).
Under the NFA (Eq. (15)), which states that W⊤

1 W1 is proportional to a matrix power of G(f), we expect that performing
weight decay on the first layer, i.e., penalizing the loss by ∥W1∥2F = tr(W⊤

1 W1), should behave similarly to penalizing
the trace of the AGOP, tr(G(f)), during training.3 To this end, we compare the impact of using (1) no regularization; (2)
weight decay; and (3) AGOP regularization when training neural networks on modular arithmetic tasks. In Appendix Fig. 8,
we find that, akin to weight decay, AGOP regularization leads to grokking in cases where using no regularization results in
no grokking and poor generalization. These results provide further evidence that neural networks solve modular arithmetic
by using the AGOP to learn features.

I. FMA example for p = 3
We now provide an example of the FMA for p = 3. Let x = e1 ⊕ e2. In this case, we expect the FMA to output the vector
e0 since (1 + 2)mod 3 = 0. Following the first step of the FMA, we compute

x̂[1] = Fe1 =
1√
3
[1, ω, ω2]⊤ ; x̂[2] = Fe2 =

1√
3
[1, ω2, ω4]⊤ , (16)

which are the first and second columns of F , respectively. Then their element-wise product is given by

Fe1 ⊙ Fe2 =
1

3
[1, ω3, ω6]⊤ =

1

3
[1, 1, 1]⊤ =

1√
3
Fe0 , (17)

which is 1√
3

times the first column of the DFT matrix. Finally, we compute the outputs
√
3
〈

1√
3
Fe0, Feℓ

〉
C

for each

ℓ ∈ {0, 1, 2}. As F is unitary, yadd(e1 ⊕ e2; ℓ) = 1{1+2=ℓmod 3}, so that coordinate 0 of the output will have value 1, and
all other coordinates have value 0.

J. Additional results and proofs
Lemma J.1. Let C ∈ Rp×p with its first row and column entries all equal to 0. Let the (p− 1)× (p− 1) sub-block starting
at the second row and column be C×. Then, C× is either circulant after re-ordering by any generator q of Z∗

p, or C× is not
circulant under re-ordering by any such generator.

Proof of Lemma J.1. We prove the lemma by showing that for any two generators q1, q2 of Z∗
p, if C× is circulant re-ordering

with q1, then it is also circulant when re-ordering by q2.

3We note this regularizer been used prior work where AGOP is called the Gram matrix of the input-output Jacobian (Hoffman et al.,
2019).

15

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

Suppose C× is circulant re-ordering with q1. Let i, j ∈ {1, . . . , p− 1}. Note that by the circulant assumption, for all s ∈ Z,

Cqi1,q
j
1
= Cqi+s

1 ,qi+s
1

, (18)

where we take each index modulo p.

As q2 is a generator for Z∗
p, we can access all entries of C× by indexing with powers of q2. Further, as q1 is a generator, we

can write q2 = qk1 , for some power k. Let a ∈ Z. Then,

Cqi2,q
j
2
= Cqki

1 ,qkj
1

= Cqki+ka
1 ,qkj+ka

1

= C
q
k(i+a)
1 ,q

k(j+a)
1

= Cqi+a
2 ,qj+a

2
.

Therefore, C is constant on the diagonals under re-ordering by q2, concluding the proof.

We next state Lemma J.2, which is used in the proof of Theorem 5.1.

Lemma J.2 (See, e.g., (Gray et al., 2006)). Circulant matrices U can be written (diagonalized) as:

U = FDF̄⊤ ,

where F is the DFT matrix, F̄⊤ is the element-wise complex conjugate of F⊤ (i.e. the Hermitian of F), and D is a diagonal
matrix with diagonal

√
p · Fu, where u is the first row of U .

We now present the proof of Theorem 5.1, restating the theorem below for the reader’s convenience.

Theorem. Given all of the discrete data
{(

ea ⊕ eb, e(a−b)mod p

)}p−1

a,b=0
in modular subtraction task, for each output class

ℓ ∈ {0, · · · , p− 1}, we train a separate kernel predictor fℓ(x) = k(x,X;Mℓ)α
(ℓ). Here k(·, ·;Mℓ) is a quadratic kernel

with Mℓ =

(
0 Cℓ

(Cℓ)⊤ 0

)
and C ∈ Rp×p is a circulant matrix with first row e1. When α(ℓ) is the solution to kernel

ridgeless regression for each ℓ, the kernel predictor f = [f0, . . . , fp−1] is equivalent to Fourier Multiplication Algorithm
for modular subtraction (Eq. (14)).

Proof of Theorem 5.1. We present the proof for modular subtraction as the proof for addition follows analogously. We write
the standard kernel predictor for class ℓ on input x = x[1] ⊕ x[2] ∈ R2p as,

fℓ(x) =

p−1∑
a,b=0

α
(ℓ)
a,bk (x, ea ⊕ eb;Mℓ) ,

where we have re-written the index into kernel coefficients for class ℓ, α(ℓ) ∈ Rp×p, so that the coefficients are multi-indexed
by the first and second digit. Specifically, now α

(ℓ)
a,b is the kernel coefficient corresponding to the representer k(·, x) for input

point x = ea ⊕ eb. Recall we use a quadratic kernel, k(x, z;Mℓ) = (x⊤Mℓz)
2. In this case, the kernel predictor simplifies

to,

fℓ(x) =

p−1∑
a,b=0

α
(ℓ)
a,b

(
x⊤
[1]C

ℓeb + e⊤a C
ℓx[2]

)2

.

Then, the labels for each pair of input digits, written as a matrix Y (ℓ) ∈ Rp×p for the ℓ-th class where the row and column
index the first and second digit respectively, are Y (ℓ) = C−ℓ.

16

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

For x = ea′ ⊕ eb′ , i.e. x in the discrete dataset, we have,

fℓ(x) =

p−1∑
a,b=0

α
(ℓ)
a,b

(
δ(a,b′−ℓ) + δ(a′,b−ℓ) + 2δ(a,b′−ℓ)δ(a′,b−ℓ)

)
= e⊤b′−ℓα

(ℓ)1+ 1⊤α(ℓ)ea′+ℓ + 2e⊤b′−ℓα
(ℓ)ea′+ℓ

= e⊤b′C
−ℓα(ℓ)1+ 1⊤α(ℓ)C−ℓea′ + 2e⊤b′C

−ℓα(ℓ)C−ℓea′

= e⊤b′
(
C−ℓα11⊤ + 11⊤αC−ℓ + 2C−ℓαC−ℓ

)
ea′ ,

where δ(u,v) = 1{u=v}. Let fℓ(X) ∈ Rp×p be the matrix of function values of fℓ, where [fℓ(X)]a,b = fℓ(ea ⊕ eb), and,
therefore, fℓ(ea ⊕ eb) = e⊤a fℓ(X)eb. Then, to solve for α(ℓ), we need to solve the system of equations for α,

fℓ(X) =
(
C−ℓα11⊤ + 11⊤αC−ℓ + 2C−ℓαC−ℓ

)⊤
= C−ℓ

⇐⇒ C−ℓα11⊤ + 11⊤αC−ℓ + 2C−ℓαC−ℓ = Cℓ

Note, by left-multiplying both sides by C−ℓ, we see this equation holds iff,

C−2ℓα11⊤ + 11⊤αC−ℓ + 2C−2ℓαC−ℓ = I .

Note the solution is unique as the kernel matrix is full rank. We posit the solution α such that C−2ℓαC−ℓ = 1
2I + λ11⊤,

which is α = 1
2C

3ℓ + λ11⊤. Then, solving for λ, we require,

11⊤ + 2pλ11⊤ + 2λ11⊤ = 0 ,

which implies λ = − 2
2p+2 . Substituting this value of λ and simplifying, we see finally that fℓ(x) = x⊤

[1]C
−ℓx[2]. Therefore,

using that circulant matrices are diagonalized by C =
√
pFDF̄⊤ (Lemma J.2) and F̄⊤F = I , where D = diag (Fe1), we

derive,

fℓ(x) =
√
p · x⊤

[1]FD−ℓF̄⊤x[2]

=
√
p · x⊤

[1]Fdiag (Fep−ℓ−1) F̄
⊤x[2]

=
√
p ·

〈
Fx[1] ⊙ Fep−ℓ−1, Fx[2]

〉
C

which is the output of the FMA on modular subtraction.

K. Low rank solution to modular arithmetic
Addition We present a solution to the modular addition task whose AGOP is low rank, in contrast to the full rank AGOP
recovered by RFM and neural networks.

We define the “encoding” map Φ : Rp → C as follows. For a vector a = [a0, . . . , ap−1],

Φ(a) =

p−1∑
k=0

ak exp

(
k2πi

p

)
.

Notice that Φ is a linear map such that Φ(ek) = exp
(

k2πi
p

)
. Notice also that Φ is partially invertible with the “decoding”

map Ψ : C→ Rp.

Ψ(z) = m̃ax

(〈
z, exp

(
0 · 2πi

p

)〉
, . . .

〈
z, exp

(
(p− 1) · 2πi

p

)〉)
.

Above m̃ax is a function that makes all entries zero except for the largest one and the inner product is the usual inner product
in C considered as R2. Thus

Ψ

(
exp

(
k · 2πi

p

))
= ek . (19)

Ψ is a nonlinear map C→ Rp. While it is discontinuous but can easily be modified to make it differentiable.

17

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

By slight abuse of notation, we will define Φ : Rp × Rp → C2 on pairs:

Φ(ej , ek) = (Φ(ej),Φ(ek)) .

This is still a linear map but now to C2.

Consider now a quadratic map M on C2 → C given by complex multiplication:

M(z1, z2) = z1z2 .

It is clear that the composition ΨMΦ implements modular addition

ΨMΦ(ej , ek) = e(j+k)mod p

Furthermore, since Φ is a liner map to a four-dimensional space, the AGOP of the composition ΨMΦ is of rank 4.

Multiplication The construction is for multiplication is very similar with modifications which we sketch below. We first
re-order the non-zero coordinates by the discrete logarithm with base equal to a generator of the multiplicative group eg (see
Appendix E), while keeping the order of index 0. Then, we modify Φ to remove index a0 from the sum for inputs a. Thus
for multiplication,

Φ(a) =

p−1∑
k=1

ak exp

(
k · 2πi
p− 1

)
,

Hence that Φ(e0) = 0, Φ(eg) = exp
(

2πi
p−1

)
and Φ(egk) = exp

(
k·2πi
p−1

)
. We extend Φ to Rp × Rp as in Eq. 19 above.

Note that Φ and the re-ordering together are still a linear map of rank 4.

Then, the “decoding” map, Ψ(z), will be modified to return 0, when z = 0, and otherwise,

Ψ(z) = gm̃ax(⟨z,exp(0·2πi
p−1)⟩,...⟨z,exp((p−2)·2πi

p−1)⟩) .

M is still defined as above. It is easy to check that the composition of ΨMΦ with reordering implements modular
multiplication modulo p and furthermore, the AGOP will also be of rank 4.

18

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

Ac
cu
ra
cy

(%
)

RFM Iterations

Te
st

Lo
ss

RFM Iterations RFM Iterations RFM Iterations

Te
st
 L
os
s
of

Co
rr
ec
t

Ou
tp
ut
 C
la
ss

Ci
rc
ul
an
t

De
vi
at
io
n

AG
OP

Al
ig
nm
en
t

RFM Iterations RFM Iterations RFM Iterations RFM Iterations

Accuracy & Loss

Progress Measures

Add Sub Mul Div

A

B

RFM
Circ:
frob

Figure 1. RFM with the quadratic kernel on modular arithmetic with modulus p = 61 trained for 30 iterations. (A) Test accuracy, test
loss (mean squared error) over all output coordinates, and test loss of the correct class output coordinate do not change in the first 8
iterations and then, sharply transition. (B) Circulant deviation and AGOP alignment show gradual progress towards generalizing solutions
despite accuracy and loss metrics not changing in the initial iterations. For multiplication (Mul) and division (Div), circulant deviation is
measured with respect to the feature sub-matrices after reordering by the discrete logarithm.

Iter 1 Iter 5 Iter 10 Iter 15

Mu
l

Mu
l
(r
eo
rd
er
ed
)

Figure 2. AGOP evolution for quadratic RFM trained on modular multiplication with p = 61 before reordering (top row) and after
reordering by the logarithm base 2 (bottom row).

19

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

RFM Iterations RFM Iterations

Te
st
 A
cc
ur
ac
y
(%
)

Te
st
 L
os
s

Figure 3. We train a Gaussian kernel-RFM on x+ ymod 97 and plot test loss and accuracy versus RFM iterations. We also evaluate the
performance of the same model upon modifying the M matrix to have exact block-circulant structure stated in Observation 1.

RFM Iterations RFM Iterations RFM Iterations

Te
st

Lo
ss

Te
st

Ac
cu
ra
cy

Both Tasks:
x + y and x2 + y2

Task 1:
x2 + y2

Task 2:
x + y

Figure 4. RFM with the Gaussian kernel trained on two modular arithmetic tasks with modulus p = 61. Task 1 is to learn x2 + y2 mod p
and task 2 is to learn x+ ymod p.

20

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

Ac
cu
ra
cy

(%
)

Epochs

Lo
ss

Epochs Epochs Epochs

Lo
ss
 o
f

Co
rr
ec
t

Ou
tp
ut
 C
la
ss

Ci
rc
ul
an
t

De
vi
at
io
n

AG
OP

Al
ig
nm
en
t

Epochs Epochs Epochs Epoch

Accuracy & Loss

Progress Measures

Add Sub Mul Div

A

B

NN
Circ:
frob

Figure 5. One hidden layer fully-connected networks with quadratic activations trained on modular arithmetic with p = 61 trained for 50
epochs with the square loss. (A) Test accuracy, test loss over all outputs, and test loss of the correct class output do not change in the
initial iterations. (B) Progress measures for circulant deviation and AGOP alignment. Circulant deviation for Mul and Div are computed
after reordering by the discrete logarithm base 2.

Mul Mul (reordered) Div Div (reordered)

NN
AGOP

NFM

B

A

Figure 6. (A) We visualize the neural feature matrix (NFM) from a one hidden layer neural network with quadratic activations trained on
modular multiplication and division, before and after reordering by the discrete logarithm. (B) We visualize the square root of the AGOP
of the neural network in (A) before and after reordering.

21

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

Add Sub Mul (reordered) Div (reordered)

NN
AGOP

NFM

B

A

Figure 7. Feature matrices from one hidden layer neural networks with quadratic activations trained on addition, subtraction, multiplication,
and division modulo 61. The Pearson correlations between the NFM and square root of the AGOP for each task are 0.955 (Add), 0.942
(Sub), 0.924 (Mul), 0.929 (Div). Mul and Div are shown after reordering by the discrete logarithm base 2.

Epochs Epochs

Ac
cu
ra
cy

Ac
cu
ra
cy

Sq
ua
re
 L
os
s

Sq
ua
re
 L
os
s

Weight Decay AGOP Regularization

Epochs

Ac
cu
ra
cy

Sq
ua
re
 L
os
s

No Regularization

0.4 training fraction
Figure 8. One hidden layer fully connected networks with quadratic activations trained on modular addition with p = 61 with vanilla
SGD. Without any regularization the test accuracy does not go to 100% whereas using weight decay or regularizing using the trace of the
AGOP result in 100% test accuracy and grokking.

22

Emergence in Non-Neural Models: Grokking Modular Arithmetic via Average Gradient Outer Product

Epochs Epochs

Ac
cu
ra
cy
 (
%)

Ac
cu
ra
cy
 (
%)

Sq
ua
re
 L
os
s

Sq
ua
re
 L
os
s

NN Random Circulant + NN

17.5% - ¼ M matrix

Add

Epochs Epochs

Ac
cu
ra
cy
 (
%)

Ac
cu
ra
cy
 (
%)

Sq
ua
re
 L
os
s

Sq
ua
re
 L
os
s

NN Random Circulant + NN

Mul

Figure 9. Random circulant features speed up generalization in neural networks for modular arithmetic tasks. We compare one hidden
layer MLPs with quadratic activations trained on modular addition and multiplication for p = 61 using standard one-hot encodings or
those transformed by random circulant matrices (re-ordered by the discrete logarithm for multiplication).

Te
st

 S
qu

ar
e

Lo
ss

Te
st

 A
cc

ur
ac

y
(%

) AG
OP

Al
ig

nm
en

t

Training Fraction (%)Training Fraction (%)Training Fraction (%)

Figure 10. We train kernel-RFMs for 30 iterations using the Mahalanobis Gaussian kernel for x+ ymod97. We plot test accuracy, test
loss, and AGOP alignment versus percentage of training data used (denoted training fraction). All models reach convergence (i.e., both
the test loss and test accuracy no longer change) after 30 iterations. We observe a sharp transition in test accuracy with respect to the
training fraction, but we observe gradual change in test loss and AGOP alignment with respect to the training data fraction.

23

